A-1 Useful Formulae and Integrals ∞ ∫0 ∞ ∫0 ∞ ∫0 ∞ ∫0 ∞ ∫0 xn e-x dx = n! (n = positive integer) 1 e-βx2 dx = 2 (π/β) 1/2 x e-βx2 dx = 1 2β 1 x2 e-βx2 dx = 4 (π/β3) 1/2 x3 e-βx2 dx = 1 2β2 Stirling's approximation: loge (n!) ≃ n logen – n n! = (n >> 1) 1 2π n nn exp -n + 12n + O c c! (a+b)c = ∑ ar b(c-r) r!(c-r)! r=0 1 n2 A-2 Spherical Harmonics Ym Legendre Polynomials PA (z) 0 Y0 = 1 4π Po(z) = 1 ℓ Y1(θ , φ) = 1 0 Y1(θ , φ) = 3 sinθ e iφ 8π 3 cosθ 4π P1(z) = z -1 3 sinθ e -iφ 8π 2 15 sin 2 θ e 2iφ 32π Y1 (θ , φ) = Y2(θ,φ) = 1 15 sinθ cosθ e iφ 8π 0 5 (3 cos 2 θ - 1) 16π Y2(θ,φ) = Y2(θ,φ) = -1 15 sinθ cosθ e -i φ 8π -2 15 sin 2 θ e -2i φ 32π Y2 (θ,φ) = Y2 (θ,φ) = P2(z) = 1 2 2 (3z - 1) 1 P3(z) = 2 (5z3 - 3z) o YA (θ,φ) = 2A + 1 PA (cos θ) 4π Jn(x) The Bessel and Neumann functions Zn(x) = Y (x) are solutions of Bessel's equation n d2Zn(x) 1 dZn(x) n2 + + ( 1 – ) Zn(x) = 0 x dx dx2 x2 e = 4.80 ×10-10 esu = 1.60 × 10-19 Coulomb No = 6.02 × 1023 particles/mole c = 3.00 × 1010 cm/sec = 3.00 × 108 m/sec kB = 1.38 × 10-23 J K-1 =1.38 × 10-16 ergK-1 –h = 1.05 × 10-27 erg sec = 1.05 × 10-34 J sec ao = 0.529 × 10-8 cm me = 9.11 × 10-28 g = 9.11 × 10-31 kg εo ≅ mp = 1.67 × 10-24 g = 1.67 × 10-27 kg Tesla.m µo = 4π × 10-7 Ampere 1 Farad m 9 4π×9×10 A-3 VECTOR OPERATIONS IN CYLINDRICAL AND SPHERICAL COORDINATES CYLINDRICAL COORDINATES Coordinat es(r, ϕ, z) Gradient Curl Divergence ∂f ∂f i ∂f + ∇f = i1 r + i2 1r ∂ ∂ϕ 3 ∂z ∂A z ∂A ϕ ∂A r ∂A z ∂ ∂Ar + i2 + i 3 1r (rAϕ) - 1r ∇ x A = i 1 1r z z r r ∂ϕ ∂ ∂ ∂ ∂ ∂ϕ ∇ • A = 1r 2 Laplacian Unit vectors (i 1, i 2, i 3) ∂A ϕ ∂A z ∂ (r A r) + 1r + ∂r ∂ϕ ∂z 2 2 ∂ ∂f ∂ f ∂ f + 12 r + ∇ f = 1r ∂r ∂r r ∂ 2 ∂z 2 ϕ z r z y ϕ x A-4 VECTOR OPERATIONS IN CYLINDRICAL AND SPHERICAL COORDINATES SPHERICAL COORDINATES Coordinates (r, θ, ϕ) Unit vectors (i 1, i 2, i 3) ∂ f i 1 ∂f f + r i3 1 ∂ + ∂r 2 ∂θ r sin θ ∂ϕ Gradient ∇f = i 1 Curl ∇ x A = i1 ∂ ∂A 1 1 ∂Ar - 1 ∂ (r A ) (sin θ Aϕ) - θ + i ϕ r ∂r 2 ∂ϕ r sin θ ∂θ r sin θ ∂ϕ ∂ ∂Ar + i 1r (r Aθ) - 1r 3 ∂r ∂θ Divergence Laplacian ∂A ϕ ∂ 2 ∂ r Ar + 1 sin θ Aθ + 1 ∇ • A = 12 r ∂r r sin θ ∂θ r sin θ ∂ϕ 2 2 ∂ 2 ∂f ∂ ∂f ∂ f 1 1 + r sin θ + ∇ f = 12 2 ∂r r 2 sin θ ∂θ r ∂r ∂θ r 2 sin θ ∂ϕ 2 2 2 ∂ ∂ ∂f ∂ f 1 1 rf + sin θ + = 1r 2 2 2 r sin θ ∂θ ∂r ∂θ r 2 sin θ ∂ϕ 2 z r θ z y ϕ x