Subido por stalin robles

clase de integ

Anuncio
1
3
∫ ( √𝑡 − 2)𝑑𝑡
−1
1
1
3
∫ √𝑡 𝑑𝑡 − ∫ 2 𝑑𝑡
−1
1
−1
1
1
∫ 𝑡 3 𝑑𝑡 − 2 ∫ 𝑑𝑡
−1
−1
𝑡=1
1
1
+1
3
1
( +1)
𝑡 3
− 2𝑡|
𝑡=−1
𝑡=1
3 (4 )
𝑡 3 − 2𝑡|
4
𝑡=−1
4
4
3
3
( )
( )
( (1) 3 − 2(1)) − ( (−1) 3 − 2(−1))
4
4
3
3
( − 2) − ( + 2)
4
4
3 8
3 8
( − )−( + )
4 4
4 4
3−8
3+8
(
)−(
)
4
4
5 11
16
− −
=−
= −4
4 4
4
𝑦 = 4 − 𝑥2
𝑛
𝑏
∫ 𝑓(𝑥) 𝑑𝑥 = lim ∑ 𝑓(𝑎 + 𝑘∆𝑥)∆𝑥
𝑎
𝑛→∞
𝑘=1
𝑎 = −2 ; 𝑏 = 2 ; 𝑓(𝑥) = 4 − 𝑥 2 ; ∆𝑥 =
𝑓(𝑎 + 𝑘∆𝑥) = 𝑓 (−2 +
𝑓(𝑥) = 4 − 𝑥 2
→
𝑏 − 𝑎 2 − (−2) 4
=
=
𝑛
𝑛
𝑛
4𝑘
)
𝑛
𝑓 (−2 +
2
4𝑘
4𝑘
) = 4 − ( − 2)
𝑛
𝑛
4𝑘 2
4𝑘
= 4 − [( ) − 2 ( ) (2) + 22 ]
𝑛
𝑛
16𝑘 2 16𝑘
=4−[ 2 −
+ 4]
𝑛
𝑛
=4−
16𝑘 2 16𝑘
+
−4
𝑛2
𝑛
𝑓(𝑎 + 𝑘∆𝑥) = −
16𝑘 2 16𝑘
+
𝑛2
𝑛
𝑛
∑ 𝑓(𝑎 + 𝑘∆𝑥)∆𝑥 = (−
𝑘=1
16𝑘 2 16𝑘 4
+
)( )
𝑛2
𝑛
𝑛
𝑛
𝑛
𝑛
𝑘=1
𝑘=1
𝑘=1
𝑛
𝑛
𝑛
𝑘=1
𝑘=1
64𝑘 2 64𝑘
64𝑘 2
64𝑘
∑ (− 3 + 2 ) = ∑ (− 3 ) + ∑ ( 2 )
𝑛
𝑛
𝑛
𝑛
64𝑘 2 64𝑘
64𝑘
64𝑘 2
∑ (− 3 + 2 ) = ∑ ( 2 ) − ∑ ( 3 )
𝑛
𝑛
𝑛
𝑛
𝑘=1
=
𝑛
𝑛
𝑘=1
𝑘=1
64
64
∑ 𝑘 − 3 ∑ 𝑘2
2
𝑛
𝑛
=
64 𝑛(𝑛 + 1)
64 𝑛(𝑛 + 1)(2𝑛 + 1)
(
)− 3(
)
2
𝑛
2
𝑛
6
=
32(𝑛 + 1) 32(𝑛 + 1)(2𝑛 + 1)
−
𝑛
3𝑛2
=
32𝑛 + 32 64𝑛2 + 96𝑛 + 32
−
𝑛
3𝑛2
=
32𝑛 + 32 64𝑛2 + 96𝑛 + 32
−
𝑛
3𝑛2
=
32𝑛 32 64𝑛2 96𝑛 32
+
−
− 2− 2
𝑛
𝑛
3𝑛2
3𝑛
3𝑛
= 32 +
32 64 96 32
−
−
−
𝑛
3 3𝑛 3𝑛2
lim (32 +
𝑛→∞
32 64 96 32
64 32
−
−
− 2 ) = 32 −
=
= 10,667
𝑛
3 3𝑛 3𝑛
3
3
2
2
2
∫ 4 − 𝑥 2 𝑑𝑥 = ∫ 4 𝑑𝑥 − ∫ 𝑥 2 𝑑𝑥
−2
2
−2
−2
2
2
𝑥3
∫ 4 𝑑𝑥 − ∫ 𝑥 𝑑𝑥 = 4𝑥 − |
3 −2
−2
−2
2
(4(2) −
(2)3
(−2)3
)
) − (4(−2) −
3
3
8
−8
32
(8 − ) − (−8 −
)=
= 10.66
3
3
3
Descargar