TURBOMÁQUINAS José Agüera Soriano 2011 Rodete turbina de vapor Rodete turbocompresor José Agüera Soriano 2011 Rodetes varios José Agüera Soriano 2011 Turborreactor de doble flujo José Agüera Soriano 2011 Eólicas José Agüera Soriano 2011 TURBOMÁQUINAS • Fundamento y definición • Clasificación fundamental de las turbinas • Clasificación según circulación en el rodete • Pérdidas, potencias y rendimientos • Teoría elemental de las turbomáquinas • Semejanza en turbomáquinas José Agüera Soriano 2011 Productoras de energía mecánica - turbinas hidráulicas - turbinas de vapor - turbinas de gas Consumidoras de energía mecánica - bombas hidráulicas - ventiladores - turbocompresores Turbomáquinas hidráulicas Turbomáquinas térmicas Además del rodete existen órganos fijos cuya solución va a variar según qué máquina. José Agüera Soriano 2011 Clasificación fundamental de las turbinas Para que el agua llegue a la turbina con una cierta energía hay que reducir el caudal en la conducción de acceso, y esto se consigue con una tobera, donde se transformará la energía potencial de llegada en energía cinética. Según donde tenga lugar esta transformación la turbina se clasifican en, •turbinas de acción •turbinas de reacción Unas y otras tienen desde luego el mismo principio físico de funcionamiento: variación de cantidad de movimiento del flujo en el rodete. Así pues, los canales entre álabes en turbinas son convergentes, y en bombas divergentes. José Agüera Soriano 2011 FUNDAMENTO Y DEFINICIÓN El fluido, al circular entre los álabes del rodete varía su cantidad de movimiento provocando sobre los mismos la fuerza correspondiente. Esta fuerza al desplazarse con el álabe realiza un trabajo, llamado como sabemos trabajo técnico Wt o, más específicamente, trabajo interior en el eje cuando de turbomáquinas se trata. En el rodete tiene pues lugar una transformación de energía del flujo en energía mecánica en el eje de la máquina, o viceversa. José Agüera Soriano 2011 Turbina de acción La transformación de la energía potencial del flujo en energía cinética (tobera) tiene lugar en órganos fijos. chimenea de equilibrio SLL SLL HrAE LP A rodete tobera fija José Agüera Soriano 2011 E 1 H =Hn Turbina de reacción (pura) La transformación de la energía potencial del flujo en energía cinética (tobera) se hace en el rodete (no existe en la industria). F c c F aspersor Esfera giratoria de Herón (120 a.C.) José Agüera Soriano 2011 Turbina de reacción (es mixta de acción y reacción) La transformación de la energía potencial del flujo en energía cinética se realiza una parte en una corona fija y el resto en el rodete (es como una tobera partida). 1 2 CORONA FIJA RODETE José Agüera Soriano 2011 Grado de reacción teórico ( p1 − p2 ) γ ε= H ε = 0 ( p1 = p2 ) acción: ε = 0 ÷1 reacción: reacción pura: ε = 1 1 Grado de reacción real 2 ( p1 − p2 ) γ ε= Ht José Agüera Soriano 2011 CORONA FIJA RODETE CLASIFICACIÓN SEGÚN CIRCULE EL FLUJO EN EL RODETE álabe •axiales •radiales •mixtas. álabe álabe rodete rodete rodete RADIAL AXIAL •turbinas de vapor: axiales •turbinas de gas: axiales •turbinas hidráulicas: axiales y mixtas •bombas: axiales, radiales y mixtas •turbocompresores: axiales y radiales. José Agüera Soriano 2011 MIXTA PÉRDIDAS EN TURBOMÁQUINAS - hidráulicas - volumétricas - mecánicas Son las pérdidas de energía que tienen lugar en el flujo, entre la entrada E y la salida S de la turbomáquina. En turbomáquinas térmicas: hidráulicas + volumétricas = internas José Agüera Soriano 2011 Pérdidas hidráulicas 1. Pérdidas Hr por rozamiento: Hr = Kr ⋅Q2 2. Pérdidas Hc por choques: H c = K c ⋅ (Q − Q*) 2 (* condiciones de diseño) 3. En algunas turbomáquinas, la velocidad de salida VS tiene cierta entidad y se pierde: H VS VS2 = 2g En otras (turbinas Francis, por ejemplo), esta energía cinética de salida es despreciable. José Agüera Soriano 2011 Pérdidas volumétricas, o intersticiales Entre el rodete y la carcasa pasa un caudal q cuya energía se desperdicia. El caudal Qr que circula por el interior del rodete sería, turbinas: bombas: Qr = Q − q Qr = Q + q prensaestopas Ht q Qr cámara espiral Q Ht q Qr q q distribuidor q TURBINA laberintos Qr = Q _ q corona directriz Q q BOMBA José Agüera Soriano 2011 Qr = Q + q Q Pérdidas mecánicas, o exteriores Se deben a los rozamientos del prensaestopas y de los cojinetes con el eje de la máquina. El fluido que llena el espacio entre la carcasa y el rodete origina el llamado rozamiento de disco. Como es exterior al rodete, se incluye en las pérdidas mecánicas. disco prensaestopas cojinetes carcasa José Agüera Soriano 2011 Potencias Potencia P del flujo Es la que corresponde al salto de energía H que sufre en la máquina el caudal Q: P = γ ⋅Q ⋅ H Potencia interior en el eje, Pi Es la suministrada al (o por el) eje por el (o al) caudal Qr que pasa por el interior del rodete: Pi = γ ⋅ Qr ⋅ H t Potencia interior teórica en el eje, Pit Si q = 0: Pit = γ ⋅ Q ⋅ H t José Agüera Soriano 2011 La potencia Pv perdida a causa de las pérdidas volumétricas sería, Pv = γ ⋅ q ⋅ H t Potencia exterior en el eje, Pe Es la potencia medida exteriormente en el eje, y recibe otros nombres como potencia efectiva y potencia al freno: Pe = Pi − Pm Pe = M ⋅ ω Pe Pe Pm Pm Pi Pi Pi Pit Pi Pv Pit Pr Pr P P bomba turbina José Agüera Soriano 2011 Pv Rendimientos Rendimiento hidráulico ηh a) Turbinas b) Bombas Pit H t ηh = = P H Pe P H ηh = = Pit H t Pe Pm Pm Pi Pi Pi Pit Pi Pv Pit Pr Pr P P bomba turbina José Agüera Soriano 2011 Pv Rendimiento volumétrico, ηv a) Turbinas Pi Q − q ηv = = Pit Q b) Bombas Q Pit ηv = = Pi Q + q Pe Pe Pm Pm Pi Pi Pi Pit Pi Pv Pit Pr Pr P P turbina bomba José Agüera Soriano 2011 Pv Rendimiento mecánico, ηm a) Turbinas b) Bombas Pe ηm = Pi Pi ηm = Pe Pe Pe Pm Pm Pi Pi Pi Pit Pi Pv Pit Pr Pr P P turbina bomba José Agüera Soriano 2011 Pv Rendimiento global, η a) Turbinas Pe M ⋅ω η= = P γ ⋅Q ⋅ H η= Pe Pe Pi Pit = ⋅ ⋅ P Pi Pit P η = η m ⋅ ηv ⋅ η h Pe Pe Pm Pi Pi Pit b) Bombas η= P γ ⋅Q ⋅ H = Pe M ⋅ω Pm Pi Pi Pv Pit Pr Pr P turbina José Agüera Soriano 2011 Pv P bomba TEORÍA ELEMENTAL DE LAS TURBOMÁQUINAS Las ecuaciones anteriores son más bien definiciones y fórmulas de comprobación. Ninguna de ellas relaciona la geometría de la máquina con las prestaciones. La ecuación de Euler que vamos a desarrollar, a pesar de sus hipótesis simplificativas, sigue siendo una buena herramienta para estimar el diseño de una turbomáquina y/o para predecir comportamientos de la misma. José Agüera Soriano 2011 Introducción Antes de demostrar la ecuación de Euler, analicemos algunas cuestiones preliminares que nos ayudarán a comprender mejor el sentido físico de la misma. Álabe fijo Fuerza sobre un conducto corto: y pa F = p1 ⋅ S1 + p2 ⋅ S 2 + ρ ⋅ Q ⋅ (V1 − V2 ) valdría en este caso (p1 = p2 = pa = 0), F pa V2 2 álabe S F = ρ ⋅ S ⋅ V1 ⋅ (V1 − V2 ) V1 1 volumen de control x José Agüera Soriano 2011 Álabe móvil c = velocidad absoluta u = velocidad del álabe w = velocidad relativa r r r c1 = w1 + u c2 w2 y 2 u F S w1 V1 = c1 1 Fu álabe u volumen de control c1 caudal por la tobera = ρ ⋅ S ⋅ c1 w1 u caudal en volumen de control = ρ ⋅ S ⋅ w1 x La diferencia de caudal se utilizaría en alargar el chorro. Triángulo de velocidades a la salida ( w1 ≈ w2 ) : r r r c2 = w2 + u José Agüera Soriano 2011 Fuerza sobre el álabe Es la fuerza provocada por el caudal ρ ⋅ S ⋅ w1 al cambiar su r r dirección de w1 a w2 : r r F = ρ ⋅ S ⋅ w1 ⋅ ( w1 − w2 ) En el álabe fijo intervienen las r r y en el álabe móvil las c w F S Potencia desarrollada P = Fu ⋅ u c2 w2 y w1 V1 = c1 1 álabe u volumen de control x c1 u Fu 2 u w1 a costa lógicamente de la cedida por el flujo. José Agüera Soriano 2011 Rodete Si alrededor de una rueda libre colocamos álabes, siempre habrá uno que sustituya al que se aleja. El conjunto formarán un todo (rodete) que es el volumen de control a considerar. volumen de control: RODETE El caudal másico de entrada en dicho volumen de control no es ahora ρ ⋅ S ⋅ w1 , sino ρ ⋅ S ⋅ c1 pues no hay alargamiento del chorro. r r F = p1 ⋅ S1 + p 2 ⋅ S 2 + ρ ⋅ S ⋅ c1 ⋅ (c1 − c 2 ) tobera José Agüera Soriano 2011 S c 1 1 2 F c2 u u Caso general y más frecuente SECCIÓN TRANSVERSAL w rodete corona fija álabe fijo álabe rodete José Agüera Soriano 2011 p1· S 1 w 2·S 2 c p SECCIÓN MERIDIONAL Las toberas son sustituidas por una corona fija de álabes, que es alimentada a través de una cámara en espiral. Es de admisión total: el flujo entra en rodete por toda su periferia. c 1 2 cámara espiral José Agüera Soriano 2011 Triángulos de velocidades perfil álabe perfil álabe corona corona fija fija perfil álabe perfil álabe rodete rodete c velocidad absoluta u velocidad tangencial w velocidad relativa α ángulo c u β ángulo w u 1' u1 w1 c1 1 1 u1 c2 2 w2 José Agüera Soriano 2011 2 u2 Velocidades tangenciales u1 = ω ⋅ r1 u2 = ω ⋅ r2 en las axiales, perfil álabe rodete perfil álabe corona fija u1 = u2 = u. β1’ 1' Triángulo de entrada w1 r r r c1 = u1 + w1 u1 c1 1 1 u1 Para que no haya choques con los álabes a la entrada del rodete, éstos han de diseñarse en línea r con w1 : β1 ' ( β1 ' ≈ β1 ). c2 2 w2 José Agüera Soriano 2011 2 u2 r2 r1 Triángulo de salida r r r c 2 = u 2 + w2 El triángulo de velocidades de entrada, c1 u1 y w1, va variando en el recorrido del flujo por el rodete, resultando al final el de salida, c2 u2 y w2. perfil álabe rodete perfil álabe corona fija β1’ 1' w1 u1 c1 1 1 u1 c2 2 w2 José Agüera Soriano 2011 2 u2 r2 r1 Ecuación de Euler En el caso más general de turbomáquinas de reacción ( p1 ≠ p2 ), la fuerza sobre los álabes del rodete sería, r r F = p1 ⋅ S1 + p 2 ⋅ S 2 + m& ⋅ (c1 − c 2 ) Las fuerzas p1 ⋅ S1 y p 2 ⋅ S 2 que actúan sobre las secciones de entrada y de salida del rodete, o son paralelas al eje (axiales) o cortan al eje: no contribuyen al giro del motor. álabe álabe álabe rodete rodete rodete RADIAL AXIAL José Agüera Soriano 2011 MIXTA El par motor es pues provocado, en cualquier caso, sólo por las r r fuerzas, m& ⋅ c1 y m& ⋅ c2 : M = M 1 − M 2 = m& ⋅ cu1 ⋅ r1 − m& ⋅ cu 2 ⋅ r2 Pi = M ⋅ ω = m& ⋅ cu1 ⋅ r1 ⋅ ω − m& ⋅ cu 2 ⋅ r2 ⋅ ω Pi = m& ⋅ (cu1 ⋅ u1 − cu 2 ⋅ u 2 ) perfil álabe rodete perfil álabe corona fija Dividiendo por m& obtenemos la energía que se consigue de cada kg de fluido que pasa por el interior del rodete: w1 u1 c1 1 1 u1 Wt = cu1 ⋅ u1 − cu 2 ⋅ u2 Wt = u1 ⋅ c1 ⋅ cos α1 − u2 ⋅ c2 ⋅ cos α 2 β1’ 1' c2 2 w2 José Agüera Soriano 2011 2 u2 r2 r1 Wt = u1 ⋅ c1 ⋅ cos α1 − u2 ⋅ c2 ⋅ cos α 2 ecuación fundamental de las turbomáquinas, o ecuación de Euler. a) es aplicable a líquidos y a gases; b) no depende de la trayectoria del fluido en del rodete; sólo de los triángulos de entrada (1) y de salida (2) del mismo; c) es aplicable con independencia de las condiciones de funcionamiento. El estudio es muy elemental: - no incluye el análisis de pérdidas - supone que los álabes guían perfectamente al flujo, lo que sería cierto si imaginamos infinitos álabes sin espesor material; lo que se conoce como teoría unidimensional y/o teoría del número infinito de álabes. José Agüera Soriano 2011 Segunda forma de la ecuación de Euler Diferentes condiciones de trabajo originan diferentes triángulos de velocidades. Sea cual fuere su forma: w12 = c12 + u12 − 2 ⋅ u1 ⋅ c1 ⋅ cos α1 w22 = c 22 + u 22 − 2 ⋅ u 2 ⋅ c 2 ⋅ cos α 2 c −c u −u w − w + + = u1 ⋅ c1 ⋅ cos α1 − u2 ⋅ c2 ⋅ cos α 2 2 2 2 2 1 2 2 2 1 ccu2 u1 1 2 2 2 2 2 1 c u2 u1 u2 c1 2 2 1 w1 José Agüera Soriano 2011 c2 w2 c12 − c22 u12 − u22 w22 − w12 Wt = + + 2 2 2 Turbinas: Wt es positivo: centrípetas (u1 > u2) Bombas: Wt es negativo: centrífugas (u1 < u2) Para H pequeñas, tanto en turbinas como en bombas, convendrá el flujo axial (u1 = u2): c12 − c22 w22 − w12 Wt = + 2 2 En general, si Wr12 fuese despreciable, c12 − c22 p1 − p2 Wt = + 2 ρ p1 − p2 u12 − u22 w22 − w12 + = ρ 2 2 En las turbomáquinas axiales (u1 = u2), la variación energía de presión en el rodete se traduce en una variación en sentido contrario de la energía cinética relativa del flujo. José Agüera Soriano 2011 SEMEJANZA EN TURBOMÁQUINAS A menos que se trate de fluidos muy viscosos, la situación del flujo en turbomáquinas es independiente del número de Reynolds. En tal caso, para la semejanza cinemática, sólo vamos a exigir, a) semejanza geométrica: Lp/Lm = λ, b) condiciones análogas de funcionamiento (triángulos de velocidades semejantes): cp up wp = = cm um wm Las hipótesis anteriores conducen a buenos resultados, a excepción de los rendimientos que resultan mejores en tamaños mayores, a causa de las pérdidas intersticiales . Según Moody, 1 −ηm = λ1 4 1 −ηp José Agüera Soriano 2011 EJERCICIO En el ensayo del modelo de una turbina con escala λ = 5, se determina un rendimiento óptimo η = 0,85. Estímese el del prototipo en las mismas condiciones de trabajo. Solución 1 −ηm = λ1 4 ; 1 −ηp 1 − 0,85 1 4 =5 1 −ηp η p = 0,90 José Agüera Soriano 2011 Relación de velocidades y alturas Puesto que dimensionalmete V 2 2 g = H , Hp = cm H m cp 12 Relación de velocidades y revoluciones up = π ⋅ Dp ⋅ np um = 60 up π ⋅ Dm ⋅ nm 60 Dp np np = ⋅ =λ⋅ um Dm nm nm cp cm =λ⋅ np nm José Agüera Soriano 2011 Relaciones de semejanza en turbinas 1. n = n(λ, H) 2. Q = Q(λ, H) 3. Pe = Pe(λ, H) cp Hp = cm H m 12 cp cm =λ⋅ np nm 1. Relación de número de revoluciones 1 Hp = ⋅ nm λ H m np 12 2. Relación de caudales Qp Qm S p cp = ⋅ S m cm Qp Hp 2 = λ ⋅ Qm Hm Qp Hp = λ ⋅ Qm Hm 12 2 José Agüera Soriano 2011 12 3. Relación de potencias Pep = Pem Pep Pem = η p ⋅ γ p ⋅ Qp ⋅ H p η m ⋅ γ m ⋅ Qm ⋅ H mp ηp γ p ⋅ ηm γ m Hp 2 ⋅ λ ⋅ Hm 32 En turbinas hidráulicas λp = λm; si además se supone el mismo rendimiento para toda una familia, Pep Pem Hp 2 = λ ⋅ Hm 32 Estas tres relaciones tienen validez conjuntamente, pero pierden su significado en cuanto una de ellas no se cumple. José Agüera Soriano 2011 Relaciones de semejanza en bombas 1. H = H( , n) 2. Q = Q( , n) 3. Pe = Pe( , n) Hp = cm H m cp 12 cp cm =λ⋅ 1. Relación de alturas Hp Hm n 2 p = λ ⋅ nm 2 2. Relación de caudales Qp Qm S p cp Sp np = ⋅ = ⋅λ ⋅ S m cm S m nm Qp Qm =λ ⋅ 3 np nm José Agüera Soriano 2011 np nm 3. Relación de potencias Pep Pem Pep Pem = γ p ⋅ Qp ⋅ H p η p γ m ⋅ Qm ⋅ H m η m γp ηm = ⋅ ηp γ m n 5 p ⋅ λ ⋅ nm 3 Lo más frecuente es que γp = γm. Las tres relaciones anteriores tienen validez conjuntamente, pero pierden su significado en cuanto una de ellas no se cumple. Se podrían aplicar a una misma bomba (λ = 1) si queremos analizar cómo se comporta con diferentes velocidades de giro. José Agüera Soriano 2011 Velocidad específica de las turbinas hidráulicas np 1 Hp = ⋅ nm λ H m 12 Pep Pem Hp = λ ⋅ Hm 32 2 eliminamos λ entre ambas: n p ⋅ Pe1p 2 H p5 4 = n m ⋅ Pe1m2 H m5 4 = n ⋅ Pe1 2 H 54 = constante que tiene que verificarse para toda una familia geométricamente semejante en condiciones análogas de funcionamiento. José Agüera Soriano 2011 En condiciones de diseño (*), a la constante anterior se le llama velocidad específica de turbinas ns, y su valor distingue a una familia de otra: n ⋅ Pe*1 2 ns = (dimensional) *5 4 H cuyas unidades frecuentes son: n rpm, Pe CV, H m Jugando con n (3000, 1500, 1000, 750,...rpm) podemos resolver una misma situación (H y Pe dados) con distintas familias y/o distinto valor de ns. Más conveniente sería expresar ns en forma adimensional, aunque no es frecuente: n so = ω ⋅ Pe*1 2 ρ 1 2 ⋅ (g ⋅ H * )5 4 José Agüera Soriano 2011 Velocidad específica en bombas hidráulicas Hp Hm n 2 p = λ ⋅ nm 2 Qp =λ ⋅ 3 np Qm nm Eliminando λ entre ambas se obtiene la velocidad específica de bombas nq: n ⋅ Q *1 2 nq = H *3 4 (dimensional) Las unidades frecuentes para medir nq son: n rpm, Q m3/s, H m. Jugando con n, podemos resolver una misma situación (H y Q dados) con distintas familias y/o distinto valor de nq. La forma adimensional de nq es, n qo = ω ⋅ Q *1 2 (g ⋅ H * )3 4 José Agüera Soriano 2011 José Agüera Soriano 2011