Universidad Tecnológica de Panamá Lic. En Ingeniería Logística y Cadena de Suministro Facultad de Ingeniería Industrial Curso de Ecuaciones Diferenciales Grupo: 1CL121 Código: 1423 Integrantes: Lynn Salazar (3-748-1444) Fernando Gómez (8-987-899) Stanley Berrio (8-991-696) Taller #6 EDO Profesor: Martín Peralta Fecha de entrega: 3 de mayo del 2022 Resuelva las siguientes E.D exactas, demuestre que son exactas y presente todos los procedimientos y escriba cada problema en el editor de ecuaciones 1. (𝑥 2 − 1)𝑦´ + 2𝑥𝑦 = 0 para y(2)=-1 𝑑𝑦 (𝑥 2 − 1) + 2𝑥𝑦 = 0 𝑑𝑥 (𝑥 2 − 1) 𝑑𝑦 = (−2𝑥𝑦)(𝑑𝑥) (𝑥 2 − 1) 𝑑𝑦 + (2𝑥𝑦)(𝑑𝑥) = 0 2𝑀 2𝑁 = 2𝑥 2𝑦 𝑑 2 (𝑥 − 1) = 2𝑥 𝑑𝑥 𝑑 2𝑥𝑦 = 2𝑥 𝑑𝑦 exactas ∫(𝑥 2 − 1) 𝑑𝑦 ∫ 𝑥 2 𝑑𝑦 − ∫ 1 𝑑𝑦 ∫ 2𝑥𝑦(𝑑𝑥) 2𝑦 ∫ 𝑥𝑑𝑥 𝑥2𝑦 − 𝑦 2𝑦( 2 ) 𝑥2 𝑥2𝑦 𝑥 2 𝑦 − 𝑦 = 𝑐 solución general Reemplazamos para y(2)=-1 22 (−1) − (−1) = 𝑐 −4 + 1 = 𝑐 𝑐 = −3 𝑥 2 𝑦 − 𝑦 − 3 = 0 solución particular 𝟓 𝟐. (𝟓𝒚 − 𝟐𝒙)𝒚′ − 𝟐𝒚 = 𝟎 … … . 𝒚𝟐 − 𝟐𝒙𝒚 = 𝒄 𝟐 (5𝑥 − 2𝑥) 𝑑𝑦 − 2𝑦 = 0 𝑑𝑥 (5𝑥 − 2𝑥) 𝑑𝑦 = 2𝑦 𝑑𝑥 (5𝑥 − 2𝑥)𝑑𝑦 = 2𝑦𝑑𝑥 −2𝑦𝑑𝑥 + (5𝑥 − 2𝑥)𝑑𝑦 = 0 → 𝜕𝑀 = (−2𝑦)′ = −2(1) = −2 𝜕𝑦 𝜕𝑁 = (5𝑦 − 2𝑥)′ = −2(1) = −2 𝜕𝑥 𝑀 = −2𝑦 ; 𝑁 = (5𝑦 − 2𝑥) 𝜕𝑀 𝜕𝑁 = 𝑠𝑜𝑛 𝐸. 𝐷 𝑒𝑥𝑎𝑐𝑡𝑎𝑠 𝜕𝑦 𝜕𝑥 Resolvemos integrales: ∫ 𝑁(𝑥, 𝑦)𝑑𝑦 = ∫(5𝑥 − 2𝑥)𝑑𝑦 ∫ 𝑀(𝑥, 𝑦)𝑑𝑥 = ∫ −2𝑦𝑑𝑥 = −2𝑦 ∫ 𝑑𝑥 ∫ 5𝑦𝑑𝑦 − ∫ 2𝑥𝑑𝑦 = −2𝑦[𝑥] 5 ∫ 𝑦𝑑𝑦 − 2𝑥 ∫ 𝑑𝑦 = −2𝑥𝑦 𝑦2 5 [ ] − 2𝑥[𝑦] 2 5 2 𝑦 − 2𝑥𝑦 2 𝑓(𝑥, 𝑦) = ∫ 𝑀(𝑥, 𝑦)𝑑𝑥 + ∫ 𝑁(𝑥, 𝑦)𝑑𝑦 = 𝐶 5 𝑓(𝑥, 𝑦) = −2𝑥𝑦 + 𝑦 2 = 𝑐 𝑠𝑜𝑙𝑢𝑐𝑖𝑜𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 "𝑓𝑎𝑚𝑖𝑙𝑖𝑎" 2 3. (2𝑥 + 𝑦 + 2𝑥𝑦 2 )𝑑𝑥 + (𝑥 + 2𝑥 2 𝑦)𝑑𝑦 = 0 𝑑 (𝑥 + 2𝑥 2 𝑦) = 1 + 4𝑥𝑦 𝑑𝑥 𝑑 (2𝑥 + 𝑦 + 2𝑥𝑦 2 ) = 1 + 4𝑥𝑦 𝑑𝑦 ∫(2𝑥 + 𝑦 + 2𝑥𝑦 2 )𝑑𝑥 ∫ 2𝑥𝑑𝑥 + ∫ 𝑦𝑑𝑥 + ∫ 2𝑥𝑦 2 𝑑𝑥 𝑥2 𝑥2 2 ( 2 ) + 𝑦𝑥 + 𝑦 2 (2) ( 2 ) (𝑥 2 ) + 𝑦𝑥 + 𝑥 2 𝑦 2 𝑥 2 + 𝑦𝑥 + 𝑥 2 𝑦 2 =c solución general 4.𝑦 ′ = −(4𝑥 3 −4𝑥𝑦 2 +𝑦) 4𝑦 3 −4𝑥 2 𝑦+𝑥 ∶ 𝑦(−1) = −1 ∫ 𝑥 + 2𝑥 2 𝑦(𝑑𝑦) ∫ 𝑥𝑑𝑦 + ∫ 2𝑥 2 𝑦(𝑑𝑦) 𝑦2 𝑦𝑥 + 2𝑥 2 ( 2 ) 𝑦𝑥 + 𝑥 2 𝑦 2 𝑑𝑦 −(4𝑥 3 − 4𝑥𝑦 2 + 𝑦) = ; 𝑦(−1) = −1 𝑑𝑥 4𝑦 3 − 4𝑥 2 𝑦 + 𝑥 (4𝑦 3 − 4𝑥 2 𝑦 + 𝑥)𝑑𝑦 = −(4𝑥 3 − 4𝑥𝑦 2 + 𝑦)𝑑𝑥 (4𝑥 3 − 4𝑥𝑦 2 + 𝑦)𝑑𝑥 = (4𝑦 3 − 4𝑥 2 𝑦 + 𝑥)𝑑𝑦 𝜕𝑀 = (4𝑥 3 − 4𝑥𝑦 2 + 𝑦) = −4(𝑥)(2𝑦) + 1 = −8𝑥𝑦 + 1 𝜕𝑦 𝜕𝑁 = (4𝑦 3 − 4𝑥 2 𝑦 + 𝑥) = −4(2𝑥)(𝑦) + 1 = −8𝑥𝑦 + 1 𝜕𝑥 ∫ 𝑀 𝑑𝑥 = ( 4𝑥 3 − 4𝑥𝑦 2 + 𝑦) = ∫ 4𝑥 3 𝑑𝑥 − ∫ 4𝑥𝑦 2 𝑑𝑥 + ∫ 𝑦 𝑑𝑥 = 4 ∫ 𝑥 3 𝑑𝑥 − 4𝑦 2 ∫ 𝑥 𝑑𝑥 + 𝑦 ∫ 𝑑𝑥 = 4( 𝑥4 𝑥2 ) − 4𝑦 2 ( ) + 𝑦(𝑥) 4 2 = 𝑥 4 − 2𝑦 2 𝑥 2 + 𝑥𝑦 ∫ 𝑁 𝑑𝑦 = (4𝑦 3 − 4𝑥 2 𝑦 + 𝑥) = 4 ∫ 𝑦 3 𝑑𝑦 − 4𝑥 2 ∫ 𝑦 𝑑𝑦 + 𝑥 ∫ 𝑑𝑦 = 4( 𝑦4 𝑦2 2 − 4𝑥 ) ( ) + 𝑥(𝑦) 4 2 = 𝑦 4 − 2𝑥 2 𝑦 2 + 𝑥𝑦 𝑥 4 + 𝑦 4 − 2𝑥 2 𝑦 2 + 𝑥𝑦 = 𝐶 𝑠𝑜𝑙𝑢𝑐𝑖𝑜𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 "𝑓𝑎𝑚𝑖𝑙𝑖𝑎" Para y(-1) = -1 𝑥 4 + 𝑦 4 − 2𝑥 2 𝑦 2 + 𝑥𝑦 = 0 (−1)4 + (−1)4 − 2(−1)2 (−1)2 + (−1)(−1) = 𝐶 1=𝐶 𝑓(𝑥, 𝑦) = 𝑥 4 + 𝑦 4 − 2𝑥 2 𝑦 2 + 𝑥𝑦 − 1 = 0 solución particular 2 2 5.(−2𝑥 3 + 2𝑥𝑒 𝑥 𝑦)𝑑𝑥 + (𝑒 𝑥 + 2𝑦)𝑑𝑦 = 0 𝑑 2 2 (−2𝑥 3 + 2𝑥𝑒 𝑥 𝑦) = 2𝑥𝑒 𝑥 𝑑𝑦 𝑑 𝑥2 2 (𝑒 + 2𝑦) = 2𝑥𝑒 𝑥 𝑑𝑥 2 ∫(−2𝑥 3 + 2𝑥𝑒 𝑥 𝑦)𝑑𝑥 2 − ∫ 2𝑥 3 𝑑𝑥 + ∫ 2𝑥𝑒 𝑥 𝑦 (𝑑𝑥) 𝑥4 2 −2 ( 4 ) + 2𝑦 ∫ 𝑥𝑒 𝑥 (𝑑𝑥) 𝑡 = 𝑒𝑥 2 2 𝑑𝑡 = 2𝑥𝑒 𝑥 (𝑑𝑥) 4 𝑥 𝑑𝑡 ) + 2𝑦 ∫ 𝑡 ( ) 2 2𝑡 4 𝑥 𝑑𝑡 − ( ) + 2𝑦 ∫ 2 2 4 𝑥 1 − ( ) + 2𝑦( 𝑡) 2 2 𝑥4 1 2 − ( ) + 2𝑦( 𝑒 𝑥 ) 2 2 4 𝑥 2 − ( ) + 𝑦𝑒 𝑥 2 −( 2 ∫(𝑒 𝑥 + 2𝑦)𝑑𝑦 2 ∫ 𝑒 𝑥 𝑑𝑦 + ∫ 2𝑦𝑑𝑦 2 𝑒 𝑥 ∫ 𝑑𝑦 + 2 ∫ 𝑦𝑑𝑦 2 𝑒𝑥 𝑦 + 2 ( 𝑦2 ) 2 2 𝑒 𝑥 𝑦 + 𝑦2 𝑥4 2 (− ) + 𝑦𝑒 𝑥 + 𝑦 2 = 𝑐 2 6. 𝑒 2𝑦 𝑑𝑥 + 2𝑥 𝑒 2𝑦 𝑑𝑦 − 𝑦 cos(𝑥𝑦) 𝑑𝑥 − 𝑥𝑐𝑜𝑠(𝑥𝑦)𝑑𝑦 = −2𝑦 𝑑𝑦 𝑒 2𝑦 𝑑𝑥 + 2𝑥 𝑒 2𝑦 𝑑𝑦 − 𝑦 cos(𝑥𝑦) 𝑑𝑥 − 𝑥𝑐𝑜𝑠(𝑥𝑦)𝑑𝑦 + 2𝑦 𝑑𝑦 = 0 𝑒 2𝑦 𝑑𝑥 − 𝑦 cos(𝑥𝑦) 𝑑𝑥 + 2𝑥 𝑒 2𝑦 𝑑𝑦 − 𝑥𝑐𝑜𝑠(𝑥𝑦)𝑑𝑦 + 2𝑦 𝑑𝑦 = 0 [𝑒 2𝑦 − 𝑦 cos(𝑥𝑦)] 𝑑𝑥 + [2𝑥 𝑒 2𝑦 − 𝑥𝑐𝑜𝑠(𝑥𝑦) + 2𝑦] 𝑑𝑦 = 0 𝑑𝑥 = 𝑑𝑡 2 2𝑥𝑒 𝑥 Donde M= [𝑒 2𝑦 − 𝑦 cos(𝑥𝑦)] y N= 2𝑥 𝑒 2𝑦 − 𝑥𝑐𝑜𝑠(𝑥𝑦) + 2𝑦 𝜕𝑀 𝜕𝑁 = 𝑦 𝑥 𝜕𝑀 = [𝑒 2𝑦 − 𝑦 cos(𝑥𝑦)]′ = 2𝑒 2𝑦 − cos(𝑥𝑦) 𝑦 𝜕𝑁 = [2𝑥 𝑒 2𝑦 − 𝑥𝑐𝑜𝑠(𝑥𝑦) + 2𝑦]′ = 2𝑒 2𝑦 − cos(𝑥𝑦) 𝑥 2𝑒 2𝑦 − cos(𝑥𝑦) = 2𝑒 2𝑦 − cos(𝑥𝑦) Es una E.D exacta ∫ 𝑀 𝑑𝑥 ∫[𝑒 2𝑦 − 𝑦 cos(𝑥𝑦)] 𝑑𝑥 ∫ 𝑒 2𝑦 𝑑𝑥 − ∫ 𝑦 cos(𝑥𝑦)] 𝑑𝑥 𝑒 2𝑦 ∫ 𝑑𝑥 − 𝑦 ∫ cos(𝑥𝑦) 𝑑𝑥 𝑒 2𝑦 (𝑥) − 𝑦 ∫ cos 𝑢 𝑢 = 𝑥𝑦 𝑑𝑢 𝑦 𝑑𝑢 = 𝑦 𝑑𝑥 𝑑𝑢 = 𝑑𝑥 𝑦 1 𝑒 2𝑦 (𝑥) − 𝑦. ∫ cos 𝑢 𝑑𝑢 𝑦 𝑥𝑒 2𝑦 − 𝑠𝑒𝑛 𝑢 𝑥𝑒 2𝑦 − 𝑠𝑒𝑛(𝑥𝑦) ∫ 𝑁 𝑑𝑦 ∫[2𝑥 𝑒 2𝑦 − 𝑥𝑐𝑜𝑠(𝑥𝑦) + 2𝑦] 𝑑𝑦 ∫ 2𝑥 𝑒 2𝑦 𝑑𝑦 − ∫ 𝑥𝑐𝑜𝑠(𝑥𝑦) 𝑑𝑦 + ∫ 2𝑦 𝑑𝑦 2𝑥 ∫ 𝑒 2𝑦 𝑑𝑦 − 𝑥 ∫ 𝑐𝑜𝑠(𝑥𝑦) 𝑑𝑦 + 2 ∫ 𝑦 𝑑𝑦 𝑢 = 2𝑦 1 2𝑥 ∫ 𝑒 𝑢 . 2 𝑑𝑢 − 𝑥 ∫ cos 𝑣 𝑑𝑣 𝑥 + 2 ∫ 𝑦 𝑑𝑦 1 1 1 . 2 𝑥 [𝑒 𝑢 𝑑𝑢] − 𝑥. ∫ cos 𝑣 𝑑𝑣 + 2. (𝑦 2 ) 2 𝑥 2 𝑥𝑒 𝑢 − 𝑠𝑒𝑛 𝑣 + 𝑦 2 𝑑𝑢 = 2 𝑑𝑦 1 𝑑𝑢 = 𝑑𝑦 2 𝑣 = 𝑥𝑦 𝑑𝑣 = 1(𝑥)𝑑𝑦 𝑑𝑣 = 𝑑𝑦 𝑥 𝑥𝑒 2𝑦 − 𝑠𝑒𝑛(𝑥𝑦) + 𝑦 2 𝑓(𝑥, 𝑦) = 𝑥𝑒 2𝑦 − 𝑠𝑒𝑛(𝑥𝑦) + 𝑦 2 = 𝐶 Solución general 𝑑𝑦 7. 𝑑𝑥 = 𝑥𝑦 2 −𝑐𝑜𝑠𝑥 𝑠𝑒𝑛𝑥 𝑦−𝑥 2 𝑦 (𝑦 − 𝑥 2 𝑦) 𝑑𝑦 = (𝑥𝑦 2 − 𝑐𝑜𝑠𝑥 𝑠𝑒𝑛𝑥)𝑑𝑥 (𝑦 − 𝑥 2 𝑦) 𝑑𝑦 − (𝑥𝑦 2 − 𝑐𝑜𝑠𝑥 𝑠𝑒𝑛𝑥)𝑑𝑥 = 0 (−𝑥𝑦 2 + 𝑐𝑜𝑠𝑥 𝑠𝑒𝑛𝑥)𝑑𝑥 + (𝑦 − 𝑥 2 𝑦) 𝑑𝑦 = 0 Donde M=(−𝑥𝑦 2 + 𝑐𝑜𝑠𝑥 𝑠𝑒𝑛𝑥) y N= (𝑦 − 𝑥 2 𝑦) 𝜕𝑀 = (−𝑥𝑦 2 + 𝑐𝑜𝑠𝑥 𝑠𝑒𝑛𝑥) ′ 𝑦 𝜕𝑀 𝑦 𝜕𝑀 𝜕𝑁 = 𝑦 𝑥 = −2𝑥𝑦 𝜕𝑁 = (𝑦 − 𝑥 2 𝑦)′ 𝑥 −2𝑥𝑦 = −2𝑥𝑦 La E.D es exacta 𝜕𝑁 = −2𝑥𝑦 𝑥 ∫ 𝑀 𝑑𝑥 ∫(−𝑥𝑦 2 + 𝑐𝑜𝑠𝑥 𝑠𝑒𝑛𝑥) 𝑑𝑥 − ∫ 𝑥 𝑦 2 𝑑𝑥 + ∫ 𝑐𝑜𝑠𝑥 𝑠𝑒𝑛𝑥 𝑑𝑥 −𝑦 2 ∫ 𝑥 𝑑𝑥 + ∫ 𝑐𝑜𝑠𝑥 𝑠𝑒𝑛𝑥 𝑥2 −𝑦 2 ( 2 ) − ∫ 𝑢 𝑑𝑢 2 − 1 2 2 𝑢 𝑥 𝑦 − 2 2 − 1 2 2 1 𝑥 𝑦 − 𝑐𝑜𝑠 2 𝑥 2 2 𝑢 = 𝑐𝑜𝑠𝑥 𝑑𝑢 = −𝑠𝑒𝑛𝑥 ∫ 𝑁 𝑑𝑦 ∫(𝑦 − 𝑥 2 𝑦) 𝑑𝑦 ∫ 𝑦 𝑑𝑦 − ∫ 𝑥 2 𝑦 𝑑𝑦 ∫ 𝑦 𝑑𝑦 − 𝑥 2 ∫ 𝑦 𝑑𝑦 𝑦2 𝑦2 − 𝑥2 ( ) 2 2 1 2 1 2 2 𝑦 − 𝑥 𝑦 2 2 𝑓(𝑥, 𝑦) = − 1 2 2 1 2 1 𝑥 𝑦 + 𝑦 − 𝑐𝑜𝑠 2 𝑥 = 𝐶 2 2 2 − 𝑥 2 𝑦 2 + 𝑦 2 − 𝑐𝑜𝑠 2 𝑥 = 2𝐶 𝑦 2 (− 𝑥 2 + 1) − 𝑐𝑜𝑠 2 𝑥 = 2𝐶 𝑦 2 (1 − 𝑥 2 ) − 𝑐𝑜𝑠 2 𝑥 = 2𝐶 𝑦 2 (1 − 𝑥 2 ) − 𝑐𝑜𝑠 2 𝑥 = 𝑘 Solución general Para el punto 𝑦(0) = 2 𝑥 = 0 ;𝑦 = 2 (2)2 (1 − 02 ) − 𝑐𝑜𝑠 2 0 = 𝑘 4(1) − (1)2 = 𝑘 4−1=𝑘 3=𝑘 𝑦 2 (1 − 𝑥 2 ) − 𝑐𝑜𝑠 2 𝑥 = 3 Solución Particular 8. (𝑦 2 cos 𝑥 − 3𝑥 2 𝑦 − 2𝑥)𝑑𝑥 + (2𝑦 sin 𝑥 − 𝑥 3 + 𝑙𝑛|𝑥|)𝑑𝑦 = 0 … … 𝑦(0) = 𝑒 𝑦 2 sin 𝑥 − 𝑥 3 𝑦 − 𝑥 2 + 𝑦𝑙𝑛|𝑦| − 𝑦 = 𝑘 { 2 𝑦 sin 𝑥 − 𝑥 3 𝑦 − 𝑥 2 + 𝑦𝑙𝑛|𝑦| − 𝑦 = 0 −2𝑥𝑑𝑥 + 2𝑦 sin 𝑥 𝑑𝑦 − 3𝑥 2 𝑦𝑑𝑥 − 𝑥 3 𝑑𝑦 + 𝑦 2 cos 𝑥 𝑑𝑥 + 𝑙𝑛|𝑦|𝑑𝑦 = 0 (−2𝑥 − 3𝑥 2 𝑦 + 𝑦 2 cos 𝑥)𝑑𝑥 + (2𝑦 sin 𝑥 − 𝑥 3 + 𝑙𝑛|𝑦|)𝑑𝑦 = 0 → 𝑀 = −2𝑥 − 3𝑥 2 𝑦 + 𝑦 2 cos 𝑥 𝑁 = 2𝑦 sin 𝑥 − 𝑥 3 + 𝑙𝑛|𝑦| 𝜕𝑀 = (−2𝑥 − 3𝑥 2 𝑦 + 𝑦 2 cos 𝑥)′ 𝜕𝑦 = −3𝑥 2 (1) + (2𝑦) cos 𝑥 𝜕𝑁 = (2𝑦 sin 𝑥 − 𝑥 3 + 𝑙𝑛|𝑦|)′ 𝜕𝑥 = −3𝑥 2 + 2𝑦 cos 𝑥 2𝑦(cos 𝑥)(1) − 3𝑥 2 𝜕𝑀 𝜕𝑁 = 𝑒𝑠 𝑢𝑛𝑎 𝐸. 𝐷 𝑒𝑥𝑎𝑐𝑡𝑎 𝜕𝑦 𝜕𝑥 2𝑦 cos 𝑥 − 3𝑥 2 ∫ 𝑀(𝑥, 𝑦)𝑑𝑥 = ∫(−2𝑥 − 3𝑥 2 𝑦 + 𝑦 2 cos 𝑥)𝑑𝑥 ∫ −2𝑥𝑑𝑥 − ∫ 3𝑥 2 𝑦𝑑𝑥 + ∫ 𝑦 2 cos 𝑥 𝑑𝑥 = −2 ∫ 𝑥𝑑𝑥 − 3𝑦 ∫ 𝑥 2 𝑑𝑥 + 𝑦 2 ∫ cos 𝑥 𝑑𝑥 𝑥2 𝑥3 −2 [ ] − 3𝑦 [ ] + 𝑦 2 [sin 𝑥] 2 3 = −𝑥 2 − 𝑥 3 𝑦 + 𝑦 2 sin 𝑥 ∫ 𝑁(𝑥, 𝑦)𝑑𝑦 = ∫(2𝑦 sin 𝑥 − 𝑥 3 + 𝑙𝑛|𝑦|)𝑑𝑦 ∫ 2𝑦 sin 𝑥𝑑𝑦 − ∫ 𝑥 3 𝑑𝑦 + ∫ 𝑙𝑛[𝑦] 𝑑𝑦 2 sin 𝑥 ∫ 𝑦 𝑑𝑦 − 𝑥 3 ∫ 𝑑𝑦 + ∫ 𝑙𝑛|𝑦|𝑑𝑦 → ∫ 𝑙𝑛|𝑢|𝑑𝑢 = 𝑢𝑙𝑛|𝑢|-u 𝑦2 2 sin 𝑥 [ ] − 𝑥 3 [𝑦] + 𝑦𝑙𝑛|𝑦| − 𝑦 2 𝑦 2 sin 𝑥 − 𝑥 3 𝑦 + 𝑦𝑙𝑛|𝑦| − 𝑦 𝑓(𝑥, 𝑦) = −𝑥 2 − 𝑥 3 𝑦 + 𝑦 2 sin 𝑥 + 𝑦𝑙𝑛|𝑦| − 𝑦 = 𝑐 solución general “familia”