Subido por Jorge Vallejos

Wind Turbine Design Capitulo 1

Anuncio
I ON
Wind Turbine
Design
With Emphasis on Darrieus Concept
P ARASCHIVOIU
Presses internationales
P o ly t e c h n i q u e
Excerpt of the full publication
Wind Turbine Design – With Emphasis on Darrieus Concept
Ion Paraschivoiu
Production team
Editorial management and production: Presses internationales Polytechnique
Editing: Stephen Schettini
Illustrations: Farooq Saeed
Cover Page: Cyclone Design
For information on distribution and points of sale, see our Website: www.polymtl.ca/pub
E-mail of Presses internationales Polytechnique: pip@polymtl.ca
E-mail of Ion Paraschivoiu: ion.paraschivoiu@polymtl.ca
We acknowledge the financial support of the Government of Canada through the Book Publishing Industry Development Program (BPIDP) for our publishing activities.
Government of Québec — Tax credit for book publishing — Administered by SODEC
All rights reserved.
© Presses internationales Polytechnique, 2002
Reprinted December 2009.
This book may not be duplicated in any way without the express written consent of the publisher.
Legal deposit: 4th quarter 2002
Bibliothèque et Archives nationales du Québec
Library and Archives Canada
ISBN 978-2-553-00931-0 (printed version)
ISBN 978-2-553-01594-6 (pdf version)
Printed in Canada
Excerpt of the full publication
Table of Contents
vii
Table
of
Contents
Foreword ........................................................................................................................................ v
List of Figures ............................................................................................................................. xiii
List of Tables ............................................................................................................................. xxiii
Chapter 1 Wind Energy
1.1 Wind Definition and Characteristics ................................................................................... 1
1.2 Wind Turbines ...................................................................................................................... 1
1.3 Wind Energy Applications ................................................................................................... 5
1.4 Benefits and Obstacles in Wind Energy Development ....................................................... 6
1.5 Overview of Wind Energy Development ............................................................................ 8
1.6 Wind Energy Development in the World ............................................................................ 8
1.7 Cost of Wind Energy .......................................................................................................... 10
1.8 Social Cost of Wind Energy .............................................................................................. 11
Conclusions .................................................................................................................................. 13
References .................................................................................................................................... 13
Chapter 2 State of the Art of Vertical-Axis Wind Turbines
2.1
2.2
The Madaras Rotor Concept .............................................................................................. 15
Savonius Rotor ................................................................................................................... 16
2.2.1 Mathematical Model ............................................................................................. 17
2.2.2 Experimental Study ............................................................................................... 20
2.3 Drag-Driven Device ........................................................................................................... 25
2.4 Lift-Driven Device ............................................................................................................. 26
2.5 Giromill .............................................................................................................................. 28
2.6 Vortex Modeling Cross-Wind Axis Machine .................................................................... 32
2.7 Aerodynamic Characteristics ............................................................................................. 34
References .................................................................................................................................... 34
Chapter 3 The Darrieus Wind-Turbine Concept
3.1 Introduction ........................................................................................................................ 37
3.2 Geometry of the Darrieus Rotor ........................................................................................ 41
References .................................................................................................................................... 61
Chapter 4 Aerodynamic Performance Prediction Models
4.1
Single Streamtube Model ................................................................................................... 66
4.1.1 Aerodynamic Performance ................................................................................... 70
viii
Table of Contents
4.1.2 Comparison of Single Streamtube Model with Experiment ................................ 71
Conclusions ........................................................................................................................ 76
4.2 Multiple Streamtubes Model ............................................................................................. 77
4.3 Vortex Models .................................................................................................................... 85
4.3.1 Free-Wake Vortex Model ...................................................................................... 86
4.3.2 Fixed-Wake Vortex Model .................................................................................... 87
4.3.3 Comparisons between Vortex Models and Experiment ....................................... 88
4.4 A High-Speed Lifting Line Model .................................................................................... 90
4.4.1 Results and Discussion ......................................................................................... 94
4.5 Local-Circulation Model .................................................................................................... 97
References .................................................................................................................................... 98
Chapter 5 Unsteady Aerodynamics − CFD Models
5.1
Introduction ...................................................................................................................... 101
5.1.1 Dynamic-Stall Phenomenon ............................................................................... 104
5.1.2 Numerical Simulation of Dynamic Stall ............................................................ 105
5.2 Numerical Procedure ........................................................................................................ 106
5.2.1 Governing Equations .......................................................................................... 106
5.2.2 Boundary Conditions .......................................................................................... 108
5.2.3 Finite Element Discretization ............................................................................. 109
5.2.4 Element Influence Matrices ................................................................................ 110
5.2.5 Newton Linearization .......................................................................................... 112
5.2.6 Algorithm ............................................................................................................ 113
5.3 Turbulence Modeling ....................................................................................................... 114
5.3.1 Cebeci-Smith Model ........................................................................................... 114
5.3.2 Johnson-King Model ........................................................................................... 118
5.4 Results and Discussion ..................................................................................................... 120
5.4.1 Test Cases ............................................................................................................ 120
5.4.2 Darrieus Motion Airfoil ...................................................................................... 127
5.4.3 Flow Structure ..................................................................................................... 130
5.4.4 Aerodynamic Characteristics .............................................................................. 136
5.4.5 Discussion ........................................................................................................... 139
5.5 Conclusions and Recommendations ................................................................................ 141
References .................................................................................................................................. 141
Appendix to Chapter 5 ............................................................................................................... 144
A-5.1 Transformation of the Momentum Equation .............................................................. 144
A-5.2 Pressure Uniqueness Condition .................................................................................. 145
A-5.3 Computation of the Aerodynamic Coefficients .......................................................... 146
Chapter 6 Double-Multiple Streamtube − A Practical Design Model
6.1
6.2
6.3
6.4
Double Actuator Disk Theory ......................................................................................... 147
Double Actuator Disk Momentum Theory ..................................................................... 148
Blade Element Theory ...................................................................................................... 153
Double-Multiple Streamtube Model for Studying Darrieus Turbine ............................. 156
Table of Contents
ix
6.4.1 Aerodynamic Model ........................................................................................... 158
6.4.2 Influence of Secondary Effects on the Aerodynamics of the Darrieus Rotor .. 177
Conclusion ........................................................................................................................ 188
6.4.3 Streamtube Expansion Model ............................................................................. 189
Conclusion ........................................................................................................................ 198
6.5 Aerodynamic Analysis of the Darrieus Wind Turbines Including Dynamic-Stall
Effects ............................................................................................................................... 199
6.5.1 Introduction ......................................................................................................... 200
6.5.2 Dynamic-Stall Models ........................................................................................ 201
6.6 Darrieus Rotor Aerodynamics in Turbulent Wind .......................................................... 226
6.6.1 Aerodynamic Analysis ........................................................................................ 228
6.6.2 Wind Model ......................................................................................................... 230
Conclusion ........................................................................................................................ 236
6.7 Comparison with Other Computer Code Predictions ..................................................... 237
6.7.1 Aerodynamic Performance ................................................................................. 237
6.7.2 Structural Dynamics in Connection with Momentum Models .......................... 238
Conclusion ........................................................................................................................ 240
6.8 Blade Tip and Finite Aspect Ratio Effects on the Darrieus Rotor ................................. 241
6.9 Performance Predictions of VAWTs with SNL Airfoil Blades ...................................... 247
6.9.1 Performance of Conventional and SNL Blades ................................................. 251
Conclusion ........................................................................................................................ 253
6.10 CARDAAV Software ....................................................................................................... 253
6.10.1 Rotor Geometry ................................................................................................ 255
6.10.2 Operational Conditions ..................................................................................... 256
6.10.3 Control Parameters ........................................................................................... 256
6.10.4 Results ............................................................................................................... 257
Conclusion ........................................................................................................................ 259
References .................................................................................................................................. 259
Chapter 7 Aerodynamic Loads and Performance Tests
7.1
7.2
7.3
Water Channel Experiments ............................................................................................. 266
7.1.1 Texas Tech University Tests ............................................................................... 266
7.1.2 Water Channel Experiments of Dynamic Stall on Darrieus Rotor ................... 277
Wind Tunnel Experiments ............................................................................................... 288
7.2.1 National Research Council of Canada Wind Tunnel Tests ................................ 288
7.2.2 Sandia Research Turbines ................................................................................... 291
7.2.3 Predicted and Experimental Aerodynamic Forces on the Darrieus Rotor ........ 296
Field Test of Darrieus Wind Turbines ............................................................................. 303
7.3.1 Sandia 5 Meter Research Turbine ...................................................................... 303
7.3.2 NRC/Hydro-Quebec Magdalen Islands 24 Meter Research Turbine ................ 304
7.3.3 NRC/DAF 6.1 Meter Research Turbine ............................................................. 305
7.3.4 Lavalin Eole (64-m) Research Turbine, (Cap-Chat, Québec) ........................... 306
7.3.5 Pionier I (15 Meter) Cantilevered Rotor Research Turbine (Netherlands) ...... 308
7.3.6 Sandia 17 Meter Research Turbine .................................................................... 308
x
Table of Contents
7.4
Commercial Prototype Wind Turbines ............................................................................ 312
7.4.1 DOE 100 kW (17-m) Darrieus Wind Turbine ................................................... 312
7.4.2 FloWind 17-m and 19-m Commercial Turbines ................................................ 312
7.4.3 Indal Technologies 50 kW (11.2-m) and 6400/500 kW (24-m) ........................ 314
7.5 Measurements and Prediction of Aerodynamic Torques for a Darrieus
Wind Turbine .................................................................................................................... 315
7.5.1 Introduction ......................................................................................................... 315
7.5.2 Measurements and Data Reduction .................................................................... 317
7.5.3 Prediction of Aerodynamic Torque .................................................................... 321
7.5.4 Measured and Predicted Aerodynamic Torque .................................................. 322
References .................................................................................................................................. 326
Chapter 8 Innovative Aerodynamic Devices for Darrieus Rotor
8.1
8.2
Natural Laminar Flow (NLF) Airfoils and Tapered Blades ........................................... 329
Aerobrakes ........................................................................................................................ 340
8.2.1 Spoilers ................................................................................................................ 341
8.3 Vortex Generators ............................................................................................................. 342
8.4 Pumped Spoiling .............................................................................................................. 345
8.5 Toe-In-Angle Effects ........................................................................................................ 346
8.6 Blade Camber ................................................................................................................... 349
8.7 Blade Roughness (Soiling), Blade Icing and Parasite Drag Effects .............................. 351
References .................................................................................................................................. 355
Chapter 9 Future Trends Design of Darrieus Wind Turbine
9.1
9.2
9.3
Wind Turbine Design Parameters .................................................................................... 359
9.1.1 Swept Area .......................................................................................................... 359
9.1.2 Rotor Aspect Ratio .............................................................................................. 362
9.1.3 Blade Airfoil ........................................................................................................ 364
9.1.4 Rotor Speed ......................................................................................................... 365
9.1.5 Rotor Solidity ...................................................................................................... 365
9.1.6 Blade Material and Construction ........................................................................ 366
9.1.7 Central Column of Darrieus Rotor ..................................................................... 367
9.1.8 Horizontal Struts ................................................................................................. 368
9.1.9 Guy Cables .......................................................................................................... 368
9.1.10 Cantilever Darrieus Rotor ................................................................................... 370
9.1.11 Type and Location of Brakes .............................................................................. 370
9.1.12 Gearbox ............................................................................................................... 371
9.1.13 Drive Train .......................................................................................................... 372
9.1.14 Motor/Generator .................................................................................................. 373
9.1.15 Variable Speed ..................................................................................................... 374
Darrieus Wind Turbine Design ........................................................................................ 374
9.2.1 Darrieus Design Issues ........................................................................................ 374
9.2.2 Future Design Alternatives ................................................................................. 375
Comparison Between Horizontal-Axis and Vertical-Axis Wind Turbines .................... 377
Table of Contents
xi
9.3.1 HAWTs vs VAWTs Technical Aspects ............................................................... 377
9.3.2 Taking VAWTs to Viability ................................................................................. 381
References .................................................................................................................................. 382
Chapter 10 Acceptability Environmental and Social Aspects
of Wind Energy
10.1 Introduction ...................................................................................................................... 387
10.2 Environmental Aspects .................................................................................................... 388
10.2.1 Human Environment Aspects ............................................................................. 389
10.2.2 Natural Environment Aspects ............................................................................. 391
10.2.3 Environmental Effects of Wind Turbine Operation ........................................... 393
10.3 Gas Emissions: Wind and Other Energy Sources ........................................................... 394
10.4 Public Attitudes in Various Countries ............................................................................. 396
10.5 Social Impact .................................................................................................................... 398
10.6 Wind Power and Traditional Power Sources .................................................................. 398
Conclusions ................................................................................................................................ 401
References .................................................................................................................................. 401
Appendix A
Appendix B
Aerodynamic Characteristics of Symmetrical Airfoils ................................... 405
Canada and Worldwide Wind Energy Production ........................................... 417
Appendix C
Wind Energy on the Worldwide Web .............................................................. 425
Index .......................................................................................................................................... 427
Wind Energy
Wind Energy
1
1.1 WIND DEFINITION AND CHARACTERISTICS
WIND is the movement of the air between high pressure and low pressure regions in the
atmosphere, caused by the uneven heating of the earth’s surface by the sun. When the air above
hot surfaces is heated, it rises, creating a low pressure zone. The air surrounding higher pressure zones flows toward the low pressure area, creating wind. For this reason, sometimes wind
energy is called “indirect solar energy.”
Wind varies with time in intensity and direction, and the potential of a wind site is
generally evaluated as a function of the annual average wind speed. Wind speeds can be
calculated for other periods to determine hourly, daily or monthly averages. Winds vary with
altitude and wind speed is also affected by ground features such as hills. The variation of wind
speed with altitude is due to friction between air movement and the earth’s surface (the
atmospheric boundary-layer). All weather offices report the wind speed at a standard height of
10 meters above ground. Wind near the ground gathers speed to climb a hill, then slows (and
sometimes becomes very turbulent) on the far side of the hill. The wind speed strength and
direction are measured by anemometers.
1.2 WIND TURBINES
The depletion of global fossil fuel reserves combined with mounting environmental concern
has served to focus attention to the development of ecologically compatible and renewable
alternative energy sources. The harnessing of wind energy is a promising technology able to
provide a portion of the power requirements in many regions of the world. Wind generators are
a practical way to capture and convert the kinetic energy of the atmosphere to either mechanical
or, more significantly, electrical energy.
The term WINDMILL is applied to the wind-powered machine that grinds (or mills) grain.
Modern machines are more correctly called WIND TURBINES because they can be used for a
variety of applications, such as generating electricity and pumping water.
Windmills have a very simple design based on the drag-device that relies on different air
resistance on the front and back of the rotor section to cause rotation.
An interesting and well documented survey concerning historical development of windmills
is given in “Wind Turbine Technology” (ASME Press, 1994, D.A. Spera, editor), Ref. [1.1].
The most efficient way to convert wind energy into electrical or mechanical energy is
offered by wind turbines that operate as a lifting-device. Wind turbines are classified into two
categories, according to the direction of their rotational axis: Horizontal-Axis Wind Turbines
2
Chapter 1
(HAWT) and Vertical-Axis Wind Turbines (VAWT). Horizontal-axis wind turbines capture
kinetic wind energy with a propeller type rotor and their rotational axis is parallel to the direction of the wind (Fig. 1.1). Vertical-axis wind turbines use straight or curved bladed (Darrieus
type) rotors with rotating axes perpendicular to the wind stream. They can capture wind from
any direction (Fig. 1.2). The most popular wind turbine systems are of the “propeller type,” but
the VAWTs have not yet benefited from the years of development undergone by HAWTs. These
two kinds of wind machine are compared in Chapter 9.
Figure 1.1 Components - Upwind rotor and downwind HAWT rotor [Ref. 1.1]
Both HAWTs and VAWTs have about the same ideal efficiency but the horizontal-axis wind turbine is more common. It has the entire rotor, gearbox and generator at the top of the tower, and
must be turned to face the wind direction. The VAWT accepts wind from any direction, and its
heavy machinery is at ground level. This is more convenient for maintenance, particularly on
large units or when operating in potential icing conditions.
Both types of wind turbines have the same general components:
- a rotor to convert wind energy into mechanical power,
- a tower to support the rotor,
- a gearbox to adjust the rotational speed of the rotor shaft for the electric generator or
pump,
- a control system to monitor operation of the wind turbine in automatic mode, including
starting and stopping,
- a foundation (sometimes aided by guy wires) to prevent the turbine from blowing over
in high winds.
Extrait distribué par Presses Internationales Polytechnique
Wind Energy
3
Upper Bearing
Upper Hub
Central Column
Cables
Rotor
Height
Rotor
Diameter
Lower Hub
Lower Bearing
Support Stand
Tensioner
Power Train
Clearance
Ground
Level
Equipment Station
Cable
Foundation
Rotor
Foundation
Figure 1.2 VAWT of Darrieus type [Ref. 1.1]
The size of a wind turbine is measured in terms of swept area, or surface area swept by the
rotating blades. The swept area of the rotor is calculated from the diameter of the rotor by:
S = 0.785 D2 for HAWTs or by S = 1.000 D2 for typical VAWTs with an aspect ratio (height/
diameter) of 1.5.
The control system of wind turbines is connected to an anemometer that continuously
measures wind speed. When wind speed is high enough to overcome friction in the drive train,
the control system allows the turbine to rotate, producing limited power. This is the “cut-in”
wind speed, usually about 4 or 5 m/s. Wind turbines normally have a “rated wind speed,”
corresponding to maximum output power. Typically, the rated wind speed is about 10-12 m/s.
If wind speed exceeds rated wind speed, the control system prevents further power increases
until “cut-out” wind speed is reached, at approximatively 25 m/s.
VAWTs are generally classified according to aerodynamic and mechanical characteristics,
or the lifting surfaces, or the movement of the blades of the rotor, about a vertical-axis along a
path in a horizontal plane. Today, there are four classes of VAWTs (Fig. 1.3):
a) the articulating straight-blade Giromill;
b) the Savonius rotor, a mostly drag-driven device;
c) the variable-geometry Musgrove, which permits reefing of the blades; and,
d) the fixed-blade Darrieus rotor.
Vertical-axis wind turbines (VAWTs) have been studied by various researchers using modern
analysis techniques. Common examples of these vertical-axis wind turbines are the Savonius
and Darrieus turbines. In 1968, South and Rangi, from the National Research Council of
Canada, reintroduced the Darrieus rotor concept. Since then, many analytical models predicting
the aerodynamic performance of this type of wind turbine have been formulated.
Descargar