CIRCUITO ORIGINAL DOMINIO DEL TIEMPO 𝑡 < 0 𝑣𝑐 (0− ) =? 𝑣𝑐 (0− ) = 𝑣2.2𝑘 C.D.V 𝑣𝑐 (0− ) = (9)(2.2𝑘) = 6.1875 𝑉 3.2𝑘 𝑡=0 𝑣𝑐 (0) = 𝑣𝑐 (0− ) = 6.1875 𝑣 𝑖0 = − 6.1875 = 0.0281 𝐴 220 𝑡>0 Σ𝑣 = 0 𝑣𝑐 + 𝑣𝑅 = 0 (1000 ∫ 𝑖(𝑡)𝑑𝑡 + 220 𝑖(𝑡) = 0) 1000 𝑖(𝑡)𝑑𝑡 + 220 𝑑 𝑑𝑡 𝑑 =0 𝑑𝑡 𝑖(𝑡)(2200 + 1000) = 0 𝑖(𝑡) = 𝑖𝑒 𝐷𝑡 𝑠𝑜𝑙. 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑖ℎ 𝑦 𝐷 ? 𝐷? 220𝐷 + 1000 = 0 ∴ = −1000 = −4.545 2200 𝑖ℎ =? 𝑡 = 0 𝑖(0) = −0.0281 𝑖(0) = 𝑖ℎ 𝑒 𝐷(0) = −0.0281 DOMINIO DE LA FRECUENCIA CIRCUITO ORIGINAL 𝑡 < 0 𝑣𝑐 (0− ) =? 𝐶. 𝐼 = lim {𝐹(𝑠)} 𝑡𝑒𝑜𝑟𝑒𝑚𝑎 𝑑𝑒𝑙 𝑣𝑎𝑙𝑜𝑟 𝑓𝑖𝑛𝑎𝑙 𝑠→0 𝑧𝑒𝑞 (𝒮) = 1000 2.2𝑥106 ) 1.034𝑥106 ⋅ 𝑠 𝑠 = 1000 2.2𝑥106 2670 + 𝑠 2670 + 𝑠 2200 (470 + 1.034𝑥106 + 2.2𝑥106 1.034𝑥106 + 2.2𝑥106 𝑠 𝑧𝑒𝑞 (𝒮) = = 2670 + 1000 2670 + 1000 𝑠 𝑧𝑒𝑞 (𝒮) = 1000(2670 𝑠 + 1000) + 1.034𝑥106 𝑠 + 2.2𝑥106 2670 𝑠 + 1000 𝑣𝑧𝑒𝑞 (𝒮) = 9 ( 𝑠 ) (1.034𝑥106 𝑠 + 2.2𝑥106 ) 1000(2670 𝑠 + 1000) + (1.034𝑥106 𝑠 + 2.2𝑥106 ) 1000 𝑣𝑧𝑒𝑞 ( 𝑠 ) (6.187)1000 𝑣𝑐 (𝒮) = = 470𝑠 + 1000 470𝑠 + 1000 𝑣𝑐 (0− ) = lim 𝑠→0 𝑠{𝑣𝑐 (𝑠)} = 6.187 𝑣 𝑡≥0 6.187 6.187 0.028 𝑠 𝐼(𝑠) = = = 1000 220𝑠 + 1000 𝑠 + 4.54 220 + 𝑠 𝐼(𝑠) = −0.028 𝑒 −4.54𝑡 C1 𝑡 < 0 𝑣𝑐 (0− ) =? = 14.8𝑥106 3.2𝑥106 𝐼(0− ) = 9𝑣 = 2.818 𝐴 3.195 𝑡=0 𝑖(0) = −2.818 𝑣 = −0.0128 𝐴 220 𝑡>0 Σ𝑣 = 0 𝑣𝑙 + 𝑣𝑅 = 0 (0.001 ∫ 𝑖(𝑡)𝑑𝑡 + 220 𝑖(𝑡) = 0) 0.001 𝑖(𝑡)𝑑𝑡 + 220 𝑑𝑖(𝑡) =0 𝑑𝑡 𝑖(𝑡)(0.011 + 220) = 0 𝑖ℎ 𝑦 𝐷 ? 𝑖(𝑡) = 𝑖𝑒 𝐷𝑡 𝑠𝑜𝑙. 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 220 𝐷 − 0.001 = 0 ∴ − 0.001 = −4.554𝑥106 220 𝑖ℎ =? 𝑡 = 0 𝑖(0) = −0.0128 𝑖(0) = 𝑖ℎ 𝑒 𝐷(0) = −0.0128 𝑡 < 0 𝑣𝑐 (0− ) =? 𝑑 𝑑𝑡 𝑍𝑒𝑞 (𝑠) = 1 2420 (470 + 0.001𝑠 ) 1 2890 + 0.001𝑠 = 2.42𝑥103 𝑠 2.42𝑥103 2890 + 𝑠 1.1374𝑥106 ⋅ 1.1374𝑥106 ⋅ 2.42𝑥106 1.1374𝑥106 + 2.42𝑥103 𝑠 (𝑠) ( ) 𝑍𝑒𝑞 = = 2890 + 1 1 2890 + 0.001 0.001𝑠 D.D.V 𝑣𝑧𝑒𝑞 (𝑠) = 9 1.1374𝑥106 + 2.42𝑥103 ) (𝑠 ) ( 1 2890 + 0.001 1.1374𝑥106 + 2.42𝑥103 ) 1000 ( 1 2890 + 0.001 𝑣𝑧𝑒𝑞 (𝑠) = 1 (𝑣𝑧𝑒𝑞 ) (0.001) 470𝑠 1 0.001𝑠 = = 470𝑠 1 470𝑠 + 0.001𝑠