COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 1. (a) (b) We measure: R = 37 lb, α = 76° R = 37 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 76° ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 2. (a) (b) We measure: R = 57 lb, α = 86° R = 57 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 86° ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 3. (a) Parallelogram law: (b) Triangle rule: We measure: R = 10.5 kN α = 22.5° R = 10.5 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 22.5° ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 4. (a) Parallelogram law: We measure: R = 5.4 kN α = 12° (b) R = 5.4 kN 12° ! R = 5.4 kN 12° ! Triangle rule: We measure: R = 5.4 kN α = 12° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 5. Using the triangle rule and the Law of Sines (a) sin β sin 45° = 150 N 200 N sin β = 0.53033 β = 32.028° α + β + 45° = 180° α = 103.0° ! (b) Using the Law of Sines Fbb′ 200 N = sin α sin 45° Fbb′ = 276 N ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 6. Using the triangle rule and the Law of Sines (a) sin α sin 45° = 120 N 200 N sin α = 0.42426 α = 25.104° or (b) α = 25.1° ! β + 45° + 25.104° = 180° β = 109.896° Using the Law of Sines Faa′ 200 N = sin β sin 45° Faa′ 200 N = sin109.896° sin 45° or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Faa′ = 266 N ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 7. Using the triangle rule and the Law of Cosines, Have: β = 180° − 45° β = 135° Then: R 2 = ( 900 ) + ( 600 ) − 2 ( 900 )( 600 ) cos 135° 2 2 or R = 1390.57 N Using the Law of Sines, 600 1390.57 = sin γ sin135° or γ = 17.7642° and α = 90° − 17.7642° α = 72.236° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (a) α = 72.2° ! (b) R = 1.391 kN ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 8. By trigonometry: Law of Sines F2 R 30 = = sin α sin 38° sin β α = 90° − 28° = 62°, β = 180° − 62° − 38° = 80° Then: F2 R 30 lb = = sin 62° sin 38° sin 80° or (a) F2 = 26.9 lb ! (b) R = 18.75 lb ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 9. Using the Law of Sines F1 R 20 lb = = sin α sin 38° sin β α = 90° − 10° = 80°, β = 180° − 80° − 38° = 62° Then: F1 R 20 lb = = sin 80° sin 38° sin 62° or (a) F1 = 22.3 lb ! (b) R = 13.95 lb ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 10. Using the Law of Sines: 60 N 80 N = sin α sin10° or α = 7.4832° β = 180° − (10° + 7.4832° ) = 162.517° Then: R 80 N = sin162.517° sin10° or R = 138.405 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (a) α = 7.48° ! (b) R = 138.4 N ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 11. Using the triangle rule and the Law of Sines Have: β = 180° − ( 35° + 25° ) = 120° Then: P R 80 lb = = sin 35° sin120° sin 25° or (a) P = 108.6 lb ! (b) R = 163.9 lb ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 12. Using the triangle rule and the Law of Sines (a) Have: 80 lb 70 lb = sin α sin 35° sin α = 0.65552 α = 40.959° or α = 41.0° ! β = 180 − ( 35° + 40.959° ) (b) = 104.041° Then: R 70 lb = sin104.041° sin 35° or R = 118.4 lb ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 13. We observe that force P is minimum when α = 90°. Then: (a) P = ( 80 lb ) sin 35° or P = 45.9 lb ! And: (b) R = ( 80 lb ) cos 35° or R = 65.5 lb ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 14. For TBC to be a minimum, R and TBC must be perpendicular. Thus TBC = ( 70 N ) sin 4° = 4.8829 N And R = ( 70 N ) cos 4° = 69.829 N (a) (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. TBC = 4.88 N 6.00° ! R = 69.8 N ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 15. Using the force triangle and the Laws of Cosines and Sines We have: γ = 180° − (15° + 30° ) = 135° Then: R 2 = (15 lb ) + ( 25 lb ) − 2 (15 lb )( 25 lb ) cos135° 2 2 = 1380.33 lb2 or R = 37.153 lb and 25 lb 37.153 lb = sin β sin135° 25 lb sin β = sin135° 37.153 lb = 0.47581 β = 28.412° Then: α + β + 75° = 180° α = 76.588° R = 37.2 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 76.6° ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 16. Using the Law of Cosines and the Law of Sines, R 2 = ( 45 lb ) + (15 lb ) − 2 ( 45 lb )(15 lb ) cos135° 2 2 or R = 56.609 lb 56.609 lb 15 lb = sin135° sinθ or θ = 10.7991° R = 56.6 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 85.8° ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 17. γ = 180° − 25° − 50° γ = 105° Using the Law of Cosines: R 2 = ( 5 kN ) + ( 8 kN ) − 2 ( 5 kN )( 8 kN ) cos105° 2 2 or R = 10.4740 kN Using the Law of Sines: 10.4740 kN 8 kN = sin105° sin β or β = 47.542° and α = 47.542° − 25° α = 22.542° R = 10.47 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 22.5° " COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 19. Using the force triangle and the Laws of Cosines and Sines We have: Then: γ = 180° − ( 45° + 25° ) = 110° R 2 = ( 30 kN ) + ( 20 kN ) − 2 ( 30 kN )( 20 kN ) cos110° 2 2 = 1710.42 kN 2 R = 41.357 kN and 20 kN 41.357 kN = sin α sin110° 20 kN sin α = sin110° 41.357 kN = 0.45443 α = 27.028° Hence: φ = α + 45° = 72.028° R = 41.4 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 72.0° ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 19. Using the force triangle and the Laws of Cosines and Sines We have: Then: γ = 180° − ( 45° + 25° ) = 110° R 2 = ( 30 kN ) + ( 20 kN ) − 2 ( 30 kN )( 20 kN ) cos110° 2 2 = 1710.42 kN 2 R = 41.357 kN and 20 kN 41.357 kN = sin α sin110° 20 kN sin α = sin110° 41.357 kN = 0.45443 α = 27.028° Hence: φ = α + 45° = 72.028° R = 41.4 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 72.0° ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 20. Using the force triangle and the Laws of Cosines and Sines We have: Then: γ = 180° − ( 45° + 25° ) = 110° R 2 = ( 30 kN ) + ( 20 kN ) − 2 ( 30 kN )( 20 kN ) cos110° 2 2 = 1710.42 kN 2 R = 41.357 kN and 30 kN 41.357 kN = sin α sin110° 30 kN sin α = sin110° 41.357 kN = 0.68164 α = 42.972° Finally: φ = α + 45° = 87.972° R = 41.4 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 88.0° ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 21. 2.4 kN Force: Fx = ( 2.4 kN ) cos 50° Fx = 1.543 kN Fy = ( 2.4 kN ) sin 50° Fy = 1.839 kN 1.85 kN Force: Fx = (1.85 kN ) cos 20° Fx = 1.738 kN Fy = (1.85 kN ) sin 20° Fy = 0.633 kN 1.40 kN Force: Fx = (1.40 kN ) cos 35° Fx = 1.147 kN Fy = − (1.40 kN ) sin 35° Fy = −0.803 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 22. Fx = ( 5 kips ) cos 40° 5 kips: or Fx = 3.83 kips Fy = ( 5 kips ) sin 40° or Fy = 3.21 kips 7 kips: Fx = − ( 7 kips ) cos 70° or Fx = −2.39 kips Fy = ( 7 kips ) sin 70° or Fy = 6.58 kips 9 kips: Fx = − ( 9 kips ) cos 20° or Fx = −8.46 kips Fy = ( 9 kips ) sin 20° or Fy = 3.08 kips Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 23. Determine the following distances: 680 N Force: dOA = ( −160 mm )2 + ( 300 mm )2 dOB = ( 600 mm )2 + ( 250 mm )2 dOC = ( 600 mm )2 + ( −110 mm )2 Fx = 680 N = 340 mm = 650 mm = 610 mm ( −160 mm ) 340 mm Fx = − 320 N ! ( 300 mm ) Fy = 680 N 340 mm Fy = 600 N ! 390 N Force: Fx = 390 N ( 600 mm ) 650 mm Fx = 360 N ! Fy = 390 N ( 250 mm ) 650 mm Fy = 150 N ! 610 N Force: Fx = 610 N ( 600 mm ) 610 mm Fx = 600 N ! Fy = 610 N ( −110 mm ) 610 mm Fy = −110 N ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 24. We compute the following distances: OA = ( 48)2 + ( 90 )2 = 102 in. OB = ( 56 )2 + ( 90 )2 = 106 in. OC = (80 )2 + ( 60 )2 = 100 in. Then: 204 lb Force: Fx = − ( 204 lb ) 48 , 102 Fy = + ( 204 lb ) 90 , 102 Fx = −96.0 lb Fy = 180.0 lb 212 lb Force: Fx = + ( 212 lb ) 56 , 106 Fx = 112.0 lb 90 , 106 Fy = 180.0 lb Fx = − ( 400 lb ) 80 , 100 Fx = −320 lb Fy = − ( 400 lb ) 60 , 100 Fy = −240 lb Fy = + ( 212 lb ) 400 lb Force: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 25. (a) P= = Py sin 35° 960 N sin 35° or P = 1674 N (b) Px = = Py tan 35° 960 N tan 35° or Px = 1371 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 26. (a) P= Px cos 40° P= 30 lb cos 40° or P = 39.2 lb ! (b) Py = Px tan 40° Py = ( 30 lb ) tan 40° or Py = 25.2 lb ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 27. (a) Py = 100 N P= P= Py sin 75° 100 N sin 75° or P = 103.5 N " (b) Px = Px = Py tan 75° 100 N tan 75° or Px = 26.8 N " Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 28. We note: CB exerts force P on B along CB, and the horizontal component of P is Px = 260 lb. Then: (a) Px = P sin 50° P= Px sin 50° = 260 lb sin 50° = 339.40 lb (b) P = 339 lb ! Px = Py tan 50° Py = Px tan 50° = 260 lb tan 50° = 218.16 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Py = 218 lb ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 29. (a) P= 45 N cos 20° or P = 47.9 N ! (b) Px = ( 47.9 N ) sin 20° or Px = 16.38 N ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 30. (a) P= 18 N sin 20° or P = 52.6 N ! (b) Py = 18 N tan 20° or Py = 49.5 N ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 31. From the solution to Problem 2.21: F2.4 = (1.543 kN ) i + (1.839 kN ) j F1.85 = (1.738 kN ) i + ( 0.633 kN ) j F1.40 = (1.147 kN ) i − ( 0.803 kN ) j R = ΣF = ( 4.428 kN ) i + (1.669 kN ) j R= ( 4.428 kN )2 + (1.669 kN )2 = 4.7321 kN tan α = 1.669 kN 4.428 kN α = 20.652° R = 4.73 kN 20.6° ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 32. From the solution to Problem 2.22: F5 = ( 3.83 kips ) i + ( 3.21 kips ) j F7 = − ( 2.39 kips ) i + ( 6.58 kips ) j F9 = − ( 8.46 kips ) i + ( 3.08 kips ) j R = ΣF = − ( 7.02 kips ) i + (12.87 ) j R= ( − 7.02 kips )2 + (12.87 kips )2 = 14.66 kips 12.87 = 61.4° − 7.02 α = tan −1 R = 14.66 kips Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 61.4° ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 33. From the solution to Problem 2.24: FOA = − ( 48.0 lb ) i + ( 90.0 lb ) j FOB = (112.0 lb ) i + (180.0 lb ) j FOC = − ( 320 lb ) i − ( 240 lb ) j R = ΣF = − ( 256 lb ) i + ( 30 lb ) j R= ( − 256 lb )2 + ( 30 lb )2 = 257.75 lb tan α = 30 lb −256 lb α = − 6.6839° R = 258 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 6.68° ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 34. From Problem 2.23: FOA = − ( 320 N ) i + ( 600 N ) j FOB = ( 360 N ) i + (150 N ) j FOC = ( 600 N ) i − (110 N ) j R = ΣF = ( 640 N ) i + ( 640 N ) j R= ( 640 N )2 + ( 640 N )2 = 905.097 N tan α = 640 N 640 N α = 45.0° R = 905 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 45.0° ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 35. Cable BC Force: Fx = − (145 lb ) Fy = (145 lb ) 84 = −105 lb 116 80 = 100 lb 116 100-lb Force: Fx = − (100 lb ) 3 = −60 lb 5 Fy = − (100 lb ) 4 = −80 lb 5 156-lb Force: Fx = (156 lb ) 12 = 144 lb 13 Fy = − (156 lb ) 5 = −60 lb 13 and Rx = ΣFx = −21 lb, R= Ry = ΣFy = −40 lb ( −21 lb )2 + ( −40 lb )2 = 45.177 lb Further: tan α = α = tan −1 40 21 40 = 62.3° 21 Thus: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. R = 45.2 lb 62.3° ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 36. (a) Since R is to be horizontal, Ry = 0 Then, Ry = ΣFy = 0 90 lb + ( 70 lb ) sin α − (130 lb ) cos α = 0 (13) cosα = ( 7 ) sin α + 9 13 1 − sin 2 α = ( 7 ) sin α + 9 Squaring both sides: ( ) 169 1 − sin 2 α = ( 49 ) sin 2 α + (126 ) sin α + 81 ( 218) sin 2 α + (126 ) sin α − 88 = 0 Solving by quadratic formula: (b) sin α = 0.40899 or α = 24.1° ! or R = 117.0 lb ! Since R is horizontal, R = Rx Then, R = Rx = ΣFx ΣFx = ( 70 ) cos 24.142° + (130 ) sin 24.142° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 37. 300-N Force: Fx = ( 300 N ) cos 20° = 281.91 N Fy = ( 300 N ) sin 20° = 102.61 N 400-N Force: Fx = ( 400 N ) cos85° = 34.862 N Fy = ( 400 N ) sin 85° = 398.48 N 600-N Force: Fx = ( 600 N ) cos 5° = 597.72 N Fy = − ( 600 N ) sin 5° = −52.293 N and Rx = ΣFx = 914.49 N Ry = ΣFy = 448.80 N R= ( 914.49 N )2 + ( 448.80 N )2 = 1018.68 N Further: tan α = α = tan −1 448.80 914.49 448.80 = 26.1° 914.49 R = 1019 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 26.1° ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 38. ΣFx : Rx = ΣFx Rx = ( 600 N ) cos 50° + ( 300 N ) cos85° − ( 700 N ) cos 50° Rx = − 38.132 N ΣFy : Ry = ΣFy Ry = ( 600 N ) sin 50° + ( 300 N ) sin 85° + ( 700 N ) sin 50° Ry = 1294.72 N R= ( − 38.132 N )2 + (1294.72 N )2 R = 1295 N tan α = 1294.72 N 38.132 N α = 88.3° R = 1.295 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 88.3° ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 39. We have: Rx = ΣFx = − 84 12 3 TBC + (156 lb ) − (100 lb ) 116 13 5 Rx = −0.72414TBC + 84 lb or and R y = ΣFy = 80 5 4 TBC − (156 lb ) − (100 lb ) 116 13 5 Ry = 0.68966TBC − 140 lb (a) So, for R to be vertical, Rx = −0.72414TBC + 84 lb = 0 TBC = 116.0 lb ! (b) Using TBC = 116.0 lb R = R y = 0.68966 (116.0 lb ) − 140 lb = −60 lb R = R = 60.0 lb ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 40. (a) Since R is to be vertical, Rx = 0 Then, Rx = ΣFx = 0 ( 600 N ) cosα + ( 300 N ) cos (α + 35°) − ( 700 N ) cos α = 0 Expanding: 3 ( cos α cos 35° − sin α sin 35° ) − cos α = 0 Then: 1 cos 35° − 3 tan α = sin 35° α = 40.265° α = 40.3° ! (b) Since R is vertical, R = Ry Then: R = Ry = ΣFy R = ( 600 N ) sin 40.265° + ( 300 N ) sin 75.265° + ( 700 N ) sin 40.265° R = 1130 N R = 1.130 kN ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 41. Selecting the x axis along aa′, we write Rx = ΣFx = 300 N + ( 400 N ) cos α + ( 600 N ) sin α (1) R y = ΣFy = ( 400 N ) sin α − ( 600 N ) cos α (2) (a) Setting R y = 0 in Equation (2): Thus tan α = 600 = 1.5 400 α = 56.3° ! (b) Substituting for α in Equation (1): Rx = 300 N + ( 400 N ) cos 56.3° + ( 600 N ) sin 56.3° Rx = 1021.11 N R = Rx = 1021 N ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 42. (a) Require Ry = ΣFy = 0: ( 900 lb ) cos 25° + (1200 lb ) sin 35° − TAE sin 65° = 0 or TAE = 1659.45 lb TAE = 1659 lb ! (b) R = ΣFx R = − ( 900 lb ) sin 25° − (1200 lb ) cos 35° − (1659.45 lb ) cos 65° R = 2060 lb ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 43. Free-Body Diagram Force Triangle Law of Sines: FAC TBC 400 lb = = sin 25° sin 60° sin 95° (a) FAC = 400 lb sin 25° = 169.691 lb sin 95° (b) TBC = 400 sin 60° = 347.73 lb sin 95° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FAC = 169.7 lb ! TBC = 348 lb ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 44. Free-Body Diagram: ΣFx = 0: 4 21 − TCA + TCB = 0 5 29 or 29 4 TCB = TCA 21 5 ΣFy = 0: 3 20 TCA + TCB − ( 3 kN ) = 0 5 29 Then 3 20 29 4 TCA + × TCA − ( 3 kN ) = 0 5 29 21 5 or TCA = 2.2028 kN (a) TCA = 2.20 kN ! (b) TCB = 2.43 kN ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 45. Free-Body Diagram: ΣFy = 0: − FB sin 50° + FC sin 70° = 0 FC = ΣFx = 0: sin 50° ( FB ) sin 70° − FB cos 50° − FC cos 70° + 940 N = 0 sin 50° FB cos 50° + cos 70° = 940 sin 70° FB = 1019.96 N FC = sin 50° (1019.96 N ) sin 70° or FC = 831 N ! FB = 1020 N ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 46. Free-Body Diagram: ΣFx = 0: − TAB cos 25° − TAC cos 40° + ( 70 lb ) cos10° = 0 (1) ΣFy = 0: TAB sin 25° − TAC sin 40° + ( 70 lb ) sin10° = 0 (2) Solving Equations (1) and (2) simultaneously: (a) TAB = 38.6 lb ! (b) TAC = 44.3 lb ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 47. Free-Body Diagram: (a) ΣFx = 0: − TAB cos 30° + R cos 65° = 0 R= ΣFy = 0: cos 30° TAB cos 65° − TAB sin 30° + R sin 65° − ( 550 N ) = 0 cos 30° TAB − sin 30° + sin 65° − 550 = 0 ° cos 65 (b) R= or TAB = 405 N ! or R = 830 N ! cos30° ( 450 N ) cos 65° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 48. Free-Body Diagram At B: ΣFx = 0: − 12 17 TBA + TBC = 0 13 293 TBA = 1.07591 TBC or 5 TBA + 13 ΣFy = 0: 2 TBC − 300 N = 0 293 5 293 TBC = 300 − TBA 13 2 TBC = 2567.6 − 3.2918 TBA TBC = 2567.6 − 3.2918 (1.07591TBC ) TBC = 565.34 N or Free-Body Diagram At C: ΣFx = 0: − TCD = 17 24 TBC + TCD = 0 25 293 17 25 ( 565.34 N ) 293 24 TCD = 584.86 N ΣFy = 0: WC = − − 2 7 TBC + TCD − WC = 0 25 293 2 7 ( 565.34 N ) + ( 584.86 N ) 25 293 or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. WC = 97.7 N ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 49. Free-Body Diagram: ΣFx = 0: − 8 kips + 15 kips − TD cos 40° = 0 TD = 9.1378 kips TD = 9.14 kips ! ΣFy = 0: ( 9.1378 kips ) sin 40° − TC =0 TC = 5.87 kips ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 50. Free-Body Diagram: ΣFy = 0: − 9 kips + TD sin 40° = 0 TD = 14.0015 kips TD = 14.00 kips ΣFx = 0: − 6 kips + TB − (14.0015 kips ) cos 40° = 0 TB = 16.73 kips TB = 16.73 kips Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 51. Free-Body Diagram: ΣFx = 0: FC + ( 2.3 kN ) sin15° − ( 2.1 kN ) cos15° = 0 or ΣFy = 0: FC = 1.433 kN FD − ( 2.3 kN ) cos15° + ( 2.1 kN ) sin15° = 0 or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FD = 1.678 kN COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 52. Free-Body Diagram: ΣFx = 0: − FB cos15° + 2.4 kN + (1.9 kN ) sin15° = 0 or FB = 2.9938 kN FB = 2.99 kN ΣFy = 0: FD − (1.9 kN ) cos15° + ( 2.9938 kN ) sin15° = 0 FD = 1.060 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 53. From Similar Triangles we have: L2 − ( 2.5 m ) = ( 8 − L ) − ( 5.45 m ) 2 2 2 − 6.25 = 64 − 16 L − 29.7025 or cos β = And or Then L = 2.5342 m 5.45 m 8 m − 2.5342 m β = 4.3576° cos α = 2.5 m 2.5342 m or α = 9.4237° Free-Body Diagram At B: ΣFx = 0: − TABC cos α − ( 35 N ) cos α + TABC cos β = 0 or TABC = ( 35) cos 9.4237° cos 4.3576° − cos 9.4237° TABC = 3255.9 N ΣFy = 0: TABC sin α + ( 35 N ) sin α + TABC sin β − W = 0 sin 9.4237° ( 3255.9 N + 35 N ) + ( 3255.9 N ) sin 4.3576° − W = 0 or W = 786.22 N (a) W = 786 N " (b) TABC = 3.26 kN " Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 54. From Similar Triangles we have: L2 − ( 3 m ) = ( 8 − L ) − ( 4.95 m ) 2 2 2 − 9 = 64 − 16 L − 24.5025 L = 3.0311 m or cos β = Then β = 4.9989° or cos α = And 4.95 m 8 m − 3.0311 m 3m 3.0311 m α = 8.2147° or Free-Body Diagram At B: ΣFx = 0: (a) − TABC cos α − TDE cos α + TABC cos β = 0 or TDE = cos β − cos α TABC cos α ΣFy = 0: TABC sin α + TDE sin α + TABC sin β − ( 720 N ) = 0 cos β − cos α TABC sin α + sin α + sin β = 720 cos α TABC = ( 720 ) cosα sin (α + β ) Substituting for α and β gives TABC = ( 720 ) cos8.2147° sin (8.2147° + 4.9989° ) TABC = 3117.5 N or (b) TDE = TABC = 3.12 kN " cos 4.9989° − cos8.2147° ( 3117.5 N ) cos8.2147° TDE = 20.338 N or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. TDE = 20.3 N " COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 55. Free-Body Diagram At C: 3 15 15 ΣFx = 0: − TAC + TBC − (150 lb ) = 0 5 17 17 or ΣFy = 0: − 17 TAC + 5 TBC = 750 5 (1) 4 8 8 TAC + TBC − (150 lb ) − 190 lb = 0 5 17 17 17 TAC + 2 TBC = 1107.5 5 or (2) Then adding Equations (1) and (2) 7 TBC = 1857.5 or TBC = 265.36 lb Therefore (a) TAC = 169.6 lb ! (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. TBC = 265 lb ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 56. Free-Body Diagram At C: 3 15 15 ΣFx = 0: − TAC + TBC − (150 lb ) = 0 5 17 17 17 or − TAC + 5 TBC = 750 5 4 8 8 ΣFy = 0: TAC + TBC − (150 lb ) − W = 0 5 17 17 17 17 or TAC + 2 TBC = 300 + W 5 4 17 7 TBC = 1050 + W Adding Equations (1) and (2) gives 4 17 or TBC = 150 + W 28 − Using Equation (1) or Now for T ≤ 240 lb ⇒ or (2) 17 17 TAC + 5 150 + W = 750 5 28 25 W 28 25 TAC : 240 = W 28 W = 269 lb TAC = TBC : 240 = 150 + or (1) 17 W 28 W = 148.2 lb Therefore Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 0 ≤ W ≤ 148.2 lb ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 57. Free-Body Diagram At A: First note from geometry: The sides of the triangle with hypotenuse AD are in the ratio 12:35:37. The sides of the triangle with hypotenuse AC are in the ratio 3:4:5. The sides of the triangle with hypotenuse AB are also in the ratio 12:35:37. Then: ΣFx = 0: − 4 35 12 ( 3W ) + (W ) + Fs = 0 5 37 37 or Fs = 4.4833W and ΣFy = 0: 3 12 35 ( 3W ) + (W ) + Fs − 400 N = 0 5 37 37 Then: 3 12 35 ( 3W ) + (W ) + ( 4.4833W ) − 400 N = 0 5 37 37 or W = 62.841 N and Fs = 281.74 N or W = 62.8 N (a) (b) Have spring force Fs = k ( LAB − LO ) Where FAB = k AB ( LAB − LO ) and LAB = ( 0.360 m )2 + (1.050 m )2 = 1.110 m So: 281.74 N = 800 N/m (1.110 − LO ) m or LO = 758 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 58. Free-Body Diagram At A: First Note ... With LAB = ( 22 in.)2 + (16.5 in.)2 LAB = 27.5 in. LAD = ( 30 in.)2 + (16 in.)2 LAD = 34 in. Then FAB = k AB ( LAB − LO ) = ( 9 lb/in.)( 27.5 in. − 22.5 in.) = 45 lb FAD = k AD ( LAD − LO ) = ( 3 lb/in.)( 34 in. − 22.5 in.) = 34.5 lb (a) ΣFx = 0: − 4 7 15 ( 45 lb ) + TAC + ( 34.5 lb ) = 0 5 25 17 or TAC = 19.8529 lb TAC = 19.85 lb ! (b) ΣFy = 0: 3 24 8 ( 45 lb ) + (19.8529 lb ) + ( 34.5 lb ) − W = 0 5 25 17 W = 62.3 lb ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 59. (a) For TAB to be a minimum TAB must be perpendicular to TAC ∴ α + 10° = 60° (b) or α = 50.0° or TAB = 35.0 lb Then TAB = ( 70 lb ) sin 30° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 60. Note: In problems of this type, P may be directed along one of the cables, with T = Tmax in that cable and T = 0 in the other, or P may be directed in such a way that T is maximum in both cables. The second possibility is investigated first. Free-Body Diagram At C: Force Triangle Force triangle is isoceles with 2 β = 180° − 85° β = 47.5° P = 2 ( 900 N ) cos 47.5° = 1216 N Since P > 0, solution is correct (a) P = 1216 N ! (b) α = 77.5° ! α = 180° − 55° − 47.5° = 77.5° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 61. Note: Refer to Note in Problem 2.60 Free-Body Diagram At C: Force Triangle (a) Law of Cosines P 2 = (1400 N ) + ( 700 N ) − 2 (1400 N )( 700 N ) cos85° 2 2 or P = 1510 N ! or α = 57.5° ! (b) Law of Sines sin β sin 85° = 1400 N 1510 N sin β = 0.92362 β = 67.461° α = 180° − 55° − 67.461° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 62. Free-Body Diagram At C: ΣFx = 0: 2Tx − 1200 N = 0 Tx = 600 N (Tx )2 + (Ty ) 2 = T2 ( 600 N )2 + (Ty ) 2 = ( 870 N ) 2 Ty = 630 N By similar triangles: 1.8 m AC = 870 N 630 N AC = 2.4857 m L = 2( AC ) L = 2 ( 2.4857 m ) L = 4.97 m L = 4.97 m " Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 63. TBC must be perpendicular to FAC to be as small as possible. Free-Body Diagram: C Force Triangle is a Right Triangle α = 55° α = 55° ! (a) We observe: (b) TBC = ( 400 lb ) sin 60° or TBC = 346.41 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. TBC = 346 lb ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 64. At Collar A ... Fs = k ( L′AB − LAB ) Have For stretched length L′AB = (12 in.)2 + (16 in.)2 L′AB = 20 in. For unstretched length LAB = 12 2 in. ( ) Fs = 4 lb/in. 20 − 12 2 in. Then Fs = 12.1177 lb For the collar ... ΣFy = 0 −W + 4 (12.1177 lb ) = 0 5 W = 9.69 lb ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 65. At Collar A ... ΣFy = 0: − 9 lb + or h 2 12 + h 2 Fs = 0 hFs = 9 144 + h 2 Fs = k ( L′AB − LAB ) Now Where the stretched length L′AB = (12 in.)2 + h2 LAB = 12 2 in. Then hFs = 9 144 + h 2 Becomes h 3 lb/in. or ( h − 3) ( 144 + h 2 ) − 12 2 = 9 144 + h 2 144 + h 2 = 12 2 h Solving Numerically ... Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. h = 16.81 in. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 66. Free-Body Diagram: B TBD + FAB + TBC = 0 (a) Have: where magnitude and direction of TBD are known, and the direction of FAB is known. Then, in a force triangle: α = 90.0° By observation, TBC is minimum when (b) Have TBC = ( 310 N ) sin (180° − 70° − 30° ) = 305.29 N TBC = 305 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 67. Free-Body Diagram At C: Since TAB = TBC = 140 lb, Force triangle is isosceles: With 2β + 75° = 180° β = 52.5° Then α = 90° − 52.5° − 30° α = 7.50° P = (140 lb ) cos 52.5° 2 P = 170.453 lb P = 170.5 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 7.50° COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 68. Free-Body Diagram of Pulley (a) ( ) ΣFy = 0: 2T − ( 280 kg ) 9.81 m/s 2 = 0 T = 1 ( 2746.8 N ) 2 T = 1373 N (b) ( ) ΣFy = 0: 2T − ( 280 kg ) 9.81 m/s 2 = 0 T = 1 ( 2746.8 N ) 2 T = 1373 N (c) ( ) ΣFy = 0: 3T − ( 280 kg ) 9.81 m/s 2 = 0 T = 1 ( 2746.8 N ) 3 T = 916 N ( ) ΣFy = 0: 3T − ( 280 kg ) 9.81 m/s 2 = 0 (d) T = 1 ( 2746.8 N ) 3 T = 916 N ( ) ΣFy = 0: 4T − ( 280 kg ) 9.81 m/s 2 = 0 (e) T = 1 ( 2746.8 N ) 4 T = 687 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 69. Free-Body Diagram of Pulley and Crate (b) ( ) ΣFy = 0: 3T − ( 280 kg ) 9.81 m/s 2 = 0 T = 1 ( 2746.8 N ) 3 T = 916 N (d) ( ) ΣFy = 0: 4T − ( 280 kg ) 9.81 m/s 2 = 0 T = 1 ( 2746.8 N ) 4 T = 687 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 70. Free-Body Diagram: Pulley C (a) ΣFx = 0: TACB ( cos 30° − cos 50° ) − ( 800 N ) cos 50° = 0 Hence TACB = 2303.5 N TACB = 2.30 kN (b) ΣFy = 0: TACB ( sin 30° + sin 50° ) + ( 800 N ) sin 50° − Q = 0 ( 2303.5 N )( sin 30° + sin 50° ) + (800 N ) sin 50° − Q = 0 or Q = 3529.2 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Q = 3.53 kN COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 71. Free-Body Diagram: Pulley C ΣFx = 0: TACB ( cos 30° − cos 50° ) − P cos 50° = 0 P = 0.34730TACB or (1) ΣFy = 0: TACB ( sin 30° + sin 50° ) + P sin 50° − 2000 N = 0 1.26604TACB + 0.76604 P = 2000 N or (2) (a) Substitute Equation (1) into Equation (2): 1.26604TACB + 0.76604 ( 0.34730TACB ) = 2000 N Hence: TACB = 1305.41 N TACB = 1305 N (b) Using (1) P = 0.34730 (1305.41 N ) = 453.37 N P = 453 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 72. First replace 30 lb forces by their resultant Q: Q = 2 ( 30 lb ) cos 25° Q = 54.378 lb Equivalent loading at A: Law of Cosines: (120 lb )2 = (100 lb )2 + ( 54.378 lb )2 − 2 (100 lb )( 54.378 lb ) cos (125° − α ) cos (125° − α ) = − 0.132685 This gives two values: 125° − α = 97.625° α = 27.4° 125° − α = − 97.625° α = 223° Thus for R < 120 lb: 27.4° < α < 223° ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 73. (a) Fx = ( 950 lb ) sin 50° cos 40° = 557.48 lb Fx = 557 lb ! Fy = − ( 950 lb ) cos 50° = − 610.65 lb Fy = − 611 lb ! Fz = ( 950 lb ) sin 50° sin 40° = 467.78 lb Fz = 468 lb ! (b) cosθ x = 557.48 lb 950 lb or θ x = 54.1° ! cosθ y = − 610.65 lb 950 lb or θ y = 130.0° ! cosθ z = 467.78 lb 950 lb or θ z = 60.5° ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 74. (a) Fx = − ( 810 lb ) cos 45° sin 25° = − 242.06 lb Fx = −242 lb ! Fy = − ( 810 lb ) sin 45° = − 572.76 lb Fy = − 573 lb ! Fz = (810 lb ) cos 45° cos 25° = 519.09 lb Fz = 519 lb ! (b) cosθ x = −242.06 lb 810 lb or θ x = 107.4° ! cosθ y = − 572.76 lb 810 lb or θ y = 135.0° ! cosθ z = 519.09 lb 810 lb or θ z = 50.1° ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 75. (a) Fx = ( 900 N ) cos 30° cos 25° = 706.40 N Fx = 706 N ! Fy = ( 900 N ) sin 30° = 450.00 N Fy = 450 N ! Fz = − ( 900 N ) cos 30° sin 25° = − 329.04 N Fz = − 329 N ! (b) cosθ x = 706.40 N 900 N or θ x = 38.3° ! cosθ y = 450.00 N 900 N or θ y = 60.0° ! cosθ z = −329.40 N 900 N or θ z = 111.5° ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 76. (a) Fx = − (1900 N ) sin 20° sin 70° = − 610.65 N Fx = − 611 N ! Fy = (1900 N ) cos 20° = 1785.42 N Fy = 1785 N ! Fz = (1900 N ) sin 20° cos 70° = 222.26 N Fz = 222 N ! (b) cosθ x = −610.65 N 1900 N or θ x = 108.7° ! cosθ y = 1785.42 N 1900 N or θ y = 20.0° ! cosθ z = 222.26 N 1900 N or θ z = 83.3° ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 77. (a) Fx = (180 lb ) cos 35° sin 20° = 50.430 lb Fx = 50.4 lb ! Fy = − (180 lb ) sin 35° = −103.244 lb Fy = −103.2 lb ! Fz = (180 lb ) cos 35° cos 20° = 138.555 lb Fz = 138.6 lb ! (b) cosθ x = 50.430 lb 180 lb or θ x = 73.7° ! cosθ y = −103.244 lb 180 lb or θ y = 125.0° ! cosθ z = 138.555 lb 180 lb or θ z = 39.7° ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 78. (a) Fx = (180 lb ) cos 30° cos 25° = 141.279 lb Fx = 141.3 lb ! Fy = − (180 lb ) sin 30° = − 90.000 lb Fy = − 90.0 lb ! Fz = (180 lb ) cos 30° sin 25° = 65.880 lb Fz = 65.9 lb ! (b) cosθ x = 141.279 lb 180 lb or θ x = 38.3° ! cosθ y = −90.000 lb 180 lb or θ y = 120.0° ! cosθ z = 65.880 lb 180 lb or θ z = 68.5° ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 79. (a) Fx = − ( 220 N ) cos 60° cos 35° = − 90.107 N Fx = − 90.1 N Fy = ( 220 N ) sin 60° = 190.526 N Fy = 190.5 N Fz = − ( 220 N ) cos 60° sin 35° = − 63.093 N Fz = − 63.1 N (b) cosθ x = −90.107 Ν 220 N θ x = 114.2° cosθ y = 190.526 N 220 N θ y = 30.0° cosθ z = −63.093 N 220 N θ z = 106.7° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 80. (a) Fx = 180 N With Fx = F cos 60° cos 35° 180 N = F cos 60° cos 35° or F = 439.38 N F = 439 N ! (b) cosθ x = 180 N 439.48 N θ x = 65.8° ! Fy = ( 439.48 N ) sin 60° Fy = 380.60 N cosθ y = 380.60 N 439.48 N θ y = 30.0° ! Fz = − ( 439.48 N ) cos 60° sin 35° Fz = −126.038 N cosθ z = −126.038 N 439.48 N θ z = 106.7° ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 81. F= Fx2 + Fy2 + Fz2 F = ( 65 N )2 + ( − 80 N )2 + ( − 200 N )2 F = 225 N ! cosθ x = Fx 65 N = F 225 N θ x = 73.2° ! cosθ y = Fy F = − 80 N 225 N θ y = 110.8° ! cosθ z = Fz − 200 N = F 225 N θ z = 152.7° ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 82. F= Fx2 + Fy2 + Fz2 F = ( 450 N )2 + ( 600 N )2 + ( −1800 N )2 F = 1950 N ! cosθ x = Fx 450 N = F 1950 N θ x = 76.7° ! cosθ y = Fy F = 600 N 1950 N θ y = 72.1° ! cosθ z = Fz −1800 N = 1950 N F θ z = 157.4° ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 83. (a) ( We have ( cosθ x ) + cosθ y 2 ( cosθ y ) 2 = 1 − ( cosθ x ) − ( cosθ z ) Since Fy < 0 we must have Thus 2 ) + ( cosθ z )2 = 1 2 2 cosθ y < 0 cosθ y = − 1 − ( cos 43.2° ) − cos ( 83.8° ) 2 2 cosθ y = − 0.67597 θ y = 132.5° ! (b) Then: F = F= Fy cosθ y − 50 lb − 0.67597 F = 73.968 lb And Fx = F cosθ x Fx = ( 73.968 lb ) cos 43.2° Fx = 53.9 lb ! Fz = F cosθ z Fz = ( 73.968 lb ) cos83.8° Fz = 7.99 lb ! F = 74.0 lb ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 84. (a) ( We have ( cosθ x ) + cosθ y 2 2 ) + ( cosθ z )2 = 1 ( or ( cosθ z ) = 1 − ( cosθ x ) − cosθ y 2 Since Fz < 0 we must have Thus 2 ) 2 cosθ z < 0 cosθ z = − 1 − ( cos113.2° ) − cos ( 78.4° ) 2 2 cosθ z = − 0.89687 θ z = 153.7° ! (b) Then: F = Fz − 35 lb = cosθ z − 0.89687 F = 39.025 lb And Fx = F cosθ x Fx = ( 39.025 lb ) cos113.2° Fx = −15.37 lb ! Fy = F cosθ y Fy = ( 39.025 lb ) cos 78.4° Fy = 7.85 lb ! F = 39.0 lb ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 85. (a) We have Fy = F cosθ y Fy = ( 250 N ) cos 72.4° Fy = 75.592 N Fy = 75.6 N ! Then F 2 = Fx2 + Fy2 + Fz2 ( 250 N )2 = (80 N )2 + ( 75.592 N )2 + Fz2 Fz = 224.47 N Fz = 224 N ! (b) cosθ x = Fx F cosθ x = 80 N 250 N θ x = 71.3° ! cosθ z = Fz F cosθ z = 224.47 N 250 N θ z = 26.1° ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 86. (a) Have Fx = F cosθ x Fx = ( 320 N ) cos104.5° Fx = − 80.122 N Fx = − 80.1 N ! Then: F 2 = Fx2 + Fy2 + Fz2 ( 320 N )2 = ( − 80.122 N )2 + Fy2 + ( −120 N )2 Fy = 285.62 N Fy = 286 N ! (b) cosθ y = Fy cosθ y = 285.62 N 320 N F θ y = 26.8° ! cosθ z = Fz F cosθ z = −120 N 320 N θ z = 112.0° ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 87. !!!" DB = ( 36 in.) i − ( 42 in.) j − ( 36 in.) k DB = ( 36 in.)2 + ( − 42 in.)2 + ( − 36 in.)2 TDB = TDBλDB = TDB TDB = = 66 in. !!!" DB DB 55 lb ( 36 in.) i − ( 42 in.) j − ( 36 in.) k 66 in. = ( 30 lb ) i − ( 35 lb ) j − ( 30 lb ) k ∴ (TDB ) x = 30.0 lb ! (TDB ) y = − 35.0 lb ! (TDB ) z = − 30.0 lb ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 88. !!!" EB = ( 36 in.) i − ( 45 in.) j + ( 48 in.) k EB = ( 36 in.)2 + ( − 45 in.)2 + ( 48 in.)2 TEB = TEBλEB = TEB TEB = = 75 in. !!!" EB EB 60 lb ( 36 in.) i − ( 45 in.) j + ( 48 in.) k 75 in. = ( 28.8 lb ) i − ( 36 lb ) j + ( 38.4 lb ) k ∴ (TEB ) x = 28.8 lb ! (TEB ) y (TEB ) z = − 36.0 lb ! = 38.4 lb ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 89. !!!" BA = ( 4 m ) i + ( 20 m ) j − ( 5 m ) k BA = F = F λ BA ( 4 m )2 + ( 20 m )2 + ( − 5 m )2 = 21 m !!!" BA 2100 N ( 4 m ) i + ( 20 m ) j − ( 5 m ) k = F = 21 m BA F = ( 400 N ) i + ( 2000 N ) j − ( 500 N ) k Fx = + 400 N, Fy = + 2000 N, Fz = − 500 N ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 90. !!!" DA = ( 4 m ) i + ( 20 m ) j + (14.8 m ) k DA = F = F λ DA ( 4 m )2 + ( 20 m )2 + (14.8 m )2 = 25.2 m !!!" DA 1260 N ( 4 m ) i + ( 20 m ) j + (14.8 m ) k = F = 25.2 m DA F = ( 200 N ) i + (1000 N ) j + ( 740 N ) k Fx = + 200 N, Fy = + 1000 N, Fz = + 740 N ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 91. uuuv BG = − (1 m ) i + (1.85 m ) j − ( 0.8 m ) k BG = ( −1 m )2 + (1.85 m )2 + ( − 0.8 m )2 BG = 2.25 m TBG = TBG λBG = TBG TBG = uuuv BG BG 450 N − (1 m ) i + (1.85 m ) j − ( 0.8 m ) k 2.25 m = − ( 200 N ) i + ( 370 N ) j − (160 N ) k ∴ (TBG ) x = − 200 N (TBG ) y = 370 N (TBG ) z = −160.0 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 92. uuuuv BH = ( 0.75 m ) i + (1.5 m ) j − (1.5 m ) k BH = ( 0.75 m )2 + (1.5 m )2 + ( −1.5 m )2 = 2.25 m TBH = TBH λBH = TBH TBH = uuuuv BH BH 600 N ( 0.75 m ) i + (1.5 m ) j − (1.5 m ) k 2.25 m = ( 200 N ) i + ( 400 N ) j − ( 400 N ) k ∴ (TBH ) x = 200 N (TBH ) y = 400 N (TBH ) z Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. = − 400 N COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 93. P = ( 4 kips ) [ cos 30° sin 20°i − sin 30°j + cos 30° cos 20°k ] = (1.18479 kips ) i − ( 2 kips ) j + ( 3.2552 kips ) k Q = (8 kips ) [ − cos 45° sin15°i + sin 45°j − cos 45° cos15°k ] = − (1.46410 kips ) i + ( 5.6569 kips ) j − ( 5.4641 kips ) k R = P + Q = − ( 0.27931 kip ) i + ( 3.6569 kips ) j − ( 2.2089 kips ) k R= ( − 0.27931 kip)2 + (3.6569 kips )2 + ( − 2.2089 kips)2 R = 4.2814 kips cosθ x = cos θ y = cos θ z = R = 4.28 kips or Rx − 0.27931 kip = = − 0.065238 R 4.2814 kips Ry R = 3.6569 kips = 0.85414 4.2814 kips Rz − 2.2089 kips = = − 0.51593 R 4.2814 kips or θ x = 93.7° θ y = 31.3° θ z = 121.1° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 94. P = ( 6 kips ) [ cos 30° sin 20°i − sin 30°j + cos 30° cos 20°k ] = (1.77719 kips ) i − ( 3 kips ) j + ( 4.8828 kips ) k Q = ( 7 kips ) [ − cos 45° sin15°i + sin 45°j − cos 45° cos15°k ] = − (1.28109 kips ) i + ( 4.94975 kips ) j − ( 4.7811 kips ) k R = P + Q = ( 0.49610 kip ) i + (1.94975 kips ) j + ( 0.101700 kip ) k R= ( 0.49610 kip)2 + (1.94975 kips)2 + ( 0.101700 kip)2 R = 2.0144 kips cos θ x = cos θ y = cos θ z = or R = 2.01 kips or θ x = 75.7° Rx 0.49610 kip = = 0.24628 R 2.0144 kips Ry R = 1.94975 kips = 0.967906 2.0144 kips Rz 0.101700 kip = = 0.050486 R 2.0144 kips θ y = 14.56° θ z = 87.1° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 95. uuur AB = − ( 600 mm ) i + ( 360 mm ) j + ( 270 mm ) k AB = ( − 600 mm )2 + (360 mm )2 + ( 270 mm )2 AB = 750 mm uuuv AC = − ( 600 mm ) i + ( 320 mm ) j − ( 510 mm ) k AC = ( − 600 mm )2 + ( 320 mm )2 + ( −510 mm )2 AC = 850 mm uuur AB 510 N − ( 600 mm ) i + ( 360 mm ) j + ( 270 mm ) k TAB = TAB = AB 750 mm TAB = − ( 408 N ) i + ( 244.8 N ) j + (183.6 N ) k uuur AC 765 N − ( 600 mm ) i + ( 320 mm ) j − ( 510 mm ) k TAC = TAC = AC 850 mm TAC = − ( 540 N ) i + ( 288 N ) j − ( 459 N ) k R = TAB + TAC = − ( 948 N ) i + ( 532.8 N ) j − ( 275.4 N ) k Then and R = 1121.80 N − 948 N cos θ x = 1121.80 N 532.8 N cos θ y = 1121.80 N − 275.4 N cos θ z = 1121.80 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. R = 1122 N θ x = 147.7° θ y = 61.6° θ z = 104.2° COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 96. !!!" AB = − ( 600 mm ) i + ( 360 mm ) j + ( 270 mm ) k AB = ( − 600 mm )2 + ( 360 mm)2 + ( 270 mm) 2 = 750 mm AB = 750 mm !!!" AC = − ( 600 mm ) i + ( 320 mm ) j − ( 510 mm ) k AC = ( − 600 mm )2 + ( 320 mm) 2 + ( − 510 mm) 2 = 850 mm AC = 850 mm !!!" AB 765 N − ( 600 mm ) i + ( 360 mm ) j + ( 270 mm ) k TAB = TAB = AB 750 mm TAB = − ( 612 N ) i + ( 367.2 N ) j + ( 275.4 N ) k !!!" AC 510 N − ( 600 mm ) i + ( 320 mm ) j − ( 510 mm ) k TAC = TAC = AC 850 mm TAC = − ( 360 N ) i + (192 N ) j − ( 306 N ) k R = TAB + TAC = − ( 972 N ) i + ( 559.2 N ) j − ( 30.6 N ) k Then R = 1121.80 N R = 1122 N ! − 972 N θ x = 150.1° ! 1121.80 N 559.2 N cos θ y = θ y = 60.1° ! 1121.80 N − 30.6 N cos θ z = θ z = 91.6° ! 1121.80 N cos θ x = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 97. Have TAB = ( 760 lb )( sin 50° cos 40°i − cos 50°j + sin 50° sin 40°k ) TAC = TAC ( − cos 45° sin 25°i − sin 45° j + cos 45° cos 25°k ) (a) ( RA ) x = 0 R A = TAB + TAC ∴ ( RA ) x = ΣFx = 0: ( 760 lb) sin 50° cos 40° − TAC cos 45° sin 25° = 0 TAC = 1492.41 lb or ∴ TAC = 1492 lb (b) Then ( RA ) y = ΣFy = ( − 760 lb) cos 50° − (1492.41 lb) sin 45° ( RA ) y = −1543.81 lb ( RA ) z = ΣFz = ( 760 lb) sin 50° sin 40° + (1492.41 lb) cos 45° cos 25° ( RA ) z = 1330.65 lb ∴ R A = − (1543.81 lb ) j + (1330.65 lb ) k RA = 2038.1 lb RA = 2040 lb cosθ x = 0 2038.1 lb θ x = 90.0° cos θ y = −1543.81 lb 2038.1 lb θ y = 139.2° cos θ z = 1330.65 lb 2038.1 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. θ z = 49.2° COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 98. Have TAB = TAB ( sin 50° cos 40°i − cos 50°j + sin 50° sin 40°k ) TAC = ( 980 lb )( − cos 45° sin 25°i − sin 45°j + cos 45° cos 25°k ) (a) ( RA ) x = 0 R A = TAB + TAC ∴ ( RA ) x = ΣFx = 0: TAB sin 50° cos 40° − ( 980 lb ) cos 45° sin 25° = 0 TAB = 499.06 lb or ∴ TAB = 499 lb (b) Then and ( RA ) y = ΣFy = − ( 499.06 lb) cos 50° − (980 lb) sin 45° ( RA ) y = −1013.75 lb ( RA ) z = ΣFz = ( 499.06 lb) sin 50° sin 40° + (980 lb) cos 45° cos 25° ( RA ) z = 873.78 lb ∴ R A = − (1013.75 lb ) j + (873.78 lb ) k RA = 1338.35 lb RA = 1338 lb 0 1338.35 lb θ x = 90.0° cos θ x = cos θ y = cos θ z = −1013.75 lb 1338.35 lb 873.78 lb 1338.35 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. θ y = 139.2° θ z = 49.2° COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 99. !!!" AB = − ( 600 mm ) i + ( 360 mm ) j + ( 270 mm ) k Cable AB: AB = ( − 600 mm )2 + ( 360 mm)2 + ( 270 mm) 2 TAB = TAB !!!" AB 600 N − ( 600 mm ) i + ( 360 mm ) j + ( 270 mm ) k = AB 750 mm TAB = − ( 480 N ) i + ( 288 N ) j + ( 216 N ) k !!!" AC = − ( 600 mm ) i + ( 320 mm ) j − ( 510 mm ) k Cable AC: AC = ( − 600 mm )2 + ( 320 mm) 2 + ( − 510 mm) 2 TAC = TAC TAC = − Load P: = 750 mm = 850 mm !!!" AC TAC − ( 600 mm ) i + ( 320 mm ) j − ( 510 mm ) k = AC 850 mm 60 32 51 TAC i + TAC j − TAC k 85 85 85 P = − Pj (a) ( RA ) z = ΣFz = 0: ( 216 N ) − 51 TAC = 0 85 or TAC = 360 N ! (b) ( RA ) y = ΣFy = 0: ( 288 N ) + 32 TAC − P = 0 85 or P = 424 N ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 100. uuur AB = − ( 4 m ) i − ( 20 m ) j + ( 5 m ) k Cable AB: AB = ( − 4 m)2 + ( −20 m)2 + (5 m )2 TAB = TAB = 21 m uuur AB T = AB − ( 4 m ) i − ( 20 m ) j + ( 5 m ) k AB 21 m uuur AC = (12 m ) i − ( 20 m ) j + ( 3.6 m ) k Cable AC: AC = (12 m )2 + ( − 20 m )2 + ( 3.6 m )2 TAC = TAC = 23.6 m uuur AC 1770 N (12 m ) i − ( 20 m ) j + ( 3.6 m ) k = AC 23.6 m = ( 900 N ) i − (1500 N ) j + ( 270 N ) k uuur AD = − ( 4 m ) i − ( 20 m ) j + (14.8 m ) k Cable AD: AD = ( − 4 m )2 + ( − 20 m )2 + (14.8 m )2 TAD = TAD = = 25.2 m uuur AD TAD − ( 4 m ) i − ( 20 m ) j + (14.8 m ) k = AD 25.2 m TAD − (10 m ) i − ( 50 m ) j − ( 37 m ) k 63 m Now... R = TAB + TAC + TAD and R = Rj; Rx = Rz = 0 4 10 TAB + 900 − TAD = 0 21 63 5 37 ΣFy = 0: TAB + 270 − TAD = 0 21 63 Solving equations (1) and (2) simultaneously yields: ΣFx = 0: − (1) (2) TAD = 1.775 kN ! TAB = 3.25 kN ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 101. d AB = ( −450 mm) 2 + ( 600 mm )2 = 750 mm d AC = ( 600 mm )2 + ( − 320 mm)2 = 680 mm d AD = ( 500 mm)2 + ( 600 mm )2 + ( 360 mm )2 TAB = = 860 mm TAB − ( 450 mm ) i + ( 600 mm ) j 750 mm TAB = ( − 0.6 i + 0.8 j) TAB TAC = TAC ( 600 mm ) j − ( 320 mm ) k 680 mm 8 15 TAC = j − k TAC 17 17 TAD = TAD ( 500 mm ) i + ( 600 mm ) j + ( 360 mm ) k 860 mm 30 18 25 TAD = i + j+ k TAD 43 43 43 W = −W j At point A: ΣF = 0: i component: − 0.6 TAB k component: − TAB + TAC + TAD + W = 0 25 + TAD = 0 43 5 25 TAB = TAD or 3 43 18 18 TAC + TAD = 0 17 43 or j component: (1) 17 18 TAC = TAD 8 43 15 30 TAC + TAD − W = 0 17 43 15 17 18 30 TAD − W = 0 0.8 TAB + ⋅ TAD + 17 8 43 43 255 TAD − W = 0 0.8 TAB + 172 (2) 0.8 TAB + (3) From Equation (1): 5 25 6 kN = TAD 3 43 or TAD = 6.1920 kN From Equation (3): 0.8 ( 6 kN ) + 255 ( 6.1920 kN ) − W = 0 172 ∴ W = 13.98 kN ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 102. See Problem 2.101 for the figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below. 5 25 TAB = TAD 3 43 (1) 17 18 TAC = TAD 8 43 (2) 0.8 TAB + 255 TAD − W = 0 172 From Equation (1) 5 25 TAB = ( 4.3 kN ) 3 43 or TAB = 4.1667 kN From Equation (3) 0.8 ( 4.1667 kN ) + 255 ( 4.3 kN ) − W = 0 172 ∴ W = 9.71 kN ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (3) COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 103. uuur AB = − ( 4.20 m ) i − ( 5.60 m ) j AB = ( − 4.20 m ) + ( − 5.60 m ) = 7.00 m uuur AC = ( 2.40 m ) i − ( 5.60 m ) j + ( 4.20 m ) k 2 2 AC = ( 2.40 m ) + ( − 5.60 m ) + ( 4.20 m ) = 7.40 m uuur AD = − ( 5.60 m ) j − ( 3.30 m ) k 2 2 AD = ( − 5.60 m ) + ( − 3.30 m ) = 6.50 m uuur AB TAB = TAB = ( − 4.20i − 5.60j) AB 7.00 m 2 TAB = TAB λ AB 2 2 4 3 TAB = − i − j TAB 5 5 uuur AC TAC TAC = TAC λ AC = TAC = ( 2.40i − 5.60j + 4.20k ) AC 7.40 m 28 21 12 TAC = i − j+ k TAC 37 37 37 uuur AD TAD TAD = TAD λ AD = TAD = ( − 5.60 j − 3.30k ) AD 6.50 m 33 56 TAD = − j − k TAD 65 65 P = Pj For equilibrium at point A: ΣF = 0 TAB + TAC + TAD + P = 0 i component: 3 12 − TAB + TAC = 0 5 37 or TAB = 20 TAC 37 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (1) COSMOS: Complete Online Solutions Manual Organization System 4 28 56 − TAB − TAC − TAD + P = 0 5 37 65 j component: 4 28 56 65 7 − TAB − TAC − ⋅ TAC + P = 0 5 37 65 11 37 4 700 − TAB − TAC + P = 0 5 407 (2) 21 33 TAC − TAD = 0 37 65 k component: or 65 7 TAD = TAC 11 37 (3) From Equation (1): 20 259 N = TAC 37 or From Equation (2): − TAC = 479.15 N 4 700 ( 259 N ) − ( 479.15 N ) + P = 0 5 407 ∴ P = 1031 N ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 104. See Problem 2.103 for the analysis leading to the linear algebraic Equations (1), (2), and (3) TAB = − 20 TAC 37 (1) 4 700 TAB − TAC + P = 0 (2) 5 407 65 7 TAD = TAC 11 37 (3) Substituting for TAC = 444 N into Equation (1) TAB = Gives 20 ( 444 N ) 37 TAB = 240 N or And from Equation (3) − 4 700 ( 240 N ) − ( 444 N ) + P = 0 5 407 ∴ P = 956 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 105. d BA = ( −11 in.)2 + ( 9.6 in.)2 = 14.6 in. dCA = ( 9.6 in.)2 + ( − 7.2 in.)2 = 12.0 in. d DA = ( 9.6 in.)2 + ( 9.6 in.)2 + ( 4.8 in.)2 FBA = FBAλBA = = 14.4 in. FBA ( −11 in.) i + ( 9.6 in.) j 14.6 in. 11 9.6 = FBA − i + j 14.6 14.6 FCA = FCAλCA = FCA ( 9.6 in.) j − ( 7.2 in.) k 12.0 in. 4 3 = FCA j − k 5 5 FDA = FDAλDA = FDA ( 9.6 in.) i + ( 9.6 in.) j + ( 4.8 in.) k 14.4 in. 2 2 1 = FDA i + j + k 3 3 3 P = −Pj At point A: ΣF = 0: FBA + FCA + FDA + P = 0 i component: j component: k component: 11 2 − FBA + FDA = 0 14.6 3 9.6 4 2 14.6 FBA + 5 FCA + 3 FDA − P = 0 3 1 − FCA + FDA = 0 5 3 (1) (2) (3) continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System 14.6 2 FBA = FDA 11 3 14.6 2 29.2 lb = FDA 11 3 From Equation (1) FDA = 33 lb or Solving Eqn. (3) for FCA gives: 5 FCA = FDA 9 5 FCA = ( 33 lb ) 9 Substituting into Eqn. (2) for FBA , FDA, and FCA in terms of FDA gives: 9.6 4 5 2 14.6 ( 29.2 lb ) + 5 9 ( 33 lb ) + 3 ( 33 lb ) − P = 0 ∴ P = 55.9 lb " Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 106. See Problem 2.105 for the figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below. 11 2 − FBA + FDA = 0 14.6 3 (1) 9.6 4 2 FBA + FCA + FDA − P = 0 14.6 5 3 (2) 3 1 − FCA + FDA = 0 (3) 5 3 From Equation (1): 14.6 2 FBA = FDA 11 3 From Equation (3): 5 FCA = FDA 9 Substituting into Equation (2) for FBA and FCA gives: 9.6 14.6 2 4 5 2 FDA + FDA + FDA − P = 0 14.6 11 3 5 9 3 838 or FDA = P 495 Since P = 45 lb 838 FDA = 45 lb 495 or FDA = 26.581 lb 14.6 2 and FBA = ( 26.581 lb ) 11 3 or FBA = 23.5 lb 5 and FCA = ( 26.581 lb ) 9 or FCA = 14.77 lb and FDA = 26.6 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 107. The force in each cable can be written as the product of the magnitude of the force and the unit vector along the cable. That is, with uuur AC = (18 m ) i − ( 30 m ) j + ( 5.4 m ) k AC = (18 m )2 + ( −30 m )2 + ( 5.4 m )2 TAC = T λ AC = TAC = 35.4 m uuur AC TAC (18 m ) i − ( 30 m ) j + ( 5.4 m ) k = 35.4 m AC TAC = TAC ( 0.50847i − 0.84746 j + 0.152542k ) and uuur AB = − ( 6 m ) i − ( 30 m ) j + ( 7.5 m ) k AB = ( −6 m )2 + ( −30 m )2 + ( 7.5 m )2 TAB = T λ AB = TAB = 31.5 m uuur AB TAB − ( 6 m ) i − ( 30 m ) j + ( 7.5 m ) k = AB 31.5 m TAB = TAB ( −0.190476i − 0.95238j + 0.23810k ) uuur AD = − ( 6 m ) i − ( 30 m ) j − ( 22.2 m ) k Finally AD = ( −6 m )2 + ( −30 m )2 + ( −22.2 m )2 TAD = T λ AD = TAD = 37.8 m uuur AD TAD − ( 6 m ) i − ( 30 m ) j − ( 22.2 m ) k = AD 37.8 m TAD = TAD ( −0.158730i − 0.79365j − 0.58730k ) continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System With P = Pj, at A: ΣF = 0: TAB + TAC + TAD + Pj = 0 Equating the factors of i, j, and k to zero, we obtain the linear algebraic equations: i : − 0.190476TAB + 0.50847TAC − 0.158730TAD = 0 (1) j: − 0.95238TAB − 0.84746TAC − 0.79365TAD + P = 0 (2) k : 0.23810TAB + 0.152542TAC − 0.58730TAD = 0 (3) In Equations (1), (2) and (3), set TAB = 3.6 kN, and, using conventional methods for solving Linear Algebraic Equations (MATLAB or Maple, for example), we obtain: TAC = 1.963 kN TAD = 1.969 kN P = 6.66 kN " Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 108. Based on the results of Problem 2.107, particularly Equations (1), (2) and (3), we substitute TAC = 2.6 kN and solve the three resulting linear equations using conventional tools for solving Linear Algebraic Equations (MATLAB or Maple, for example), to obtain TAB = 4.77 kN TAD = 2.61 kN P = 8.81 kN ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 109. !!!" AB = − ( 6.5 ft ) i − (8 ft ) j + ( 2 ft ) k AB = TAB = ( −6.5 ft )2 + ( −8 ft )2 + ( 2 ft )2 = 10.5 ft TAB − ( 6.5 ft ) i − ( 8 ft ) j + ( 2 ft ) k 10.5 ft = TAB ( −0.61905i − 0.76190 j + 0.190476k ) !!!" AC = (1 ft ) i − ( 8 ft ) j + ( 4 ft ) k AC = TAC = (1 ft )2 + ( −8 ft )2 + ( 4 ft )2 = 9 ft TAC (1 ft ) i − ( 8 ft ) j + ( 4 ft ) k 9 ft = TAC ( 0.111111i − 0.88889 j + 0.44444k ) !!!" AD = (1.75 ft ) i − ( 8 ft ) j − (1 ft ) k AD = TAD = (1.75 ft )2 + ( −8 ft )2 + ( −1 ft )2 = 8.25 ft TAD (1.75 ft ) i − ( 8 ft ) j − (1 ft ) k 8.25 ft = TAD ( 0.21212i − 0.96970 j − 0.121212k ) At A ΣF = 0 ΣFx = 0: −0.61905TAB + 0.111111TAC + 0.21212TAD = 0 (1) ΣFy = 0: −0.76190TAB − 0.88889TAC − 0.96970TAD + W = 0 (2) ΣFz = 0: 0.190476TAB + 0.44444TAC − 0.121212TAD = 0 (3) Substituting for W = 320 lb and Solving Equations (1), (2), (3) simultaneously yields: TAB = 86.2 lb ! TAC = 27.7 lb ! TAD = 237 lb ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 110. See Problem 2.109 for the analysis leading to the linear algebraic Equations (1), (2), and (3) shown below. − 0.61905 TAB + 0.111111TAC + 0.21212 TAD = 0 (1) − 0.76190 TAB − 0.88889 TAC − 0.96970 TAD + W = 0 (2) 0.190476 TAB + 0.44444 TAC − 0.121212TAD = 0 (3) Now substituting for TAD = 220 lb Gives: − 0.61905 TAB + 0.111111TAC + 46.662 = 0 (4) − 0.76190 TAB − 0.88889 TAC − 213.33 + W = 0 (5) 0.190476 TAB + 0.44444 TAC − 26.666 = 0 (6) Solving Equations (4) and (6) simultaneously gives TAB = 79.992 lb and TAC = 25.716 lb Substituting into Equation (5) yields W = 297 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 111. Note that because the line of action of each of the cords passes through the vertex A of the cone, the cords all have the same length, and the unit vectors lying along the cords are parallel to the unit vectors lying along the generators of the cone. Thus, for example, the unit vector along BE is identical to the unit vector along the generator AB. Hence: It follows that: λ AB = λ BE = cos 45°i + 8j − sin 45°k 65 cos 45°i + 8j − sin 45°k TBE = TBE λ BE = TBE 65 cos 30°i + 8j + sin 30°k TCF = TCF λ CF = TCF 65 − cos15°i + 8 j − sin15°k TDG = TDG λ DG = TDG 65 At A: ΣF = 0: TBE + TCF + TDG + W + P = 0 Then, isolating the factors of i, j, and k, we obtain three algebraic equations: TBE T T cos 45° + CF cos 30° − DG cos15° + P = 0 65 65 65 i: or TBE cos 45° + TCF cos30° − TDG cos15° + P 65 = 0 8 8 8 + TCF + TDG −W = 0 65 65 65 j: TBE or TBE + TCF + TDG − W 65 =0 8 k: − or (1) (2) TBE T T sin 45° + CF sin 30° − DG sin15° = 0 65 65 65 −TBE sin 45° + TCF sin 30° − TDG sin15° = 0 (3) With P = 0 and the tension in cord BE = 0.2 lb: Solving the resulting Equations (1), (2), and (3) using conventional methods in Linear Algebra (elimination, matrix methods or iteration – with MATLAB or Maple, for example), we obtain: TCF = 0.669 lb TDG = 0.746 lb W = 1.603 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 112. See Problem 2.111 for the Figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below: i : TBE cos 45° + TCF cos 30° − TDG cos15° + 65 P = 0 j: TBE + TCF + TDG − W (1) 65 =0 8 (2) k : − TBE sin 45° + TCF sin 30° − TDG sin15° = 0 (3) With W = 1.6 lb , the range of values of P for which the cord CF is taut can found by solving Equations (1), (2), and (3) for the tension TCF as a function of P and requiring it to be positive (> 0). Solving (1), (2), and (3) with unknown P, using conventional methods in Linear Algebra (elimination, matrix methods or iteration – with MATLAB or Maple, for example), we obtain: TCF = ( −1.729P + 0.668 ) lb Hence, for TCF > 0 or −1.729P + 0.668 > 0 P < 0.386 lb ∴ φ ≤ P < 0.386 lb ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 113. d DA = ( 400 mm )2 + ( − 600 mm )2 d DB = ( − 200 mm )2 + ( − 600 mm )2 + (150 mm )2 d DC = ( − 200 mm )2 + ( − 600 mm )2 + ( −150 mm )2 = 721.11 mm = 650 mm = 650 mm TDA = TDAλDA = TDA ( 400 mm ) i − ( 600 mm ) j 721.11 mm = TDA ( 0.55470i − 0.83205 j) TDB = TDBλDB = TDB − ( 200 mm ) i − ( 600 mm ) j + (150 mm ) k 650 mm 12 3 4 = TDB − i − j + k 13 13 13 TDC = TDC λDC TDC = TDC − ( 200 mm ) i − ( 600 mm ) j − (150 mm ) k 650 mm 12 3 4 = TDC − i − j − k 13 13 13 W = Wj At point D ΣF = 0: TDA + TDB + TDC + W = 0 4 4 TDB − TDC = 0 13 13 12 12 − TDB − TDC + W = 0 13 13 3 3 TDB − TDC = 0 13 13 i component: 0.55470 TDA − (1) j component: −0.83205 TDA (2) k component: ( ) Setting W = (16 kg ) 9.81 m/s 2 = 156.96 N And Solving Equations (1), (2), and (3) simultaneously: TDA = 62.9 N ! TDB = 56.7 N ! TDC = 56.7 N ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (3) COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 114. d DA = ( 400 mm )2 + ( − 600 mm )2 d DB = ( − 200 mm )2 + ( − 600 mm )2 + ( 200 mm )2 d DC = ( − 200 mm )2 + ( − 600 mm )2 + ( − 200 mm )2 = 721.11 mm = 663.32 mm = 663.32 mm TDA = TDAλDA = TDA ( 400 mm ) i − ( 600 mm ) j 721.11 mm = TDA ( 0.55470i − 0.83205 j) TDB = TDBλDB = TDB − ( 200 mm ) i − ( 600 mm ) j + ( 200 mm ) k 663.32 mm = TDB ( − 0.30151i − 0.90454 j + 0.30151k ) TDC = TDC λDC = TDC − ( 200 mm ) i − ( 600 mm ) j − ( 200 mm ) k 663.32 mm = TDC ( − 0.30151i − 0.90454 j − 0.30151k ) At point D ΣF = 0: TDA + TDB + TDC + W = 0 0.55470 TDA − 0.30151TDB − 0.30151TDC = 0 i component: −0.83205 TDA − 0.90454 TDB − 0.90454 TDC + W = 0 j component: 0.30151TDB − 0.30151TDC = 0 k component: ( ) Setting W = (16 kg ) 9.81 m/s 2 = 156.96 N And Solving Equations (1), (2), and (3) simultaneously: TDA = 62.9 N ! TDB = 57.8 N ! TDC = 57.8 N ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (1) (2) (3) COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 115. From the solutions of 2.107 and 2.108: TAB = 0.5409 P TAC = 0.295P TAD = 0.2959P Using P = 8 kN: TAB = 4.33 kN ! TAC = 2.36 kN ! TAD = 2.37 kN ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 116. d BA = ( 6 m )2 + ( 6 m )2 + ( 3 m )2 d AC = ( −10.5 m )2 + ( − 6 m )2 + ( − 8 m )2 d AD = ( − 6 m )2 + ( − 6 m )2 + ( 7 m )2 d AE = ( 6 m )2 + ( − 4.5 m )2 FBA = FBAλBA = =9m = 14.5 mm = 11 mm = 7.5 m FBA ( 6 m ) i + ( 6 m ) j + ( 3 m ) k 9m 2 1 2 = FBA i + j + k 3 3 3 TAC = TAC λ AC = TAC − (10.5 m ) i − ( 6 m ) j − ( 8 m ) k 14.5 m 12 16 21 = TAC − i − j− k 29 29 29 TAD = TAD λ AD = TAD − ( 6 m ) i − ( 6 m ) j + ( 7 m ) k 11 m 6 7 6 = TAD − i − j + k 11 11 11 WAE = WAE λ AE = W ( 6 m ) i − ( 4.5 m ) j 7.5 m = W ( 0.8i − 0.6 j) WO = − W j At point A: ΣF = 0: FBA + TAC + TAD + WAE + WO = 0 i component: 2 21 6 FBA − TAC − TAD + 0.8W = 0 3 29 11 (1) continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System j component: 2 12 6 FBA − TAC − TAD − 1.6W = 0 3 29 11 (2) k component: 1 16 7 FBA − TAC + TAD = 0 3 29 11 (3) ( ) Setting W = ( 20 kg ) 9.81 m/s 2 = 196.2 N And Solving Equations (1), (2), and (3) simultaneously: FBA = 1742 N TAC = 1517 N TAD = 403 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 117. ΣFx = 0: − TAD ( sin 30° )( sin 50° ) + TBD ( sin 30° )( cos 40° ) + TCD ( sin 30° )( cos 60° ) = 0 Dividing through by sin 30° and evaluating: − 0.76604 TAD + 0.76604 TBD + 0.5 TCD = 0 (1) ΣFy = 0: − TAD ( cos 30° ) − TBD ( cos 30° ) − TCD ( cos 30° ) + 62 lb = 0 or TAD + TBD + TCD = 71.591 lb (2) ΣFz = 0: TAD sin 30° cos 50° + TBD sin 30° sin 40° − TCD sin 30° sin 60° = 0 or 0.64279 TAD + 0.64279 TBD − 0.86603TCD = 0 (3) Solving Equations (1), (2), and (3) simultaneously: TAD = 30.5 lb ! TBD = 10.59 lb ! TCD = 30.5 lb ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 118. From the solutions to Problems 2.111 and 2.112, have (2′) TBE + TCF + TDG = 0.2 65 −TBE sin 45° + TCF sin 30° − TDG sin15° = 0 (3) TBE cos 45° + TCF cos 30° − TDG cos15° − P 65 = 0 (1′ ) Applying the method of elimination to obtain a desired result: Multiplying (2′) by sin 45° and adding the result to (3): TCF ( sin 45° + sin 30° ) + TDG ( sin 45° − sin15° ) = 0.2 65 sin 45° TCF = 0.94455 − 0.37137TDG or Multiplying (2′) by sin 30° and subtracting (3) from the result: TBE ( sin 30° + sin 45° ) + TDG ( sin 30° + sin15° ) = 0.2 65 sin 30° or TBE = 0.66790 − 0.62863TDG Substituting (4) and (5) into (1′) : 1.29028 − 1.73205TDG − P 65 = 0 ∴ TDG is taut for P < 1.29028 lb 65 or 0 ≤ P ≤ 0.1600 lb ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (5) COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 119. d AB = ( − 30 ft )2 + ( 24 ft )2 + ( 32 ft )2 d AC = ( − 30 ft )2 + ( 20 ft )2 + ( −12 ft )2 TAB = TAB λ AB = = 50 ft = 38 ft TAB − ( 30 ft ) i + ( 24 ft ) j + ( 32 ft ) k 50 ft = TAB ( − 0.6i + 0.48 j + 0.64k ) TAC = TAC λ AC = TAC − ( 30 ft ) i + ( 20 ft ) j − (12 ft ) k 38 ft 20 12 30 = TAC − i + j− k 38 38 38 N= 16 30 Ni + Nj 34 34 W = − (175 lb ) j At point A: ΣF = 0: TAB + TAC + N + W = 0 i component: − 0.6 TAB − 30 16 TAC + N=0 38 34 (1) j component: 0.48 TAB + 20 30 TAC + N − 175 lb = 0 38 34 (2) 12 TAC = 0 38 Solving Equations (1), (2), and (3) simultaneously: k component: 0.64 TAB − (3) TAB = 30.9 lb TAC = 62.5 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 120. Refer to the solution of problem 2.119 and the resulting linear algebraic Equations (1), (2), (3). Include force P = − ( 45 lb ) k with other forces of Problem 2.119. Now at point A: ΣF = 0: TAB + TAC + N + W + P = 0 i component: − 0.6 TAB − 30 16 TAC + N=0 38 34 (1) j component: 0.48 TAB + 20 30 TAC + N − 175 lb = 0 38 34 (2) k component: 0.64 TAB − 12 TAC − 45 lb = 0 38 (3) Solving (1), (2), and (3) simultaneously: TAB = 81.3 lb TAC = 22.2 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 121. Note: BE shares the same unit vector as AB. Thus: λBE = λ AB = ( 25 mm ) cos 45°i + ( 200 mm ) j − ( 25 mm ) sin 45°k 201.56 mm TBE = TBE λBE = TBE ( 25 mm ) cos 45°i + ( 200 mm ) j − ( 25 mm ) sin 45°k 201.56 mm TCF = TCF λCF = TCF ( 25 mm ) cos 30°i + ( 200 mm ) j + ( 25 mm ) sin 30°k 201.56 mm TDG = TDG λDG = TDG − ( 25 mm ) cos15°i + ( 200 mm ) j − ( 25 mm ) sin15°k 201.56 mm W = − W j; P = Pk At point A: ΣF = 0: TBE + TCE + TDG + W + P = 0 i component: 0.087704 TBE + 0.107415 TCF − 0.119806 TDG = 0 (1) j component: 0.99226 TBE + 0.99226 TCF + 0.99226 TDG − W = 0 (2) k component: − 0.087704 TBE + 0.062016 TCF − 0.032102 TDG + P = 0 (3) Setting W = 10.5 N and P = 0, and solving (1), (2), (3) simultaneously: TBE = 1.310 N ! TCF = 4.38 N ! TDG = 4.89 N ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 122. See Problem 2.121 for the analysis leading to the linear algebraic Equations (1), (2), and (3) below: i component: 0.087704 TBE + 0.107415 TCF − 0.119806 TDG = 0 (1) j component: 0.99226 TBE + 0.99226 TCF + 0.99226 TDG − W = 0 (2) k component: − 0.087704 TBE + 0.062016 TCF − 0.032102 TDG + P = 0 (3) Setting W = 10.5 N and P = 0.5 N, and solving (1), (2), (3) simultaneously: TBE = 4.84 N ! TCF = 1.157 N ! TDG = 4.58 N ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 123. uuur DA = − ( 8 ft ) i + ( 40 ft ) j + (10 ft ) k ( − 8 ft )2 + ( 40 ft )2 + (10 ft )2 DA = TDA = = 42 ft TADB − ( 8 ft ) i + ( 40 ft ) j + (10 ft ) k 42 ft = TADB ( − 0.190476i + 0.95238 j + 0.23810k ) uuur DB = ( 3 ft ) i + ( 36 ft ) j − ( 8 ft ) k ( 3 ft )2 + ( 36 ft )2 + ( − 8 ft )2 DB = TDB = = 37 ft TADB ( 3 ft ) i + ( 36 ft ) j − ( 8 ft ) k 37 ft = TADB ( 0.081081i + 0.97297 j − 0.21622k ) uuur DC = ( a − 8 ft ) i − ( 24 ft ) j − ( 3 ft ) k ( a − 8 ft )2 + ( − 24 ft )2 + ( −3 ft )2 DC = TDC TDC = At D ( a − 8)2 + 585 = ( a − 8)2 + 585 ft ( a − 8 ft ) i − ( 24 ft ) j − ( 3 ft ) k ΣF = 0: ΣFx = 0: − 0.190476 TADB + 0.081081TADB + ΣFz = 0: 0.23810 TADB − 0.21622 TADB − ( a − 8) TDC ( a − 8)2 + 585 3 ( a − 8) + 585 2 =0 TDC = 0 (1) (2) Dividing equation (1) by equation (2) gives ( a − 8) = 0.190476 − 0.081081 −3 − 0.23810 + 0.21622 or a = 23 ft Substituting into equation (1) for a = 23 ft and combining the coefficients for TADB gives: ΣFx = 0: − 0.109395 TADB + 0.52705 TDC = 0 (3) continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System And writing ΣFy = 0 gives: 1.92535 TADB − 0.84327 TDC − W = 0 (4) Substituting into equation (3) for TDC = 17 lb gives: − 0.109395 TADB + 0.52705 (17 lb ) = 0 or TADB = 81.9 lb Substituting into equation (4) for TDC = 17 lb and TADB = 81.9 lb gives: 1.92535 ( 81.9 lb ) − 0.84327 (17 lb ) − W = 0 or W = 143.4 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 124. See Problem 2.123 for the analysis leading to the linear algebraic Equations (3) and (4) below: − 0.109395 TADB + 0.52705 TDC = 0 (3) 1.92535 TADB − 0.84327 TDC − W = 0 (4) Substituting for W = 120 lb and solving equations (3) and (4) simultaneously yields TADB = 68.6 lb ! TDC = 14.23 lb ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 125. d AB = ( − 2.7 m )2 + ( 2.4 m )2 + ( − 3.6 m )2 d AC = ( 2.4 m )2 + (1.8 m )2 d AD = (1.2 m )2 + ( 2.4 m )2 + ( − 0.3 m )2 = 2.7 m d AE = ( − 2.4 m )2 + ( 2.4 m )2 + (1.2 m )2 = 3.6 m = 5.1 m =3m TAB = TAB λ AB = TAB − ( 2.7 m ) i + ( 2.4 m ) j − ( 3.6 m ) k 5.1 m 8 12 9 = TAB − i + j − k 17 17 17 TAC = TAC λ AC = TAC ( 2.4 m ) j + (1.8 m ) k 3m = TAC ( 0.8 j + 0.6k ) TAD = 2TADE λ AD = 2TADE (1.2 m ) i + ( 2.4 m ) j − ( 0.3 m ) k 2.7 m 16 2 8 = TADE i + j − k 9 9 9 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System TAE = TAE λ AE = TADE − ( 2.4 m ) i + ( 2.4 m ) j + (1.2 m ) k 3.6 m 2 1 2 = TADE − i + j + k 3 3 3 W = − Wj At point A: ΣF = 0: TAB + TAC + TAD + TAE + W = 0 9 8 2 TAB + TADE − TADE = 0 17 9 3 i component: − j component: 8 16 2 TAB + 0.8 TAC + TADE + TADE − W = 0 17 9 3 k component: − 12 2 1 TAB + 0.6 TAC − TADE + TADE = 0 17 9 3 (1) (2) (3) Simplifying (1), (2), (3): − 81TAB + 34 TADE = 0 (1′) 72 TAB + 122.4 TAC + 374 TADE = 153 W (2′) −108 TAB + 91.8 TAC + 17 TADE = 0 (3′) Setting W = 1400 N and solving (1), (2), (3) simultaneously: TAB = 203 N " TAC = 149.6 N " TADE = 485 N " Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 126. See Problem 2.125 for the analysis leading to the linear algebraic Equations (1′ ) , ( 2′ ) , and ( 3′ ) below: i component: − 81 TAB + 34 TADE = 0 (1′) j component: 72 TAB + 122.4 TAC + 37.4 TADE = 153 W ( 2′) k component: −108 TAB + 91.8 TAC + 17 TADE = 0 ( 3′) Setting TAB = 300 N and solving (1), (2), (3) simultaneously: (a) TAC = 221 N ! (b) TADE = 715 N ! (c) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. W = 2060 N ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 127. Free-Body Diagrams of collars For both Problems 2.127 and 2.128: ( AB )2 (1 m )2 Here = x2 + y 2 + z 2 = ( 0.40 m ) + y 2 + z 2 2 y 2 + z 2 = 0.84 m 2 or Thus, with y given, z is determined. Now λ AB uuur AB 1 = = ( 0.40i − yj + zk ) m = 0.4i − yk + zk AB 1 m Where y and z are in units of meters, m. From the F.B. Diagram of collar A: ΣF = 0: N x i + N zk + Pj + TAB λ AB = 0 Setting the j coefficient to zero gives: P − yTAB = 0 With P = 680 N, TAB = 680 N y Now, from the free body diagram of collar B: ΣF = 0: N x i + N y j + Qk − TABλ AB = 0 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Setting the k coefficient to zero gives: Q − TAB z = 0 And using the above result for TAB we have Q = TAB z = 680 N z y Then, from the specifications of the problem, y = 300 mm = 0.3 m z 2 = 0.84 m 2 − ( 0.3 m ) 2 ∴ z = 0.866 m and TAB = (a) 680 N = 2266.7 N 0.30 TAB = 2.27 kN ! or and Q = 2266.7 ( 0.866 ) = 1963.2 N (b) or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Q = 1.963 kN ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 128. From the analysis of Problem 2.127, particularly the results: y 2 + z 2 = 0.84 m 2 TAB = 680 N y Q= 680 N z y With y = 550 mm = 0.55 m, we obtain: z 2 = 0.84 m 2 − ( 0.55 m ) 2 ∴ z = 0.73314 m and TAB = (a) or 680 N = 1236.36 N 0.55 TAB = 1.236 kN ! and Q = 1236.36 ( 0.73314 ) N = 906 N (b) or Q = 0.906 kN ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 129. Using the triangle rule and the Law of Sines (a) Have: 20 lb 14 lb = sin α sin 30° sin α = 0.71428 α = 45.6° (b) β = 180° − ( 30° + 45.6° ) = 104.4° Then: R 14 lb = sin104.4° sin 30° R = 27.1 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 130. We compute the following distances: OA = ( 70 )2 + ( 240 )2 OB = ( 210 )2 + ( 200 )2 = 290 mm OC = (120 )2 + ( 225)2 = 255 mm = 250 mm 500 N Force: 70 Fx = −500 N 250 Fx = −140.0 N ! 240 Fy = +500 N 250 Fy = 480 N ! 210 Fx = +435 N 290 Fx = 315 N ! 200 Fy = +435 N 290 Fy = 300 N ! 120 Fx = +510 N 255 Fx = 240 N ! 225 Fy = −510 N 255 Fy = −450 N ! 435 N Force: 510 N Force: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 131. Note that the force exerted by BD on the pole is directed along BD, and the component of P along AC is 450 N. Then: P= (a) 450 N = 549.3 N cos 35° P = 549 N ! Px = ( 450 N ) tan 35° (b) = 315.1 N Px = 315 N ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 132. Free-Body Diagram Force Triangle Law of Sines: TAC T 5 kN = BC = sin115° sin 5° sin 60° (a) TAC = 5 kN sin115° = 5.23 kN sin 60° TAC = 5.23 kN ! (b) TBC = 5 kN sin 5° = 0.503 kN sin 60° TBC = 0.503 kN ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 133. Free-Body Diagram First, consider the sum of forces in the x-direction because there is only one unknown force: ΣFx = 0: TACB ( cos 32° − cos 42° ) − ( 20 kN ) cos 42° = 0 or 0.104903TACB = 14.8629 kN TACB = 141.682 kN (b) TACB = 141.7 kN ! Now ΣFy = 0: TACB ( sin 42° − sin 32° ) + ( 20 kN ) sin 42° − W = 0 or (141.682 kN )( 0.139211) + ( 20 kN )( 0.66913) − W =0 (a) W = 33.1 kN ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 134. Free-Body Diagram: Pulley A ΣFx = 0: 2P sin 25° − P cos α = 0 and cos α = 0.8452 For or α = ±32.3° α = +32.3° ΣFy = 0: 2P cos 25° + P sin 32.3° − 350 lb = 0 or P = 149.1 lb For 32.3° α = −32.3° ΣFy = 0: 2P cos 25° + P sin − 32.3° − 350 lb = 0 or P = 274 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 32.3° COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 135. Fx = F sin 30° sin 50° = 220.6 N (Given) (a) F = 220.6 N = 575.95 N sin30° sin50° F = 576 N ! cosθ x = (b) Fx 220.6 = = 0.38302 F 575.95 θ x = 67.5° ! Fy = F cos 30° = 498.79 N cosθ y = Fy F = 498.79 = 0.86605 575.95 θ y = 30.0° ! Fz = − F sin 30° cos 50° = − ( 575.95 N ) sin 30° cos 50° = −185.107 N cosθ z = Fz −185.107 = = −0.32139 F 575.95 θ z = 108.7° ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 136. Fz = F cosθ z = ( 600 lb ) cos136.8° (a) = −437.38 lb Fz = −437 lb ! Then: F 2 = Fx2 + Fy2 + Fz2 2 ( ) + ( −437.38 lb )2 So: ( 600 lb ) = ( 200 lb ) + Fy 2 2 Hence: Fy = − (b) cosθ x = ( 600 lb )2 − ( 200 lb )2 − ( −437.38 lb )2 = −358.75 lb Fy = −359 lb ! Fx 200 = = 0.33333 F 600 θ x = 70.5° ! cosθ y = Fy F = −358.75 = −0.59792 600 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. θ y = 126.7° ! COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 137. P = ( 500 lb ) [ − cos 30° sin15°i + sin 30° j + cos 30° cos15°k ] = ( 500 lb ) [ −0.2241i + 0.50 j + 0.8365k ] = − (112.05 lb ) i + ( 250 lb ) j + ( 418.25 lb ) k Q = ( 600 lb ) [ cos 40° cos 20°i + sin 40° j − cos 40° sin 20°k ] = ( 600 lb ) [ 0.71985i + 0.64278 j − 0.26201k ] = ( 431.91 lb ) i + ( 385.67 lb ) j − (157.206 lb ) k R = P + Q = ( 319.86 lb ) i + ( 635.67 lb ) j + ( 261.04 lb ) k R= ( 319.86 lb )2 + ( 635.67 lb )2 + ( 261.04 lb )2 = 757.98 lb R = 758 lb ! cosθ x = Rx 319.86 lb = = 0.42199 R 757.98 lb θ x = 65.0° ! cosθ y = Ry R = 635.67 lb = 0.83864 757.98 lb θ y = 33.0° ! cosθ z = Rz 261.04 lb = = 0.34439 R 757.98 lb θ z = 69.9° ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 138. The forces applied at A are: TAB , TAC , TAD and P where P = Pj . To express the other forces in terms of the unit vectors i, j, k, we write uuur AB = − ( 0.72 m ) i + (1.2 m ) j − ( 0.54 m ) k, AB = 1.5 m uuur AC = (1.2 m ) j + ( 0.64 m ) k, AC = 1.36 m uuur AD = ( 0.8 m ) i + (1.2 m ) j − ( 0.54 m ) k, AD = 1.54 m uuur AB TAB = TABλ AB = TAB = ( −0.48i + 0.8j − 0.36k ) TAB and AB uuur AC TAC = TAC λ AC = TAC = ( 0.88235j + 0.47059k ) TAC AC uuur AD TAD = TADλ AD = TAD = ( 0.51948i + 0.77922 j − 0.35065k ) TAD AD Equilibrium Condition with W = −Wj ΣF = 0: TAB + TAC + TAD − Wj = 0 Substituting the expressions obtained for TAB , TAC , and TAD and factoring i, j, and k: ( −0.48TAB + 0.51948TAD ) i + ( 0.8TAB + 0.88235TAC + 0.77922TAD − W ) j + ( −0.36TAB + 0.47059TAC − 0.35065TAD ) k = 0 Equating to zero the coefficients of i, j, k: −0.48TAB + 0.51948TAD = 0 0.8TAB + 0.88235TAC + 0.77922TAD − W = 0 −0.36TAB + 0.47059TAC − 0.35065TAD = 0 Substituting TAB = 3 kN in Equations (1), (2) and (3) and solving the resulting set of equations, using conventional algorithms for solving linear algebraic equations, gives TAC = 4.3605 kN TAD = 2.7720 kN W = 8.41 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 139. The (vector) force in each cable can be written as the product of the (scalar) force and the unit vector along the cable. That is, with uuur AB = ( 32 in.) i − ( 48 in.) j + ( 36 in.) k AB = ( −32 in.)2 + ( −48 in.)2 + ( 36 in.)2 TAB = T λ AB = TAB = 68 in. uuur AB T = AB − ( 32 in.) i − ( 48 in.) j + ( 36 in.) k 68 in. AB TAB = TAB ( −0.47059i − 0.70588 j + 0.52941k ) uuur AC = ( 45 in.) i − ( 48 in.) j + ( 36 in.) k and AC = ( 45 in.)2 + ( −48 in.)2 + ( 36 in.)2 TAC = T λ AC = TAC = 75 in. uuur AC T = AC ( 45 in.) i − ( 48 in.) j + ( 36 in.) k 75 in. AC TAC = TAC ( 0.60i − 0.64 j + 0.48k ) uuur AD = ( 25 in.) i − ( 48 in.) j − ( 36 in.) k Finally, AD = ( 25 in.)2 + ( −48 in.)2 + ( −36 in.)2 = 65 in. continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System TAD = T λ AD = TAD uuur AD T = AD ( 25 in.) i − ( 48 in.) j − ( 36 in.) k 65 in. AD TAD = TAD ( 0.38461i − 0.73846 j − 0.55385k ) With W = Wj, at A we have: ΣF = 0: TAB + TAC + TAD + Wj = 0 Equating the factors of i, j, and k to zero, we obtain the linear algebraic equations: i : − 0.47059TAB + 0.60TAC − 0.38461TAD = 0 (1) j: − 0.70588TAB − 0.64TAC − 0.73846TAD + W = 0 (2) k : 0.52941TAB + 0.48TAC − 0.55385TAD = 0 (3) In Equations (1), (2) and (3), set TAD = 120 lb, and, using conventional methods for solving Linear Algebraic Equations (MATLAB or Maple, for example), we obtain: TAB = 32.6 lb TAC = 102.5 lb W = 177.2 lb " Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 2, Solution 140. The (vector) force in each cable can be written as the product of the (scalar) force and the unit vector along the cable. That is, with uuur AB = − ( 0.48 m ) i + ( 0.72 m ) j − ( 0.16 m ) k AB = ( −0.48 m )2 + ( 0.72 m )2 + ( −0.16 m )2 TAB = T λ AB = TAB = 0.88 m uuur AB TAB − ( 0.48 m ) i + ( 0.72 m ) j − ( 0.16 m ) k = AB 0.88 m TAB = TAB ( −0.54545i + 0.81818 j − 0.181818k ) and uuur AC = ( 0.24 m ) i + ( 0.72 m ) j − ( 0.13 m ) k AC = ( 0.24 m )2 + ( 0.72 m )2 − ( 0.13 m )2 TAC = T λ AC = TAC = 0.77 m uuur AC TAC ( 0.24 m ) i + ( 0.72 m ) j − ( 0.13 m ) k = AC 0.77 m TAC = TAC ( 0.31169i + 0.93506 j − 0.16883k ) At A: ΣF = 0: TAB + TAC + P + Q + W = 0 Noting that TAB = TAC because of the ring A, we equate the factors of i, j, and k to zero to obtain the linear algebraic equations: i: ( −0.54545 + 0.31169 ) T +P=0 P = 0.23376T or j: ( 0.81818 + 0.93506 ) T −W = 0 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System W = 1.75324T or k: ( −0.181818 − 0.16883) T +Q =0 Q = 0.35065T or With W = 1200 N: T = 1200 N = 684.45 N 1.75324 P = 160.0 N ! Q = 240 N ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 1. Resolve 90 N force into vector components P and Q where Q = ( 90 N ) sin 40° = 57.851 N Then M B = − rA/BQ = − (0.225 m )(57.851 N ) = −13.0165 N ⋅ m M B = 13.02 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 2. Fx = ( 90 N ) cos 25° = 81.568 N Fy = ( 90 N ) sin 25° = 38.036 N x = ( 0.225 m ) cos 65° = 0.095089 m y = (0.225 m ) sin 65° = 0.20392 m M B = xFy − yFx = ( 0.095089 m )( 38.036 N ) − ( 0.20392 m )( 81.568 N ) = −13.0165 N ⋅ m M B = 13.02 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 3. Px = ( 3 lb ) sin 30° = 1.5 lb Py = ( 3 lb ) cos 30° = 2.5981 lb M A = xB/ A Py + yB/ A Px = ( 3.4 in.)( 2.5981 lb ) + ( 4.8 in.)(1.5 lb ) = 16.0335 lb ⋅ in. M A = 16.03 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 4. For P to be a minimum, it must be perpendicular to the line joining points A and B with rAB = ( 3.4 in.)2 + ( 4.8 in.)2 = 5.8822 in. y α = θ = tan −1 x 4.8 in. = tan −1 3.4 in. = 54.689° Then M A = rAB Pmin or Pmin = M A 19.5 lb ⋅ in. = rAB 5.8822 in. = 3.3151 lb ∴ Pmin = 3.32 lb 54.7° or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Pmin = 3.32 lb 35.3° COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 5. M A = rB/ A P sin θ By definition where θ = φ + ( 90° − α ) and φ = tan −1 4.8 in. 3.4 in. = 54.689° Also rB/ A = ( 3.4 in.)2 + ( 4.8 in.)2 = 5.8822 in. Then (17 lb ⋅ in.) = ( 5.8822 in.)( 2.9 lb ) sin ( 54.689° + 90° − α ) or sin (144.689° − α ) = 0.99658 or 144.689° − α = 85.260°; 94.740° ∴ α = 49.9°, 59.4° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 6. (a) (a) M A = rB/ A × TBF M A = xTBFy + yTBFx = ( 2 m )( 200 N ) sin 60° + ( 0.4 m )( 200 N ) cos 60° = 386.41 N ⋅ m or M A = 386 N ⋅ m (b) (b) For FC to be a minimum, it must be perpendicular to the line joining A and C. ∴ M A = d ( FC )min d = with ( 2 m )2 + (1.35 m )2 = 2.4130 m Then 386.41 N ⋅ m = ( 2.4130 m ) ( FC )min ( FC )min and = 160.137 N 1.35 m = 34.019° 2m φ = tan −1 θ = 90 − φ = 90° − 34.019° = 55.981° ∴ ( FC )min = 160.1 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 56.0° COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 7. (a) M A = xTBFy + yTBFx = ( 2 m )( 200 N ) sin 60° + ( 0.4 m )( 200 N ) cos 60° = 386.41 N ⋅ m or M A = 386 N ⋅ m (b) Have or M A = xFC FC = MA 386.41 N ⋅ m = 2m x = 193.205 N (c) ∴ FC = 193.2 N For FB to be minimum, it must be perpendicular to the line joining A and B ∴ M A = d ( FB )min with Then d = = 2.0396 m 386.41 N ⋅ m = ( 2.0396 m ) ( FC )min ( FC )min and ( 2 m )2 + ( 0.40 m )2 = 189.454 N 2m = 78.690° 0.4 m θ = tan −1 or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ( FC )min = 189.5 N 78.7° COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 8. (a) ( ) M B = rA/B cos15° W = (14 in.)( cos15° )( 5 lb ) = 67.615 lb ⋅ in. or M B = 67.6 lb ⋅ in. (b) M B = rD/B P sin 85° 67.615 lb ⋅ in. = ( 3.2 in.) P sin 85° or (c) P = 21.2 lb For ( F )min, F must be perpendicular to BC. Then, M B = rC/B F 67.615 lb ⋅ in. = (18 in.) F or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. F = 3.76 lb 75.0° COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 9. Slope of line EC = (a) Then and Then TABx = 35 in. 5 = 76 in. + 8 in. 12 12 (TAB ) 13 = 12 ( 260 lb ) = 240 lb 13 TABy = 5 ( 260 lb ) = 100 lb 13 M D = TABx ( 35 in.) − TABy ( 8 in.) = ( 240 lb )( 35 in.) − (100 lb )( 8 in.) = 7600 lb ⋅ in. or M D = 7600 lb ⋅ in. (b) Have M D = TABx ( y ) + TABy ( x ) = ( 240 lb )( 0 ) + (100 lb )( 76 in.) = 7600 lb ⋅ in. or M D = 7600 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 10. Slope of line EC = 35 in. 7 = 112 in. + 8 in. 24 Then TABx = 24 TAB 25 and TABy = 7 TAB 25 M D = TABx ( y ) + TABy ( x ) Have ∴ 7840 lb ⋅ in. = 24 7 TAB ( 0 ) + TAB (112 in.) 25 25 TAB = 250 lb or TAB = 250 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 11. The minimum value of d can be found based on the equation relating the moment of the force TAB about D: M D = (TAB max ) y ( d ) M D = 1152 N ⋅ m where (TAB max ) y Now sin θ = = TAB max sin θ = ( 2880 N ) sin θ 1.05 m (d ∴ 1152 N ⋅ m = 2880 N + 0.24 ) + (1.05 ) m 2 2 1.05 (d + 0.24 ) + (1.05 ) 2 ( d + 0.24 )2 + (1.05)2 or or 2 (d ) (d or = 2.625d + 0.24 ) + (1.05 ) = 6.8906d 2 2 2 5.8906d 2 − 0.48d − 1.1601 = 0 Using the quadratic equation, the minimum values of d are 0.48639 m and −0.40490 m. Since only the positive value applies here, d = 0.48639 m or d = 486 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 12. with d AB = ( 42 mm )2 + (144 mm )2 = 150 mm sin θ = 42 mm 150 mm cosθ = 144 mm 150 mm and FAB = − FAB sin θ i − FAB cosθ j = 2.5 kN ( − 42 mm ) i − (144 mm ) j 150 mm = − ( 700 N ) i − ( 2400 N ) j Also rB/C = − ( 0.042 m ) i + ( 0.056 m ) j Now M C = rB/C × FAB = ( − 0.042 i + 0.056 j) × ( − 700 i − 2400 j) N ⋅ m = (140.0 N ⋅ m ) k or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M C = 140.0 N ⋅ m COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 13. ( 42 mm )2 + (144 mm )2 with d AB = = 150 mm sin θ = 42 mm 150 mm cosθ = 144 mm 150 mm FAB = − FAB sin θ i − FAB cosθ j = 2.5 kN ( − 42 mm ) i − (144 mm ) j 150 mm = − ( 700 N ) i − ( 2400 N ) j Also rB/C = − ( 0.042 m ) i − ( 0.056 m ) j Now M C = rB/C × FAB = ( − 0.042 i − 0.056 j) × ( − 700i − 2400 j) N ⋅ m = ( 61.6 N ⋅ m ) k or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M C = 61.6 N ⋅ m COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 14. ΣM D : 88 105 M D = ( 0.090 m ) × 80 N − ( 0.280 m ) × 80 N 137 137 = −12.5431 N ⋅ m or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M D = 12.54 N ⋅ m COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 15. Note: B = B ( cos β i + sin β j) B′ = B ( cos β i − sin β j) C = C ( cos α i + sin α j) By definition: B × C = BC sin (α − β ) (1) B′ × C = BC sin (α + β ) (2) Now ... B × C = B ( cos β i + sin β j) × C ( cos α i + sin α j) = BC ( cos β sin α − sin β cos α ) k and (3) B′ × C = B ( cos β i − sin β j) × C ( cos α i + sin α j) = BC ( cos β sin α + sin β cos α ) k (4) Equating the magnitudes of B × C from equations (1) and (3) yields: BC sin (α − β ) = BC ( cos β sin α − sin β cos α ) (5) Similarly, equating the magnitudes of B′ × C from equations (2) and (4) yields: BC sin (α + β ) = BC ( cos β sin α + sin β cos α ) (6) Adding equations (5) and (6) gives: sin (α − β ) + sin (α + β ) = 2cos β sin α or sin α cos β = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 1 1 sin (α + β ) + sin (α − β ) 2 2 COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 16. Have d = λ AB × rO/ A where λ AB = rB/ A rB/ A and rB/ A = ( −210 mm − 630 mm ) i + ( 270 mm − ( −225 mm ) ) j = − ( 840 mm ) i + ( 495 mm ) j rB/ A = ( −840 mm )2 + ( 495 mm )2 = 975 mm Then λ AB = = − ( 840 mm ) i + ( 495 mm ) j 975 mm 1 ( −56i + 33j) 65 Also rO/ A = ( 0 − 630 ) i + ( 0 − (−225) ) j = − ( 630 mm ) i + ( 225 mm ) j ∴d = 1 ( −56i + 33j) × − ( 630 mm ) i + ( 225 mm ) j 65 = 126.0 mm d = 126.0 mm W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 17. (a) where λ = A×B A×B A = 12i − 6 j + 9k B = − 3i + 9 j − 7.5k Then i j k A × B = 12 − 6 9 − 3 9 − 7.5 = ( 45 − 81) i + ( −27 + 90 ) j + (108 − 18 ) k = 9 ( − 4i + 7 j + 10k ) And A × B = 9 (− 4) 2 + (7)2 + (10)2 = 9 165 ∴λ = 9 ( − 4i + 7 j + 10k ) 9 165 or λ = (b) where λ = A×B A×B A = −14i − 2 j + 8k B = 3i + 1.5j − k Then j k i A × B = −14 − 2 8 3 1.5 −1 = ( 2 − 12 ) i + ( 24 − 14 ) j + ( −21 + 6 ) k = 5 ( −2i + 2 j − 3k ) and A × B = 5 (−2)2 + (2)2 + (−3)2 = 5 17 ∴λ = or λ = 5 ( −2i + 2 j − 3k ) 5 17 1 ( − 2i + 2 j − 3k ) 17 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 1 ( − 4i + 7 j + 10k ) 165 COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 18. (a) Have A = P × Q i j k P × Q = 3 7 −2 in.2 −5 1 3 = [ (21 + 2)i + (10 − 9) j + (3 + 35)k ] in.2 ( ) ( ) ( ) = 23 in.2 i + 1 in.2 j + 38 in.2 k ∴A= (23)2 + (1)2 + (38) 2 = 44.430 in.2 or A = 44.4 in.2 W (b) A = P×Q i j k P × Q = 2 − 4 3 in.2 6 −1 5 = [ (−20 − 3)i + (−18 − 10) j + (−2 + 24)k ] in.2 ( ) ( ) ( ) = − 23 in.2 i − 28 in.2 j + 22 in.2 k ∴A= (− 23)2 + (−28)2 + (22) 2 = 42.391 in.2 or A = 42.4 in.2 W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 19. (a) Have MO = r × F i j k = − 6 3 1.5 N ⋅ m 7.5 3 − 4.5 = [ (−13.5 − 4.5)i + (11.25 − 27) j + (−18 − 22.5)k ] N ⋅ m = ( −18.00i − 15.75 j − 40.5k ) N ⋅ m or M O = − (18.00 N ⋅ m ) i − (15.75 Ν ⋅ m ) j − ( 40.5 N ⋅ m ) k W (b) Have MO = r × F i j k = 2 − 0.75 −1 N ⋅ m 7.5 3 − 4.5 = [ (3.375 + 3)i + (−7.5 + 9) j + (6 + 5.625)k ] N ⋅ m = ( 6.375i + 1.500 j + 11.625k ) N ⋅ m or M O = ( 6.38 N ⋅ m ) i + (1.500 Ν ⋅ m ) j + (11.63 Ν ⋅ m ) k W (c) Have MO = r × F i j k = − 2.5 −1 1.5 N ⋅ m 7.5 3 4.5 = [ (4.5 − 4.5)i + (11.25 − 11.25) j + (−7.5 + 7.5)k ] N ⋅ m or M O = 0 W This answer is expected since r and F are proportional ( F = −3r ) . Therefore, vector F has a line of action passing through the origin at O. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 20. (a) Have MO = r × F i j k = − 7.5 3 − 6 lb ⋅ ft 3 −6 4 = [ (12 − 36)i + (−18 + 30) j + (45 − 9)k ] lb ⋅ ft or M O = − ( 24.0 lb ⋅ ft ) i + (12.00 lb ⋅ ft ) j + ( 36.0 lb ⋅ ft ) k W (b) Have MO = r × F i j k = − 7.5 1.5 −1 lb ⋅ ft 3 −6 4 = [ (6 − 6)i + (−3 + 3) j + (4.5 − 4.5)k ] lb ⋅ ft or M O = 0 W (c) Have MO = r × F i j k = − 8 2 −14 lb ⋅ ft 3 −6 4 = [ (8 − 84)i + (−42 + 32) j + (48 − 6)k ] lb ⋅ ft or M O = − ( 76.0 lb ⋅ ft ) i − (10.00 lb ⋅ ft ) j + ( 42.0 lb ⋅ ft ) k W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 21. With TAB = − ( 369 N ) j TAB = TAD JJJG AD = ( 369 N ) AD ( 2.4 m ) i − ( 3.1 m ) j − (1.2 m ) k ( 2.4 m )2 + ( −3.1 m )2 + ( −1.2 m )2 TAD = ( 216 N ) i − ( 279 N ) j − (108 N ) k Then R A = 2 TAB + TAD = ( 216 N ) i − (1017 N ) j − (108 N ) k Also rA/C = ( 3.1 m ) i + (1.2 m ) k Have M C = rA/C × R A i j k = 0 3.1 1.2 N ⋅ m 216 −1017 −108 = ( 885.6 N ⋅ m ) i + ( 259.2 N ⋅ m ) j − ( 669.6 N ⋅ m ) k M C = ( 886 N ⋅ m ) i + ( 259 N ⋅ m ) j − ( 670 N ⋅ m ) k W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 22. Have M A = rC/ A × F where rC/ A = ( 215 mm ) i − ( 50 mm ) j + (140 mm ) k Fx = − ( 36 N ) cos 45° sin12° Fy = − ( 36 N ) sin 45° Fz = − ( 36 N ) cos 45° cos12° ∴ F = − ( 5.2926 N ) i − ( 25.456 N ) j − ( 24.900 N ) k and i j k M A = 0.215 − 0.050 0.140 N ⋅ m − 5.2926 − 25.456 − 24.900 = ( 4.8088 N ⋅ m ) i + ( 4.6125 N ⋅ m ) j − ( 5.7377 N ⋅ m ) k M A = ( 4.81 N ⋅ m ) i + ( 4.61 N ⋅ m ) j − ( 5.74 N ⋅ m ) k W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 23. Have M O = rA/O × R where rA/D = ( 30 ft ) j + ( 3 ft ) k T1 = − ( 62 lb ) cos10° i − ( 62 lb ) sin10° j = − ( 61.058 lb ) i − (10.766 lb ) j JJJG AB T2 = T2 AB = ( 62 lb ) ( 5 ft ) i − ( 30 ft ) j + ( 6 ft ) k ( 5 ft )2 + ( − 30 ft )2 + ( 6 ft )2 = (10 lb ) i − ( 60 lb ) j + (12 lb ) k ∴ R = − ( 51.058 lb ) i − ( 70.766 lb ) j + (12 lb ) k MO i j k = 0 30 3 lb ⋅ ft − 51.058 −70.766 12 = ( 572.30 lb ⋅ ft ) i − (153.17 lb ⋅ ft ) j + (1531.74 lb ⋅ ft ) k M O = ( 572 lb ⋅ ft ) i − (153.2 lb ⋅ ft ) j + (1532 lb ⋅ ft ) k W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 24. (a) Have M O = rB/O × TBD where rB/O = ( 2.5 m ) i + ( 2 m ) j TBD = TBD JJJG BD BD − (1 m ) i − ( 2 m ) j + ( 2 m ) k = ( 900 N ) ( −1 m ) 2 + ( − 2 m ) 2 + ( 2 m ) 2 = − ( 300 N ) i − ( 600 N ) j + ( 600 N ) k Then MO i j k = 2.5 2 0 N⋅m − 300 − 600 600 M O = (1200 N ⋅ m ) i − (1500 N ⋅ m ) j − ( 900 N ⋅ m ) k W continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System (b) Have M O = rB/O × TBE where rB/O = ( 2.5 m ) i + ( 2 m ) j TBE = TBE JJJG BE BE − ( 0.5 m ) i − ( 2 m ) j − ( 4 m ) k = ( 675 N ) ( 0.5 m )2 + ( −2 m )2 + ( − 4 m )2 = − ( 75 N ) i − ( 300 N ) j − ( 600 N ) k Then MO i j k = 2.5 2 0 N⋅m − 75 − 300 − 600 M O = − (1200 N ⋅ m ) i + (1500 N ⋅ m ) j − ( 600 N ⋅ m ) k W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 25. Have M C = rA/C × P where rA/C = rB/C + rA/B = (16 in.)( − cos80° cos15°i − sin 80° j − cos80° sin15°k ) + (15.2 in.)( − sin 20° cos15°i + cos 20° j − sin 20° sin15°k ) = − ( 7.7053 in.) i − (1.47360 in.) j − ( 2.0646 in.) k and P = (150 lb )( cos 5° cos 70°i + sin 5° j − cos 5° sin 70°k ) = ( 51.108 lb ) i + (13.0734 lb ) j − (140.418 lb ) k Then i j k M C = −7.7053 −1.47360 −2.0646 lb ⋅ in. 51.108 13.0734 −140.418 = ( 233.91 lb ⋅ in.) i − (1187.48 lb ⋅ in.) j − ( 25.422 lb ⋅ in.) k or M C = (19.49 lb ⋅ ft ) i − ( 99.0 lb ⋅ ft ) j − ( 2.12 lb ⋅ ft ) k W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 26. Have M C = rA/C × FBA where rA/C = ( 0.96 m ) i − ( 0.12 m ) j + ( 0.72 m ) k and FBA = λ BA FBA − ( 0.1 m ) i + (1.8 m ) j − ( 0.6 m ) k = 228 N ) ( ( 0.1)2 + (1.8)2 + ( 0.6 )2 m = − (12.0 N ) i + ( 216 N ) j − ( 72 N ) k i j k ∴ M C = 0.96 −0.12 0.72 N ⋅ m −12.0 216 −72 = − (146.88 N ⋅ m ) i + ( 60.480 N ⋅ m ) j + ( 205.92 N ⋅ m ) k or M C = − (146.9 N ⋅ m ) i + ( 60.5 N ⋅ m ) j + ( 206 N ⋅ m ) k W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 27. Have where M C = TAD d JJJG d = Perpendicular distance from C to line AD with M C = rA/C TAD and rA/C = ( 3.1 m ) j + (1.2 m ) k JJJG AD TAD = TAD AD ( 2.4 m ) i − ( 3.1 m ) j − (1.2 m ) k TAD = ( 369 N ) ( 2.4 m )2 + ( − 3.1 m )2 + ( −1.2 m )2 = ( 216 N ) i − ( 279 N ) j − (108 N ) k Then i j k 3.1 1.2 N ⋅ m MC = 0 216 − 279 −108 = ( 259.2 N ⋅ m ) j − ( 669.6 N ⋅ m ) k and MC = ( 259.2 N ⋅ m )2 + ( −669.6 N ⋅ m )2 = 718.02 N ⋅ m ∴ 718.02 N ⋅ m = ( 369 N ) d or d = 1.946 m W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 28. Have where M O = TAC d d = Perpendicular distance from O to rope AC with M O = rA/O × TAC and rA/O = ( 30 ft ) j + ( 3 ft ) k TAC = − ( 62 lb ) cos10° i − ( 62 lb ) sin10° j = − ( 61.058 lb ) i − (10.766 lb ) j Then MO i j k = 0 30 3 lb ⋅ ft − 61.058 −10.766 0 = ( 32.298 lb ⋅ ft ) i − (183.174 lb ⋅ ft ) j + (1831.74 lb ⋅ ft ) k and MO = ( 32.298 lb ⋅ ft )2 + ( −183.174 lb ⋅ ft )2 + (1831.74 lb ⋅ ft )2 = 1841.16 lb ⋅ ft ∴ 1841.16 lb ⋅ ft = ( 62 lb ) d or d = 29.7 ft W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 29. M O = TAB d Have where d = Perpendicular distance from O to rope AB with M O = rA/O × TAB and rA/O = ( 30 ft ) j + ( 3 ft ) k JJJG AB TAB = TAB AB ( 5 ft ) i − ( 30 ft ) j + ( 6 ft ) k = ( 62 lb ) ( 5 ft )2 + ( − 30 ft )2 + ( 6 ft )2 = (10 lb ) i − ( 60 lb ) j + (12 lb ) k Then MO i j k = 0 30 3 lb ⋅ ft 10 − 60 12 = ( 540 lb ⋅ ft ) i + ( 30 lb ⋅ ft ) j − ( 300 lb ⋅ ft ) k and MO = ( 540 lb ⋅ ft )2 + ( 30 lb ⋅ ft )2 + ( −300 lb ⋅ ft )2 = 618.47 lb ⋅ ft ∴ 618.47 lb ⋅ ft = ( 62 lb ) d or d = 9.98 ft W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 30. Have where M C = TBD d d = Perpendicular distance from C to cable BD with M C = rB/C × TB/D and rB/C = ( 2 m ) j JJJG BD TBD = TBD BD − (1 m ) i − ( 2 m ) j + ( 2 m ) k = ( 900 N ) ( −1 m )2 + ( − 2 m )2 + ( 2 m )2 = − ( 300 N ) i − ( 600 N ) j + ( 600 N ) k Then i j k 2 0 N⋅m MC = 0 −300 − 600 600 = (1200 N ⋅ m ) i + ( 600 N ⋅ m ) k and MC = (1200 N ⋅ m )2 + ( 600 N ⋅ m )2 = 1341.64 N ⋅ m ∴ 1341.64 = ( 900 N ) d or d = 1.491 m W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 31. Have M C = Pd From the solution of problem 3.25 M C = ( 233.91 lb ⋅ in.) i − (1187.48 lb ⋅ in.) j − ( 25.422 lb ⋅ in.) k Then MC = ( 233.91)2 + ( −1187.48)2 + ( −25.422 )2 = 1210.57 lb ⋅ in. and d = MC 1210.57 lb.in. = 150 lb P or d = 8.07 in. W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 32. | M D | = FBAd Have d = perpendicular distance from D to line AB. where M D = rA/D × FBA rA/D = − ( 0.12 m ) j + ( 0.72 m ) k FBA = λ BA FBA = ( − ( 0.1 m ) i + (1.8 m ) j − ( 0.6 m ) k ) ( 228 N ) ( 0.1)2 + (1.8)2 + ( 0.6 )2 m = − (12.0 N ) i + ( 216 N ) j − ( 72 N ) k ∴ MD i j k = 0 −0.12 0.72 N ⋅ m −12.0 216 −72 = − (146.88 N ⋅ m ) i − ( 8.64 N ⋅ m ) j − (1.44 N ⋅ m ) k and |MD | = (146.88)2 + (8.64 )2 + (1.44 )2 = 147.141 N ⋅ m ∴ 147.141 N ⋅ m = ( 228 N ) d d = 0.64536 m or d = 0.645 m W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 33. Have | M C | = FBAd d = perpendicular distance from C to line AB. where M C = rA/C × FBA rA/C = ( 0.96 m ) i − ( 0.12 m ) j + ( 0.72 m ) k FBA = λ BA FBA = ( − ( 0.1 m ) i + (1.8 m ) j − ( 0.6 ) k ) ( 228 N ) ( 0.1)2 + (1.8)2 + ( 0.6 )2 m = − (12.0 N ) i + ( 216 N ) j − ( 72 N ) k i j k ∴ M C = 0.96 −0.12 0.72 N ⋅ m −12.0 216 −72 = − (146.88 N ⋅ m ) i − ( 60.48 N ⋅ m ) j + ( 205.92 N ⋅ m ) k and | MC | = (146.88)2 + ( 60.48)2 + ( 205.92 )2 = 260.07 N ⋅ m ∴ 260.07 N ⋅ m = ( 228 N ) d d = 1.14064 m or d = 1.141 m W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 34. (a) Have d = rC/ A sin θ = λ AB × rC/ A where d = Perpendicular distance from C to pipe AB with λ AB = AB = AB = 7i + 4 j − 32k ( 7 )2 + ( 4 )2 + ( −32 )2 1 ( 7i + 4 j − 32k ) 33 and rC/ A = − (14 ft ) i + ( 5 ft ) j + ( L − 22 ) ft k Then λ AB × rC/ A i j k 1 7 4 − 32 ft = 33 −14 5 L − 22 { } 1 4 ( L − 22 ) + 32 ( 5 ) i + 32 (14 ) − 7 ( L − 22 ) j + 7 ( 5 ) + 4 (14 ) k ft 33 1 ( 4L + 72 ) i + ( −7 L + 602 ) j + 91k ft = 33 = and d = 1 33 ( 4L + 72 )2 + ( −7 L + 602 )2 + ( 91)2 or or dd 2 1 = 2 2 ( 4 )( 4L + 72 ) + 2 ( −7 )( −7 L + 602 ) = 0 dL 33 65L − 3926 = 0 L = 60.400 ft But L > Lgreenhouse For (b) with (d ) min , L = 30 ft, so d = 1 33 L = 30.0 ft W ( 4 × 30 + 72 )2 + ( −7 × 30 + 602 )2 + ( 91)2 or d = 13.51 ft W Note: with L = 60.4 ft, d = 1 33 ( 4 × 60.4 + 72 )2 + ( −7 × 60.4 + 602 )2 + ( 91)2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. = 11.29 ft COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 35. P ⋅ Q = ( − 4i + 8j − 3k ) ⋅ ( 9i − j − 7k ) = ( − 4 )( 9 ) + ( 8 )( −1) + ( − 3)( − 7 ) = − 23 or P ⋅ Q = −23 W P ⋅ S = ( − 4i + 8 j − 3k ) ⋅ ( 5i − 6 j + 2k ) = ( − 4 )( 5 ) + ( 8 )( − 6 ) + ( − 3)( 2 ) = − 74 or P ⋅ S = −74 W Q ⋅ S = ( 9i − j − 7k ) ⋅ ( 5i − 6 j + 2k ) = ( 9 )( 5 ) + ( −1)( − 6 ) + ( − 7 )( 2 ) = 37 or Q ⋅ S = 37 W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 36. By definition B ⋅ C = BC cos (α − β ) where B = B ( cos β ) i + ( sin β ) j C = C ( cos α ) i + ( sin α ) j ∴ ( B cos β )( C cos α ) + ( B sin β )( C sin α ) = BC cos (α − β ) cos β cos α + sin β sin α = cos (α − β ) or (1) By definition B′⋅ C = BC cos (α + β ) where B′ = ( cos β ) i − ( sin β ) j ∴ ( B cos β )( C cos α ) + ( − B sin β )( C sin α ) = BC cos (α + β ) or cos β cos α − sin β sin α = cos (α + β ) (2) Adding Equations (1) and (2), 2 cos β cos α = cos (α − β ) + cos (α + β ) or cos α cos β = 1 1 cos (α + β ) + cos (α − β ) W 2 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 37. First note: rB/ A = ( 0.56 m ) i + ( 0.9 m ) j rC/ A = ( 0.9 m ) j − ( 0.48 m ) k rD/ A = − ( 0.52 m ) i + ( 0.9 m ) j + ( 0.36 m ) k By definition rB/ A = ( 0.56 m )2 + ( 0.9 m )2 rC/ A = ( 0.9 m )2 + ( − 0.48 m )2 rD/ A = ( − 0.52 m )2 + ( 0.9 m )2 + ( 0.36 m )2 = 1.06 m = 1.02 m = 1.10 m rB/ A ⋅ rD/ A = rB/ A rD/ A cosθ or ( 0.56i + 0.9 j) ⋅ ( − 0.52i + 0.9 j + 0.36k ) = (1.06 )(1.10 ) cosθ ( 0.56 )( − 0.52 ) + ( 0.9 )( 0.9 ) + ( 0 )( 0.36 ) = 1.166 cosθ cosθ = 0.44494 θ = 63.6° W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 38. From the solution to problem 3.37 rC/ A = 1.02 m with rC/ A = ( 0.9 m ) i − ( 0.48 m ) j rD/ A = 1.10 m with rD/ A = − ( 0.52 m ) i + ( 0.9 m ) j + ( 0.36 m ) k Now by definition rC/ A ⋅ rD/ A = rC/ A rD/ A cosθ or ( 0.9 j − 0.48k ) ⋅ ( − 0.52i + 0.9 j + 0.36k ) = (1.02 )(1.10 ) cosθ 0 ( − 0.52 ) + ( 0.9 )( 0.9 ) + ( − 0.48)( 0.36 ) = 1.122cosθ cosθ = 0.56791 or θ = 55.4° W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 39. (a) By definition λ BC + λ EF = (1) (1) cosθ where λ BC = = λ EF = = Therefore ( 32 ft ) i − ( 9 ft ) j − ( 24 ft ) k ( 32 )2 + ( − 9 )2 + ( − 24 )2 ft 1 ( 32i − 9 j − 24k ) 41 − (14 ft ) i − (12 ft ) j + (12 ft ) k ( −14 )2 + ( −12 )2 + ( 12 )2 ft 1 ( −7i − 6 j + 6k ) 11 ( 32i − 9 j − 24k ) ⋅ ( −7i − 6 j + 6k ) 41 11 = cosθ ( 32 )( −7 ) + ( −9 )( −6 ) + ( −24 )( 6 ) = ( 41)(11) cosθ cosθ = − 0.69623 or (b) By definition (TEG ) BC θ = 134.1° W = (TEF ) cosθ = (110 lb )( −0.69623) = −76.585 lb or (TEF ) BC = −76.6 lb W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 40. (a) By definition λ BC ⋅ λ EG = (1) (1) cosθ where λ BC = = λ EG = = Therefore ( 32 ft ) i − ( 9 ft ) j − ( 24 ft ) k ( 32 )2 + ( − 9 )2 + ( − 24 )2 ft 1 ( 32i − 9 j − 24k ) 41 (16 ft ) i − (12 ft ) j + ( 9.75) k (16 )2 + ( −12 )2 + ( 9.75)2 ft 1 (16i − 12 j + 9.75k ) 22.25 ( 32i − 9 j − 24k ) ⋅ (16i − 12 j + 9.75k ) 41 22.25 = cosθ ( 32 )(16 ) + ( −9 )( −12 ) + ( −24 )( 9.75) = ( 41)( 22.25) cosθ cosθ = 0.42313 or (b) By definition (TEG )BC θ = 65.0° W = (TEG ) cosθ = (178 lb )( 0.42313) = 75.317 lb or (TEG ) BC = 75.3 lb W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 41. First locate point B: d 3.5 = 22 14 d = 5.5 m or d BA = (a) ( 5.5 + 0.5)2 + ( −22 )2 + ( −3)2 = 23 m Locate point D: ( −3.5 − 7.5sin 45° cos15° ) , (14 + 7.5cos 45° ) , ( 0 + 7.5sin 45° sin15° ) m or ( −8.6226 m, 19.3033 m, 1.37260 m ) Then d BD = ( −8.6226 + 5.5)2 + (19.3033 − 22 )2 + (1.37260 − 0 )2 m = 4.3482 m and cosθ ABD = ( 6i − 22 j − 3k ) ⋅ ( −3.1226i − 2.6967 j + 1.37260k ) d BA ⋅ d BD = d BA d BD ( 23)( 4.3482 ) = 0.36471 or (b) (TBA )BD θ ABD = 68.6° W = TBA cosθ ABD = ( 230 N )( 0.36471) or (TBA ) BD = 83.9 N W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 42. First locate point B: d 3.5 = 22 14 d = 5.5 m or (a) Locate point D: ( −3.5 − 7.5sin 45° cos10° ) , (14 + 7.5cos 45° ) , ( 0 + 7.5sin 45° sin10° ) m or ( −8.7227 m, 19.3033 m, 0.92091 m ) Then d DC = ( 5.2227 m ) i − ( 5.3033 m ) j − ( 0.92091 m ) k and d DB = ( −5.5 + 8.7227 )2 + ( 22 − 19.3033)2 + ( 0 − 0.92091)2 m = 4.3019 m and cos θ BDC = ( 3.2227i + 2.6967 j − 0.92091k ) ⋅ ( 5.2227i − 5.3033j − 0.92091k ) d DB ⋅ d DC = d DB d DC ( 4.3019 )( 7.5) = 0.104694 or (b) (TBD )DC θ BDC = 84.0° W = TBD cosθ BDC = ( 250 N )( 0.104694 ) or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (TBD )DC = 26.2 N W COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 43. Volume of parallelopiped is found using the mixed triple product (a) Vol = P ⋅ ( Q × S ) 3 −4 1 = − 7 6 − 8 in.3 9 −2 −3 = ( −54 + 288 + 14 − 48 + 84 − 54 ) in.3 = 230 in.3 or Volume = 230 in.3 W (b) Vol = P ⋅ ( Q × S ) −5 −7 4 = 6 − 2 5 in.3 −4 8 −9 = ( −90 + 140 + 192 + 200 − 378 − 32 ) in.3 = 32 in.3 or Volume = 32 in.3 W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 44. For the vectors to all be in the same plane, the mixed triple product is zero. P ⋅(Q × S ) = 0 −3 −7 5 ∴ 0 = −2 1 −4 8 Sy −6 0 = 18 + 224 − 10S y − 12S y + 84 − 40 So that 22 S y = 286 S y = 13 or S y = 13.00 W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 45. Have rC = ( 2.25 m ) k JJJG CE TCE = TCE CE ( 0.90 m ) i + (1.50 m ) j − ( 2.25 m ) k TCE = (1349 N ) ( 0.90 )2 + (1.50 )2 + ( −2.25 )2 m = ( 426 N ) i + ( 710 N ) j − (1065 N ) k Now M O = rC × TCE i j k = 0 0 2.25 N ⋅ m 426 710 −1065 = − (1597.5 N ⋅ m ) i + ( 958.5 N ⋅ m ) j ∴ M x = −1598 N ⋅ m, M y = 959 N ⋅ m, M z = 0 W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 46. Have rE = ( 0.90 m ) i + (1.50 m ) j TDE = TDE JJJG DE DE − ( 2.30 m ) i + (1.50 m ) j − ( 2.25 m ) k = (1349 N ) ( − 2.30 )2 + (1.50 )2 + ( − 2.25)2 m = − ( 874 N ) i + ( 570 N ) j − ( 855 N ) k Now M O = rE × TDE i j k = 0.90 1.50 0 N ⋅ m − 874 570 − 855 = − (1282.5 N ⋅ m ) i + ( 769.5 N ⋅ m ) j + (1824 N ⋅ m ) k ∴ M x = −1283 N ⋅ m, M y = 770 N ⋅ m, M z = 1824 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 47. Have M z = k ⋅ ( rB ) y × TBA + k ( rC ) y × TCD where M z = − ( 48 lb ⋅ ft ) k ( rB ) y TBA = ( rC ) y = ( 3 ft ) j JJJG ( 4.5 ft ) i − ( 3 ft ) j + ( 9 ft ) k BA = TBA = (14 lb ) BA ( 4.5)2 + ( − 3)2 + ( 9 )2 ft = ( 6 lb ) i − ( 4 lb ) j + (12 lb ) k TCD JJJG ( 6 ft ) i − ( 3 ft ) j − ( 6 ft ) k CD = TCD = TCD CD ( 6 )2 + ( − 3)2 + ( − 6 )2 ft = Then TCD (2i − j − 2k ) 3 { } − ( 48 lb ⋅ ft ) = k ⋅ ( 3 ft ) j × ( 6 lb ) i − ( 4 lb ) j + (12 lb ) k T + k ⋅ ( 3 ft ) j × CD ( 2 i − j − 2 k ) 3 or − 48 = −18 − 2TCD TCD = 15.00 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 48. Have M y = j ⋅ ( rB ) z × TBA × j⋅ ( rC ) z × TCD where M y = 156 lb ⋅ ft ( rB ) z TBA = ( 24 ft ) k; ( rC ) z = ( 6 ft ) k JJJG ( 4.5 ft ) i − ( 3 ft ) j + ( 9 ft ) k BA = TBA = TBA BA ( 4.5)2 + ( − 3)2 + ( 9 )2 ft TBA ( 4.5i − 3j + 9k ) 10.5 JJJG ( 6 ft ) i − ( 3 ft ) j + ( 9 ft ) k CD = TCD = ( 7.5 lb ) CD ( 6 )2 + ( − 3)2 + ( 9 )2 ft = TCD = ( 5 lb ) i − ( 2.5 lb ) j − ( 5 lb ) k T Then (156 lb ⋅ ft ) = j ⋅ ( 24 ft ) k × BA ( 4.5i − 3j + 9k ) 10.5 { } + j ⋅ ( 6 ft ) k × ( 5 lb ) i − ( 2.5 lb ) j − ( 5 lb ) k or 156 = 108 TBA + 30 10.5 TBA = 12.25 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 49. Based on M x = ( P cos φ ) ( 0.225 m ) sin θ − ( P sin φ ) ( 0.225 m ) cosθ By (1) M y = − ( P cos φ )( 0.125 m ) (2) M z = − ( P sin φ )( 0.125 m ) (3) Equation ( 3) M z − ( P sin φ )( 0.125 ) : = Equation ( 2 ) M y − ( P cos φ )( 0.125 ) or −4 = tan φ ∴ − 23 φ = 9.8658° or φ = 9.87° From Equation (2) − 23 N ⋅ m = − ( P cos 9.8658° )( 0.125 m ) P = 186.762 N or P = 186.8 N From Equation (1) 26 N ⋅ m = (186.726 N ) cos 9.8658° ( 0.225 m ) sin θ − (186.726 N ) sin 9.8658° ( 0.225 m ) cosθ or 0.98521sin θ − 0.171341cosθ = 0.61885 Solving numerically, θ = 48.1° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 50. Based on M x = ( P cos φ ) ( 0.225 m ) sin θ − ( P sin φ ) ( 0.225 m ) cosθ (1) M y = − ( P cos φ )( 0.125 m ) (2) M z = − ( P sin φ )( 0.125 m ) By Equation ( 3) M z − ( P sin φ )( 0.125 ) : = Equation ( 2 ) M y − ( P cos φ )( 0.125 ) or − 3.5 = tan φ ; φ = 9.9262° − 20 From Equation (3): − 3.5 N ⋅ m = − ( P sin 9.9262° )( 0.125 m ) P = 162.432 N From Equation (1): M x = (162.432 N )( 0.225 m )( cos 9.9262° sin 60° − sin 9.9262° cos 60° ) = 28.027 N ⋅ m or M x = 28.0 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 51. First note: TBA JJJG BA = TBA BA = ( 70 lb ) = ( 70 lb ) ( 4 ) i + 1.5 − ( LBC + 1) j + ( − 6 ) k 2 ( 4 )2 + 1.5 − ( LBC + 1) + ( − 6 ) 2 4 i + ( 0.5 − LBC ) j − 6 k 52 + ( 0.5 − LBC ) 2 rA = ( 4 ft ) i + (1.5 ft ) j − (12 ft ) k Have M O = rA × TBA = For the i components: − 763 lb ⋅ ft = 70 52 + ( 0.5 − LBC ) 2 70 lb 52 + ( 0.5 − LBC ) j k 1.5 ft −12 ft ( 0.5 − LBC ) − 6 1.5 ( − 6 ) + 12 ( 0.5 − LBC ) lb ⋅ ft or 10.9 52 + ( 0.5 − LBC ) = 3 + 12 LBC or (10.9 )2 52 + ( 0.5 − LBC )2 = 9 + 72LBC or 25.19L2BC + 190.81LBC − 6198.8225 = 0 Then 2 i 4 ft 4 2 LBC = −190.81 ± + 144 L2BC (190.81)2 − 4 ( 25.19 )( − 6198.8225) 2 ( 25.19 ) Taking the positive root Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. LBC = 12.35 ft COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 52. First note: JJJG BA = TBA BA TBA = ( 70 lb ) = ( 70 lb ) ( 4 ) i + 1.5 − ( LBC + 1) j + ( − 6 ) k 2 ( 4 )2 + 1.5 − ( LBC + 1) + ( − 6 ) 2 4 i + ( 0.5 − LBC ) j − 6 k 52 + ( 0.5 − LBC ) 2 rA = ( 4 ft ) i + (1.5 ft ) j − (12 ft ) k Have M O = rA × TBA = For the i components: − 900 lb ⋅ ft = 300 = or 315 = Then, or (1) ( 2) ⇒ 52 + ( 0.5 − LBC ) TBA 52 + ( 0.5 − LBC ) For the k components: − 315 lb ⋅ ft = or TBA 2 2 52 + ( 0.5 − LBC ) 52 + ( 0.5 − LBC ) 2 52 + ( 0.5 − LBC ) 2 i 4 ft 4 j k −12 ft 1.5 ft ( 0.5 − LBC ) − 6 1.5 ( − 6 ) + 12 ( 0.5 − LBC ) lb ⋅ ft (1 + 4LBC ) TBA 4TBA TBA 2 (1) 4 ( 0.5 − LBC ) − 1.5 ( 4 ) lb ⋅ ft (1 + LBC ) (2) 300 1 + 4LBC = 315 4 (1 + LBC ) LBC = 59 ft 4 LBC = 14.75 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 53. ( Have M AD = λ AD ⋅ rB/ A × TBH where λ AD = ) ( 0.8 m ) i − ( 0.6 m ) k ( 0.8 m )2 + ( − 0.6 m )2 = 0.8 i − 0.6 k rB/ A = ( 0.4 m ) i TBH = TBH JJJJG ( 0.3 m ) i + ( 0.6 m ) j − ( 0.6 m ) k BH = (1125 N ) BH ( 0.3)2 + ( 0.6 )2 + ( − 0.6 )2 m Then M AD 0.8 0 − 0.6 = 0.4 0 0 = −180 N ⋅ m 375 750 − 750 or M AD = −180.0 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 54. ( ) Have M AD = λ AD ⋅ rB/ A × TBG where λ AD = ( 0.8 m ) i − ( 0.6 m ) k rB/ A = ( 0.4 m ) i TBG = TBG JJJG − ( 0.4 m ) i + ( 0.74 ) j − ( 0.32 m ) k BG = (1125 N ) BG ( − 0.4 m )2 + ( 0.74 m )2 + ( − 0.32 m )2 = − ( 500 N ) i + ( 925 N ) j − ( 400 N ) k Then M AD 0.8 0 − 0.6 = 0.4 0 0 − 500 925 − 400 or M AD = − 222 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 55. Have ( M AD = λ AD ⋅ rE/ A × FEF where λ AD ) JJJG AD = AD λ AD = ( 7.2 m ) i + ( 0.9 m ) j ( 7.2 m )2 + ( 0.9 m )2 = 0.99228 i + 0.124035 j rE/ A = ( 2.1 m ) i − ( 0.9 m ) j FEF = FEF JJJG ( 0.3 m ) i + (1.2 m ) j + ( 2.4 m ) k EF = ( 24.3 kN ) EF ( 0.3 m )2 + (1.2 m )2 + ( 2.4 m )2 = ( 2.7 kN ) i + (10.8 kN ) j + ( 21.6 kN ) k Then 0.99228 0.124035 M AD = 2.1 2.7 − 0.9 10.8 0 0 kN ⋅ m 21.6 = −19.2899 − 5.6262 = − 24.916 kN ⋅ m or M AD = − 24.9 kN ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 56. ( Have M AD = λ AD ⋅ rG/ A × E EF Where λ AD = ) ( 7.2 m ) i + ( 0.9 m ) j ( 7.2 m )2 + ( 0.9 m )2 = 0.99228 i + 0.124035 j rG/ A = ( 6 m ) i − (1.8 m ) j FGH = FGH JJJJG ( −1.2 m ) i + ( 2.4 m ) j + ( 2.4 m ) k GH = ( 21.3 kN ) GH ( −1.2 m )2 + ( 2.4 m )2 + ( 2.4 m )2 = − ( 7.1 kN ) i + (14.2 kN ) j + (14.2 kN ) k Then M AD 0.99228 0.124035 0 6 0 kN ⋅ m = −1.8 14.2 14.2 − 7.1 = − 25.363 − 10.5678 = − 35.931 kN ⋅ m or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M AD = − 35.9 kN ⋅ m COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 57. ( M OA = λ OA ⋅ rC/O × P Have ) where From triangle OBC Since or a 2 ( OA) x = ( OA) z = ( OA ) x tan 30° = ( OA)2 = ( OA ) x + ( OA ) y + ( OAz ) 2 a 1 a = 2 3 2 3 2 2 a 2 a a = + ( OA ) y + 2 2 3 2 ∴ ( OA) y = 2 2 a2 − a2 a2 2 − =a 4 12 3 Then rA/O = a 2 a i +a j+ k 2 3 2 3 and λ OA = 1 i+ 2 2 1 j+ k 3 2 3 P = λ BC P = = ( a sin 30°) i − ( a cos30° ) k a P i − 3k 2 ( ) rC/O = ai ∴ M OA 1 2 = 1 1 = = 2 1 3 2 3 P ( a ) 0 0 2 0 − 3 aP 2 − (1) − 3 2 3 ( aP aP M OA = 2 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ) ( P) COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 58. (a) For edge OA to be perpendicular to edge BC, uuur uuur OA ⋅ BC = 0 where From triangle OBC a 2 ( OA) x = ( OA) z = ( OA ) x tan 30° = a 1 a = 2 3 2 3 uuur a a ∴ OA = i + ( OA )y j + k 2 2 3 and Then or so that uuur BC = ( a sin 30° ) i − ( a cos 30° ) k = a a 3 i− k 2 2 = a i − 3k 2 ( ) a a a =0 i + ( OA) y j + k ⋅ i − 3k 2 2 2 3 ( ) a2 a2 + ( OA )y ( 0 ) − =0 4 4 uuur uuur ∴ OA ⋅ BC = 0 uuur uuur OA is perpendicular to BC. (b) Have M OA = Pd , with P acting along BC and d the uuur uuur perpendicular distance from OA to BC. From the results of Problem 3.57, M OA = ∴ Pa 2 Pa = Pd 2 or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. d = a 2 COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 59. ( M DI = λ DI ⋅ rF /I × TEF Have where λ DI JJJG DI = = DI ) ( 4.8 ft ) i − (1.2 ft ) j ( 4.8 ft )2 + ( −1.2 ft )2 = 0.97014 i − 0.24254 j rF /I = (16.2 ft ) k TEF = TEF JJJG ( 3.6 ft ) i − (10.8 ft ) j + (16.2 ft ) k EF = ( 29.7 lb ) EF ( 3.6 ft )2 + ( −10.8 ft )2 + (16.2 ft )2 = ( 5.4 lb ) i − (16.2 lb ) j + ( 24.3 lb ) k Then M DI 0.97014 − 0.24254 0 0 0 16.2 lb ⋅ ft = 5.4 −16.2 24.3 = − 21.217 + 254.60 = 233.39 lb ⋅ ft or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M DI = 233 lb ⋅ ft COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 60. Have where ( M DI = λ DI ⋅ rG/I × TEG λ DI JJJG DI = = DI ) ( 4.8 ft ) i − (1.2 ft ) j ( 4.8 ft )2 + ( −1.2 ft )2 = 0.97014 i − 0.24254 j rG/I = − ( 35.1 ft ) k TEG = TEG JJJG ( 3.6 ft ) i − (10.8 ft ) j − ( 35.1 ft ) k EG = ( 24.6 lb ) EG ( 3.6 ft )2 + ( −10.8 ft )2 + ( − 35.1 ft )2 = ( 2.4 lb ) i − ( 7.2 lb ) j − ( 23.4 lb ) k Then M DI 0.97014 − 0.24254 0 0 0 = − 35.1 lb ⋅ ft 2.4 − 7.2 − 23.4 = 20.432 − 245.17 = − 224.74 lb ⋅ ft or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M DI = − 225 lb ⋅ ft COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 61. F1 = F1λ1 First note that F2 = F2λ 2 and Let M1 = moment of F2 about the line of action of M1 and M 2 = moment of F1 about the line of action of M 2 Now, by definition ( ) ( ) ( ) ( ) M1 = λ1 ⋅ rB/ A × F2 = λ1 ⋅ rB/ A × λ 2 F2 M 2 = λ 2 ⋅ rA/B × F1 = λ 2 ⋅ rA/B × λ1 F1 Since F1 = F2 = F rA/B = −rB/ A and ( ) M1 = λ1 ⋅ rB/ A × λ 2 F ( ) M 2 = λ 2 ⋅ −rB/ A × λ1 F Using Equation (3.39) ( ) ( λ1 ⋅ rB/ A × λ 2 = λ 2 ⋅ −rB/ A × λ1 so that ( ) ) M 2 = λ1 ⋅ rB/ A × λ 2 F ∴ M12 = M 21 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 62. From the solution of Problem 3.53: λ AD = 0.8i − 0.6k TBH = ( 375 N ) i + ( 750 N ) j − ( 750 N ) k; TBH = 1125 N M AD = −180 N ⋅ m Only the perpendicular component of TBH contributes to the moment of TBH about line AD. The parallel component of TBH will be used to find the perpendicular component. Have ( TBH )Parallel = λ AD ⋅ TBH = [ 0.8i − 0.6k ] ⋅ ( 375 N ) i + ( 750 N ) j − ( 750 N ) k = ( 300 + 450 ) N = 750 N Since TBH = ( TBH )Perpendicular + ( TBH )Parallel Then (TBH )Perpendicular = ( TBH )2 − ( TBH )2Parallel = (1125 N )2 − ( 750 N )2 = 838.53 N and M AD = ( TBH )Perpendicular d 180 N ⋅ m = ( 838.53 N ) d d = 0.21466 m or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. d = 215 mm COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 63. From the solution of Problem 3.54: λ AD = 0.8i − 0.6k TBG = − ( 500 N ) i + ( 925 N ) j − ( 400 N ) k TBG = 1125 N M AD = − 222 N ⋅ m Only the perpendicular component of TBG contributes to the moment of TBG about line AD. The parallel component of TBG will be used to find the perpendicular component. Have ( TBG )Parallel = λ AD ⋅ TBG = [ 0.8i − 0.6k ] ⋅ − ( 500 N ) i + ( 925 N ) j − ( 400 N ) k = ( − 400 + 240 ) N = −160 N Since TBG = ( TBG )Perpendicular + ( TBG )Parallel Then (TBG )Perpendicular = (TBG )2 − (TBG )2Parallel = (1125 N )2 − ( −160 N )2 = 1113.56 N and M AD = (TBG )Perpendicular d 222 N ⋅ m = (1113.56 N ) d d = 0.199361 m or d = 199.4 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 64. From the solution of Problem 3.59: λ DI = 0.97014 i − 0.24254 j TEF = ( 5.4 lb ) i − (16.2 lb ) j + ( 24.3 lb ) k TEF = 29.7 lb M DI = 233.39 lb ⋅ ft Only the perpendicular component of TEF contributes to the moment of TEF about line DI. The parallel component of TEF will be used to find the perpendicular component. Have ( TEF )Parallel = λ DI ⋅ TEF = [ 0.97014 i − 0.24254 j] ⋅ ( 5.4 lb ) i − (16.2 lb ) j + ( 24.3 lb ) k = ( 5.2388 + 3.9291) = 9.1679 lb Since TEF = ( TEF )Perpendicular + ( TEF )Parallel Then (TEF )Perpendicular = ( TEF )2 − ( TEF )2Parallel = ( 29.7 )2 − ( 9.1679 )2 = 28.250 lb and M DI = ( TEF )Perpendicular d 233.39 lb ⋅ ft = ( 28.250 lb ) d d = 8.2616 ft or d = 8.26 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 65. From the solution of Problem 3.60: λ DI = 0.97014 i − 0.24254 j TEG = ( 2.4 lb ) i − ( 7.2 lb ) j − ( 23.4 lb ) k TEG = 24.6 lb M DI = − 224.74 lb ⋅ ft Only the perpendicular component of TEG contributes to the moment of TEG about line DI. The parallel component of TEG will be used to find the perpendicular component. Have ( TEG )Parallel = λ DI ⋅ TEG = [ 0.97014 i − 0.24254 j] ⋅ ( 2.4 lb ) i − ( 7.2 lb ) j − ( 23.4 lb ) k = ( 2.3283 + 1.74629 ) = 4.0746 lb Since TEG = ( TEG )Perpendicular + (TEG )Parallel Then (TEG )Perpendicular = (TEG )2 − (TEG )2Parallel = ( 24.6 )2 − ( 4.0746 )2 = 24.260 lb and M DI = (TEG )Perpendicular d 224.74 lb ⋅ ft = ( 24.260 lb ) d d = 9.2638 ft or d = 9.26 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 66. From the solution of Prob. 3.55: λ AD = 0.99228 i + 0.124035 j FEF = ( 2.7 kN ) i + (10.8 kN ) j + ( 21.6 kN ) k FEF = 24.3 kN M AD = − 24.916 kN ⋅ m Only the perpendicular component of FEF contributes to the moment of FEF about edge AD. The parallel component of FEF will be used to find the perpendicular component. Have ( FEF )Parallel = λ AD ⋅ FEF = [ 0.99228 i + 0.124035 j] ⋅ ( 2.7 kN ) i + (10.8 kN ) j + ( 21.6 kN ) k = 4.0187 kN Since FEF = ( FEF )Perpendicular + ( FEF )Parallel Then ( FEF )Perpendicular = ( FEF )2 − ( FEF )2Parallel = ( 24.3)2 − ( 4.0187 )2 = 23.965 kN and M AD = ( FEF )Perpendicular d 24.916 kN ⋅ m = ( 23.965 kN ) d d =1.039683m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or d = 1.040 m COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 67. From the solution of Prob. 3.56: λ AD = 0.99228 i + 0.124035 j FGH = − ( 7.1 kN ) i + (14.2 kN ) j + (14.2 kN ) k FGH = 21.3 kN M AD = − 35.931 kN ⋅ m Only the perpendicular component of FGH contributes to the moment of FGH about edge AD. The parallel component of FGH will be used to find the perpendicular component. Have ( FGH )Parallel = λ AD ⋅FGH = ( 0.99228 i + 0.124035 j) ⋅ − ( 7.1 kN ) i + (14.2 kN ) j + (14.2 kN ) k = − 5.2839 kN Since FGH = ( FGH )Perpendicular + ( FGH )Parallel Then ( FGH )Perpendicular = ( FGH )2 − ( FGH )2Parallel = ( 21.3)2 − ( 5.2839 )2 = 20.634 kN and M AD = ( FGH )Perpendicular d 35.931 kN ⋅ m = ( 20.634 kN ) d d = 1.741349m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or d = 1.741 m COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 68. (a) M1 = d1F1 Have Where d1 = 0.6 m and F1 = 40 N ∴ M1 = ( 0.6 m )( 40 N ) or M1 = 24.0 N ⋅ m (b) Have M Total = M1 + M 2 8 N ⋅ m = 24.0 N ⋅ m − ( 0.820 m )( cos α )( 24 N ) ∴ cos α = 0.81301 (c) Have or α = 35.6° or d 2 = 1.000 m M1 + M 2 = 0 24 N ⋅ m − d 2 ( 24 N ) = 0 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 69. (a) M = Fd 12 N ⋅ m = F ( 0.45 m ) or F = 26.7 N (b) M = Fd 12 N ⋅ m = F ( 0.24 m ) or F = 50.0 N (c) M = Fd Where d = ( 0.45 m )2 + ( 0.24 m )2 = 0.51 m 12 N ⋅ m = F ( 0.51 m ) or F = 23.5 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 70. (a) Note when a = 8 in., rC/F is perpendicular to the inclined 10 lb forces. Have M = ΣFd ( ) = − (10 lb ) a + 8 in. + 2 (1 in.) − (10 lb ) 2a 2 + 2 (1 in.) a = 8 in., For M = − (10 lb )(18 in. + 24.627 in.) = − 426.27 lb ⋅ in. or M = 426 lb ⋅ in. (b) Have M = 480 lb ⋅ in. Also M = Σ ( M + Fd ) ( ) = Moment of couple due to horizontal forces at A and D + Moment of force-couple systems at C and F about C. Then − 480 lb ⋅ in. = −10 lb a + 8 in. + 2 (1 in.) + M C + M F + FX ( a + 8 in.) + Fy ( 2a ) Where M C = − (10 lb )(1 in.) = −10 lb ⋅ in. M F = M C = −10 lb ⋅ in. Fx = −10 lb 2 Fy = −10 lb 2 ∴ − 480 lb ⋅ in. = −10 lb ( a + 10 in.) − 10 lb ⋅ in. − 10 lb ⋅ in. − 10 lb 10 lb ( a + 8 in.) − ( 2a ) 2 2 303.43 = 31.213 a or a = 9.72in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 71. (a) Have M = ΣFd ( ) = ( 9 lb )(13.8 in.) − ( 2.5 lb )(15.2 in.) = ( 86.2 lb ⋅ in.) M = 86.2 lb ⋅ in. (b) Have M = Td = 86.2 lb ⋅ in. For T to be a minimum, d must be maximum. ∴ Tmin must be perpendicular to line AC. tan θ = 15.2 in. 11.4 in. θ = 53.130° or θ = 53.1° (c) Have M = Tmin d max Where M = 86.2 lb ⋅ in. d max = (15.2 in.)2 + (11.4 in.)2 + 2 (1.2 in.) = 21.4 in. ∴ 86.2 lb ⋅ in. = Tmin ( 21.4 in.) Tmin = 4.0280 lb or Tmin = 4.03 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 72. Based on M = M1 + M 2 M1 = (18 N ⋅ m ) k M 2 = ( 7.5 N ⋅ m ) i ∴ M = ( 7.5 N ⋅ m ) i + (18 N ⋅ m ) k and M = ( 7.5 N ⋅ m )2 + (18 N ⋅ m )2 = 19.5 N ⋅ m or M = 19.50 N ⋅ m With λ = = Then ( 7.5 N ⋅ m ) i + (18 N ⋅ m ) k M = M 19.5 N ⋅ m 5 12 i+ k 13 13 cos θ x = 5 13 cosθ y = 0 cosθ z = 12 13 ∴ θ x = 67.380° ∴ θ y = 90° ∴ θ z = 22.620° or θ x = 67.4°, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. θ y = 90.0°, θ z = 22.6° COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 73. Have M = M1 + M 2 Where M1 = rC/B × PIC rC/B = ( 38.4 in.) i − (16 in.) j PIC = − ( 25 lb ) k i j k ∴ M1 = 38.4 −16 0 lb ⋅ in. 0 0 −25 = ( 400 lb ⋅ in.) i + ( 960 lb ⋅ in.) j and M 2 = rD/ A × PZE rD/ A = ( 8 in.) j − ( 22 in.) k JJJG − (19.2 in.) i + ( 22 in.) k ED PZ E = PZE = ( 36.5 lb ) ED ( −19.2 in.)2 + ( 22 in.)2 = − ( 24 lb ) i + ( 27.5 lb ) k i j k ∴ M 2 = 0 8 −22 lb ⋅ in. −24 0 27.5 M 2 = ( 220 lb ⋅ in.) i + ( 528 lb ⋅ in.) j + (192 lb ⋅ in.) k and M = M1 + M 2 = ( 400 lb ⋅ in.) i + ( 960 lb ⋅ in.) j + ( 220 lb ⋅ in.) i + ( 528 lb ⋅ in.) j + (192 lb ⋅ in.) k = ( 620 lb ⋅ in.) i + (1488 lb ⋅ in.) j + (192 lb ⋅ in.) k continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System M = ( 620 )2 + (1488)2 + (192 )2 lb ⋅ in. = 1623.39 lb ⋅ in. or M = 1.623 kip ⋅ in. λ= ( 620 lb ⋅ in.) i + (1488 lb ⋅ in.) j + (192 lb ⋅ in.) k M = M 1623.39 lb ⋅ in. = 0.38192 i + 0.91660 j + 0.118271k cosθ x = 0.38192 or θ x = 67.5° cosθ y = 0.91660 or θ y = 23.6° cosθ z = 0.118271 or θ z = 83.2° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 74. Have M = M1 + M 2 Where M1 = rE/D × FD = − ( 0.7 m ) k × ( 80 N ) j = ( 56.0 N ⋅ m ) i And M 2 = rG/F × FB Now d BF = ( −0.300 m )2 + ( 0.540 m )2 + ( 0.350 m )2 = 0.710 m Then FB = λBF FB = ( −0.300 m ) i + ( 0.540 m ) j + ( 0.350 m ) k 0.710 m ( 71 N ) = − ( 30 N ) i + ( 54 N ) j + ( 35 N ) k ∴ M 2 = ( 0.54 m ) j × − ( 30 N ) i + ( 54 N ) j + ( 35 N ) k = (18.90 N ⋅ m ) i + (16.20 N ⋅ m ) k Finally M = ( 56.0 N ⋅ m ) i + (18.90 N ⋅ m ) i + (16.20 N ⋅ m ) k = ( 74.9 N ⋅ m ) i + (16.20 N ⋅ m ) k and M = ( 74.9 N ⋅ m )2 + (16.20 N ⋅ m )2 = 76.632 N ⋅ m cosθ x = 74.9 76.632 or M = 76.6 N ⋅ m cosθ y = 0 76.632 cosθ z = 16.20 76.632 or θ x = 12.20° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. θ y = 90.0° θ z = 77.8° COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 75. M = ( M1 + M 2 ) + M P Have From the solution to Problem 3.74 ( M1 + M 2 ) = ( 74.9 N ⋅ m ) i + (16.20 N ⋅ m ) k Now M P = rD / E × PE = ( 0.54 m ) j + ( 0.70 m ) k × ( 90 N ) i = ( 63.0 N ⋅ m ) j − ( 48.6 N ⋅ m ) k ∴ M = ( 74.9 i + 16.20 k ) + ( 63.0 j − 48.6 k ) = ( 74.9 N ⋅ m ) i + ( 63.0 N ⋅ m ) j − ( 32.4 N ⋅ m ) k and M = ( 74.9 N ⋅ m )2 + ( 63.0 N ⋅ m )2 + ( − 32.4 N ⋅ m )2 = 103.096 N ⋅ m or M = 103.1 N ⋅ m and cosθ x = 74.9 103.096 cosθ y = 63.0 103.096 cosθ z = − 32.4 103.096 or θ x = 43.4° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. θ y = 52.3° θ z = 108.3° COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 76. Have M = M1 + M 2 + M P From Problem 3.73 solution: M1 = ( 400 lb ⋅ in.) i + ( 960 lb ⋅ in.) j M 2 = ( 220 lb ⋅ in.) i + ( 528 lb ⋅ in.) j + (192 lb ⋅ in.) k Now M P = rE/ A × PE rE/ A = (19.2 in.) i + ( 8 in.) j − ( 44 in.) k PE = ( 52.5 lb ) j Therefore i j k M P = 19.2 8 − 44 0 52.5 0 = ( 2310 lb. in.) i + (1008 lb. in.) k and M = M1 + M 2 + M P = [(400 + 220 + 2310)i + (960 + 528)j + (192 + 1008)k ] lb ⋅ in. = ( 2930 lb ⋅ in.) i + (1488 lb ⋅ in.) j + (1200 lb ⋅ in.) k M = ( 2930 )2 + (1488)2 + (1200 )2 = 3498.4 lb ⋅ in. or M = 3.50 kip ⋅ in. continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System λ = M 2930i + 1488j + 1200k = M 3498.4 = 0.83753i + 0.42534 j + 0.34301k cosθ x = 0.83753 or cosθ y = 0.42534 or θ y = 64.8° cosθ z = 0.34301 or θ z = 69.9° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. θ x = 33.1° COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 77. Have M = M1 + M 2 + M 3 Where M1 = − (1.2 lb ⋅ ft ) cos 25° j − (1.2 lb ⋅ ft ) sin 25°k M 2 = − (1.3 lb ⋅ ft ) j M 3 = − (1.4 lb ⋅ ft ) cos 20° j + (1.4 lb ⋅ ft ) sin 20°k ∴ M = ( −1.08757 − 1.3 − 1.31557 ) j + ( − 0.507142 + 0.478828 ) k = − ( 3.7031 lb ⋅ ft ) j − ( 0.028314 lb ⋅ ft ) k and M = ( −3.7031)2 + ( − 0.028314 )2 = 3.7032 lb ⋅ ft or M = 3.70 lb ⋅ ft λ = M −3.7031j − 0.028314k = M 3.7032 = − 0.99997 j − 0.0076458k cosθ x = 0 or θ x = 90° or θ y = 179.6° or θ z = 90.4° cosθ y = − 0.99997 cosθ z = −0.0076458 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 78. (a) FB = P : ∴ FB = 160.0 N 50.0° M B = −rBA P cos10° = − ( 0.355 m )(160 N ) cos10° = −55.937 N ⋅ m or M B = 55.9 N ⋅ m (b) FC = P : ∴ FC = 160.0 N 50.0° M C = M B − rCB ( FB )⊥ = M B − rCB FB sin 55° = −55.937 N ⋅ m − ( 0.305 m )(160 N ) sin 55° or M C = 95.9 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 79. (a) ΣF : FB = 135 N or FB = 135 N ΣM : M B = P dB = (135 N )( 0.125 m ) = 16.875 N ⋅ m or M B = 16.88 N ⋅ m (b) ΣM B : M B = FC d 16.875 N ⋅ m = FC ( 0.075 m ) FC = 225 N or FC = 225 N ΣF : 0 = − FB + FC FB = FC = 225 N or FB = 225 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 80. ΣF : PC = P = 700 N (a) Based on or PC = 700 N 60° ΣM C : M C = − Px dCy + Py dCx Px = ( 700 N ) cos60° = 350 N where Py = ( 700 N ) sin 60° = 606.22 N dCx = 1.6 m dCy = 1.1 m ∴ M C = − ( 350 N )(1.1 m ) + ( 606.22 N )(1.6 m ) = −385 N ⋅ m + 969.95 N ⋅ m = 584.95 N ⋅ m or M C = 585 N ⋅ m ΣFx : PDx = P cos60° (b) Based on = ( 700 N ) cos 60° = 350 N ΣM D : ( P cos 60°)( d DA ) = PB ( d DB ) ( 700 N ) cos 60° ( 0.6 m ) = PB ( 2.4 m ) PB = 87.5 N or PB = 87.5 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System ΣFy : P sin 60° = PB + PDy ( 700 N ) sin 60° = 87.5 N + PDy PDy = 518.72 N PD = = ( PDx )2 + ( PDy ) 2 ( 350 )2 + ( 518.72 )2 = 625.76 N PDy −1 518.72 = tan = 55.991° 350 PDx θ = tan −1 or PD = 626 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 56.0° COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 81. ΣFx : 2.8cos 65° = FA cos θ + FC cos θ = ( FA + FC ) cosθ ΣFy : (1) 2.8sin 65° = FA sin θ + FC sin θ = ( FA + FC ) sin θ Then (2) (2) ⇒ tan 65° = tan θ (1) or θ = 65.0° ΣM A : ( 27 m )( 2.8 kN ) sin 65° = ( 72 m ) ( FC ) sin 65° or FC = 1.050 kN From Equation (1): 2.8 kN = FA + 1.050 kN or FA = 1.750 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ∴ FA = 1.750 kN 65.0° FC = 1.050 kN 65.0° COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 82. Based on ΣFx : − ( 54 lb ) cos 30° = − FB cos α − FC cos α ( FB + FC ) cosα = ( 54 lb ) cos 30° ( 54 lb ) sin 30° = ΣFy : (1) FB sin α + FC sin α or ( FB + FC ) sin α = ( 54 lb ) sin 30° From (2) Eq ( 2 ) : tan α = tan 30° Eq (1) ∴ α = 30° Based on ΣM C : ( 54 lb ) cos ( 30° − 20° ) (10 in.) = ( FB cos10° )( 24 in.) ∴ FB = 22.5 lb From Eq. (1), or FB = 22.5 lb 30° or FC = 31.5 lb 30° ( 22.5 + FC ) cos 30° = ( 54 ) cos 30° FC = 31.5 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 83. (a) Based on − ( 54 lb ) cos 30° = − FC cos 30° ΣFx : ∴ FC = 54 lb or FC = 54.0 lb 30° ( 54 lb ) cos10° (10 in.) = M C ΣM C : ∴ M C = 531.80 lb ⋅ in. or M C = 532 lb ⋅ in. (b) Based on ΣFy : ( 54 lb ) sin 30° = FB sin α = 27 or ΣM B : FB sin α (1) 531.80 lb ⋅ in. − ( 54 lb ) cos10° ( 24 in.) = − FC ( 24 in.) cos 20° FC = 33.012 lb or And ΣFx : FC = 33.0 lb − ( 54 lb ) cos 30° = − 33.012 lb − FB cos α FB cos α = 13.7534 From Eq (1) : Eq ( 2 ) From Eq. (1), FB = tan α = 27 13.7534 (2) ∴ α = 63.006° 27 = 30.301 lb sin ( 63.006° ) or FB = 30.3 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 63.0° COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 84. (a) Have ΣFy : FC + FD + FE = F F = −200 lb + 150 lb − 150 lb F = − 200 lb or F = 200 lb ΣM G : Have FC ( d − 4.5 ft ) − FD ( 6 ft ) = 0 ( 200 lb )( d − 4.5 ft ) − (150 lb )( 6 ft ) = 0 d = 9 ft or d = 9.00 ft (b) Changing directions of the two 150-lb forces only changes the sign of the couple. ∴ F = − 200 lb or F = 200 lb And ΣM G : FC ( d − 4.5 ft ) + FD ( 6 ft ) = 0 ( 200 lb )( d − 4.5 ft ) + (150 lb )( 6 ft ) = 0 d =0 or d = 0 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 85. (a) Based on ΣFz : − 200 N + 200 N + 240 N = FA FA = 240 N or FA = ( 240 N ) k Based on ΣM A : (b) ( 200 N )( 0.7 m ) − ( 200 N )( 0.2 m ) = M A M A = 100 N ⋅ m or M A = (100.0 N ⋅ m ) j Based on ΣFz : − 200 N + 200 N + 240 N = F F = 240 N or F = ( 240 N ) k Based on ΣM A : (c) 100 N ⋅ m = ( 240 N )( x ) x = 0.41667 m or x = 0.417 m From A along AB Based on ΣM B : − ( 200 N )( 0.3 m ) + ( 200 N )( 0.8 m ) − P (1 m ) = R ( 0 ) P = 100 N or P = 100.0 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 86. Let R be the single equivalent force... ΣF : R = FA + FC = ( 260 N )( cos10° i − sin10° k ) + ( 320 N )( − cos8° i − sin 8° k ) = − ( 60.836 N ) i − ( 89.684 N ) k or R = − ( 60.8 N ) i − ( 89.7 N ) k ΣM A : rAD Rx = rAC FC cos8° rAD ( 60.836 N ) = ( 0.690 m )( 320 N ) cos8° rAD = 3.5941 m ∴ R Would have to be applied 3.59 m to the right of A on an extension of handle ABC. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 87. (a) Have ΣF : FB + FC + FD = FA Since FB = − FD ∴ FA = FC = 22 lb 20° or FA = 22.0 lb Have ΣM A : 20° − FBT ( r ) − FCT ( r ) + FDT ( r ) = M A − ( 28 lb ) sin15° ( 8 in.) − ( 22 lb ) sin 25° ( 8 in.) + ( 28 lb ) sin 45° ( 8 in.) = M A M A = 26.036 lb ⋅ in. or M A = 26.0 lb ⋅ in. (b) Have ΣF : FA = FE or FE = 22.0 lb ΣM : ∴ 20° M A = [ FE cos 20°] ( a ) 26.036 lb ⋅ in. = ( 22 lb ) cos 20° ( a ) a = 1.25941 in. or a = 1.259 in. Below A Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 88. (a) Let R be the single equivalent force. Then R = (120 N ) k ΣM B : R = 120 N − a (120 N ) = − ( 0.165 m )( 90 N ) cos15° + ( 0.201 m )( 90 N ) sin15° a = 0.080516 m ∴ The line of action is y = 201 mm − 80.516 mm = 19.984 mm 2 or y = 19.98 mm (b) ΣM B : Then − ( 0.201 − 0.040 ) m (120 N ) = − ( 0.165 m )( 90 N ) cosθ + ( 0.201 m )( 90 N ) sin θ or cosθ − 1.21818sin θ = 1.30101 or cos 2 θ = (1.30101 + 1.21818sin θ ) or 1 − sin 2 θ = 1.69263 + 3.1697sin θ + 1.48396sin 2 θ or 2.48396sin 2 θ + 3.1697 sin θ + 0.69263 = 0 sin θ = −3.1697 ± 2 ( 3.1697 )2 − 4 ( 2.48396 )( 0.69263) 2 ( 2.48396 ) or θ = −16.26° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. and θ = −85.0° COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 89. (a) First note that F = P and that F must be equivalent to (P, MD) at point D, Where M D = 57.6 N ⋅ m For F = ( F )min F must act as far from D as possible ∴ Point of application is at point B (b) For ( F )min Now F must be perpendicular to BD d DB = ( 630 mm )2 + ( −160 mm )2 = 650 mm tan α = 63 16 α = 75.7° Then M D = d DB F 57.6 N ⋅ m = ( 0.650 m ) F F = 88.6 N or F = 88.6 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 75.7° COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 90. Have ΣF : − ( 250 kN ) j = F or F = − ( 250 kN ) j Also have ΣM G : rP × P = M i j k − 0.030 0 0.060 kN ⋅ m = M 0 − 250 0 ∴ M = (15 kN ⋅ m ) i + ( 7.5 kN ⋅ m ) k or M = (15.00 kN ⋅ m ) i + ( 7.50 kN ⋅ m ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 91. Have ΣF : where TAB TAB = F JJJG AB = TAB AB = ( 54 lb ) 2.25i − 18 j + 9k ( 2.25)2 + ( −18)2 + ( 9 )2 = ( 6 lb ) i − ( 48 lb ) j + ( 24 lb ) k F = ( 6.00 lb ) i − ( 48.0 lb ) j + ( 24.0 lb ) k So that Have ΣM E : rA/E × TAB = M i j k 0 22.5 0 lb ⋅ ft = M 6 − 48 24 ∴ M = ( 540 lb ⋅ ft ) i − (135 lb ⋅ ft ) k or M = ( 540 lb ⋅ ft ) i − (135.0 lb ⋅ ft ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 92. Have ΣF : where TCD TCD = F JJJG CD = TCD CD = ( 61 lb ) − 0.9i − 16.8j + 7.2k ( − 0.9 )2 + ( −16.8)2 + ( 7.2 )2 = − ( 3 lb ) i − ( 56 lb ) j + ( 24 lb ) k So that F = − ( 3.00 lb ) i − ( 56.0 lb ) j + ( 24.0 lb ) k Have ΣM O = rC/D × TCD = M i j k 0 22.5 0 lb ⋅ ft = M − 3 − 56 24 ∴ M = ( 540 lb ⋅ ft ) i + ( 67.5 lb ⋅ ft ) k M = ( 540 lb ⋅ ft ) i + ( 67.5 lb ⋅ ft ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 93. Have ΣF : TAB = F where TAB = TAB JJJG AB AB = (10.5 kN ) − i − 4.75j + 2k ( −1)2 + ( − 4.75)2 + ( 2 )2 = − ( 2 kN ) i − ( 9.5 kN ) j + ( 4 kN ) k F = − ( 2.00 kN ) i − ( 9.50 kN ) j + ( 4.00 kN ) k So that Have ΣM O : rA × TAB = M i j k 3 4.75 0 kN ⋅ m = M − 2 − 9.5 4 ∴ M = (19 kN ⋅ m ) i − (12 kN ⋅ m ) j − (19 kN ⋅ m ) k M = (19.00 kN ⋅ m ) i − (12.00 kN ⋅ m ) j − (19.00 kN ⋅ m ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 94. Let ( R, M O ) be the equivalent force-couple system Then R = ( 220 N )( − sin 60° j − cos 60° k ) ( = (110 N ) − 3 j − k ) or R = − (190.5 N ) j − (110 N ) k Now ΣM O : Where rOC = ( 0.2 m ) i + ( 0.1 − 0.4sin 20° ) m j + ( 0.4 cos 20° m ) k Then MO M O = rOC × R i j k = − ( 0.1)(110 N ) 2 (1 − 4sin 20° ) 4 cos 20° ( m ) 0 3 1 { = − (11 N ⋅ m ) (1 − 4sin 20° )(1) − ( 4cos 20° ) or ( 3 ) i − 2 j + 2 3k } M O = ( 75.7 N ⋅ m ) i + ( 22.0 N ⋅ m ) j − ( 38.1 N ⋅ m ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 95. Have ΣF : F = FD JJG AI where F = F AI = ( 63 lb ) 14.4i − 4.8j + 7.2k (14.4 )2 + ( − 4.8)2 + ( 7.2 )2 F = ( 54.0 lb ) i − (18.00 lb ) j + ( 27.0 lb ) k So that Have ΣM D : M + rI /O × F = M D JJJG AC where M = M AC = ( 560 lb ⋅ in.) 9.6 i − 7.2 k ( 9.6 )2 + ( − 7.2 )2 = ( 448 lb ⋅ in.) i − ( 336 lb ⋅ in.) k Then M D i j k = ( 448 lb ⋅ in.) i − ( 336 lb ⋅ in.) k + 0 0 14.4 lb ⋅ in. 54 −18 27 = ( 448 lb ⋅ in.) i − ( 336 lb ⋅ in.) k + ( 259.2 lb ⋅ in.) i + ( 777.6 lb ⋅ in.) j or M D = ( 707 lb ⋅ in.) i + ( 778 lb ⋅ in.) j − ( 336 lb ⋅ in.) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 96. First assume that the given force W and couples M1 and M 2 act at the origin. Now W = − Wj and M = M1 + M 2 = − ( M 2 cos 25° ) i + ( M1 − M 2 sin 25° ) k Note that since W and M are perpendicular, it follows that they can be replaced with a single equivalent force. F =W (a) Have or F = − Wj = − ( 2.4 N ) j or F = − ( 2.40 N ) j W (b) Assume that the line of action of F passes through point P (x, 0, z). Then for equivalence M = rP/O × F rP/O = xi + zk where ∴ − ( M 2 cos 25° ) i + ( M1 − M 2 sin 25° ) k i j k = x 0 z = (Wz ) i − (Wx ) k 0 −W 0 Equating the i and k coefficients, z = (b) For −M z cos 25° W and M − M 2 sin 25° x = − 1 W W = 2.4 N, M1 = 0.068 N ⋅ m, M 2 = 0.065 N ⋅ m x= 0.068 − 0.065sin 25° = − 0.0168874 m − 2.4 or x = −16.89 mm W z = − 0.065cos 25° = − 0.024546 m 2.4 or z = − 24.5 mm W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 97. ΣM Bz : M 2 z = 0 (a) Have ( ) k ⋅ rH /B × F1 + M1z = 0 (1) rH /B = ( 31 in.) i − ( 2 in.) j where F1 = λ EH F1 = = ( 6 in.) i + ( 6 in.) j − ( 7 in.) k 11.0 in. ( 20 lb ) 20 lb ( 6i + 6 j − 7k ) 11.0 M1z = k ⋅ M1 M1 = λ EJ M1 = −di + ( 3 in.) j − ( 7 in.) k d 2 + 58 in. ( 480 lb ⋅in.) Then from Equation (1), 0 0 1 31 −2 0 6 6 −7 20 lb ⋅ in. ( −7 )( 480 lb ⋅ in.) + =0 11.0 d 2 + 58 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Solving for d, Equation (1) reduces to 20 lb ⋅ in. 3360 lb ⋅ in. =0 (186 + 12 ) − 2 11.0 d + 58 d = 5.3955 in. From which or d = 5.40 in. (b) F2 = F1 = 20 lb ( 6i + 6 j − 7k ) 11.0 = (10.9091i + 10.9091j − 12.7273k ) lb or F2 = (10.91 lb ) i + (10.91 lb ) j − (12.73 lb ) k M 2 = rH /B × F1 + M1 i j k 20 lb ⋅ in. ( − 5.3955 ) i + 3j − 7k = 31 − 2 0 + ( 480 lb ⋅ in.) 11.0 9.3333 6 6 −7 = ( 25.455i + 394.55j + 360k ) lb ⋅ in. + ( − 277.48i + 154.285j − 360k ) lb ⋅ in. M 2 = − ( 252.03 lb ⋅ in.) i + ( 548.84 lb ⋅ in.) j or M 2 = − ( 21.0 lb ⋅ ft ) i + ( 45.7 lb ⋅ ft ) j Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 98. (a) a : ΣFy : Ra = − 400 N − 600 N or R a = 1000 N ΣM B : M a = ( 2 kN ⋅ m ) + ( 2 kN ⋅ m ) + ( 5 m )( 400 N ) or M a = 6.00 kN ⋅ m b : ΣFy : Rb = −1200 N + 200 N or R b = 1000 N ΣM B : M b = ( 0.6 kN ⋅ m ) + ( 5 m )(1200 N ) or M b = 6.60 kN ⋅ m c : ΣFy : Rc = 200 N − 1200 N or R c = 1000 N ΣM B : M c = − ( 4 kN ⋅ m ) − (1.6 kN ⋅ m ) − ( 5 m )( 200 N ) or M c = 6.60 kN ⋅ m d : ΣFy : Rd = − 800 N − 200 N or R d = 1000 N ΣM B : M d = − (1.6 kN ⋅ m ) + ( 4.2 kN ⋅ m ) + ( 5 m )( 800 N ) or M d = 6.60 kN ⋅ m continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System e : ΣFy : Re = − 500 N − 400 N or R e = 900 N ΣM B : M e = ( 3.8 kN ⋅ m ) + ( 0.3 kN ⋅ m ) + ( 5 m )( 500 N ) or M e = 6.60 kN ⋅ m f : ΣFy : R f = 400 N − 1400 N or R f = 1000 N ΣM B : M f = ( 8.6 kN ⋅ m ) − ( 0.8 kN ⋅ m ) − ( 5 m )( 400 N ) or M f = 5.80 kN ⋅ m g : ΣFy : Rg = −1200 N + 300 N or R g = 900 N ΣM B : M g = ( 0.3 kN ⋅ m ) + ( 0.3 kN ⋅ m ) + ( 5 m )(1200 N ) or M g = 6.60 kN ⋅ m h : ΣFy : Rh = − 250 N − 750 N or R h = 1000 N ΣM B : M h = − ( 0.65 kN ⋅ m ) + ( 6 kN ⋅ m ) + ( 5 m )( 250 N ) or M h = 6.60 kN ⋅ m (b) The equivalent loadings are (b), (d), (h) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 99. The equivalent force-couple system at B is... ΣFy : R = − 650 N − 350 N or R = 1000 N ΣM B : M = (1.6 m )( 800 N ) + (1.27 kN ⋅ m ) + ( 5 m )( 650 N ) or M = 5.80 kN ⋅ m ∴ The equivalent loading of Problem 3.98 is (f) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 100. Equivalent force system... (a) ΣFy : R = − 400 N − 200 N or R = 600 N ΣM A : − d ( 600 N ) = − ( 200 N ⋅ m ) + (100 N ⋅ m ) − ( 4 m )( 200 N ) or d = 1.500 m (b) ΣFy : R = − 400 N + 100 N or R = 300 N ΣM A : − d ( 300 N ) = − ( 200 N ⋅ m ) − ( 600 N ⋅ m ) + ( 4 m )(100 N ) or d = 1.333 m (c) ΣFy : R = − 400 N − 100 N or R = 500 N ΣM A : − d ( 500 N ) = − ( 200 N ⋅ m ) − ( 200 N ⋅ m ) − ( 4 m )(100 N ) or d = 1.600 m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 101. The equivalent force-couple system at A for each of the five force-couple systems will be determined and compared to F = ( 2 lb ) j M = ( 48 lb ⋅ in.) i + ( 32 lb ⋅ in.) k To determine if they are equivalent Force-couple system at B: Have ΣF : F = ( 2 lb ) j and ΣM A : M = ΣM B + rB/ A × FB ( ) M = ( 32 lb ⋅ in.) i + (16 lb ⋅ in.) k + ( 8 in.) i × ( 2 lb ) j = ( 32 lb ⋅ in.) i + ( 32 lb ⋅ in.) k ∴ is not equivalent Force-couple system at C: Have ΣF : And ΣM A : F = ( 2 lb ) j ( M = M C + rC/ A × FC ) M = ( 68 lb ⋅ in.) i + ( 8 in.) i + (10 in.) k × ( 2 lb ) j = ( 48 lb ⋅ in.) i + (16 lb ⋅ in.) k ∴ is not equivalent continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Force-couple system at E: Have ΣF : F = ( 2 lb ) j and ΣM A : M = M E + rE/ A × FE ( ) M = ( 48 lb ⋅ in.) i + (16 in.) i − ( 3.2 in.) j × ( 2 lb ) j = ( 48 lb ⋅ in.) i + ( 32 lb ⋅ in.) k ∴ is equivalent Force-couple system at G: Have ΣF : F = ( 2 lb ) i + ( 2 lb ) j F has two force components ∴ is not equivalent Force-couple system at I: Have ΣF : F = ( 2 lb ) j and ΣM A : ΣM I + rI / A × FI ( ) M = ( 80 lb ⋅ in.) i − (16 in.) k + (16 in.) i − ( 8 in.) j + (16 in.) k × ( 2 lb ) j M = ( 48 lb ⋅ in.) i + (16 lb ⋅ in.) k ∴ is not equivalent Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 102. WA = mA g = ( 38 kg ) g First WB = mB g = ( 29 kg ) g WC = mC g = ( 27 kg ) g (a) For resultant weight to act at C, Then ΣM C = 0 ( 38 kg ) g ( 2 m ) − ( 27 kg ) g ( d ) − ( 29 kg ) g ( 2 m ) = 0 ∴ d = 76 − 58 = 0.66667 m 27 or d = 0.667 m WC = mC g = ( 24 kg ) g (b) For resultant weight to act at C, Then ΣM C = 0 ( 38 kg ) g ( 2 m ) − ( 24 kg ) g ( d ) − ( 29 kg ) g ( 2 m ) = 0 ∴ d = 76 − 58 = 0.75 m 24 or d = 0.750 m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 103. (a) Have ΣF : − WC − WD − WE = R ∴ R = − 200 lb − 175 lb − 135 lb = − 510 lb or R = 510 lb Have ΣM A : − ( 200 lb )( 4.5 ft ) − (175 lb )( 7.8 ft ) − (135 lb )(12.75 ft ) = − R ( d ) ∴ − 3986.3 lb ⋅ ft = ( − 510 lb ) d or d = 7.82 ft (b) For equal reactions at A and B, The resultant R must act at midspan. From L ΣM A = − R 2 ∴ − ( 200 lb )( 4.5 ft ) − (175 lb )( 4.5 ft + a ) − (135 lb )( 4.5 ft + 2.5 a ) = − ( 510 lb )( 9 ft ) or 2295 + 512.5 a = 4590 and a = 4.48 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 104. Have ΣF : −12 kN − WL − 18 kN = − 40 kN − 40 kN WL = 50 kN or WL = 50.0 kN ΣM B : (12 kN )( 5 m ) + ( 50 kN ) d = ( 40 kN )( 5 m ) d = 2.8 m or heaviest load ( 50 kN ) is located 2.80 m from front axle Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 105. (a) ΣF : R = ( 80 N ) i − ( 40 N ) j − ( 60 N ) j + ( 90 N )( − sin 50°i − cos 50° j) = (11.0560 N ) i − (157.851 N ) j R= (11.0560 N )2 + ( −157.851 N )2 = 158.2 N tan θ = −157.851 11.0560 θ = 86.0° or R = 158.2 N 86.0° (b) ΣM F : d − (157.851 N ) = ( 0.32 m )( 80 N ) − ( 0.15 m )( 40 N ) − ( 0.35 m )( 60 N ) − ( 0.61 m )( 90 N ) cos 50° − ( 0.16 m )( 90 N ) sin 50° or d = 302 mm to the right of F Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 106. (a) ΣM I : 0 = ( 0.32 m )( 80 N ) + ( 0.1 m )( 40 N ) − ( 0.1 m )( 60 N ) − ( 0.36 m )( 90 N ) cos α − ( 0.16 m )( 90 N ) sin α or 4sin α + 9cos α = 6.5556 ( 9cosα )2 = ( 6.5556 − 4sin α ) ( 2 ) 81 1 − sin 2 α = 42.976 − 52.445sin α + 16sin 2 α 97sin 2 α − 52.445sin α − 38.024 = 0 Solving by the quadratic formula gives for the positive root sin α = 0.95230 α = 72.233° or α = 72.2° Note: The second root (α = − 24.3° ) is rejected since 0 < α < 90°. (b) ΣF : R = ( 80 N ) i − ( 40 N ) j − ( 60 N ) j + ( 90 N )( − sin 72.233°i − cos 72.233° j) = − ( 5.7075 N ) i − (127.463 N ) j R= ( − 5.7075 N )2 + ( −127.463 N )2 = 127.6 N tan θ = −127.463 − 5.7075 θ = 87.4° or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. R = 127.6 N 87.4° COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 107. (a) Have ΣM D : 0 = M − ( 0.8 in.)( 40 lb ) − ( 2.9 in.)( 20 lb ) cos 30° − ( 3.3 in.)( 20 lb ) sin 30° or M = 115.229 lb ⋅ in. or M = 115.2 lb ⋅ in. Now, R is oriented at 45° as shown (since its line of action passes through B and D). 0 = ( 40 lb ) cos 45° − ( 20 lb ) cos15° Have ΣFx′ : − ( 90 lb ) cos (α + 45° ) or α = 39.283° or (b) ΣFx : α = 39.3° Rx = 40 − 20sin 30° − 90cos 39.283° = − 39.663 lb Now R= 2 Rx or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. R = 56.1 lb 45.0° COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 108. (a) Reduce system to a force and couple at B: Have R = ΣF = − (10 lb ) j + ( 25 lb ) cos 60°i + ( 25 lb ) sin 60° j − ( 40 lb ) i = − ( 27.5 lb ) i + (11.6506 lb ) j or R = ( − 27.5 lb )2 + (11.6506 lb )2 = 29.866 lb 11.6506 θ = tan −1 = 22.960° 27.5 or R = 29.9 lb Also M B = ΣM B = ( 80 lb ⋅ in.) k − (12 in.) i × ( −10 lb ) j − ( 8 in.) j × ( − 40 lb ) i = − (120 lb ⋅ in.) k (b) Have M B = − (120 lb ⋅ in.) k = − ( u ) i × (11.6506 lb ) j − (120 lb ⋅ in.) k = − (11.6506 lb )( u ) k u = 10.2999 in. and x = 12 in. − 10.2999 in. = 1.7001 in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 23.0° COSMOS: Complete Online Solutions Manual Organization System Have M B = − (120 lb ⋅ in.) k = − ( v ) j × ( − 27.5 lb ) i − (120 lb ⋅ in.) k = − ( 27.5 lb )( v ) k v = 4.3636 in. and y = 8 in. − 4.3636 in. = 3.6364 in. or 1.700 in. to the right of A and 3.64 in. above C Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 109. (a) Position origin along centerline of sheet metal at the intersection with line EF. (a) ΣF = R Have R = − 0.52 j − 1.05 j − 2.1( sin 45° i + cos 45° j) − 0.64 i kips R = − ( 2.1249 kips ) i − ( 3.0549 kips ) j ( − 2.1249 )2 + ( − 3.0549 )2 R= = 3.7212 kips − 3.0549 = 55.179° − 2.1249 θ = tan −1 or Have R = 3.72 kips 55.2° M EF = ΣM EF Where M EF = ( 0.52 kip )( 3.6 in.) + (1.05 kips )(1.6 in.) − ( 2.1 kips )( 0.8 in.) − ( 0.64 kip ) (1.6 in.) sin 45° + 1.6 in. = 0.123923 kip ⋅ in. To obtain distance d left of EF, Have M EF = dRy = d ( − 3.0549 kips ) d = 0.123923 kip ⋅ in. = −0.040565 in. − 3.0549 kips or d = 0.0406 in. left of EF (b) Have M EF = ΣM EF = 0 M EF = ( 0.52 kip )( 3.6 in.) + (1.05 kips )(1.6 in.) − ( 2.1 kips )( 0.8 in.) − ( 0.64 kip ) (1.6 in.) sin α + 1.6 in. ∴ (1.024 kip ⋅ in.) sin α = 0.848 kip ⋅ in. or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. α = 55.9° COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 110. (a) Have ΣF = R R = − 0.52 j − 1.05j − 2.1( sin α i + cos α j) − 0.64i kips = − 0.64 kip + ( 2.1 kips )( sin α ) i − 1.57 kips + ( 2.1 kips ) cos α j Then tan α = Rx 0.64 + 2.1sin α = Ry 1.57 + 2.1cos α 1.57 tan α + 2.1sin α = 0.64 + 2.1sin α tan α = 0.64 1.57 α = 22.178° or (b) From α = 22.178° Rx = − 0.64 kip − ( 2.1 kips ) sin 22.178° = −1.43272 kips Ry = −1.57 kips − ( 2.1 kips ) cos 22.178° = − 3.5146 kips Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. α = 22.2° COSMOS: Complete Online Solutions Manual Organization System R= ( −1.43272 )2 + ( − 3.5146 )2 = 3.7954 kips or Then R = 3.80 kips 67.8° M EF = ΣM EF Where M EF = ( 0.52 kip )( 3.6 in.) + (1.05 kips )(1.6 in.) − ( 2.1 kips )( 0.8 in.) − ( 0.64 kip ) (1.6 in.) sin 22.178° + 1.6 in. = 0.46146 kip ⋅ in. To obtain distance d left of EF, Have M EF = dRy = d ( − 3.5146 kips ) d = 0.46146 kip ⋅ in. − 3.5146 kips = − 0.131298 in. or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. d = 0.1313 in. left of EF COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 111. Equivalent force-couple at A due to belts on pulley A ΣF : −120 N − 160 N = RA Have ∴ R A = 280 N ΣM A : − 40 N ( 0.02 m ) = M A Have ∴ M A = 0.8 N ⋅ m Equivalent force-couple at B due to belts on pulley B ΣF : Have ( 210 N + 150 N ) ∴ R B = 360 N 25° = R B 25° ΣM B : − 60 N ( 0.015 m ) = M B Have ∴ M B = 0.9 N ⋅ m Equivalent force-couple at F Have ΣF : R F = ( −280 N ) j + ( 360 N )( cos 25°i + sin 25° j) = ( 326.27 N ) i − (127.857 N ) j R = RF = 2 2 RFx + RFy = ( 326.27 )2 + (127.857 )2 = 350.43 N RFy −1 −127.857 = tan = −21.399° 326.27 RFx θ = tan −1 or R F = R = 350 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 21.4° COSMOS: Complete Online Solutions Manual Organization System Have ΣM F : M F = − ( 280 N )( 0.06 m ) − 0.80 N ⋅ m − ( 360 N ) cos 25° ( 0.010 m ) + ( 360 N ) sin 25° ( 0.120 m ) − 0.90 N ⋅ m M F = − ( 3.5056 N ⋅ m ) k To determine where a single resultant force will intersect line FE, M F = dR y ∴ d = MF −3.5056 N ⋅ m = = 0.027418 m = 27.418 mm Ry −127.857 N or d = 27.4 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 112. (a) Have R = ΣF R = ( 25 N )( cos 40°i + sin 40° j) − (15 N ) i − (10 N ) j = ( 4.1511 N ) i + ( 6.0696 N ) j R = ( 4.1511)2 + ( 6.0696 )2 = 7.3533 N 6.0696 θ = tan −1 4.1511 = 55.631° R = 7.35 N or 55.6° (a) and (b) (b) From M B = ΣM B = dRy where M B = − ( 25 N ) cos 40° ( 0.375 m ) sin 50° − ( 25 N ) sin 40° ( 0.375 m ) cos 50° + (15 N ) ( 0.150 m ) sin 50° − (10 N )( 0.150 m ) + 6.25 N ⋅ m ∴ M B = −2.9014 N ⋅ m and d = = MB Ry −2.9014 N ⋅ m 6.0696 N = 0.47802 m or (c) d = 478 mm to the left of B From M B = rD/B × R − ( 2.9014 N ⋅ m ) k = ( −d1 cos 50°i + d1 sin 50° j) × ( 4.1511 N ) i + ( 6.096 N ) j − ( 2.9014 N ⋅ m ) k = − ( 7.0814 d1 ) k ∴ d1 = 0.40972 m or d1 = 410 mm from B along line AB or 34.7 mm above and to left of A Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 113. ΣFx = 0 Based on P cos α − 15 N = 0 ∴ P cos α = 15 N (1) ΣFy = 0 and P sin α − 10 N = 0 ∴ P sin α = 10 N (2) Dividing Equation (2) by Equation (1), tan α = 10 15 ∴ α = 33.690° Substituting into Equation (1), P= 15 N = 18.0278 N cos33.690° or P = 18.03 N (a) Based on ΣM B = 0 33.7° − (18.0278 N ) cos 33.690° ( d + 0.150 m ) sin 50° − (18.0278 N ) sin 33.690° ( d + 0.150 m ) cos 50° + (15 N ) ( 0.150 m ) sin 50° − (10 N )( 0.150 m ) + 6.25 N ⋅ m = 0 −17.9186d = −3.7858 ∴ d = 0.21128 m or d = 211 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System (b) Based on ΣM D = 0 − (18.0278 N ) cos 33.690° ( d + 0.150 m ) sin 50° − (18.0278 N ) sin 33.690° ( d + 0.150 m ) cos50° + 0.150 m + (15 N ) ( 0.150 m ) sin 50° + 6.25 N ⋅ m = 0 −17.9186d = −3.7858 ∴ d = 0.21128 m or d = 211 mm This result is expected, since R = 0 and M RB = 0 for d = 211 mm implies that R = 0 and M = 0 at any other point for the value of d found in part a. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 114. (a) Let ( R, M D ) be the equivalent force-couple system at D. First note... At x = b; y = h For y = k x2 We have h = k b 2 h or k = 2 b h ∴ y = 2 x2 b h y = 2 x2 For any contact point c alone the surface b dy h =2 2x dx b b2 tan −1 2hx R = F and ΣΜ D : M D = − ( x ) F sin θ + ( h − y ) F cosθ b2 = −x F b 4 + 4h 2 x 2 or MD 2h x + h − h x 2 F 2 4 b b + 4h 2 x 2 h 2 2 − xb + h − 2 x ( 2hx ) b = F 4 2 2 b + 4h x 2h 2 x 3 2 2 − xb + 2h x − b2 = F b 4 + 4h 2 x 2 or M D 2h 2 x3 2 2 2h − b x − b2 = F b 4 + 4h 2 x 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ( ) COSMOS: Complete Online Solutions Manual Organization System b = 1 ft, h = 2 ft (b) With 7 x − 8x3 MD = F 2 1 + 16 x For M D to be a maximum Then dM D dx 7 − 24 x 2 = 0 = F ( ) 1 1 + 16 x 2 − 7 x − 8x3 ( 32 x ) 1 + 16 x 2 2 2 1 + 16 x ( ( ) ) ( ) − 1 2 For the non-trivial solution: ( )( ) ( 0 = 7 − 24 x 2 1 + 16 x 2 − 16 x 7 x − 8 x3 ) 0 = 256 x 4 + 24 x 2 − 7 Solving by the quadratic formula gives for the positive root. x = 0.354 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 115. For equivalence ΣF : FB + FC + FD = R A R A = − ( 240 N ) j − (125 N ) k − ( 300 N ) i + (150 N ) k ∴ R A = − ( 300 N ) i − ( 240 N ) j + ( 25 N ) k Also for equivalence ΣΜ Α : rB/ A × FB + rC/ A × FC + rD/ A × FD = M A or M A i j k i j k i j k = 0 0.12 m 0 + 0.06 m 0.03 m − 0.075 m + 0.06 m 0.08 m − 0.75 m 0 − 240 N −125 N −300 N 0 0 0 0 150 N = − (15 N ⋅ m ) i + ( 22.5 N ⋅ m ) j + ( 9 N ⋅ m ) k + (12 N ⋅ m ) i − ( 9 N ⋅ m ) j or M A = − ( 3 N ⋅ m ) i + (13.5 N ⋅ m ) j + ( 9 N ⋅ m ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 116. Let ( R, M D ) be the equivalent force-couple system at O. Now ΣF : R = ΣF = (1.8 lb )( − sin 40°i − cos 40°k ) + (11 lb )( − sin12° j − cos12°k ) + (18 lb )( − sin15° j − cos15°k ) or R = − (1.157 lb ) i − ( 6.95 lb ) j − ( 29.5 lb ) k Note that each belt force may be replaced by a force-couple that is equivalent to the same force plus the moment of the force about the shaft (x axis) of the sander. Then ... ΣM O : M O = ΣM O i j k = (1.8 lb ) 0 0.75 in. 2.2 in. − sin 40° 0 − cos 40° − ( 2.5 in.)(11 lb ) i − ( 9 in.) i × (11 lb )( − sin12° j − cos12°k ) + ( 2.5 in.)(18 lb ) i − ( 9 in.) i × (18 lb )( − sin15° j − cos15°k ) = (1.8 )( −0.75cos 40°i − 2.2sin 40° j + 0.75sin 40°k ) − 27.5i + ( 99 )( sin12°k − cos12° j) + 45i + (162 )( sin15°k − cos15° j) ( lb ⋅ in.) = ( −1.03416 − 27.5 + 45 ) i + ( −2.5454 − 96.837 − 156.480 ) j + ( 0.86776 + 20.583 + 41.929 ) k ( lb ⋅ in.) or M O = (16.47 lb ⋅ in.) i − ( 256 lb ⋅ in.) j + ( 63.4 lb ⋅ in.) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 117. Have and Now ΣFx : −10 N = Ax + Bx ΣFy : 0 = Ay + By ΣFz : 6 N = Az + Bz ΣM O : d BA : ⇒ Bx = −10 − Ax ⇒ By = − Ay ⇒ Bz = 6 − Az M O = rO/ A × A + rO/B × B 372 mm = ( 60 mm )2 + ( −72 mm )2 + ( d BA )2z or ( d BA ) z = 360 mm rO/ A = (135 mm ) i − ( 72 mm ) j + ( 310 mm ) k Then rO/B = ( 75 mm ) i − ( 50 mm ) k ( 60 N ⋅ m ) i + ( 0.05 N ⋅ m ) j − (10 N ⋅ m ) k i j k i j k = 0.135 − 0.72 0.310 ( N ⋅ m ) + 0.075 0 − 0.050 ( N ⋅ m ) Ax Ay Az Bx By Bz i: ( ) 60 = −0.072 Az − 0.310 Ay + ( 0.050 ) By or 60 = −0.072 Az − 0.360 Ay j: 0.05 = ( 0.310 Ax − 0.135 Az ) + ( −0.050 Bx − 0.075 Bz ) = 0.310 Ax − 0.050 ( −10 − Ax ) − 0.135 Az − 0.075 ( 6 − Az ) or 0 = 0.360 Ax − 0.060 Az Az = 6 Ax Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (1) COSMOS: Complete Online Solutions Manual Organization System Now Ax = 2 N From equation (1) ∴ Az = 12.00 N 60 = −0.072 (12.00 ) − 0.360 Ay or Ay = −169.1 N Then Bx = −12.00 N By = 169.1 N Bz = −6.00 N ∴ A = ( 2.00 N ) i − (169.1 N ) j + (12.00 N ) k B = − (12.00 N ) i + (169.1 N ) j − ( 6.00 N ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 118. ΣF : B + C = R Have ΣFx : Bx + C x = 3.9 lb or ΣFy : C y = Ry (2) ΣFz : C z = −1.1 lb (3) Bx = 3.9 lb − Cx (1) ΣM A : rB/ A × B + rC/ A × C + M B = M RA Have i j k i j k 1 1 4 0 2.0 + ( 2 lb ⋅ ft ) i = M xi + (1.5 lb ⋅ ft ) j − (1.1 lb ⋅ ft ) k ∴ x 0 4.5 + 12 12 Bx 0 0 C x C y −1.1 ( 2 − 0.166667C y ) i + ( 0.375Bx + 0.166667Cx + 0.36667 ) j + ( 0.33333C y ) k = M xi + (1.5 ) j − (1.1) k From (a) i - coefficient 2 − 0.166667C y = M x (4) j - coefficient 0.375Bx + 0.166667Cx + 0.36667 = 1.5 (5) k - coefficient 0.33333C y = −1.1 (6) or C y = −3.3 lb From Equations (1) and (5): 0.375 ( 3.9 − Cx ) + 0.166667Cx = 1.13333 Cx = 0.32917 = 1.58000 lb 0.20833 From Equation (1): Bx = 3.9 − 1.58000 = 2.32 lb ∴ B = ( 2.32 lb ) i C = (1.580 lb ) i − ( 3.30 lb ) j − (1.110 lb ) k (b) From Equation (2): or R y = − ( 3.30 lb ) From Equation (4): M x = −0.166667 ( −3.30 ) + 2.0 = 2.5500 lb ⋅ ft or M x = ( 2.55 lb ⋅ ft ) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Ry = C y = −3.30 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 119. (a) Duct AB will not have a tendency to rotate about the vertical or y-axis if: ( ) R M By = j ⋅ ΣM BR = j ⋅ rF /B × FF + rE/B × FE = 0 where rF /B = (1.125 m ) i − ( 0.575 m ) j + ( 0.7 m ) k rE/B = (1.35 m ) i − ( 0.85 m ) j + ( 0.7 m ) k FF = 50 N ( sin α ) j + ( cos α ) k FE = − ( 25 N ) k ∴ ΣM RB j k i j k i = ( 50 N ) 1.125 m −0.575 m 0.7 m + ( 25 N ) 1.35 m −0.85 m 0.70 0 sin α cos α 0 0 −1 = ( −28.75cos α − 35sin α + 21.25 ) i − ( 56.25cos α − 33.75 ) j + ( 56.25sin α ) k N ⋅ m R M By = −56.25cos α + 33.75 = 0 Thus, cos α = 0.60 α = 53.130° or α = 53.1° (b) R = FE + FF where FE = − ( 25 N ) k FF = ( 50 N )( sin 53.130° j + cos 53.130°k ) = ( 40 N ) j + ( 30 N ) k ∴ R = ( 40 N ) j + ( 5 N ) k and M = ΣM RB = − 28.75 ( 0.6 ) + 35 ( 0.8 ) − 21.25 i − 56.25 ( 0.6 ) − 33.75 j + 56.25 ( 0.8 ) k = − ( 24 N ⋅ m ) i − ( 0 ) j + ( 45 N ⋅ m ) k or M = − ( 24.0 N ⋅ m ) i + ( 45.0 N ⋅ m ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 120. R = ΣF = FF + FE (a) Have FF = 50 N ( sin 60° ) j + ( cos 60° ) k = ( 43.301 N ) j + ( 25 N ) k where FE = − ( 25 N ) k ∴ R = ( 43.301 N ) j or R = ( 43.3 N ) j M CR = Σ ( r × F ) = rF /C × FF + rE/C × FE Have rF /C = ( 0.225 m ) i − ( 0.050 m ) j where rE/C = ( 0.450 m ) i − ( 0.325 m ) j i ∴ M CR j k i j k = 0.225 −0.050 0 N ⋅ m + 0.450 −0.325 0 N ⋅ m 0 43.301 25 0 0 −25 = ( 6.875 N ⋅ m ) i + ( 5.625 N ⋅ m ) j + ( 9.7427 N ⋅ m ) k or M CR = ( 6.88 N ⋅ m ) i + ( 5.63 N ⋅ m ) j + ( 9.74 N ⋅ m ) k (b) To determine which direction duct section CD has a tendency to turn, have R M CD = λ DC ⋅ M CR where λ DC = Then − ( 0.45 m ) i + ( 0.1 m ) j ( −0.45)2 + ( 0.1)2 = −0.97619i + 0.21693j R M CD = ( −0.97619i + 0.21693j) ⋅ ( 6.875i + 5.625 j + 9.7427k ) N ⋅ m = ( −6.7113 + 1.22023) N ⋅ m = −5.4911 N ⋅ m Since λ DC ⋅ M CR < 0, duct DC tends to rotate counterclockwise relative to elbow C as viewed from D to C. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 121. ΣF : R = R A = Rλ λ BC Have λ BC = where ( 42 in.) i − ( 96 in.) j − (16 in.) k ∴ RA = 106 in. 21.2 lb ( 42i − 96j − 16k ) 106 or R A = ( 8.40 lb ) i − (19.20 lb ) j − ( 3.20 lb ) k ΣM A : rC/ A × R + M = M A Have where rC/ A = ( 42 in.) i + ( 48 in.) k = 1 ( 42i + 48k ) ft 12 = ( 3.5 ft ) i + ( 4.0 ft ) k R = ( 8.40 lb ) i − (19.20 lb ) j − ( 3.20 lb ) k M = −λ BC M = −42i + 96 j + 16k (13.25 lb ⋅ ft ) 106 = − ( 5.25 lb ⋅ ft ) i + (12 lb ⋅ ft ) j + ( 2 lb ⋅ ft ) k Then i j k 3.5 0 4.0 lb ⋅ ft + ( −5.25i + 12 j + 2k ) lb ⋅ ft = M A 8.40 −19.20 −3.20 ∴ M A = ( 71.55 lb ⋅ ft ) i + ( 56.80 lb ⋅ ft ) j − ( 65.20 lb ⋅ ft ) k or M A = ( 71.6 lb ⋅ ft ) i + ( 56.8 lb ⋅ ft ) j − ( 65.2 lb ⋅ ft ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 122. − ( 0.6 ft ) i + ( 4.2 ft ) j − (1.5 ft ) k R C = R = ( 60 lb ) λ AB = 60 lb 2 2 2 ( − 0.6 ft ) + ( 4.2 ft ) + ( −1.5 ft ) From R C = − ( 8.00 lb ) i + ( 56.0 lb ) j − ( 20.0 lb ) k M C = rA/C × R + M From where rA/C = ( 7.8 ft ) i + (1.5 ft ) k M = ( 22.5 lb ⋅ ft ) λ BA = ( 22.5 lb ⋅ ft ) ( 0.6 ft ) i − ( 4.2 ft ) j + (1.5 ft ) k ( 0.6 ft )2 + ( − 4.2 ft )2 + (1.5 ft )2 = ( 3 lb ⋅ ft ) i − ( 21 lb ⋅ ft ) j + ( 7.5 lb ⋅ ft ) k ∴ MC i j k = 7.8 0 1.5 lb ⋅ ft + ( 3 i − 21 j + 7.5 k ) lb ⋅ ft −8 56 −20 = ( − 84 + 3) lb ⋅ ft i + (144 − 21) lb ⋅ ft j + ( 436.8 + 7.5 ) lb ⋅ ft k or M C = − ( 81.0 lb ⋅ ft ) i + (123.0 lb ⋅ ft ) j + ( 444 lb ⋅ ft ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 123. Have: ΣF : FA + FC + FD + FE = R R = − ( 80 kN ) j − ( 40 kN ) j − (100 kN ) j − ( 60 kN ) j = − ( 280 kN ) j or R = 280 kN Have: ΣM x : FA ( z A ) + FC ( zC ) + FD ( z D ) + FE ( z E ) = R ( zG ) (80 kN )( 0 ) + ( 40 kN ) ( 3 m ) sin 60° + 60 kN ( 0 ) + ( 60 kN ) − ( 3 m ) sin 60° = ( 280 kN ) Z G ∴ Z G = − 0.185577 m or Z G = − 0.1856 m ΣM z : FA ( x A ) + FC ( xC ) + FD ( xD ) + FE ( xE ) = R ( xG ) (80 kN ) − ( 3 m ) cos 60° − 1.5 m + ( 40 kN )(1.5 m ) + 60 kN (1.5 m ) + (100 kN ) ( 3 m ) cos 60° + 1.5 m = ( 280 kN ) xG or xG = 0.750 m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 124. Have: ΣM x : FA ( z A ) + FB ( z B ) + FC ( zC ) + FD ( z D ) + FE ( z E ) + FF ( z F ) = R ( zG ) (80 kN )( 0 ) + FB ( 3 m ) sin 60° + ( 40 kN ) ( 3 m ) sin 60° + (100 kN )( 0 ) + ( 60 kN ) − ( 3 m ) sin 60° + FF − ( 3 m ) sin 60° = R ( 0 ) FB − FF = 20 kN Also ΣM z : (1) FA ( x A ) + FB ( xB ) + FC ( xC ) + FD ( xD ) + FE ( xE ) + FF ( xF ) = R ( xG ) (80 kN ) − ( 3 m ) cos 60° − 1.5 m + FB ( −1.5 m ) + ( 40 kN )(1.5 m ) + (100 kN ) ( 3 m ) cos 60° + 1.5 m + ( 60 kN ) (1.5 m ) + FF ( − 1.5 m ) = R ( 0 ) FB + FF = 140 kN Solving equations (1) and (2): (2) FB = 80.0 kN FF = 60.0 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 125. Have ΣF : FA + FB + FC + FD = R − (116 kips ) j − ( 470 kips ) j − ( 66 kips ) j − ( 28 kips ) j = R ∴ R = − ( 680 kips ) j R = 680 kips Have ΣM x : FA ( z A ) + FB ( z B ) + FC ( zC ) + FD ( z D ) = R ( z E ) (116 kips )( 24 ft ) + ( 470 kips )( 48 ft ) + ( 66 kips )(18 ft ) + ( 28 kips )(100.5 ft ) = ( 680 kips )( zE ) ∴ z E = 43.156 ft or z E = 43.2 ft Have ΣM z : FA ( x A ) + FB ( xB ) + FC ( xC ) + FD ( xD ) = R ( xE ) (116 kips )( 30 ft ) + ( 470 kips )( 96 ft ) + ( 66 kips )(162 ft ) + ( 28 kips )( 96 ft ) = ( 680 kips )( xE ) ∴ xE = 91.147 or xE = 91.1 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 126. Have ΣF : FB + FC + FD + FE = R − ( 470 kips ) j − ( 66 kips ) j − ( 28 kips ) j − (116 kips ) j = R ∴ R = − ( 680 kips ) j Have ΣM x : FB ( z B ) + FC ( zC ) + FD ( z D ) + FE ( z E ) = R ( z B ) ( 470 kips )( 48 ft ) + ( 66 kips )(18 ft ) + ( 28 kips )(100.5 ft ) + (116 kips )( b ) = ( 680 kips )( 48 ft ) ∴ b = 52.397 ft or b = 52.4 ft Have ΣM z : FB ( xB ) + FC ( xC ) + FD ( xD ) + FE ( xE ) = R ( xB ) ( 470 kips )( 96 ft ) + ( 66 kips )(162 ft ) + ( 28 kips )( 96 ft ) + (116 kips )( a ) = ( 680 kips )( 96 ft ) ∴ a = 58.448 ft or a = 58.4 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 127. For the smallest weight on the trailer so that the resultant force of the four weights acts over the axle at the intersection with the center line of the trailer, the added 0.6 × 0.6 × 1.2-m box should be placed adjacent to one of the edges of the trailer with the 0.6 × 0.6-m side on the bottom. The edges to be considered are based on the location of the resultant for the three given weights. Have ΣF : − ( 200 N ) j − ( 400 N ) j − (180 N ) j = R ∴ R = − ( 780 N ) j Have ΣM z : ( 200 N )( 0.3 m ) + ( 400 N )(1.7 m ) + (180 N )(1.7 m ) = ( 780 N )( x ) ∴ x = 1.34103 m Have ΣM x : ( 200 N )( 0.3 m ) + ( 400 N )( 0.6 m ) + (180 N )( 2.4 m ) = ( 780 N )( z ) ∴ z = 0.93846 m From the statement of the problem, it is known that the resultant of R from the original loading and the lightest load W passes through G, the point of intersection of the two center lines. Thus, ΣM G = 0. Further, since the lightest load W is to be as small as possible, the fourth box should be placed as far from G as possible without the box overhanging the trailer. These two requirements imply ( 0.3 m ≤ x ≤ 1 m ) (1.8 m ≤ z ≤ 3.7 m ) continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Let x = 0.3 m, ΣM Gz : ( 200 N )( 0.7 m ) − ( 400 N )( 0.7 m ) − (180 N )( 0.7 m ) + W ( 0.7 m ) = 0 ∴ W = 380 N ΣM Gx : − ( 200 N )(1.5 m ) − ( 400 N )(1.2 m ) + (180 N )( 0.6 m ) + ( 380 N )( z − 1.8 m ) = 0 ∴ z = 3.5684 m < 3.7 m Let z = 3.7 m, ∴ acceptable ΣM Gx : − ( 200 N )(1.5 m ) − ( 400 N )(1.2 m ) + (180 N )( 0.6 m ) + W (1.7 m ) = 0 ∴ W = 395.29 N > 380 N Since the weight W found for x = 0.3 m is less than W found for z = 3.7 m, x = 0.3 m results in the smallest weight W. or W = 380 N at Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ( 0.3 m, 0, 3.57 m ) COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 128. For the largest additional weight on the trailer with the box having at least one side coinsiding with the side of the trailer, the box must be as close as possible to point G. For x = 0.6 m, with a small side of the box touching the z-axis, satisfies this condition. Let x = 0.6 m, ΣM Gz : ( 200 N )( 0.7 m ) − ( 400 N )( 0.7 m ) − (180 N )( 0.7 m ) + W ( 0.4 m ) = 0 ∴ W = 665 N and ΣM GX : − ( 200 N )(1.5 m ) − ( 400 N )(1.2 m ) + (180 N )( 0.6 m ) + ( 665 N )( z − 1.8 m ) = 0 ∴ z = 2.8105 m (2 m < z < 4 m) ∴ acceptable or W = 665 N at ( 0.6 m, 0, 2.81 m ) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 129. First, reduce the given force system to a force-couple system at the origin. Have ΣF : ( 2P ) i − ( P ) j + ( P ) j = R ∴ R = ( 2P ) i Have ΣM O : Σ ( rO × F ) = M OR M OR i j k i j k = Pa 2 2 2.5 + 0 0 4 = Pa ( −1.5i + 5j − 6k ) 2 −1 0 0 1 0 R = 2Pi (a) or Magnitude of R = 2P Direction of R : θ x = 0°, θ y = −90°, θ z = 90° (b) Have M1 = λ R ⋅ M OR λR = R R = i ⋅ ( −1.5Pai + 5Paj − 6Pak ) = −1.5Pa and pitch P= M1 −1.5Pa = = −0.75a 2P R Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or P = −0.75a COSMOS: Complete Online Solutions Manual Organization System M OR = M1 + M 2 (c) Have ∴ M 2 = M OR − M1 = ( 5Pa ) j − ( 6Pa ) k Require M 2 = rQ/O × R ( 5Pa ) j − ( 6Pa ) k = ( yj + zk ) × ( 2Pi ) = − ( 2Py ) k + ( 2Pz ) j From i : 5Pa = 2Pz ∴ z = 2.5a From k : − 6Pa = −2Py ∴ y = 3a ∴ The axis of the wrench is parallel to the x-axis and intersects the yz-plane at y = 3a, z = 2.5a Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 130. First, reduce the given force system to a force-couple at the origin. ΣF : Pi − Pi − Pk = R Have ∴ R = − Pk ΣM O : − P ( 3a ) k − P ( 3a ) j + P ( −ai + 3aj) = MOR Have ∴ MOR = Pa ( −i − 3k ) Then let vectors ( R, M1 ) represent the components of the wrench, where their directions are the same. R = − Pk or Magnitude of R = P (a) Direction of R : θ x = 90°, θ y = 90°, θ z = −180° M1 = λ R ⋅ M OR (b) Have = −k ⋅ Pa ( −i − 3k ) = 3Pa and pitch (c) Have P= M1 3Pa = = 3a R P or P = 3a M OR = M1 + M 2 ∴ M 2 = M OR − M1 = Pa ( −i − 3k ) − ( −3Pak ) = − Pai Require M 2 = rQ/O × R − Pai = ( xi + yj) × ( − P ) k = Pxj − Pyi From i : − Pa = − Py or y =a j: x = 0 ∴ The axis of the wrench is parallel to the z-axis and intersects the xy plane at x = 0, y = a Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 131. First, reduce the given force system to a force-couple at the origin. Have ΣF : − (10 N ) j − (11 N ) j = R ∴ R = − ( 21 N ) j Have ΣM O : Σ ( rO × F ) + ΣM C = M OR M OR i j k i j k = 0 0 0.5 N ⋅ m + 0 0 −0.375 N ⋅ m − (12 N ⋅ m ) j 0 −10 0 0 −11 0 = ( 0.875 N ⋅ m ) i − (12 N ⋅ m ) j R = − ( 21 N ) j (a) R = − ( 21.0 N ) j Have M1 = λ R ⋅ M OR (b) or λR = R R = ( − j) ⋅ ( 0.875 N ⋅ m ) i − (12 N ⋅ m ) j = 12 N ⋅ m and pitch P = (c) and M1 = − (12 N ⋅ m ) j M1 12 N ⋅ m = = 0.57143 m R 21 N Have or P = 0.571 m M OR = M1 + M 2 ∴ M 2 = M OR − M1 = ( 0.875 N ⋅ m ) i Require ∴ ( 0.875 N ⋅ m ) i = ( xi + zk ) × − ( 21 N ) j 0.875i = − ( 21x ) k + ( 21z ) i Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M 2 = rQ/O × R COSMOS: Complete Online Solutions Manual Organization System From i: 0.875 = 21z ∴ z = 0.041667 m From k: 0 = −21x ∴ z =0 ∴ The axis of the wrench is parallel to the y-axis and intersects the xz-plane at x = 0, z = 41.7 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 132. (a) Have First, reduce the given force system to a force-couple system. ΣF : − ( 50 N ) k − ( 50 N ) j + ( 50 N ) k = R R = − ( 50 N ) j; R = 50 N R = − ( 50.0 N ) j Have ΣM O : ( 0.1 N ⋅ m ) k − ( 0.1 N ⋅ m ) j + ( 0.1 N ⋅ m ) k M OR = − ( 0.1 N ⋅ m ) j + ( 0.2 N ⋅ m ) k (b) Have M1 = λ R × MOR = R ⋅ M OR R = − j ⋅ − ( 0.1 N ⋅ m ) j + ( 0.2 N ⋅ m ) k = 0.1 N ⋅ m and pitch P= M1 0.1 N ⋅ m = = 0.002 m R 50 N or P = 2.00 mm (c) Have M1 = PR = ( 0.002 m ) − ( 50 N ) j = − ( 0.1 N ⋅ m ) j Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. = M OR COSMOS: Complete Online Solutions Manual Organization System Note that because M z = ( 0.2 N ⋅ m ) k , the line of action of the wrench must pass through the x-axis to compensate for M z as shown above: With M1 + ( r × R ) = M OR Then − ( 0.1 N ⋅ m ) j + − ( d ) i × − ( 50N ) j = − ( 0.1 N ⋅ m ) j + ( 0.2 N ⋅ m ) k or ( 50 N )( d ) k = ( 0.2 N ⋅ m ) k and d = 0.004 m x = − d = − 0.004 m or x = − 4.00 mm, z = 0 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 133. ( ) First replace the given couples with an equivalent force-couple system R, M OB at the origin. ΣF : ΣM O : R = − ( 35 lb ) i − (12 lb ) k M OR = − ( 200 lb ⋅ in.) i + ( 8 in.) j + ( 8 in.) k × − ( 35 lb ) i − (140 lb ⋅ in.) k + (10 in.) i + ( 4 in.) j × − (12 lb ) k = ( − 200 − 48 ) i + ( − 280 + 120 ) j + ( 280 − 140 ) k = − ( 248 lb ⋅ in.) i − (1600 lb ⋅ in.) j + (140 lb ⋅ in.) k Now R= ( − 35 lb )2 + ( −12 lb )2 = 37 lb Then λ axis = 1 ( − 35 i − 12 k ) 37 R = − ( 35.0 lb ) i − (12.00 ) k (a) M1 = λ axis ⋅ M OR (b) Then = 1 ( − 35 i − 12 k ) ⋅ ( − 248 i − 160 j + 140 k )( lb ⋅ in.) 37 = 1 ( 35 × 248 − 12 × 140 )( lb ⋅ in.) 37 = 7000 lb ⋅ in. 37 M P= 1 = R 7000 lb ⋅ in. 37 37 lb or P = 5.11 in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System (c) Have M1 = λ axis M1 = 7000 lb ⋅ in. ( − 35 i − 12 k ) 37 2 Then M OR = M1 + M 2 or M 2 = ( − 248 i − 160 j + 140 k ) − 7000 ( − 35 i − 12 k ) 37 2 = − ( 69.037 lb ⋅ in.) i − (160 lb ⋅ in.) j + ( 201.36 lb ⋅ in.) k M z = rO/P × R Require i j k or − 69.037i − 160 j + 201.36k = 0 y z −35 0 −12 j: −160 = − 35 z z = 4.57 in. or k: 201.36 = 35 y or y = 5.75 in. ∴ The point of intersection is defined by y = 5.75 in. z = 4.57 in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 134. First reduce the given force system to a force-couple at the origin at B. 15 8 Have ΣF : − ( 79.2 lb ) k − ( 51 lb ) i + j = R 17 17 (a) ∴ R = − ( 24.0 lb ) i − ( 45.0 lb ) j − ( 79.2 lb ) k and R = 94.2 lb ΣM B : rA/B M RB Have × FA + M A + M B = M RB i j k 15 8 = 0 −20 0 − 660k − 714 i + j = 1584i − 660k − 42 ( 8i + 15 j) 17 17 0 0 −79.2 ∴ M RB = (1248 lb ⋅ in.) i − ( 630 lb ⋅ in.) j − ( 660 lb ⋅ in.) k (b) Have M1 = λ R ⋅ M OR = λR = R R −24.0i − 45.0 j − 79.2k ⋅ (1248 lb ⋅ in.) i − ( 630 lb ⋅ in.) j − ( 660 lb ⋅ in.) k 94.2 = 537.89 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System M1 = M1λ R and = − (137.044 lb ⋅ in.) i − ( 256.96 lb ⋅ in.) j − ( 452.24 lb ⋅ in.) k Then pitch p = or p = 5.71 in. (c) M1 537.89 lb ⋅ in. = = 5.7101 in. R 94.2 lb Have M RB = M1 + M 2 ∴ M 2 = M RB − M1 = (1248i − 630 j − 660k ) − ( −137.044i − 256.96 j − 452.24k ) = (1385.04 lb ⋅ in.) i − ( 373.04 lb ⋅ in.) j − ( 207.76 lb ⋅ in.) k Require M 2 = rQ/B × R i j k 1385.04i − 373.04 j − 207.76k = x 0 z −24 −45 −79.2 = ( 45 z ) i − ( 24 z ) j + ( 79.2 x ) j − ( 45 x ) k From i: From k: 1385.04 = 45z −207.76 = −45x ∴ z = 30.779 in. ∴ x = 4.6169 in. ∴ The axis of the wrench intersects the xz-plane at x = 4.62 in., z = 30.8 in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 135. (a) First reduce the given force system to a force-couple at the origin. ΣF : Pλ BA + Pλ DC + Pλ DE = R Have 4 12 3 3 4 −9 4 R = P j − k + i − j + i − j+ k 5 25 5 5 5 25 5 ∴ R = R= 3P 25 ( 2 )2 + ( 20 )2 + (1)2 3P ( 2i − 20 j − k ) 25 = 27 5 P 25 Have ΣM : Σ ( rO × P ) = M OR −4 P 3P 4P 4P 12 P 3P −9 P j− k + ( 20a ) j × i− j + ( 20a ) j × i− j+ k = M OR 5 5 5 25 5 5 25 ( 24a ) j × ∴ M OR = (b) 24 Pa ( −i − k ) 5 Have M1 = λ R ⋅M OR where λ R = 3P 25 1 R = = ( 2i − 20 j − k ) ( 2i − 20 j − k ) R 25 27 5 P 9 5 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Then M 1 = and pitch 1 9 5 ( 2i − 20 j − k ) ⋅ p= 24 Pa −8Pa ( −i − k ) = 5 15 5 M1 −8Pa 25 −8a = = R 81 15 5 27 5 P or p = −0.0988a (c) M1 = M 1λ R = −8Pa 1 8Pa ( −2i + 20 j + k ) ( 2i − 20 j − k ) = 675 15 5 9 5 Then M 2 = M OR − M1 = 24Pa 8Pa 8Pa ( −i − k ) − ( −2i + 20 j + k ) = ( −403i − 20 j − 406k ) 5 675 675 M 2 = rQ/O × R Require 8Pa 3P ( −403i − 20 j − 406k ) = ( xi + zk ) × ( 2i − 20 j − k ) 675 25 3P = 20 zi + ( x + 2 z ) j − 20 xk 25 From i: 8 ( −403) Pa 3P = 20 z 675 25 ∴ z = −1.99012a From k: 8 ( −406 ) Pa 3P = −20 x 675 25 ∴ x = 2.0049a ∴ The axis of the wrench intersects the xz-plane at x = 2.00a, z = −1.990a Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 136. First reduce the given force-couple system to an equivalent force-couple system ( R, M B ) at point B. d BD = ( − 480 mm )2 + ( 560 mm )2 + ( − 480 mm )2 = 880 mm FBD = FBDλBD = 132 N ( − 480i + 560 j − 480k ) 880 = (12 N )( − 6i + 7 j − 6k ) d EB = ( 240 mm )2 + ( − 220 mm )2 + ( 480 mm )2 = 580 mm FEB = FEBλEB = 145 N ( 240i − 220 j + 480k ) 580 = ( 5 N )(12i − 11j + 24k ) ΣF : R = FBD + FEB = (12 N )( − 6i + 7 j − 6k ) + 5 N (12i − 11j + 24k ) = − (12 N ) i + ( 29 N ) j + ( 48 N ) k d BF = ( 340 mm )2 + ( 240 mm )2 + ( − 60 mm )2 = 20 442 mm Then MB = = 20 N ⋅ m ( 340i + 240 j − 60k ) 20 442 20 N ⋅ m (17i + 12 j − 3k ) 442 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Now determine whether R and M B are perpendicular R ⋅ M B = ( −12 j + 29 j + 48k ) ⋅ 20 (17i + 12 j − 3k ) 442 20 ( −12 × 17 + 29 × 12 − 48 × 3) 442 = =0 ∴ R and M B are perpendicular so that ( R, M B ) can be reduced to the single equivalent force R = − (12.00 N ) i + ( 29.0 N ) j + ( 48.0 N ) k Now require M B = rB/P × R or j: 20 × 12 = −12 ( z − 0.480 ) + 0.480 ( 48 ) 442 or k: i j k 20 N ⋅ m (17i + 12 j − 3k ) = − 0.480 y z − 0.480 ( N ⋅ m ) 442 −12 29 48 z = 1.449 m − 20 × 3 = − 0.480 ( 29 ) + 12 y 442 or y = 0.922 m ∴ The point of intersection is defined by y = 0.922 m z = 1.449 m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 137. First, reduce the given force system to a force-couple at the origin. ΣF : FA + FG = R Have ( 4 in.) i + ( 6 in.) j − (12 in.) k ∴ R = (10 lb ) k + 14 lb = ( 4 lb ) i + ( 6 lb ) j − ( 2 lb ) k 14 in. R= and Have 56 lb ΣM O : ∑ ( rO × F ) + ∑ M C = MOR { } M OR = (12 in.) j × (10 lb ) k + (16 in.) i × ( 4 lb ) i + ( 6 lb ) j − (12 lb ) k (16 in.) i − (12 in.) j ( 4 in.) i − (12 in.) j + ( 6 in.) k + ( 84 lb ⋅ in.) + ( 120 lb ⋅ in.) 20 in. 14 in. ∴ M 0R = ( 221.49 lb ⋅ in.) i + ( 38.743 lb ⋅ in.) j + (147.429 lb ⋅ in.) k = (18.4572 lb ⋅ ft ) i + ( 3.2286 lb ⋅ ft ) j + (12.2858 lb ⋅ ft ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System The force-couple at O can be replaced by a single force if the direction of R is perpendicular to M OR . To be perpendicular R ⋅ M OR = 0 Have R ⋅ M OR = ( 4i + 6 j − 2k ) ⋅ (18.4572i + 3.2286 j + 12.2858k ) = 0? = 73.829 + 19.3716 − 24.572 ≠0 ∴ System cannot be reduced to a single equivalent force. To reduce to an equivalent wrench, the moment component along the line of action of P is found. M1 = λ R ⋅ M OR λR = R R ( 4i + 6 j − 2k ) = ⋅ (18.4572i + 3.2286 j + 12.2858k ) 56 = 9.1709 lb ⋅ ft M1 = M1λ R = ( 9.1709 lb ⋅ ft )( 0.53452i + 0.80178 j − 0.26726k ) and And pitch p= M1 9.1709 lb ⋅ ft = = 1.22551 ft R 56 lb or p = 1.226 ft Have M 2 = M OR − M1 = (18.4572i + 3.2286 j + 12.2858k ) − ( 9.1709 )( 0.53452i + 0.80178 j − 0.26726k ) = (13.5552 lb ⋅ ft ) i − ( 4.1244 lb ⋅ ft ) j + (14.7368 lb ⋅ ft ) k Require M 2 = rQ/O × R (13.5552i − 4.1244 j + 14.7368k ) = ( yj + zk ) × ( 4i + 6 j − 2k ) = − ( 2 y + 6z ) i + ( 4z ) j − ( 4 y ) k From j: −4.1244 = 4 z From k: 14.7368 = −4 y or or z = −1.0311 ft y = −3.6842 ft ∴ line of action of the wrench intersects the yz plane at y = −3.68 ft, z = 1.031 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 138. FA = ( FA ) x i + ( FA ) y j Define FB = ( FB ) x i + ( FB ) y j ΣFx : Then ( FA ) x + ( FB ) x = 0 ( FA ) x = − ( FB ) x ΣFy : ( FA ) y + ( FB ) y = R ( FA ) y bk × ( FB ) x i + ( FB ) y j = − ak + R j + M j ΣM A : and i: = R − ( FB ) y − b ( FB ) y = aR or ( FB ) y = − Then ( FA ) y a R b a = R − − R b a = R 1 + b j: b ( FB ) x = M M b or ( FB ) x = Then ( FA ) x = − M b ∴ FA = − M a i + R 1 + j b b FB = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M a i − Rj b b COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 139. First, choose a coordinate system so that the xy plane coincides with the given plane. Also, position the coordinate system so that the line of action of the wrench passes through the origin as shown in Figure a. Since the orientation of the plane and the components (R, M) of the wrench are known, it follows that the scalar components of R and M are known relative to the shown coordinate system. A force system to be shown as equivalent is illustrated in Figure b. Let A be the force passing through the given point P and B be the force that lies in the given plane. Let b be the x-axis intercept of B. The known components of the wrench can be expressed as R = Rxi + Ry j + Rzk M = M xi + M y j + M zk and while the unknown forces A and B can be expressed as A = Axi + Ay j + Azk and B = Bxi + Bzk Since the position vector of point P is given, it follows that the scalar components (x, y, z) of the position vector rP are also known. Then, for equivalence of the two systems ΣFx : Rx = Ax + Bx ΣFy : Ry = Ay (1) (2) ΣFz : Rz = Az + Bz (3) ΣM x : M x = yAz − zAy (4) ΣM y : M y = zAx − xAz − bBz (5) ΣM z : M z = xAy − yAx (6) continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System ( ) Based on the above six independent equations for the six unknowns Ax , Ay , Az , Bx , Bz , b , there exists a unique solution for A and B. Ay = Ry From Equation (2) Equation (6) 1 Ax = xRy − M z y Equation (1) 1 Bx = Rx − xRy − M z y Equation (4) 1 Az = M x + zRy y Equation (3) 1 Bz = Rz − M x + zRy y Equation (5) b= ( ) ( ( ) ) ( ) ( xM x + yM y + zM z ) ( M x − yRz + zRy ) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 140. First, observe that it is always possible to construct a line perpendicular to a given line so that the constructed line also passes through a given point. Thus, it is possible to align one of the coordinate axes of a rectangular coordinate system with the axis of the wrench while one of the other axes passes through the given point. See Figures a and b. Have R = Rj M = Mj and and are known. The unknown forces A and B can be expressed as A = Axi + Ay j + Azk B = Bxi + By j + Bzk and The distance a is known. It is assumed that force B intersects the xz plane at (x, 0, z). Then for equivalence ∑ Fx : 0 = Ax + Bx (1) ∑ Fy : R = Ay + By (2) ∑ Fz : 0 = Az + Bz (3) ∑ M x : 0 = − zBy (4) ∑ M y : M = −aAz − xBz + zBx (5) ∑ M z : 0 = aAy + xBy (6) Since A and B are made perpendicular, A⋅B = 0 There are eight unknowns: or Ax Bx + Ay By + Az Bz = 0 (7) Ax , Ay , Az , Bx , By , Bz , x, z But only seven independent equations. Therefore, there exists an infinite number of solutions. continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System 0 = − zBy Next consider Equation (4): If By = 0, Equation (7) becomes Ax Bx + Az Bz = 0 Ax2 + Az2 = 0 Using Equations (1) and (3) this equation becomes Since the components of A must be real, a nontrivial solution is not possible. Thus, it is required that By ≠ 0, so that from Equation (4), z = 0. To obtain one possible solution, arbitrarily let Ax = 0. (Note: Setting Ay , Az , or Bz equal to zero results in unacceptable solutions.) The defining equations then become. 0 = Bx (1)′ R = Ay + By (2) 0 = Az + Bz (3) M = −aAz − xBz (5)′ 0 = aAy + xBy (6) Ay By + Az Bz = 0 (7)′ Then Equation (2) can be written Ay = R − By Equation (3) can be written Bz = − Az x=− Equation (6) can be written aAy By Substituting into Equation (5)′, R − By M = −aAz − −a ( − Az ) B y or Az = − M By (8) aR Substituting into Equation (7)′, M M By By = 0 ( R − By ) By + − aR aR Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System By = or a 2 R3 a2R2 + M 2 Then from Equations (2), (8), and (3) Ay = R − Az = − Bz = a 2 R3 RM 2 = a2R2 + M 2 a2R2 + M 2 M a 2 R3 aR 2 M = − 2 2 2 2 aR a R + M a R2 + M 2 aR 2 M a R2 + M 2 2 In summary A= RM ( Mj − aRk ) a R2 + M 2 B= aR 2 ( aRj + Mk ) a R2 + M 2 2 2 Which shows that it is possible to replace a wrench with two perpendicular forces, one of which is applied at a given point. Lastly, if R > 0 and M > 0, it follows from the equations found for A and B that Ay > 0 and By > 0. From Equation (6), x < 0 (assuming a > 0). Then, as a consequence of letting Ax = 0, force A lies in a plane parallel to the yz plane and to the right of the origin, while force B lies in a plane parallel to the yz plane but to the left of the origin, as shown in the figure below. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 141. First, choose a rectangular coordinate system where one axis coincides with the axis of the wrench and another axis intersects the prescribed line of action ( AA′ ) . Note that it has been assumed that the line of action of force B intersects the xz plane at point P ( x, 0, z ) . Denoting the known direction of line AA′ by λ A = λxi + λ y j + λzk it follows that force A can be expressed as ( A = Aλ A = A λxi + λ y j + λz k ) Force B can be expressed as B = Bxi + By j + Bzk Next, observe that since the axis of the wrench and the prescribed line of action AA′ are known, it follows that the distance a can be determined. In the following solution, it is assumed that a is known. Then, for equivalence ΣFx : 0 = Aλx + Bx (1) ΣFy : R = Aλ y + By (2) ΣFz : 0 = Aλz + Bz (3) ΣM x : 0 = − zBy Since there are six unknowns (4) ΣM y : M = −aAλz + zBx − xBz (5) ΣM z : 0 = aAλ y + xBy (6) ( A, Bx , By , Bz , x, z ) and six independent equations, it will be possible to obtain a solution. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Case 1: Let z = 0 to satisfy Equation (4) Aλ y = R − By Now Equation (2) Bz = − Aλz Equation (3) By a = − R − By By a M = −aAλz − − By R − By ( − Aλz ) x=− Equation (6) aAλ y ( ) Substitution into Equation (5) ∴ A=− ( ) 1 M B λz aR y Substitution into Equation (2) R=− 1 M By λ y + By λz aR ∴ By = Then λz aR 2 λz aR − λ y M R aR λy − λz M λx MR Bx = − Aλx = λz aR − λ y M A=− MR λz aR − λ y M Bz = − Aλz = = λz MR λz aR − λ y M In summary A= B= and P λA aR λy − λz M R ( λ Mi + λz aRj + λz Mk ) λz aR − λ y M x λz aR − λ y M R x = a 1 − = a 1 − R By λz aR 2 or x = Note that for this case, the lines of action of both A and B intersect the x axis. continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. λy M λz R COSMOS: Complete Online Solutions Manual Organization System Case 2: Let By = 0 to satisfy Equation (4) A= Now Equation (2) R λy Equation (1) λ Bx = − R x λy Equation (3) λ Bz = − R z λy aAλ y = 0 Equation (6) which requires a = 0 Substitution into Equation (5) λ M = z −R x λ y λ − x −R z λ y or This last expression is the equation for the line of action of force B. In summary R A = λ A λy R B= λy M λz x − λx z = λ y R ( −λ x i − λ z k ) Assuming that λx , λ y , λz > 0, the equivalent force system is as shown below. Note that the component of A in the xz plane is parallel to B. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 142. (a) Have M B = rC/B FN = ( 0.1 m )( 800 N ) = 80.0 N ⋅ m or M B = 80.0 N ⋅ m (b) By definition M B = rA/B P sin θ where θ = 90° − ( 90° − 70° ) − α = 90° − 20° − 10° = 60° ∴ 80.0 N ⋅ m = ( 0.45 m ) P sin 60° P = 205.28 N or P = 205 N (c) For P to be minimum, it must be perpendicular to the line joining points A and B. Thus, P must be directed as shown. Thus or M B = dPmin = rA/B Pmin 80.0 N ⋅ m = ( 0.45 m ) Pmin ∴ Pmin = 177.778 N or Pmin = 177.8 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 20° COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 143. M C = rB/C × FB Have Noting the direction of the moment of each force component about C is clockwise, M C = xFBy + yFBx where x = 144 mm − 78 mm = 66 mm y = 86 mm + 108 mm = 194 mm and FBx = FBy = 78 ( 78)2 + (86 )2 86 ( 78) 2 + ( 86 ) 2 ( 580 N ) = 389.65 N ( 580 N ) = 429.62 N ∴ M C = ( 66 mm )( 429.62 N ) + (194 mm )( 389.65 N ) = 103947 N ⋅ mm = 103.947 N ⋅ m or M C = 103.9 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 144. M A = rE/ A × TDE (a) Have rE/ A = ( 92 in.) j where TDE = λ DETDE = ( 24 in.) i + (132 in.) j − (120 in.) k 360 lb ( ) ( 24 )2 + (132 )2 + (120 )2 in. = ( 48 lb ) i + ( 264 lb ) j − ( 240 lb ) k i j k ∴ M A = 0 92 0 lb ⋅ in. = − ( 22,080 lb ⋅ in.) i − ( 4416 lb ⋅ in ) k 48 264 −240 or M A = − (1840 lb ⋅ ft ) i − ( 368 lb ⋅ ft ) k M A = rG/ A × TCG (b) Have rG/ A = (108 in.) i + ( 92 in.) j where TCG = λ CGTCG = − ( 24 in.) i + (132 in.) j − (120 in.) k ( 24 )2 + (132 )2 + (120 )2 in. ( 360 lb ) = − ( 48 lb ) i + ( 264 lb ) j − ( 240 lb ) k i j k ∴ M A = 108 92 0 lb ⋅ in. −48 264 −240 = − ( 22, 080 lb ⋅ in.) i + ( 25,920 lb ⋅ in.) j + ( 32,928 lb ⋅ in.) k or M A = − (1840 lb ⋅ ft ) i + ( 2160 lb ⋅ ft ) j + ( 2740 lb ⋅ ft ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 145. First note and AC = rC/ A = ( −2.4 )2 + (1.8)2 AD = rD/ A = (1.2 )2 + ( −2.4 )2 + ( 0.3)2 m = 3m m = 2.7 m rC/ A = − ( 2.4 m ) j + (1.8 m ) k rD/ A = (1.2 m ) i − ( 2.4 m ) j + ( 0.3 m ) k By definition rC/ A ⋅ rD/ A = rC/ A rD/ A cosθ or ( −2.4 j + 1.8k ) ⋅ (1.2i − 2.4 j + 0.3k ) = ( 3)( 2.7 ) cosθ ( 0 )(1.2 ) + ( −2.4 )( −2.4 ) + (1.8)( 0.3) = 8.1cosθ and cosθ = 6.3 = 0.77778 8.1 θ = 38.942° or θ = 38.9° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 146. M O = rA/O × TBA Based on where M O = M xi + M y j + M zk = M xi + (100 lb ⋅ ft ) j − ( 400 lb ⋅ ft ) k rA/O = ( 6 ft ) i + ( 4 ft ) j TBA = λ BATBA = ( 6 ft ) i − (12 ft ) j − ( a ) k T BA d BA i j k T ∴ M xi + 100 j − 400k = 6 4 0 BA d 6 −12 −a BA = TBA − ( 4a ) i + ( 6a ) j − ( 96 ) k d BA 100 d BA 6a From j-coefficient: 100d AB = 6aTBA or TBA = From k -coefficient: −400d AB = −96TBA or TBA = Equating Equations (1) and (2) yields a= 400 d BA 96 100 ( 96 ) 6 ( 400 ) or a = 4.00 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (1) (2) COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 147. ( M DB = λ DB ⋅ rC/D × TCF Have λ DB = where ( 48 in.) i − (14 in.) j 50 in. ) = 0.96i − 0.28 j rC/D = ( 8 in.) j − (16 in.) k ( 24 in.) i − ( 36 in.) j − (8 in.) k TCF = λ CF TCF = 44 in. (132 lb ) = ( 72 lb ) i − (108 lb ) j − ( 24 lb ) k 0.96 −0.28 ∴ M DB = 0 72 0 8 −16 lb ⋅ in. −108 −24 = 0.96 ( 8 )( −24 ) − ( −16 )( −108 ) + ( −0.28 ) ( −16 )( 72 ) − 0 = −1520.64 lb ⋅ in. or M DB = −1521 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 148. (a) Based on ΣF : FA = T = 1000 N or FA = 1000 N 20° ΣM A : M A = (T sin 50° )( dA ) = (1000 N ) sin 50° ( 2.25 m ) = 1723.60 N ⋅ m or M A = 1724 N ⋅ m (b) Based on ΣF : FB = T = 1000 N or FB = 1000 N 20° ΣMB : M B = (T sin 50° )( d B ) = (1000 N ) sin 50° (1.25 m ) = 957.56 N ⋅ m or M B = 958 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 149. Require the equivalent forces acting at A and C be parallel and at an angle of α with the vertical. Then for equivalence, ΣFx : ( 250 lb ) sin 30° = FA sin α + FB sin α (1) ΣFy : − ( 250 lb ) cos 30° = − FA cos α − FB cos α (2) Dividing Equation (1) by Equation (2), ( 250 lb ) sin 30° − ( 250 lb ) cos 30° = ( FA + FB ) sin α − ( FA + FB ) cos α Simplifying yields α = 30° Based on ΣM C : ( 250 lb ) cos 30° (12 ft ) = ( FA cos 30° )( 32 ft ) ∴ FA = 93.75 lb or FA = 93.8 lb 60° Based on ΣM A : − ( 250 lb ) cos 30° ( 20 ft ) = ( FC cos 30° ) ( 32 ft ) ∴ FC = 156.25 lb or FC = 156.3 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 60° COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 150. Have ΣF : PAB = FC where PAB = λ AB PAB = ( 2.0 in.) i + ( 38 in.) j − ( 24 in.) k 44.989 in. ( 45 lb ) or FC = ( 2.00 lb ) i + ( 38.0 lb ) j − ( 24.0 lb ) k Have ΣM C : rB/C × PAB = M C i j k M C = 2 29.5 −33 0 lb ⋅ in. 1 19 −12 = ( 2 lb ⋅ in.) {( −33)( −12 ) i − ( 29.5 )( −12 ) j + ( 29.5 )(19 ) − ( −33)(1) k } or M C = ( 792 lb ⋅ in.) i + ( 708 lb ⋅ in.) j + (1187 lb ⋅ in.) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 151. For equivalence ΣFx : − ( 90 N ) sin 30° + (125 N ) cos 40° = Rx or Rx = 50.756 N ΣFy : − ( 90 N ) cos30° − 200 N − (125 N ) sin 40° = Ry or Ry = −358.29 N and ( 50.756 )2 + ( −358.29 )2 R= Then tan θ = Ry Rx = −358.29 = −7.0591 50.756 = 361.87 N ∴ θ = −81.937° or R = 362 N 81.9° Also ΣM A : M − ( 90 N ) sin 35° ( 0.6 m ) − ( 200 N ) cos 25° ( 0.85 m ) − (125 N ) sin 65° (1.25 m ) = 0 ∴ M = 326.66 N ⋅ m or M = 327 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 152. For equivalence Σ F: FA + FB + FC + FD = R C R C = − ( 5 lb ) j − ( 3 lb ) j − ( 4 lb ) k − ( 7 lb ) i ∴ R C = ( −7 lb ) i − ( 8 lb ) j − ( 4 lb ) k Also for equivalence ΣM C : rA′/C × FA + rB′/C × FB + rD′/C × FD = M C or MC i j k i j k i j k = 0 0 −1.5 in. + 1 in. 0 −1.5 in. + 0 1.5 in. 1.5 in. 0 5 lb 0 0 −3 lb 0 −7 lb 0 0 = ( −7.50 lb ⋅ in. − 0 ) i + ( 0 − 4.50 lb ⋅ in.) i + ( −3.0 lb ⋅ in. − 0 ) k + (10.5 lb ⋅ in. − 0 ) j + ( 0 + 10.5 lb ⋅ in.) k or M C = − (12.0 lb ⋅ in.) i + (10.5 lb ⋅ in.) j + ( 7.5 lb ⋅ in.) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 153. Have ΣF : FA + FB + FC + FD = R − ( 85 lb ) j − ( 60 lb ) j − ( 90 lb ) j − ( 95 lb ) j = R ∴ R = − ( 330 lb ) j Have ΣM x : FA ( z A ) + FB ( z B ) + FC ( zC ) + FD ( z D ) = R ( z H ) (85 lb )( 9 ft ) + ( 60 lb )(1.5 ft ) + ( 90 lb )(14.25 ft ) + ( 95 lb )( zD ) = ( 330 lb )( 7.5 ft ) ∴ z D = 3.5523 ft Have or z D = 3.55 ft ΣM z : FA ( x A ) + FB ( xB ) + FC ( xC ) + FD ( xD ) = R ( xH ) (85 lb )( 3 ft ) + ( 60 lb )( 4.5 ft ) + ( 90 lb )(14.25 ft ) + ( 95 lb )( xD ) = ( 330 lb )( 7.5 ft ) ∴ xD = 7.0263 ft or xD = 7.03 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 1. Free-Body Diagram: (a) ΣM B = 0: − Ay ( 3.6 ft ) − (146 lb )(1.44 ft ) − ( 63 lb )( 3.24 ft ) − ( 90 lb )( 6.24 ft ) = 0 Ay = − 271.10 lb (b) ΣM A = 0 : or A y = 271 lb or B y = 570 lb By (3.6 ft ) − (146 lb)(5.04 ft ) − (63 lb)(6.84 ft ) − (90 lb)(9.84 ft ) = 0 By = 570.10 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 2. Free-Body Diagram: (a) ΣM C = 0: ( 3.5 kips ) (1.6 + 1.3 + 19.5cos15o ) ft − 2FB (1.6 + 1.3 + 14 ) ft + ( 9.5 kips )(1.6 ft ) = 0 2FB = 5.4009 kips or FB = 2.70 kips (b) ΣM B = 0: ( 3.5 kips ) (19.5cos15o − 14 ) ft − ( 9.5 kips ) (14 + 1.3) ft + 2 FC (14 + 1.3 + 1.6 ) ft = 0 2FC = 7.5991 kips, or or FC = 3.80 kips Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 3. Free-Body Diagram: (a) ΣM K = 0: ( 25 kN )( 5.4 m ) + ( 3 kN )( 3.4 m ) − 2FH ( 2.5 m ) + ( 50 kN )( 0.5 m ) = 0 2FH = 68.080 kN (b) ΣM H = 0: or FH = 34.0 kN ( 25 kN )( 2.9 m ) + ( 3 kN )( 0.9 m ) − ( 50 kN )( 2.0 m ) + 2FK ( 2.5 m ) = 0 2FK = 9.9200 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or FK = 4.96 kN COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 4. Free-Body Diagram: (boom) (a) ΣM B = 0: ( 25 kN )( 2.6 m ) + ( 3 kN )( 0.6 m ) − ( 25 kN )( 0.4 m ) − TCD ( 0.7 m ) = 0 TCD = 81.143 kN (b) ΣFx = 0: Bx = 0 so that B = By ΣFy = 0: ( −25 − 3 − 25 − 81.143) kN + B = 0 B = 134.143 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or TCD = 81.1 kN or B = 134.1 kN COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 5. Free-Body Diagram: a1 = ( 20 in.) sin α − ( 8 in.) cos α a2 = ( 32 in.) cos α − ( 20 in.) sin α b = ( 64 in.) cos α From free-body diagram of hand truck ΣM B = 0: P ( b ) − W ( a2 ) + W ( a1 ) = 0 (1) ΣFy = 0: P − 2w + 2B = 0 (2) α = 35° For a1 = 20sin 35° − 8cos 35° = 4.9183 in. a2 = 32 cos 35° − 20sin 35° = 14.7413 in. b = 64cos 35° = 52.426 in. (a) From Equation (1) P ( 52.426 in.) − 80 lb (14.7413 in.) + 80 lb ( 4.9183 in.) = 0 ∴ P = 14.9896 lb (b) or P = 14.99 lb From Equation (2) 14.9896 lb − 2 ( 80 lb ) + 2 B = 0 ∴ B = 72.505 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or B = 72.5 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 6. a1 = ( 20 in.) sin α − ( 8 in.) cos α Free-Body Diagram: a2 = ( 32 in.) cos α − ( 20 in.) sin α b = ( 64 in.) cos α From free-body diagram of hand truck ΣM B = 0: P ( b ) − W ( a2 ) + W ( a1 ) = 0 (1) ΣFy = 0: P − 2w + 2B = 0 (2) α = 40° For a1 = 20sin 40° − 8cos 40° = 6.7274 in. a2 = 32 cos 40° − 20sin 40° = 11.6577 in. b = 64cos 40° = 49.027 in. (a) From Equation (1) P ( 49.027 in.) − 80 lb (11.6577 in.) + 80 lb ( 6.7274 in.) = 0 P = 8.0450 lb or P = 8.05 lb (b) From Equation (2) 8.0450 lb − 2 (80 lb ) + 2 B = 0 B = 75.9775 lb or B = 76.0 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 7. Free-Body Diagram: (a) a = 2.9 m ΣFx = 0: ΣM B = 0: Ax = 0 − (12 m ) Ay + (12 − 2.9 ) m ( 3.9 kN ) + (12 − 2.9 − 2.6 ) m ( 6.3 kN ) + ( 2.8 + 1.45 ) m ( 7.9 kN ) + (1.45 m )( 7.3 kN ) = 0 or ΣFy = 0: or Ay = 10.0500 kN or A = 10.05 kN or B = 15.35 kN 10.0500 kN − 3.9 kN − 6.3 kN − 7.9 kN − 7.3 kN + By = 0 By = 15.3500 kN (b) a = 8.1 m ΣM B = 0: − (12 m ) Ay + (12 − 8.1) m ( 3.9 kN ) + (12 − 8.1 − 2.6 ) m ( 6.3 kN ) + ( 2.8 + 4.05 ) m ( 7.9 kN ) + ( 4.05 m )( 7.3 kN ) = 0 or ΣFy = 0: or Ay = 8.9233 kN or A = 8.92 kN 8.9233 kN − 3.9 kN − 6.3 kN − 7.9 kN − 7.3 kN + By = 0 By = 16.4767 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or B = 16.48 kN COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 8. Free-Body Diagram: (a) ΣFx = 0: ΣM B = 0: Ax = 0 − (12 m ) Ay + (12 m − a )( 3.9 kN ) + (12 − 2.6 ) m − a ( 6.3 kN ) a a + 2.8 m + ( 7.9 kN ) + ( 7.3 kN ) = 0 2 2 or (12 m ) Ay = 128.14 kN ⋅ m − (10.2 kN ) a + (15.2 kN ) a 2 (12 m ) Ay = 128.14 kN ⋅ m − ( 2.6 kN ) a Thus Ay is maximum for the smallest possible value of a: a =0 (b) The corresponding value of Ay is ( Ay )max = 10.6783 kN, and ΣFy = 0: or A = 10.68 kN or B = 14.72 kN 10.6783 kN − 3.9 kN − 6.3 kN − 7.9 kN − 7.3 kN + By = 0 By = 14.7217 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 9. Free-Body Diagram: For (TC )max , TB = 0 ΣM O = 0: (TC )max ( 4.8 in.) − (80 lb )( 2.4 in.) = 0 (TC ) = 40 lb > [Tmax = 36 lb ] max (TC )max = 36.0 lb For (TC )min , TB = Tmax = 36 lb ΣM O = 0: (TC )min ( 4.8 in.) + ( 36 lb )(1.6 in.) − (80 lb )( 2.4 in.) = 0 (TC )min = 28.0 lb Therefore: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 28.0 lb ≤ TC ≤ 36.0 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 10. Free-Body Diagram: For Qmin , TD = 0 ΣM B = 0: ( 7.5 kN )( 0.5 m ) − Qmin ( 3 m ) = 0 Qmin = 1.250 kN For Qmax , TB = 0 ΣM D = 0: ( 7.5 kN )( 2.75 m ) − Qmax ( 0.75 m ) = 0 Qmax = 27.5 kN Therefore: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 1.250 kN ≤ Q ≤ 27.5 kN COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 11. Free-Body Diagram: ΣM D = 0: ( 7.5 kN )( 2.75 m ) − TB ( 2.25 m ) + ( 5 kN )(1.5 m ) − Q ( 0.75 m ) = 0 Q = ( 37.5 − 3TB ) kN ΣM B = 0: (1) ( 7.5 kN )( 0.5 m ) − ( 5 kN )( 0.75 m ) + TD ( 2.25 m ) − Q ( 3 m ) = 0 Q = ( 0.75 TD ) kN (2) For the loading to be safe, cables must not be slack and tension must not exceed 12 kN. Thus, making 0 ≤ TB ≤ 12 kN in. (1), we have 1.500 kN ≤ Q ≤ 37.5 kN (3) And making 0 ≤ TD ≤ 12 kN in. (2), we have 0 ≤ Q ≤ 9.00 kN (3) and (4) now give: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (4) 1.500 kN ≤ Q ≤ 9.00 kN COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 12. Free-Body Diagram: For (WA )min , E = 0 ΣM F = 0: (WA )min ( 7.5 ft ) + ( 9 lb )( 4.8 ft ) + ( 28 lb )( 3 ft ) − ( 90 lb )(1.8 ft ) = 0 (WA )min = 4.6400 lb For (WA ) max , F = 0 ΣM E = 0: (WA )max (1.5 ft ) − ( 9 lb )(1.2 ft ) − ( 28 lb )( 3 ft ) − ( 90 lb )( 7.8 ft ) = 0 (WA )max = 531.20 lb Thus Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 4.64 lb ≤ WA ≤ 531 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 13. Free-Body Diagram: ΣM D = 0: ( 750 N )( 0.1 m − a ) − ( 750 N )( a + 0.075 m − 0.1 m ) − (125 N )( 0.05 m ) + B ( 0.2 m ) = 0 87.5 N + 0.2 B a= 1500 N (1) Using the bounds on B: B = − 250 N (i.e. 250 N downward) in (1) gives amin = 0.0250 m B = 500 N (i.e. 500 N upward) in (1) gives amax = 0.1250 m Therefore: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 25.0 mm ≤ a ≤ 125.0 mm COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 14. Free-Body Diagram: Note that W = mg is the weight of the crate in the free-body diagram, and that 0 ≤ E y ≤ 2.5 kN ΣFx = 0: ΣM A = 0: or ΣFy = 0: or Ax = 0 − (1.2 m )(1.2 kN ) − ( 2.0 m )(1.6 kN ) − ( 3.8 m ) E y + ( 6 m )W = 0 6W = 4.64 kN + 3.8E y (1) Ay − 1.2 kN − 1.6 kN − E y + W = 0 Ay = 2.8 kN + E y − W (2) Considering the smallest possible value of E y : For E y = 0, W = Wmin = 0.77333 kN From (2) the corresponding value of Ay is: Ay = 2.02667 kN ≤ 2.5 kN, which satisfies the constraint on Ay . For the largest allowable value of E y : E y = 2.5 kN , W = Wmax = 2.3567 kN From (2) the corresponding value of Ay is: Ay = 2.9433 kN ≥ 2.5 kN which violates the constraint on Ay . Thus ( Ay )max = 2.5 kN. Solving (1) and (2) for W with ( Ay )max = 2.5 kN, W = Wmax = 1.59091 kN Therefore: 773.33 N ≤ W ≤ 1590.91 N, or 773.33 N ≤ m(9.81 m/s 2 ) ≤ 1590.91 N, and 78.8 kg ≤ m ≤ 162.2 kg Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 15. Free-Body Diagram: Calculate lengths of vectors BD and CD: BD = (11.2) 2 + (21.0) 2 ft = 23.8 ft CD = (a) (11.2) + (8.4)2 ft = 14.0 ft 11.2 ft 11.2 ft (221 lb )(24 ft ) + TCD (11.4 ft ) = 0 − (161 lb )(24 ft ) + 23.8 ft 14.0 ft ΣM A = 0 : TCD = 150.000 lb (b) ΣFx = 0: 11.2 ft 11.2 ft 161 lb − ( 221 lb ) − (150 lb ) + Ax = 0 23.8 ft 14.0 ft Ax = 63.000 lb ΣFy = 0: or A x = 63.000 lb 21.0 ft 11.2 ft (221 lb) − Ay − (150 lb) = 0 23.8 ft 14.0 ft Ay = 285.00 lb A= TCD = 150.0 lb Ax2 + Ay2 = or A y = 285.00 lb (63)2 + (285) 2 = 291.88 lb ( 63 ) θ = tan −1 285 = 77.535° Therefore Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. A = 292 lb 77.5° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 16. Free-Body Diagram: (a) Equilibrium for ABCD: ΣM C = 0: ( A cos 60° )(1.6 in.) − ( 6 lb )(1.6 in.) + ( 4 lb )( 0.8 in.) = 0 A = 8.0000 lb (b) ΣFx = 0: or C x = 8.0000 lb C y − 6 lb + ( 8 lb ) sin 60° = 0 or C y = −0.92820 lb C = 60° Cx + 4 lb + ( 8 lb ) cos 60° = 0 or C x = − 8.0000 lb ΣFy = 0: A = 8.00 lb C x2 + C y2 = or (8)2 + ( 0.92820 )2 C y = 0.92820 lb = 8.0537 lb − 0.92820 = 6.6182° −8 θ = tan −1 Therefore: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. C = 8.05 lb 6.62° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 17. Free-Body Diagram: Equations of equilibrium: − ( 330 N )( 0.25 m ) + B sin α ( 0.3 m ) + B cos α ( 0.5 m ) = 0 ΣΜ Α = 0: (1) Ax − B sin α = 0 ΣFx = 0: (2) Ay − ( 330 N ) + B cos α = 0 ΣFy = 0: (3) (a) Substitution α = 0 into (1), (2), and (3) and solving for A and B: B = 165.000 N, Ax = 0, Ay = 165.0 N or A = 165.0 N , B = 165.0 N (b) Substituting α = 90° into (1), (2), and (3) and solving for A and B: B = 275.00 N, Ax = 275.00 N, Ay = 330.00 N A= Ax2 + Ay2 = θ = tan −1 Ay Ax (275)2 + (330) 2 = 429.56 N = tan −1 330 = 50.194° 275 ∴ A = 430 N 50.2°, B = 275 N (c) Substituting α = 30° into (1), (2), and (3) and solving for A and B: B = 141.506 N, Ax = 70.753 N, Ay = 207.45 N, ⇒ A= Ax2 + Ay2 = θ = tan −1 Ay Ax (70.753) 2 + (207.45) 2 = 219.18 N = tan −1 207.45 = 71.168° 70.753 ∴ A = 219 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 71.2°, B = 141.5 N 60° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 18. Free-Body Diagram: Equations of equilibrium: ΣΜ Α = 0 : − (82.5 N ⋅ m ) + B sin α (0.3 m ) + B cos α (0.5 m ) = 0 (1) ΣFx = 0: Ax − B sin α = 0 (2) ΣFy = 0: Ay + B cos α = 0 (3) (a) Substituting α = 0 into (1), (2), and (3) and solving for A and B: B = 165.000 N, Ax = 0, Ay = −165.0 N or A = 165.0 N , B = 165.0 N ∴ A = 275 N (b) Substituting α = 90° into (1), (2), and (3) and solving for A and B: B = 275.00 N, Ax = 275.00 N, Ay = 0 , B = 275 N (c) Substituting α = 30° into (1), (2), and (3) and solving for A and B: B = 141.506 N, Ax = 70.753 N, Ay = −122.548 N A = Ax2 + A y2 = (70.753) 2 + (−122.548) 2 = 141.506 N θ = tan −1 Ay Ax = tan −1 122.548 = 60.000° 70.753 ∴ A = 141.5 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 60.0°, B = 141.5 N 60° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 19. Free-Body Diagram: (a) From free-body diagram of lever BCD ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0 ∴ TAB = 300 (b) From free-body diagram of lever BCD ΣFx = 0: 200 N + Cx + 0.6 ( 300 N ) = 0 ∴ C x = −380 N or C x = 380 N ΣFy = 0: C y + 0.8 ( 300 N ) = 0 ∴ C y = −240 N C x2 + C y2 = Then C = and θ = tan −1 or C y = 240 N ( 380 )2 + ( 240 )2 = 449.44 N Cy − 240 = tan −1 = 32.276° − 380 Cx or C = 449 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 32.3° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 20. Free-Body Diagram: From free-body diagram of lever BCD ΣM C = 0: TAB ( 50 mm ) − P ( 75 mm ) = 0 ∴ TAB = 1.5P (1) ΣFx = 0: 0.6TAB + P − C x = 0 ∴ C x = P + 0.6TAB (2) Cx = P + 0.6 (1.5P ) = 1.9 P From Equation (1) ΣFy = 0: 0.8TAB − C y = 0 ∴ C y = 0.8TAB (3) C y = 0.8 (1.5P ) = 1.2 P From Equation (1) From Equations (2) and (3) C = C x2 + C y2 = (1.9 P )2 + (1.2 P )2 = 2.2472 P Since Cmax = 500 N, ∴ 500 N = 2.2472Pmax or Pmax = 222.49 lb or P = 222 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 21. Free-Body Diagram: (a) ΣΜ Βx = 0 : or Fsp = 2.4 in. − A − (0.9 in.)Fsp = 0 cosα 8 lb = kx = k (1.2 in.) cos 30° Solving for k: k = 7.69800 lb/in. k = 7.70 lb/in. (b) 8 lb =0 cos30° ( 3 lb ) sin 30° + Bx + ΣFx = 0: Bx = −10.7376 lb or − ( 3 lb ) cos 30° + B y = 0 ΣFy = 0: By = 2.5981 lb or B= ( −10.7376 )2 + ( 2.5981)2 θ = tan −1 = 11.0475 lb, and 2.5981 = 13.6020° 10.7376 Therefore: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. B = 11.05 lb 13.60° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 22. Free-Body Diagram: (a) ΣΜ Βx = 0: or 2.4 in. ( 3.6 lb ) − ( 0.9 in.)(12 lb ) = 0 cosα α = 36.9° cosα = 0.80000, or α = 36.870° (b) ΣFx = 0: ( 3 lb ) sin 36.870° + Bx + (12 lb ) = 0 or Bx = −14.1600 lb ΣFy = 0: − ( 3.6 lb ) cos 36.870° + By = 0 or By = 2.8800 lb B= ( −14.1600 )2 + ( 2.8800 )2 θ = tan −1 = 14.4499 lb, and 2.8800 = 11.4966° 14.1600 Therefore: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. B = 14.45 lb 11.50° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 23. Free-Body Diagram: From free-body diagram for (a): − B ( 0.2 m ) − (100 N )( 0.3 m ) + ( 50 N )( 0.05 m ) − 10 N ⋅ m = 0 ΣΜ A = 0: Β = −187.50 Ν ΣFx = 0: or B = 187.5 N −187.5 N − 50 N + Ax = 0 Ax = 237.50 N ΣFy = 0: Ay − 100 N = 0 Ay = 100.000 N A= and: Ax2 + Ay2 = θ = tan −1 Ay Ax ( 237.5)2 + (100 )2 = tan −1 = 257.69 N 100 = 22.834° 237.5 ∴ A = 258 N 22.8° From For (b) ΣΜ A = 0: − B cos 45° ( 0.2 m ) − (100 N )( 0.3 m ) + ( 50 N )( 0.05 m ) − 10 N ⋅ m = 0 Β = 265.17 Ν or B = 265.17 N 45° − ( 265.17 N ) cos 45° − 50 N + Ax = 0 ΣFx = 0: Ax = 237.50 N Ay + ( 265.17 ) sin 45° − 100 N = 0 ΣFy = 0: Ay = −87.504 N and: A= Ax2 + Ay2 = θ = tan −1 Ay Ax (237.50)2 + (−87.504)2 = 253.11 N = tan −1 87.504 = 20.226° 237.50 ∴ A = 253 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 20.2° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 24. Free-Body Diagram: From free-body diagram for (a): − (100 N )( 0.3 m ) + A ( 0.2 m ) − ( 50 N )( 0.15 m ) − 10 N ⋅ m = 0 ΣΜ B = 0: A = 237.50 Ν ΣFx = 0: or A = 238 N Bx + 237.5 N − 50 N = 0 Bx = −187.50 N ΣFy = 0: By − 100 N = 0 By = 100.000 N and: B= Bx2 + By2 = ( −187.5)2 + (100 )2 By 100 = 28.072° 187.5 θ = tan −1 = tan −1 Bx = 212.50 N ∴ B = 213 N 28.1° From free-body diagram or (b): − (100 N )( 0.3 m ) + A cos 45° ( 0.2 m ) − ( 50 N )( 0.15 m ) − 10 N ⋅ m = 0 ΣΜ B = 0: A = 335.88 Ν ΣFx = 0: or A = 336 N 45° Bx + ( 335.88 N ) cos 45° − 50 N = 0 Bx = −187.503 N ΣFy = 0: B y + ( 335.88 N ) sin 45° − 100 N = 0 By = −137.503 N and: B= Bx2 + B y2 = θ = tan −1 By Bx (−187.503) 2 + (−137.503)2 = 232.52 N = tan −1 137.503 = 36.254° 187.503 ∴ B = 233 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 36.3° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 25. Free-Body Diagram: Geometry: x AC = ( 8 in.) cos 20° = 7.5175 in. y AC = ( 8 in.) sin 20° = 2.7362 in. ⇒ yDA = 9.6 in. − 2.7362 in. = 6.8638 in. yDA −1 6.8638 = tan = 42.397° x 7.5175 AC α = tan −1 β = 90° − 20° − 42.397° = 27.603° Equilibrium for lever: (a) TAD cos 27.603° ( 8 in.) − ( 60 lb ) (12 in.) cos 20° = 0 ΣM C = 0: TAD = 95.435 lb (b) TAD = 95.4 lb Cx + ( 95.435 lb ) cos 42.397° = 0 ΣFx = 0: C x = −70.478 lb C y − 60 lb − ( 95.435 lb ) sin 42.397° = 0 ΣFy = 0: C y = 124.348 lb Cx2 + C y2 = Thus: C = and θ = tan −1 Cy Cx (−70.478) 2 + (124.348) 2 = 142.932 lb = tan −1 124.348 = 60.456° 70.478 ∴ C = 142.9 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 60.5° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 26. Free-Body Diagram: (a) a = 2 in. ΣΜ A = 0: ( 2 in.)( 20 lb ) − (1.5 in.)(16 lb ) − 32 lb ⋅ in. − ( 2 in.) E sin 60° − ( 5.5 in.) E cos 60° = 0 E = −3.5698 lb ΣFx = 0: or E = 3.57 lb 60.0° Ax − 16 lb + ( 3.5698 lb ) cos 60° = 0 Ax = 14.2151 lb ΣFy = 0: Ay − 20 lb − ( 3.5698 lb ) sin 60° = 0 Ay = 23.092 lb A= (14.2151)2 + ( 23.092 )2 θ = tan −1 = 27.117 lb 23.092 = 58.384° 14.2151 A = 27.1 lb Therefore: 58.4° (b) a = 7.5 in. ΣΜ A = 0: ( 7.5 in.)( 20 lb ) − (1.5 in.)(16 lb ) − 32 lb ⋅ in. − ( 2 in.) E sin 60° − ( 5.5 in.) E cos 60° = 0 E = 20.973 lb ΣFx = 0: or E = 21.0 lb 60.0° A = 26.6 lb 3.97° Ax − 16 lb − ( 20.973 lb ) cos 60° = 0 Ax = 26.487 lb ΣFy = 0: Ay − 20 lb + ( 20.973 lb ) sin 60° = 0 Ay = 1.83685 lb A= ( 26.487 )2 + (1.83685)2 θ = tan −1 = 26.551 lb 1.83685 = 3.9671° 26.487 Therefore: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 27. Free-Body Diagram: Geometry: ( 2.52 )2 + ( 0.39 )2 Distance BC = = 2.55 m Equilibrium for mast: (a) 2.52 TBC ( 0.75 m ) − (135 N )( 2.16 m ) − ( 225 N )( 0.66 m ) = 0 2.55 ΣΜ A = 0: TBC = 593.79 N (b) or TBC = 594 N 2.52 Ax − ( 593.79 N ) − 225 N − 135 Ν = 0 2.55 ΣFx = 0: Ax = 586.80 N 0.39 Ay + ( 593.79 N ) − 225 N − 135 Ν = 0 2.55 ΣFy = 0: Ay = 269.19 N Ax2 + Ay2 = Thus: A= and θ = tan −1 Ay Ax ( 586.80 )2 + ( 269.19 )2 = tan −1 = 645.60 N 269.19 = 24.643° 586.80 ∴ A = 646 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 24.6° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 28. Free-Body Diagram: Geometry: ( 2.52 )2 + ( 0.462 )2 Distance BC = = 2.562 m Equilibrium for mast: (a) 2.52 TBC ( 0.75 m ) − ( 90 N )( 2.16 m ) − (135 N )( 0.66 m ) = 0 2.562 ΣΜ A = 0: TBC = 384.30 N (b) or TBC = 384 N 2.52 Ax − ( 384.30 N ) = 0 2.562 ΣFx = 0: Ax = 378.00 N ΣFy = 0: 0.462 Ay + ( 384.30 N ) − 135 N − 90 Ν = 0 2.562 Ay = 155.700 N Ax2 + Ay2 = ( 378.00 )2 + (155.700 )2 Ay 155.700 = 22.387° 378.00 Thus: A= and θ = tan −1 Ax = tan −1 = 408.81 N ∴ A = 409 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 22.4° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 29. Free-Body Diagram: Geometry: AB = Distance (0.3)2 + (0.125)2 = 0.325 m Equilibrium for bracket: 0.3 0.125 T ( 0.175 m ) − T ( 0.225 m ) + T ( 0.075 m ) = 0 0.325 0.325 (150 N )( 0.225 m ) − ΣΜ C = 0: T = 195.000 N T = 195.0 N 0.3 Cx + T (195 N ) = 0 0.325 ΣFx = 0: C x = −180.000 N ΣFy = 0: 0.125 C y − 150 N + T (195 N ) + 195 N = 0 0.325 C y = −120.000 N C x2 + C y2 = Thus: C = and θ = tan −1 Cy Cx ( −180 )2 + ( −120 )2 = tan −1 = 216.33 N 120 = 33.690° 180 ∴ C = 216 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 33.7° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 30. Free-Body Diagram: Geometry: Distance BC = ( 4 ) 2 + ( 3) 2 Distance CD = (14 )2 + ( 3)2 = 5 in. = 14.3178 in. Equilibrium for bracket: ΣΜ A = 0: 4 3 3 14 T ( 4 in.) − T ( 9 in.) + T ( 4 in.) + T ( 9 in.) = 0 5 5 14.3178 14.3178 (10 lb )( 9 in.) − T = 32.108 lb or T = 32.1 lb 4 14 Ax + ( 32.108 lb ) − ( 32.108 lb ) = 0 5 14.3178 ΣFx = 0: Ax = 5.7089 lb ΣFy = 0: Ay + 3 3 ( 32.108 lb ) + ( 32.108 lb ) + 10 lb = 0 5 14.3178 Ay = −35.992 lb Ax2 + Ay2 = Thus: A= and θ = tan −1 Ay Ax ( 5.7089 )2 + ( −35.992 )2 = tan −1 = 36.442 lb 35.992 = 80.987° 5.7089 ∴ A = 36.4 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 81.0° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 31. Free-Body Diagram: Geometry: Distance BC = (7.2)2 + (3)2 = 7.8 in. Distance CD = (10.8)2 + (3)2 = 11.2089 in. Equilibrium for bracket: 7.2 3 10.8 T ( 4 in.) − T ( 9 in.) + T ( 4 in.) 7.8 7.8 11.2089 (10 lb )( 9 in.) − ΣM A = 0: 3 + T ( 9 in.) = 0 11.2089 or T = 101.0 lb T = 101.014 lb 7.2 10.8 Ax + (101.014 lb ) − (101.014 lb ) = 0 7.8 11.2089 ΣFx = 0: Ax = 4.0853 lb ΣFy = 0: 3 3 Ay + (101.014 lb ) + (101.014 lb ) + 10 lb = 0 7.8 11.2089 Ay = − 75.887 lb Ax2 + Ay2 = Thus: A= and θ = tan −1 Ay Ax ( 4.0853)2 + ( − 75.887 )2 = tan −1 = 75.997 lb 75.887 = 86.919° 4.0853 ∴ A = 76.0 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 86.9° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 32. Free-Body Diagram: Geometry: Distance AD = (0.9)2 + (0.375)2 = 0.975 m Distance BD = (0.5)2 + (0.375)2 = 0.625 m Equilibrium for beam: (a) ΣM C = 0: 0.375 0.375 T ( 0.9 m ) − T ( 0.5 m ) = 0 0.975 0.625 (135 N )( 0.7 m ) − T = 146.250 N (b) ΣFx = 0: or T = 146.3 N 0.9 0.5 Cx + T (146.250 N ) + T (146.250 N ) = 0 0.975 0.625 C x = − 252.00 N ΣFy = 0: 0.375 0.375 Cy + T (146.250 N ) + T (146.250 N ) − 135 N = 0 0.975 0.625 C y = − 9.0000 N Thus: C = C x2 + C y2 = and θ = tan −1 Cy Cx ( − 252 )2 + ( − 9 )2 = tan −1 = 252.16 N 9 = 2.0454° 252 C = 252 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 2.05° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 33. Free-Body Diagram: For both parts (a) and (b) ΣM D = 0: − RP − RC x = 0 Cx = −P ΣFx = 0: B cosθ − P = 0 B= ΣFy = 0: (1) P cosθ (2) P Cy − sin θ + P = 0 cosθ C y = P ( tanθ − 1) (a) (3) The magnitudes of the forces at B and C are equal: B = C x2 + C y2 2 2 2 P = ( − P ) + P ( tan θ − 1) cosθ or 1 = 1 + tan 2 θ − 2 tan θ + 1 cos 2 θ ( ) continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System 1 , this gives cos 2 θ 1 1 =1+ − 2 tan θ , or 2 cos θ cos 2 θ 1 tan θ = , so 2 tan 2 θ + 1 = Noting that θ = 26.565° θ = 26.6° (b) Using (2) B= P , or 2/ 5 ∴ B= 5 P 2 26.6° ∴ C= 5 P 2 26.6° and using (1) and (3) C x = − P, C = Cy = − P 2 2 P 5 P = 2 2 ( −P )2 + − Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 34. Free-Body Diagram: For both parts (a) and (b) ΣM D = 0: − RP − RC x = 0 Cx = −P B cosθ − P = 0 ΣFx = 0: P cosθ B= ΣFy = 0: (1) P Cy − cosθ (2) sin θ + P = 0 C y = P ( tanθ − 1) (3) (a) The magnitude of the reaction at C: C = C x2 + C y2 C = ( −P )2 + P ( tan θ − 1) 2 which is smallest when tan θ = 1 , or θ = 45.0° (b) Using (2) B= P cos 45° or B = 2P 45.0o and C x = − P, Cy = 0 or C = P Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 35. Free-Body Diagram: Equilibrium for bracket: ΣM C = 0: − T ( a ) − P ( a ) + (T sin 40° )( 2a sin 40° ) + (T cos 40° )( a + 2a cos 40° ) = 0 T = 0.56624P ΣFx = 0: or T = 0.566P Cx + ( 0.56624 P ) sin 40° = 0 C x = 0.36397 P ΣFy = 0: C y + 0.56624 P − P + ( 0.56624 P ) cos 40° = 0 Cy = 0 or C = 0.364P Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 36. Free-Body Diagram: (a) ΣM C = 0: 2a − aTABD − aP + + a TABD cosθ = 0 cosθ or with TABD = 3P/4 : 3 2 3 − a P − aP + + 1 P cosθ = 0 4 cosθ 4 cosθ = (b) ΣFx = 0: Cx − θ = 70.5° 83 P = 0 3 4 Cx = ΣFy = 0: 1 , and θ = 70.529° 3 2 P 2 3 1 3 P + Cy − P + P = 0 4 3 4 Cy = 0 Therefore: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. C= 1 P 2 COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 37. Free-Body Diagram: Equilibrium for bracket: (a) ΣFy = 0: − 600 N + T = 0 T = 600 N (b) ΣM C = 0: − ( 600 N )( 0.6 m ) + A ( 0.09 m ) = 0 A = 4000 N ΣFx = 0: or T = 600 N or A = 4 kN or B = 4 kN B − 4000 N = 0 B = 4000 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 38. Free-Body Diagram: ( ) = − ( 52 kg ) ( 9.81 m/s ) = 510.12 N WC = − ( 80 kg ) 9.81 m/s 2 = 784.80 N Note that WD 2 (a) ΣM A = 0: − ( 784.80 N )( 0.8 m ) cos 30° − ( 510.12 N )( 2.2 m ) cos 30° + B ( 3.5 m ) cos 5° = 0 B = 434.69 N or B = 435 N 55° (b) ΣFy = 0: A cos10° − 784.80 N − 510.12 N + (434.69 N)cos35° = 0 A = 953.33 N ΣFx = 0: or A = 953 N 80° P − ( 953.33 N ) sin10° − (434.69 N)sin35° = 0 P = 414.87 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or P = 415 N COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 39. Free-Body Diagram: Equilibrium for rod: (a) ΣM E = 0: ( 6 lb ) cos 60° ( dOE ) − (T cos 45°) ( dOE ) = 0 T = 4.2426 lb ΣFx = 0: (b) T = 4.24 lb ( 4.2426 lb ) cos 45° − ( 6 lb ) cos 60° − N A sin 45° + N D cos 45° = 0 N A = ND ΣFy = 0: (1) − ( 6 lb ) sin 60° − ( 4.2426 lb ) sin 45° + N A cos 45° + N D cos 45° = 0 N A + N D = 11.5911 lb (2) Solving (1) and (2) gives: N A = N D = 5.7956 lb Therefore: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. N A = 5.80 lb 45° N D = 5.80 lb 45° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 40. Free-Body Diagram: Equilibrium for rod: (a) ΣM E = 0: ( 6 lb ) cos 60° ( dOE ) − (T cosθ ) ( dOE ) = 0 T = 3 lb cosθ (1) Thus T is minimum when cos θ is maximum: (b) (c) With θ = 0°, (1) gives: T = 3 lb ΣFx = 0: θ = 0° T = 3.00 lb 3 lb − ( 6 lb ) cos 60° − N A sin 45° − N D sin 45° = 0 N A = ND ΣFy = 0: (2) − ( 6 lb ) sin 60° + N A cos 45° + N D cos 45° = 0 N A + N D = 7.3485 lb (3) Solving (2) and (3) gives: N A = N D = 3.6742 lb Therefore: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. N A = 3.67 lb 45° N D = 3.67 lb 45° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 41. Free-Body Diagram: Equilibrium for bracket: ΣFy = 0: T sin 20° − 270 N = 0 T = 789.43 N Tx = ( 789.43 N ) cos 20° = 741.82 N, and Note that: Ty = ( 789.43 N ) sin 20° = 270 N Thus Ty and the 270-N force form a couple: 270 N ( 0.25 m ) = 67.5 N ⋅ m clockwise ΣM B = 0: ( 741.82 N )( 0.125 m ) − 67.5 N ⋅ m + FCD ( 0.2 m ) = 0 FCD = −126.138 N ΣFy = 0: or FCD = 126.138 N FAB − 126.138 N − 741.82 N = 0 FAB = 867.96 N or FAB = 867.96 N Thus, FCD acts to the left, while FAB acts to the right, i.e. these forces are exerted by rollers B and C, respectively. Rollers A and B exert no force. The forces exerted on the post are the opposites of the forces exerted by the rollers: A = D=0 B = 868 N C = 126.1 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 42. Free-Body Diagram: Equilibrium for bracket: ΣFy = 0: T sin 30° − 270 N = 0 T = 540 N Tx = ( 540 N ) cos 30° = 467.65 N, and Note that: Ty = ( 540 N ) sin 30° = 270 N Thus Ty and the 270-N force form a couple: 270 N ( 0.25 m ) = 67.5 N ⋅ m clockwise ΣM B = 0: ( 467.65 N )( 0.125 m ) − 67.5 N ⋅ m + FCD ( 0.2 m ) = 0 FCD = 45.219 N or FCD = 45.219 N ΣFy = 0: FAB + 45.219 N − 467.65 N = 0 FAB = 422.43 N or FAB = 422.43 N Thus, both FCD and FAB act to the right, i.e. these forces are exerted on the bracket by rollers D and B, respectively. Rollers A and C exert no force. The forces exerted on the post are the opposites of the forces exerted on the bracket: A =C=0 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. B = 422 N D = 45.2 N COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 43. Free-Body Diagram: Geometry: Equation of the slot: y = x2 4 2x dy = 1.20000 = slope of slot at C = 4 dx ( x = 2.4 in.) C It follows for the angles that: α = tan −1 (1.2 ) = 50.194° θ = 90° − α = 90° − 50.194° = 39.806° 4.8 − 2.64 = 12.6804° 9.6 β = tan −1 Coordinates for C, D, and E: ( 2.4 )2 xC = 2.4 in., yC = xD = 2.4 in., yD = 1.84 in. + (1.6 in.) tan β 4 = 2.44 in. = 1.84 in. + (1.6 in.) tan12.6804° = 2.20000 in. xE = 0, yE = yC + ( 2.4 in.) tan θ = 1.44 in. + ( 2.4 in.) tan 39.806° = 3.4400 in. continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System With P = 1 lb: ΣM E = 0: P ( yE ) − ( Q sin β )( yE − yD ) − ( Q cos β )( 2.4 in.) = 0 (1 lb )( 3.44 in.) − ( Q sin12.6804° )(1.24 in.) − ( Q cos12.6804° )( 2.4 in.) = 0 Q = 1.31616 lb ΣFx = 0: P − N C cosθ − Q sin β = 0 1 lb − NC cos 39.806° − (1.31616 lb ) sin12.6804° = 0 NC = 0.92563 lb ΣFy = 0: N B + NC sin θ − Q cos β = 0 N B + ( 0.92563 lb ) sin 39.806° − (1.31616 lb ) cos12.6804° = 0 N B = 0.69148 lb (a) N = 0.691 lb , N = 0.926 lb B C 39.8° Q = 1.316 lb 77.3° (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 44. Free-Body Diagram: Geometry: Equation of the slot: y = x2 4 2x dy = 1.20000 = slope of slot at C = 4 ( x = 2.4 in.) dx C It follows for the angles that: α = tan −1 (1.2 ) = 50.194° θ = 90° − α = 90° − 50.194° = 39.806° 4.8 − 2.64 = 12.6804° 9.6 β = tan −1 Coordinates for C, D, and E: ( 2.4 )2 xC = 2.4 in., yC = xD = 2.4 in., yD = 1.84 in. + (1.6 in.) tan β 4 = 2.44 in. = 1.84 in. + (1.6 in.) tan12.6804° = 2.20000 in. xE = 0, yE = yC + ( 2.4 in.) tan θ = 1.44 in. + ( 2.4 in.) tan 39.806° = 3.4400 in. continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System With Q = 2 lb: (a) ΣM E = 0: P ( yE ) − ( Q sin β )( yE − yD ) − ( Q cos β )( 2.4 in.) = 0 P ( 3.44 in.) − ( 2 lb ) sin12.6804° (1.24 in.) − ( 2 lb ) cos12.6804° ( 2.4 in.) = 0 P = 1.51957 lb (b) ΣFx = 0: or P = 1.520 lb P − NC cosθ − Q sin β = 0 1.51957 lb − NC cos 39.806° − ( 2 lb ) sin12.6804° = 0 NC = 1.40656 lb ΣFy = 0: or NC = 1.407 lb 39.8° N B + NC sin θ − Q cos β = 0 N B + (1.40656 lb ) sin 39.806° − ( 2 lb ) cos12.6804° = 0 N B = 1.05075 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or N B = 1.051 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 45. Note: Weight of block is W = (10 kg)(9.81 m/s2) = 98.1 N (a) Free-Body Diagram: ΣFx = 0: Ax = 0 ΣFy = 0: Ay − 98.1 N = 0 Ay = 98.1 N or A = 98.1 N Therefore: ΣM A = 0: M A − ( 98.1 N )( 0.45 m ) = 0 M A = 44.145 N ⋅ m or M A = 44.1 N ⋅ m (b) Free-Body Diagram: ΣFx = 0: Ax − 98.1 N = 0 Ax = 98.1 N ΣFy = 0: Ay − 98.1 N = 0 Ay = 98.1 N continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Thus: A= Ax2 + Ay2 = ( 98.1)2 + ( 98.1)2 = 138.734 N or A = 138.7 N ΣM A = 0: 45° M A + ( 98.1 N )( 0.45 m + 0.1 m ) = 0 M A = 44.145 N ⋅ m or M A = 44.1 N ⋅ m (c) Free-Body Diagram: ΣFx = 0: Ax = 0 ΣFy = 0: Ay − 98.1 N − 98.1 N = 0 Ay = 196.2 N ΣM A = 0: or A = 196.2 N M A − ( 98.1 N )( 0.45 m − 0.1 m ) − ( 98.1 N )( 0.45 m + 0.1 m ) = 0 M A = 88.290 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or M A = 88.3 N ⋅ m COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 46. Free-Body Diagram: With M = 0 and Ti = T0 = 12 lb ΣFx = 0: C x − 12 lb = 0 Cx = 12 lb ΣFy = 0: C y − 12 lb = 0 CY = 12 lb Thus: C = C x2 + C y2 = ΣM C = 0: (12) 2 + (12)2 = 16.9706 lb or C = 16.97 lb or M C = 2.40 lb ⋅ in. 45° MC – (12 lb)[(1.8 – 1) in.] + (12 lb)[(2 + 1 − 2.4) in.] = 0 M C = 2.40 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 47. Free-Body Diagram: With M = 8 lb.in. and Ti = 16 lb, To = 8 lb ΣFx = 0: Cx − 16 lb = 0 Cx = 16 lb ΣFy = 0: Cy – 8 lb = 0 Cy = 8 lb Thus: C = C x2 + C y2 = and θ = tan −1 Cy Cx (16)2 + (8)2 = 17.8885 lb 8 = tan −1 = 26.565° 16 ∴ ΣM C = 0: C = 17.89 26.6° MC – (16 lb)[(1.8 – 1) in.] + (8 lb)[(2 + 1 –2.4) in.] – 8 lb ⋅ in. = 0 MC = 16.00 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or MC = 16.00 lb ⋅ in. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 48. (a) Free-Body Diagram: ΣFx = 0: Ax = 0 ΣFy = 0: Ay − 2 lb − 1lb = 0 Ay = 3 lb or A = 3 lb ΣM A = 0: MA – (2 lb)(8 in.) – (1 lb)(12 in.) = 0 M A = 28 lb ⋅ in. (b) or M A = 28 lb ⋅ in. Free Body Diagram: ΣFx = 0: ΣFy = 0: Ax = 0 Ay − 2 lb − 1 lb + 1.2 lb = 0 Ay = 1.8 lb or A = 1.8 lb ΣM A = 0: MA – (2 lb)(8 in.) – (1 lb)(12 in.) + (1.2 lb)(16 in.) = 0 M A = 8.8 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or M A = 8.8 lb ⋅ in. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 49. Free-Body Diagram: Set M A = 20 lb ⋅ in. counter-clockwise to find Fmin: ΣM A = 0: 20 lb ⋅ in. − (2 lb)(8 in.) – (1 lb)(12 in.) + Fmin (16 in.) = 0 Fmin = 0.5 lb Set M A = 20 lb ⋅ in. clockwise to find Fmax : ΣM A = 0: − 20 lb ⋅ in. − (2 lb)(8 in.) – (1 lb)(12 in.) + Fmin (16 in.) = 0 Fmax = 3 lb Therefore: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 0.5 lb ≤ FE ≤ 3 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 50. (a) Free-Body Diagram: ΣFx = 0: Ex = 0 ΣFy = 0: E y − 16.2 kN − 5.4 kN − 18 kN = 0 Ey = 39.6 kN ΣM E = 0: M E + (16.2 kN)(4.8 m) + (5.4 kN)(2.6 m) − (18 kN)(1.5 m) = 0 M E = − 64.8 kN ⋅ m (b) or E = 39.6 kN or ME = 64.8 kN. m Free-Body Diagram: ΣFx = 0: Ex = 0 ΣFy = 0: E y − 16.2 kN − 5.4 kN = 0 Ey = 21.6 kN ΣM E = 0: or E = 21.6 kN ME + (16.2 kN)(4.8 m) + (5.4 kN)(2.6 m) = 0 M E = − 91.8 kN ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or ME = 91.8 kN ⋅ m COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 51. Free-Body Diagram: ΣM E = 0: ME + (16.2 kN)x + (5.4 kN)(2.6 m) – T(1.5 m) = 0 ME = (1.5 T − 16.2 x – 14.04) kN ⋅ m (1) For x = 0.6 m, (1) gives: (ME )1 = (1.5 T − 23.76) kN ⋅ m For x = 7 m, (1) gives: (ME )2 = (1.5 T − 127.44) kN ⋅ m (a) The maximum absolute value of ME is obtained when (ME )1 = − (ME ) and 1.5 T − 23.76 kN = − (1.5 T – 127.44 kN) T = 50.400 kN (b) or T = 50.4 kN For this value of T: ME = 1.5(50.400) kN ⋅ m − 23.76 kN ⋅ m = 51.84 kN ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or ME = 51.8 kN ⋅ m COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 52. Free-Body Diagram: Geometry: Distance BD = (1.8)2 + (4)2 = 4.3863 m Note also that: W = mg = (160 kg)(9.81 m/s2) = 1569.60 N With MA = 360 N ⋅ m clockwise: (i.e. corresponding to Tmax ) ΣM A = 0: 1.8 − 360 N ⋅ m – [(540 N) cos 15o](5.6 m) + Tmax (4 m) = 0 4.3863 Tmax = 1998.79 N or Tmax = 1.999 kN With MA = 360 N ⋅ m counter-clockwise: (i.e. corresponding to Tmin ) ΣM A = 0: 1.8 360 N ⋅ m – [(540 N) cos 15o](5.6 m) + Tmin (4 m) = 0 4.3863 Tmin = 1560.16 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or Tmin = 1.560 kN COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 53. Free-Body Diagram: (a) Using W = mg: ΣFx = 0: − A cos 45° + B sin 45° = 0 B= A ΣFy = 0: (1) A sin 45° + B sin 45° − mg = 0 A+ B = 2mg (2) From (1) and (2) it follows that 2A = ΣM B = 0: 2 mg and A= 1 mg 2 l 1 mg cosθ + M − mg [l cos(45° − θ )] = 0 2 2 (3) Using that cos(α − β ) = cos α cos β + sin α sin β , (3) gives mgl mgl cosθ + M − ( cosθ + sin θ ) = 0 2 2 mgl M − sin θ = 0, and 2 sin θ = (b) 2M mgl 2(2.7 N ⋅ m) = 20.122° 2 (2kg)(9.81 m/s )(0.8 m) θ = sin −1 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 2M or θ = sin −1 mgl or θ = 20.1° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 54. Free-Body Diagram: For both parts (a) and (b) ( ) o l cos (θ + 30° ) cos 30° W − l cos θ + 30 T ΣM D = 0: ( ) ( ) + l sin θ + 30o cos 60o W + l sin θ + 30o T = 0 or W cos(θ + 60°) + T sin (θ + 30° ) − cos (θ + 30° ) = 0 (a) For T = 0, (1) gives cos (θ + 60° ) = 0 (b) (1) or θ = 30.0° For T = W , (1) gives: cosθ cos 60° − sin θ sin 60° + sin θ cos 30° + cosθ sin 30° − cosθ cos 30° + sin θ sin 30° = 0 or tan θ sin 30° + ( cos 60° + sin 30° − cos 30° ) = 0 Solving for θ : tan θ = 2 ( cos 30° − 1) or θ = −150000° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or θ = −15.00° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 55. Free-Body Diagram: Using W = mg : (a) P( R cosθ + R cosθ ) − mg ( R sin θ ) = 0 ΣM C = 0: 2P = mg tan θ tan θ = (b) 2P mg or 2P mg θ = tan −1 With m = 0.7 kg and P = 3 N: 2(3 N) 2 (0.7 kg)(9.81 m/s ) θ = tan −1 = 41.145° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or θ = 41.1° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 56. Free-Body Diagram: Using W = mg, and h = l tan α 2 M − (mg )(h sin θ ) = 0 ΣM C = 0: or sin θ = = M mgh M 2 cot α mg l cot α or θ = sin −1 2M mgl Note: θ ≤ 90° − α for cord BC to remain taut, (i.e. for TBC > 0). With l = 1 m, m = 2 kg, and M = 3 N ⋅ m: 2(3 N ⋅ m) cot 30° 2 (2 kg)(9.81 m/s )(1 m) θ = sin −1 = 31.984° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or θ = 32.0° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 57. Free-Body Diagram: First note T = tension in spring = ks s = elongation of spring where ( )θ − ( AB )θ = AB = 90° θ 90° = 2l sin − 2l sin 2 2 θ 1 = 2l sin − 2 2 θ 1 ∴ T = 2kl sin − 2 2 (1) (a) From free-body diagram of rod BC θ ΣM C = 0: T l cos − P ( l sin θ ) = 0 2 Substituting T From Equation (1) θ 1 θ 2kl sin − l cos − P ( l sin θ ) = 0 2 2 2 θ 1 θ θ θ 2kl 2 sin − cos − Pl 2sin cos = 0 2 2 2 2 2 Factoring out θ 2l cos , leaves 2 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System θ 1 θ kl sin − − P sin = 0 2 2 2 or 1 kl θ sin = 2 kl − P 2 kl ∴ θ = 2sin −1 2 ( kl − P ) (b) P = kl 4 kl 2 kl − θ = 2sin −1 ( kl 4 ) kl 4 −1 4 = 2sin −1 = 2sin 3 2 2 3 kl = 2sin −1 ( 0.94281) = 141.058° or θ = 141.1° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 58. Free-Body Diagrams: ( ) Note that WE = mg = (10 kg ) 9.81 m/s 2 = 98.1 N ΣM A = 0: M − rAT = 0 T = ( 58 N ⋅ m )φ M = rA 0.035 m Since the torsion spring is unstretched when θ = 0: ( 70 mm )φ = ( 35 mm )θ φ = 1 θ 2 Therefore: T = ( 58 N ⋅ m )θ 2(0.035 m) ΣM B = 0: rBT − lWE cosθ = 0 ( 0.070 m ) ( 58 N⋅ m )θ 2(0.035 m) − ( 0.090 m )( 98.1N ) cosθ = 0 θ = 0.60890 cosθ Solving for θ numerically: θ = 0.52645 rad Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or θ = 30.2° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 59. Free-Body Diagram: Geometry: Triangle ABC is isosceles. Thus distance CD = l cos θ 2 , Elongation of spring is equal to distance AB: x = 2l sin θ 2 , and T = kx = 2kl sin (a) θ 2 . Equilibrium for rod: ΣM C = 0: θ P ( l cosθ ) − T l cos = 0 2 Pl cosθ − kl 2 (2sin θ 2 θ cos ) = 0 2 P cosθ − kl sin θ = 0 tan θ = (b) P kl P or θ = tan −1 kl For p = 2kl : 2kl −1 = tan (2) = 63.435° kl θ = tan −1 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or θ = 63.4° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 60. Free-Body Diagram: Spring force: Fs = ks = k ( l − l cosθ ) = kl (1 − cosθ ) (a) l Fs ( l sin θ ) − W cosθ = 0 2 ΣM D = 0: kl (sin θ − cosθ sin θ ) − kl (tan θ − sin θ ) − (b) W cosθ = 0 2 W =0 2 or tan θ − sin θ = W 2kl For given values of W = 4 lb, l = 30 in., k = 1.8 lb/ft = 0.15 lb/in. tan θ − sin θ = Solving numerically: 4 lb = 0.44444 2(0.15 lb/in.)(30 in.) θ = 50.584° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or θ = 50.6° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 61. Free-Body Diagram: 1. Three non-concurrent, non-parallel reactions (a) Completely constrained (b) Determinate (c) Equilibrium From free-body diagram of bracket: ΣM A = 0: B (1 m ) − (100 N )( 0.6 m ) = 0 ∴ B = 60.0 N ΣFx = 0: Ax − 60 N = 0 ∴ A x = 60.0 N ΣFy = 0: Ay − 100 N = 0 ∴ A y = 100 N ( 60.0 )2 + (100 )2 Then A= = 116.619 N and θ = tan −1 = 59.036° 60.0 100 ∴ A = 116.6 N 59.0° 2. Four concurrent reactions through A (a) Improperly constrained (b) Indeterminate (c) No equilibrium 3. Two reactions (a) Partially constrained (b) Determinate (c) Equilibrium Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System From free-body diagram of bracket ΣM A = 0: C (1.2 m ) − (100 N )( 0.6 m ) = 0 ∴ C = 50.0 N ΣFy = 0: A − 100 N + 50 N = 0 ∴ A = 50.0 N 4. Three non-concurrent, non-parallel reactions (a) Completely constrained (b) Determinate (c) Equilibrium From free-body diagram of bracket 1.0 = 39.8° 1.2 θ = tan −1 BC = (1.2 )2 + (1.0 )2 = 1.56205 m 1.2 ΣM A = 0: B (1 m ) − (100 N )( 0.6 m ) = 0 1.56205 39.8° ∴ B = 78.1 N ΣFx = 0: C − ( 78.102 N ) cos 39.806° = 0 ∴ C = 60.0 N ΣFy = 0: A + ( 78.102 N ) sin 39.806° − 100 N = 0 ∴ A = 50.0 N 5. Four non-concurrent, non-parallel reactions (a) Completely constrained (b) Indeterminate (c) Equilibrium From free-body diagram of bracket ΣM C = 0: (100 N )( 0.6 m ) − Ay (1.2 m ) = 0 ∴ Ay = 50 N or A y = 50.0 N 6. Four non-concurrent non-parallel reactions (a) Completely constrained (b) Indeterminate (c) Equilibrium continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System From free-body diagram of bracket ΣM A = 0: − Bx (1 m ) − (100 N )( 0.6 m ) = 0 ∴ Bx = −60.0 N or B x = 60.0 N ΣFx = 0: − 60 + Ax = 0 ∴ Ax = 60.0 N or A x = 60.0 N 7. Three non-concurrent, non-parallel reactions (a) Completely constrained (b) Determinate (c) Equilibrium From free-body diagram of bracket ΣFx = 0: Ax = 0 ΣM A = 0: C (1.2 m ) − (100 N )( 0.6 m ) = 0 ∴ C = 50.0 N or C = 50.0 N ΣFy = 0: Ay − 100 N + 50.0 N = 0 ∴ Ay = 50.0 N ∴ A = 50.0 N 8. Three concurrent, non-parallel reactions (a) Improperly constrained (b) Indeterminate (c) No equilibrium Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 62. Free-Body Diagram: 1. Three non-concurrent, non-parallel reactions Completely constrained (a) (b) Determinate (c) Equilibrium From free-body diagram of plate ΣM A = 0: C ( 30 in.) − 50 lb (15 in.) = 0 C = 25.0 lb ΣFx = 0: Ax = 0 ΣFy = 0: Ay − 50 lb + 25 lb = 0 Ay = 25 lb A = 25.0 lb 2. Three non-current, non-parallel reactions Completely constrained (a) (b) Determinate (c) Equilibrium From free-body diagram of plate B = 0 ΣFx = 0: ΣM B = 0: ( 50 lb )(15 in.) − D ( 30 in.) = 0 D = 25.0 lb ΣFy = 0: 25.0 lb − 50 lb + C = 0 C = 25.0 lb continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System 3. Four non-concurrent, non-parallel reactions Completely constrained (a) (b) Indeterminate (c) Equilibrium From free-body diagram of plate ΣM D = 0: Ax ( 20 in.) − ( 50 lb )(15 in.) ∴ A x = 37.5 lb ∴ D x = 37.5 lb ΣFx = 0: Dx + 37.5 lb = 0 4. Three concurrent reactions Improperly constrained (a) (b) Indeterminate (c) No equilibrium 5. Two parallel reactions (a) Partial constraint (b) Determinate (c) Equilibrium From free-body diagram of plate ΣM D = 0: C ( 30 in.) − ( 50 lb )(15 in.) = 0 C = 25.0 lb ΣFy = 0: D − 50 lb + 25 lb = 0 D = 25.0 lb 6. Three non-concurrent, non-parallel reactions (a) Completely constrained (b) Determinate (c) Equilibrium From free-body diagram of plate ΣM D = 0: B ( 20 in.) − ( 50 lb )(15 in.) = 0 B = 37.5 lb ΣFx = 0: Dx + 37.5 lb = 0 ΣFy = 0: Dy − 50 lb = 0 D x = 37.5 lb D y = 50.0 lb or D = 62.5 lb 53.1° continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System 7. Two parallel reactions (a) Improperly constrained (b) Reactions determined by dynamics No equilibrium (c) 8. Four non-concurrent, non-parallel reactions Completely constrained (a) (b) Indeterminate (c) Equilibrium From free-body diagram of plate ΣM D = 0: B ( 30 in.) − ( 50 lb )(15 in.) = 0 B = 25.0 lb ΣFy = 0: Dy − 50 lb + 25.0 lb = 0 D y = 25.0 lb ΣFx = 0: Dx + C = 0 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 63. Free-Body Diagram: Note that the wheel is a three-force body, and let point D be the intersection of the three forces. With a = 75 mm, it follows from the force triangle that A P 90 N = = 125 100 75 Then: P = 100 ( 90 N ) = 120 N 75 or P = 120.0 N A = 125 ( 90 N ) = 150 N, and 75 (100 ) θ = tan −1 75 = 36.870° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or A = 150.0 N 36.9° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 64. Free-Body Diagram: Note that the wheel is a three-force body, and let point D be the intersection of the three forces. From the force triangle it follows that 90 N = a A = 90 A (100) + ( a ) 2 (100) 2 (a ) 2 2 +1 (1) Setting A = 180 N and solving for a: 90 N = a 180 N ( ) 2 2 a = a= ( ) (100)2 + a 2 (100) + a 2 4 (100) 3 2 = 57.735 mm From (1) it follows that A will decrease as a increases. Therefore the value of a calculated is a lower limit: a ≥ 57.7 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 65. Free-Body Diagram: Geometry: EF = ( 2.4 tan 30° + 0.9 ) in. AF = EF tan 30° tan φ = 0.9 ( 2.4 tan30° + 0.9 ) tan 30° + 2.4 φ = 13.6019° Equilibrium: force triangle Using the law of sines on the force triangle: Fsp 3 lb B = = sin120° sin ( 60° − φ ) sinφ B = 11.05 lb Fsp = 9.2376 lb (a) Fsp = kx 9.2376 lb = k (1.2 in.) Solving for k: k = 7.698 lb/in. (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or k = 7.70 lb/in. B = 11.05 lb 13.60° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 66. Free-Body Diagram: Note that the bent rod is a three-force body. D is the point where the lines of action of the three forces intersect. (a) The requirement B = C means that the force triangle must be isosceles. Therefore θ = φ . Which leads to the force triangle shown. From the geometry it follows that tan θ = 1 2 or θ = 26.6° θ = 26.565° (b) From the force triangle: 2B sin θ = P, or with sin θ = B=C = P = 1 2 5 1 5 5P 2 Therefore: B= C= Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 5P 2 5P 2 26.6° 26.6° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 67. (a) Free-Body Diagram: (α = 90° ) The bracket is a three-force body and A is the intersection of the lines of action of the three forces. 6 θ = tan −1 = 26.565° 12 From the force triangle: A = (75 lb) cot θ = (75 lb) cot 26.565° = 150.000 lb C = 75 lb 75 lb = = 167.705 lb sin θ sin 26.565° or A = 150.0 lb or C = 167.7 lb 63.4° continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System (b) Free-Body Diagram: (α = 45° ) Let E be the intersection of the lines of action of the three forces acting on the bracket. Triangle ABE is isosceles and therefore AE = AB = 16 in. From triangle CEF CF −1 6 = tan = 12.0948° EF 28 θ = tan −1 From force triangle: β = 180° − 135° − θ = 180° − 135° − 12.0948° = 32.905° Using the law of sines: A C 75 lb = = sin 32.905° sin135° sin12.0948° Solving for A and C: A = 194.452 lb C = 253.10 lb or A = 194.5 lb or C = 253 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 77.9° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 68. Free-Body Diagram: Let C be the intersection of the lines of action of the three forces acting on the girder From triangle BCD: h = ( 40 ft ) cot 30° = 69.282 ft From triangle ACD: 69.282 ft = 73.8979° 20 ft α = tan −1 or α = 73.9° From force triangle: β = 90° − α = 90° − 73.8979° = 16.1021° γ = 180° − 30° − β = 180° − 30° − 16.1021° = 133.898° Using the law of sines: TA TB 6000 lb = = sin 30° sin16.1021° sin133.898° Solving for TA and TB : TA = 4163.3 lb, TB = 2309.4 lb or TA = 4160 lb and TB = 2310 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 69. Free-Body Diagram: From the free-body diagram: (900 mm)sin 50° = 82.726° 88 mm θ = tan −1 From the force triangle: FN = (130 N ) tan θ = (130 N ) tan 82.726° = 1018.48 N Force on nail is therefore RB = or FN = 1.018 kN 130 N 130 N = = 1026.74 N cosθ cos82.726° or R B = 1.027 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 82.7° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 70. Free-Body Diagram: From force triangle: 2600 N = 83.636° 290 N θ = tan −1 From free-body diagram: tan θ = l = (900 mm)sin50° l ( 900 mm ) sin 50° tan 83.636° = 76.894 mm or l = 76.9 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 71. Free-Body Diagram: We note from the free-body diagram that the ladder is a three-force body. Point C in the free-body diagram is the intersection between the lines of action of the three forces. It then follows that: sin θ = 1.75 m ( 9.2 − 1.8) m θ = 13.6793° Also: 9.2 − 1.8 m = 2.8 m AG = 2 9.2 BD = m cosθ = ( 4.6 m ) cosθ 2 CD = CG + GD = = AG sin θ 2.8 sin θ + BG sin θ + 9.2 2 sin θ continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Then 2.8 + 4.6sin13.6793° CD tan φ = = sin13.6793° BD 4.6cos13.6793° φ = 70.928° Now using the law of sines on the force triangle: FW B W = = sin(90° − φ ) sin θ sin [φ + (90° − θ )] FW B W = = cos φ sin θ sin(φ − θ ) (a) From the law of sines and noting that W = ( 53 kg ) (9.81 m/s 2 ) = 519.93 N FW 519.93 N = cos 70.928° cos(70.928° − 13.6793°) FW = 314.03 N or FW = 314 N 76.3° or B = 227 N 70.9° (b) In the same way B 519.93 N = sin13.6793° cos(70.928° − 13.6793°) B = 227.28 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 72. Free-Body Diagram: We note from the free-body diagram that the ladder is a three-force body. Point D in the free-body diagram is the intersection between the lines of action of the three forces. It then follows that: BD = 9.2 m cosθ = ( 4.6 m ) cosθ =, but also that 2 1.75 BD = 1.75 tan θ + tan θ m Therefore BD = 9.2 m cosθ = ( 4.6 m ) cosθ 2 This implies: 4.6 cosθ = 1.75 tan θ + 1.75 tan θ 92sin θ = 35(1 + tan 2 θ ) = 35 sec2 θ 92sin θ cos 2 θ = 35 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Solving numerically for the smallest possible root: θ = 31.722° Then sin 31.722° = 1.75 9.2 − a a = 5.8717 m or a = 5.87 m (b) From the force triangle FW = W cos 31.722° FW = 611.24 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or FW = 611 N 58.3° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 73. Free-Body Diagram: Let D be the intersection of the lines of action of the three forces acting on the tool. From the free-body diagram: yDC = (14.4 in.) cos 35° = 32.409 in. xBC = tan 20° tan 20° yBC = (14.4 in.) sin 35° = 8.2595 in. α = tan −1 yDC 3.6 in. − yBC − 1.8 in. 3.6 in. = tan −1 ( 32.409 − 8.2595 − 1.8 ) in. = 9.1505° From the force triangle, using the law of sines: 20 lb A = sin α sin 20° or A = 43.0 lb 80.8° on tool, and A = 43.0 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 80.8° on rim of can. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 74. Free-Body Diagram: Let E be the intersection of the lines of action of the three forces acting on the tool. From the free-body diagram, using law of sines: 6 in. + ( 0.76 in.) tan 35° L = sin 95° sin 30° L = 13.0146 in. Also: yBD = L − y AE − 0.88 in. = 13.0146 in. − 0.76 in. − 0.88 in. cos 35° = 11.2068 in. And 1.8 in. yBD α = tan −1 1.8 in. = tan −1 = 9.1247° 11.2086 in. Then from the force triangle and using the law of sines: B 14 lb = sin150° sin 9.1247° Solving for B: B = 44.141 lb, or on the member B = 44.141 lb 80.9°, and on the lid B = 44.1 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 80.9° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 75. Free-Body Diagram: Based on the roller having impending motion to the left, the only contact between the roller and floor will be at the edge of the tile. First note ( ) W = mg = ( 20 kg ) 9.81 m/s 2 = 196.2 N From the geometry of the three forces acting on the roller 92 mm α = cos −1 = 23.074° 100 mm and θ = 90° − 30° − α = 60° − 23.074 = 36.926° Applying the law of sines to the force triangle, W P = sin θ sin α or 196.2 N P = sin 36.926° sin 23.074° ∴ P = 127.991 N or P = 128.0 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 30° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 76. Free-Body Diagram: Based on the roller having impending motion to the right, the only contact between the roller and floor will be at the edge of the tile. First note ( W = mg = ( 20 kg ) 9.81 m/s 2 ) = 196.2 N From the geometry of the three forces acting on the roller 92 mm = 23.074° 100 mm α = cos −1 and θ = 90° + 30° − α = 120° − 23.074° = 96.926° Applying the law of sines to the force triangle, W P = sin θ sin α or 196.2 N P = sin 96.926° sin 23.074 ∴ P = 77.460 N or P = 77.5 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 30° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 77. Free-Body Diagram: Note that the clamp is a three-force body. D is the intersection of the lines of action of the three forces. From the free-body diagram it follows that: y AD = (4.2 in.) tan 78o = 19.7594 in. yBD = y AD − 2.8 in. = (19.7594 − 2.8) in. = 16.9594 in. Then yBD 7.8 in. θ = tan −1 16.9594 in. = tan −1 = 65.3013° , and 7.8 in. α = 90° − θ − 12° = 90° − 65.3013° − 12° = 12.6987° (a) Using the maximum allowable compressive force on the clamp: ( RB ) y = RB sin θ = 40 lb or RB = 40 lb = 44.028 lb sin 65.301° or R B = 44.0 lb (b) 65.3° Using the law of sines for the force triangle: RB NA T = = sin12° sin α sin(90° + θ ) 44.028 lb NA T = = sin12° sin12.6987° sin155.301° which gives: N A = 46.551 lb (c) T = 88.485 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or N A = 46.6 lb or T = 88.5 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 78. Free-Body Diagram: (for hoist AD) Note that the hoist AD is a three-force body. E is the intersection between the lines of action of the three forces acting on the hoist. From the free-body diagram: x AE = (48 in.) cos 30° = 41.5692 in. y AD = (48 in.)sin 30° = 24 in. yBE = x AD tan 75° = (41.5692 in.)tan75° = 155.1384 in. Then: yBE − 16 in. −1 139.1384 = tan x 41.5692 AD α = tan −1 = 73.36588° β = 75° − α = 75° − 73.36588° = 1.63412° θ = 180° − 15° − β = 165° − 1.63412° = 163.366° From the force triangle and using the law of sines: 260 lb B A = = sinβ sin θ sin15° 260 lb B A = = sin 1.63412° sin 163.366° sin 15° Solving for A and B: (a) (b) B = 2609.9 lb or B = 2.61kips 75.0° or A = 2.36 kips 73.4° A = 2359.8 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 79. Free-Body Diagram: Note that the member is a three-force body. In the free-body diagram, D is the intersection between the lines of action of the three forces. (a) From the force triangle: T − 110 N 3 = T 4 3T = 4T − 440 N T = 440 N (b) From the force triangle: C 5 = T 4 C = 5 5 T = (440 N) = 550 N 4 4 or C = 550 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 36.9° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 80. Free-Body Diagram: Note that the member is a three-force body. In the free-body diagram, E is the intersection between the lines of action of the three forces. From the free-body diagram: 15 α = tan −1 = 61.928° 8 8 β = tan −1 = 33.690° 12 From the force triangle: α − β = 61.928° − 33.690° = 28.238° 180° − α = 180° − 61.928° = 118.072° Using the law of sines: T − 18 lb T C = = sin(α − β ) sin β sin(180° − α ) T − 18 lb T C = = sin ( 22.238° ) sin ( 33.690° ) sin(118.072°) Then: (T − 18 lb ) sin ( 33.690° ) = T sin ( 28.238° ) T = 122.414 lb and or T = 122.4 lb (122.414 lb ) sin (118.072°) = C sin ( 33.690° ) C = 194.723 lb or C = 194.7 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 33.7° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 81. Free-Body Diagram: Note that the peavey is a three-force body. In the free-body diagram, D is the intersection of the lines of action of the three forces acting on the peavey. It then follows: 44 in. = 40.2364° 44 in. + 8 in. β = tan −1 α = 45° − β = 45° − 40.2364° = 4.7636° From the force triangle, using the law of sines: W C A = = sin β sin α sin135° 80 lb C A = = sin 40.236° sin 4.7636° sin135° Solving for C and A: (a) (b) C = 10.2852 lb or C = 10.29 lb 45.0° or A = 87.6 lb 85.2° A = 87.576 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 82. Free-Body Diagram: Note that the peavey is a three-force body. In the free-body diagram, D is the intersection of the lines of action of the three forces acting on the peavey. It then follows: 44 in. DC + 8 in. β = tan −1 where DC = ( 44 in. + a ) tan 30° R a= −R tan 30° 4 in. = − 4 in. tan 30° = 2.9282 in. Then: DC = ( 46.9282 in.) tan 30° = 27.0940 in. and 44 in. = 51.4245° 35.0940 in. β = tan −1 α = 60° − β = 60° − 51.4245° = 8.5755° Now from the force triangle, using the law of sines: W C A = = sin β sin α sin120° 80 lb C A = = sin 51.424° sin 8.5755° sin120° Solving for C and A: (a) C = 15.2587 lb or C = 15.26 lb (b) A = 88.621 lb or A = 88.6 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 81.4° 30.0° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 83. Free-Body Diagram: From the free-body diagram, the member AB is a threeforce body. Let D be the intersection of the lines of action of the three forces acting on AB. Then, using triangle BCD: CD = ( 250 mm ) tan 60° = 433.01 mm Also: AF = AE + EF = AE + CD = (300 + 433.01) mm = 733.01 mm FD 250 = tan −1 AF 733.01 = 18.8324° θ = tan −1 From the force triangle α = 180° − 30° − 18.8324° = 131.168° Using the law of sines A B 330 N = = sin 30° sin18.8324° sin131.168° Solving for A and B: A = 219.19 N, B = 141.507 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or A = 219 N 71.2° or B = 141.5 N 60.0° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 84. Free-Body Diagram: From the free-body diagram it follows that tan θ = 9.6 − 8sin20° 8cos20° θ = 42.397° Also: BE = 20sin 20° + ( 20cos 20° ) tan 42.397° = 12sin 20° (12cos 20° ) tan φ φ = 60.456° Then using the law of sines on the force triangle: TAD C 60 lb = = sin ( 90° − φ ) sin ( 90° + θ ) sin (φ − θ ) TAD C 60 lb = = cos 60.456° cos 42.397° sin18.059° (a) TAD = 95.438 lb (b) C = 142.935 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or TAD = 95.41 lb or C = 142.935 lb 60.5° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 85. Free-Body Diagram: (a) Using the law of cosines on triangle ABC: 2 2 R 2 = ( 2R ) + ( 2R ) − 2 ( 2R )( 2R ) cosθ 1 = 8 − 8cosθ cosθ = 7 8 θ = 28.955° Also, 2R cos (θ + α ) = R cos α 2R ( cosθ cos α − sin θ sin α ) = R cos α tan α = 2 cosθ − 1 2cos 28.955° − 1 = 2 sin θ 2 sin 28.955° or α = 37.8° α = 37.761° (b) From the free-body diagram: 2R R = sin φ sin θ sin φ = 2sin θ = 2 sin 28.955° φ = 75.522° Now using the law of sines on the force triangle: NA NB W = = sin [90° − (φ − α )] sin 90° − (θ + α ) sin (θ + α ) + (φ − α ) NA NB mg = = cos(φ − α ) cos (θ + α ) sin (θ + φ ) NA NB mg = = cos 37.762° cos 66.716° sin104.478° Solving for N A and N B : N A = 0.816 mg N B = 0.408 mg Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 66.7° 37.8° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 86. Free-Body Diagram: (a) Note that the rod is a three-force body. Using the law of cosines on triangle ABC: 2 R 2 = ( 2R ) + L2 − 2 ( 2 R ) L cosθ cosθ = 3R 2 + L2 4RL (1) Also, L cos 45° = 2 R cos(θ + 45°) 2 L cos 45° = 2R(cosθ cos 45° − sin θ sin 45°) 2 L = cosθ − sin θ 4R Using (1) and that sin θ = 1 − cos 2 θ sin θ = ( 4 RL )2 − ( 3R 2 + L2 ) 4RL 2 , this gives continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System L 3R 2 + L2 = − 4R 4RL ( ( 4RL )2 − ( 3R 2 + L2 ) 2 4RL ) ( 4RL )2 − ( 3R 2 + L2 ) L2 − 3R 2 + L2 = − 2 Squaring both sides and simplifying: ( ) 9R 4 = 16R 2 L2 − 9R 4 + 6R 2 L2 + L4 , or L4 − 10R 2 L2 + 18R 4 = 0 Solving for L2 : ( ) ( ) L2 = 5 ± 7 R 2 , and taking the largest root L2 = 5 + 7 R 2 (b) or L = 2.77 R Using the value of L obtained in (a) and (1) cosθ = ( ) 3R 2 + 5 + 7 R 2 ( 4R 5 + 7 ) 1/2 R θ = 15.7380° Now using the law of sines on triangle ABC in the free body diagram: 2R R = sin φ sin θ sin φ = 2sin θ = 2 sin15.7380° φ = 32.852° Now using the law of sines on the force triangle: NA NB mg = = cos (135° − 32.852° ) sin ( 45° − 15.7380° ) sin (15.7380° + 32.852° ) Solving for N A and N B : N A = 1.303 mg N B = 0.652 mg Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 60.7° 12.15° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 87. Free-Body Diagram: Note that the wheel is a two-force body and therefore the force at C is directed along CA and perpendicular to the incline. The wheelbarrow is a three-force body. Let D be the intersection of the lines of action of the three forces acting on the wheelbarrow. Then, using the triangle DEG DE = EG tan 72° = ( 8 in.) tan 72° = 24.6215 in. DF = DE − EF = 24.6215 in. − 9 in. = 15.6215 in. Using triangle DFB: φ = tan −1 FB 40 = tan −1 = 68.667° DF 15.6215 From the force triangle: α = φ − 18° = 68.667° − 18° = 50.667° β = 180° − 50.667° − 18° = 111.333° Using the law of sines: B C 120 lb = = sin18° sin 50.667° sin111.333° B = 39.809 lb, C = 9.644 lb (a) (b) Noting that the force on each handle is B/2: 1 B = 19.90 lb 2 39.3° C = 99.6 lb 72.0° Reaction at C: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 88. Free-Body Diagram: From the free-body diagram: a = ( 40 in.) tan θ − 32 in. = 8 in. − ( 23 in.) tan18° tan18° θ = 40.048° Then, φ = 90° − 18° − 40.048° = 31.952° Now, using the law of sines on the force triangle: 2( B/2) C 120 lb = = sin18° sin 31.952° sin (162° − 31.952° ) and solving for B/2 and C: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (a) 1 B = 24.2 lb 2 58.0° (b) C = 83.0 lb 72.0° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 89. Free-Body Diagram: Note that the rod is a three-force body. In the free-body diagram, E is the intersection between the lines of action of the three forces. Using triangle ACF in the free-body diagram: yCF = d tan θ From triangle CEF: xFE = yCF tan θ = d tan 2 θ and from triangle AGE: cosθ = Noting that 1 + tan 2 θ = sec 2 θ = d + xFE ( L2 ) = d + d tan 2 θ ( L2 ) (1) 1 cos 2 θ (1) gives cosθ = 2d 1 L cos 2 θ cos3 θ = , or 2d L Using the given values of d = 2.8 in., and L = 10 in. cos3 θ = 2(2.8 in.) = 0.56 10 in. cosθ = 0.82426 θ = 34.486° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or θ = 34.5° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 90. Free-Body Diagram: As shown in the free-body diagram of the slender rod AB, the three forces intersect at C. From the force geometry tan β = xGB y AB where y AB = L cosθ xGB = and ∴ tan β = 1 2 1 L sin θ 2 L sin θ L cosθ = 1 tan θ 2 or tan θ = 2 tan β Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 91. Free-Body Diagram (a) As shown in the free-body diagram. of the slender rod AB, the three forces intersect at C. From the geometry of the forces xCB yBC tan β = where xCB = 1 L sin θ 2 yBC = L cosθ and ∴ tan β = 1 tan θ 2 or tan θ = 2 tan β For β = 25° tan θ = 2 tan 25° = 0.93262 ∴ θ = 43.003° or θ = 43.0° ( ) W = mg = (10 kg ) 9.81 m/s 2 = 98.1 N (b) From force triangle A = W tan β = ( 98.1 N ) tan 25° = 45.745 N or A = 45.7 N and B= W 98.1 N = = 108.241 N cos β cos 25° or B = 108.2 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 65.0° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 92. Free-Body Diagram: Note that the rod is a three-force body. In the free-body diagram, D is the intersection between the lines of action of the three forces. Using triangle BCE: a = BE = BC sin θ and from triangle BCD BC = BD sin θ Then a = BD sin 2 θ Also from triangle ABD BD = L sin θ , so a = L sin 3 θ 1 a 3 or θ = sin L −1 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 93. Free-Body Diagram: Note that the athlete is a three-force body. From the free-body diagram 1 a tan θ 4a 2 = tan θ tan (θ + φ ) 3a + tan (θ + φ ) = 4 tan θ 1 3 + tan θ 2 (1) From the force triangle, using the law of sines FH W = or, using FH = 0.8W sin θ sin 180° − (θ + φ ) sin (θ + φ ) = 1.25sin θ Now, using (1) −1 4 tan θ θ + φ = tan 1 3 + tan θ 2 −1 = sin (1.25sin θ ) Solving numerically for θ θ = 15.04° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 94. Free-Body Diagram: Note that the rod is a three-force body. In the free-body diagram, E is the intersection of the lines of action of the three forces. (a) Using triangle DBC which is isosceles DB = a and using triangle BDE ED = DB tan 2θ = a tan 2θ From triangle GED ED = a tan 2θ = ( L − a) , tan θ and therefore L−a , or tan θ a (tan θ tan 2θ + 1) = L (1) From triangle BCD: a= L a 1.25 L 2 cos θ = 1.6 cos θ (2) Using (2) in (1): 1.6 cos θ = 1 + tan θ tan 2θ (3) ( ) 2 1 − cos 2 θ sin θ sin 2θ sin θ 2sin θ cosθ , (3) gives = = Noting that tan θ tan 2θ = cosθ cos 2θ cosθ 2cos 2 θ − 1 2cos 2 θ − 1 1.6 cosθ = 1 + ( 2 1 − cos 2 θ 2 ) , or 2 cos θ − 1 3 3.2 cos θ − 1.6 cos θ − 1 = 0 or θ = 23.5° Solving numerically, θ = 23.515° (b) Substituting into (2) for L = 8 in., a= 5 ( 8 in.) = 5.4528° 8 cos 23.515° or a = 5.45 in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 95. Free-Body Diagram: The forces acting on the three-force member intersect at D. (a) From triangle ACO r −1 1 = tan = 18.4349° 3r 3 θ = tan −1 tan θ = (b) From triangle DCG ∴ DC = and or θ = 18.43° r DC r r = = 3r tan θ tan18.4349° DO = DC + r = 3r + r = 4r yDO x AG α = tan −1 where yDO = ( DO ) cosθ = ( 4r ) cos18.4349° = 3.4947r and x AG = ( 2r ) cosθ = ( 2r ) cos18.4349° = 1.89737r 3.4947r ∴ α = tan −1 = 63.435° 1.89737r where 90° + (α − θ ) = 90° + 45° = 135.00° Applying the law of sines to the force triangle, mg R = A sin 90° + (α − θ ) sin θ ∴ RA = ( 0.44721) mg Finally, P = RA cos α = ( 0.44721mg ) cos 63.435° = 0.20000mg Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or P = mg 5 COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 96. Free-Body Diagram: ΣM A = 0: ( 450 mm ) i × D + (150 mm ) i × ( −180 N ) j + ( 250 mm ) i × ( − 300 N ) k = 0 ( 450 mm ) Dyk − (450 mm)Dz j − (150 mm)(180 N)k + (250 mm)(300 N) j = 0 Setting the coefficients of the unit vectors equal to zero: k: Dy (450 mm) − (180 N )(150 mm ) = 0, or Dy = 60.000 N i: ( 300 N )( 250 mm ) − Dz ( 450 mm ) = 0, or Dz = 166.667 N D = ( 60.0 N ) j + (166.7 N ) k ΣFx = 0: Ax = 0 ΣFy = 0: Ay + 60.000 N − 180 N = 0, or Ay = 120.000 N ΣFz = 0: Az + 166.667 N − 300 N = 0, or Az = 133.333 N A = (120.0 N ) j + (133.3 N ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 97. Free-Body Diagram: ΣFx = 0: ΣM D = 0: Dx = 0 ( − 7 in.) i × C + ( 2 in.) i + ( 3 in.) k × ( 530 lb ) j + ( −192 lb ) k + ( −3 in.) i + ( 6 in.) j × ( −96 lb ) j + ( 265 lb ) k = 0 or − ( 7 in.) C yk + ( 7 in.) C z j + ( 2 in.)( 530 lb ) k + ( 2 in.)(192 lb ) j − ( 3 in.)( 530 lb ) i + ( 3 in.)( 96 lb ) k + ( 3 in.)( 265 lb ) j + ( 6 in.)( 265 lb ) i = 0 Setting the coefficients of the unit vectors to zero: k: − C y ( 7 in.) + ( 96 lb )( 3 in.) + ( 530 lb )( 2 in.) = 0, or C y = 192.571 lb j: C z ( 7 in.) + ( 265 lb )( 3 in.) + (192 lb )( 2 in.) = 0, or C z = −168.429 lb C = (192.6 lb ) j − (168.4 lb ) k Then: ΣFy = 0: 192.571 lb − 96 lb + Dy + 530 lb = 0, ΣFz = 0: −168.429 lb + 265 lb + Dz − 192 lb = 0, or Dy = −626.57 lb or Dz = 95.429 lb D = − ( 626 lb ) j + ( 95.4 lb ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 98. Free-Body Diagram: ΣFx = 0: Dx = 0 ΣM D = 0: ( − 7 in.) i × C + ( 2 in.) i + ( 3 in.) k × ( 530 lb ) j + ( − 192 lb ) k + ( − 3 in.) i + ( 6 in.) j × ( 265 lb ) j + ( − 96 lb ) k = 0 or − ( 7 in.) C yk + ( 7 in.) C z j + ( 2 in.)( 530 lb ) k + ( 2 in.)(192 lb ) j − ( 3 in.)( 530 lb ) i − ( 3 in.)( 265 lb ) k − ( 3 in.)( 96 lb ) j − ( 6 in.)( 96 lb ) i = 0 Setting the coefficients of the unit vectors equal to zero: k: j: − C y ( 7 in.) − ( 265 lb )( 3 in.) + ( 530 lb )( 2 in.) = 0, C z ( 7 in.) + ( 96 lb )( 3 in.) + (192 lb )( 2 in.) = 0, or or C y = 37.857 lb C z = − 96.000 lb C = ( 37.9 lb ) j − ( 96.0 lb ) k Then: ΣFy = 0: 37.857 lb + 265 lb + Dy + 530 lb = 0, or Dy = − 832.86 lb ΣFz = 0: − 96 lb + 96 lb + Dz − 192 lb = 0, Dz = 192.000 lb or D = − ( 833 lb ) j + (192.0 lb ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 99. Free-Body Diagram: ( ) Note that W = mg = (18 kg ) 9.81 m/s 2 = 176.580 N Moment equilibrium: ΣM A = 0: ( ) rB/ A × By j + Bz k + rC/ A × C zk + rG/ A × ( −176.580 N ) j = 0 or i j k i j k i j k 1.5 0 0 + 1.2 1.2sin 60° −1.2cos 60° + 0.6 0.6sin 60° − 0.6cos 60° = 0 Cz 0 B y Bz 0 0 0 −176.580 0 or ( ) 1.2C z sin 60° − (105.948 N ) cos 60° i + ( −1.5Bz − 1.2C z ) j + 1.5By − 105.948 N k = 0 Solving the equation one component at a time: From i component: 1.2C z sin 60° − (105.948 N ) cos 60° = 0, From j component: −1.5Bz − 1.2C z = 0, From k component: 1.5By − 105.948 N = 0, or or C z = 50.974 N Bz = − 0.8 ( 50.974 N ) = − 40.779 N or By = 70.632 N Force equations: ΣFy = 0: Ay − 176.580 N + 70.632 N = 0, or Ay = 105.948 N ΣFz = 0: Az + 50.974 N − 40.779 N = 0, or Az = −10.195 N Therefore: A = (105.9 N ) j − (10.20 N ) k B = ( 70.6 N ) j − ( 40.8 N ) k C = ( 51.0 N ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 100. Free-Body Diagram: (a) ( 250 mm ) i × D + (150 mm ) i + ( 50 mm ) j × (150 N ) k ΣM C = 0: + (150 mm ) i + ( − 50 mm ) j × T k + ( 325 mm ) i + ( 55 mm ) j × (− FE ) j = 0 or ( 250 mm ) Dyk − ( 250 mm ) Dz j + (150 mm )(150 N ) j − ( 50 mm )(150 N ) i − (150 mm ) T j − ( 50 mm ) T j − ( 325 mm ) FE k = 0 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Setting the coefficients of the unit vectors equal to zero: i: (150 N )( 50 mm ) − T ( 50 mm ) = 0 , j: ( −150 N )(150 mm ) − (150 N )(150 mm ) − Dz ( 250 mm ) = 0, k: ( Dy ) ( 250 mm ) − FE ( 325 mm ) = 0 , or or T = 150 N Dy = T = 150 N or Dz = −180 N 325 FE 250 Spring force FE = kx, where k = 366 N/m elongation of spring x = ( yE )θ =180° − ( yE )θ = 0° = ( 300 + 55 ) mm − ( 300 − 55 ) mm = 110 mm So, FE = ( 366 N/m )( 0.110 m ) = 40.26 N Substituting into expression for Dy: Dy = 52.338 N Force equations: ΣFx = 0: Dx = 0 ΣFy = 0: C y + 52.338 N − 40.26 N = 0, ΣFz = 0: C z + 150 N + 150 N − 180 or C y = −12.078 N N = 0, or C z = −120.000 N Therefore: C = − (12.08 N ) j − (120.0 N ) k D = ( 52.3 N ) j − (180.0 N ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 101. Free-Body Diagram: Start by determining the spring force, FE : FE = − FE cosθ j + FE sin θ k The magnitude FE = kx, where k = 366 N/m, and elongation of spring x = ( yE )θ = 90° − ( yE )θ = 0° = ( 300 mm )2 + ( 55 mm )2 − ( 300 mm − 55mm ) = 305 mm − 245 mm = 60 mm So, FE = ( 366 N/m )( 0.06 m ) = 21.96 N. Note that the length of the spring at θ = 90° is therefore 305 mm. Then 300 55 FE = − ( 21.96 N ) j + ( 21.96 N ) k 305 305 or FE = − ( 21.6 N ) j + ( 3.96 N ) k continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System ( 250 mm ) i × D + (150 mm ) i + ( 50 mm ) j × (150 N ) k + (150 mm ) i + ( −50 mm ) j × T k ΣM C = 0: + ( 325 mm ) i + ( −55 mm ) k × − ( 21.6 N ) j + ( 3.96 N ) k = 0 ( 250 mm ) Dyk − ( 250 mm ) Dz j + (150 mm )(150 N ) j or − ( 50 mm )(150 N ) i − (150 mm ) T j − ( 50 mm ) T j − ( 325 mm )( 21.6 N ) k − ( 325 mm )( 3.96 N ) j − ( 55 mm )( 21.6 N ) i = 0 Setting the coefficients of the unit vectors equal to zero: (a) i: (150 N )( 50 mm ) − T ( 50 mm ) − ( 21.6 N )( 55 mm ) = 0, or T = 126.240 N T = 126.2 N j: ( −150 N )(150 mm ) − (126.24 N )(150 mm ) − ( 3.96 N )( 325 mm ) − Dz ( 250 mm ) = 0, or Dz = −170.892 N k: ( Dy ) ( 250 mm ) − ( 21.6 N )( 325 mm ) = 0, Dy = 28.080 N or Force equations: ΣFx = 0: Dx = 0 ΣFy = 0: C y + 28.080 N − 21.6 N = 0, ΣFz = 0: C z + 126.240 N + 150 N − 170.892 N + 3.96 N = 0, or C y = −6.4800 N or C z = −109.308 N Therefore: C = − ( 6.48 N ) j − (109.3 N ) k D = ( 28.1 N ) j − (170.9 N ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 102. Free-Body Diagram: ( ) The weight W is W = mg = (170 kg ) 9.81 m/s 2 = 1667.7 N ΣM C = 0: or rCA × N A + rCB × N B + rCG × W = 0 ( −0.3 m ) i + (1.2 m ) k × N A j + (1.8 m ) i + ( 0.9 m ) k × N B j + ( 0.6 m ) i + ( 0.6 m ) k × ( −W ) j = 0 or − ( 0.3 m ) N Ak − (1.2 m ) N Ai + (1.8 m ) N Bk − ( 0.9 m ) N Bi − ( 0.6 m )Wk + ( 0.6 m )Wi = 0 Equating the coefficients of the unit vectors to zero: i: −1.2 N A − 0.9 N B + 0.6W = 0 4 N A + 3 N B 0 = 2W j: (1) − 0.3 N A + 1.8 N B − 0.6W = 0 − N A + 6 N B 0 = 2W − 2 × Eq. (1) + Eq. ( 2 ) (2) gives −9 N A = 2W NA = 2 W = 370.60 N 9 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Now (2) gives NB = 1 2 10 W 2W + W = 6 9 27 N B = 617.67 N, and from (1) ΣFy = 0: N A + N B + NC − W = 0 370.60 N + 617.67 N + NC − 1667.7 N = 0 NC = 679.43 N Therefore the forces on the blocks are: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. N A = 371 N N B = 618 N NC = 679 N COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 103. Free-Body Diagram: The location of the bucket of sand will be ( xS , c, zS ). ( ) The weight W is W = mg = (170 kg ) 9.81 m/s 2 = 1667.7 N ΣFy = 0: N = ΣM O = 0: or 3N − W − WS = 0 1 (W + WS ) 3 (1) rOA × N + rOB × N + rOC × N + rOG × W − rOS × WS = 0 ( 0.3 m ) i + (1.2 m ) k × Nj + ( 2.4 m ) i + ( 0.9 m ) k × Nj + ( 0.6 m ) i × Nj + (1.2 m ) i + ( 0.6 m ) k × ( −W ) j + ( xS i + zS k ) × ( −WS ) j = 0 or ( 0.3 m ) N k − (1.2 m ) N i + ( 2.4 m ) N k − ( 0.9 m ) N i + ( 0.6 m ) N k − (1.2 m )W k + ( 0.6 m )W i − xSWS k + zSWS i = 0 Equating the coefficients of the unit vectors to zero: i: − (1.2 ) N − ( 0.9 ) N + ( 0.6 )W + zSWS = 0 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System or, using (1) 1 −2.1 (W + WS ) + 0.6W + zSWS = 0 3 WS = k: 0.1W zS − 0.7 m 0.3 N + 2.4 N + 0.6 N − 1.2W − xSWS = 0 or, using (1) 1 3.3 (W + WS ) − 1.2W − xSWS = 0 3 WS = 0.1W 1.1 m − xS (2) For (WS )min , (1) and (2) imply that xS, should be chosen as small as possible and that zS should be chosen as large as possible with the constraint that (1.1 m − xS ) = ( zS − 0.7 m ) xS + zS = 1.8 m. or The smallest xS and the largest zS that satisfy this condition are xS = 0.6 m zS = 1.2 m The corresponding value of WS is: WS = 0.1(1667.7 N ) = 333.54 N 1.1 m − 0.6 m Therefore the smallest mass of the bucket of sand is ( mS )min = 333.54 N = 34.000kg 9.81 m/s 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or ( mS )min = 34.0 kg COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 104. Free-Body Diagram: WAB = ( 5 lb/ft )( 2 ft ) = 10 lb First note WBC = ( 5 lb/ft )( 4 ft ) = 20 lb W = WAB + WBC = 30 lb To locate the equivalent force of the pipe assembly weight rG/B × W = Σ ( ri × Wi ) = rG ( AB ) × WAB + rG ( BC ) × WBC ( xGi + zGk ) × ( −30 lb ) j = (1 ft ) k × ( −10 lb ) j + ( 2 ft ) i × ( −20 lb ) j or ∴ − ( 30 lb ) xGk + ( 30 lb ) zG i = (10 lb ⋅ ft ) i − ( 40 lb ⋅ ft ) k From i-coefficient k-coefficient zG = 10 lb ⋅ ft 1 = ft 30 lb 3 xG = 40 lb ⋅ ft 1 = 1 ft 30 lb 3 From free-body diagram. of piping ΣM x = 0: W ( zG ) − TA ( 2 ft ) = 0 1 1 ∴ TA = ft 30 lb ft = 5 lb 2 3 ΣFy = 0: or TA = 5.00 lb 5 lb + TD + TC − 30 lb = 0 ∴ TD + TC = 25 lb (1) continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System ΣM z = 0: 4 TD (1.25 ft ) + TC ( 4 ft ) − 30 lb ft = 0 3 ∴ 1.25TD + 4TC = 40 lb ⋅ ft −4 Equation (1) −4TD − 4TC = −100 (3) −2.75TD = −60 Equation (2) + Equation (3) ∴ TD = 21.818 lb From Equation (1) (2) or TD = 21.8 lb TC = 25 − 21.818 = 3.1818 lb or Results: TC = 3.18 lb TA = 5.00 lb TC = 3.18 lb TD = 21.8 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 105. Free-Body Diagram: First note W AB = (5 lb/ft )(2 ft ) = 10 lb WBC = ( 5 lb/ft )( 4 ft ) = 20 lb From free-body diagram. of pipe assembly ΣFy = 0: TA + TC + TD − 10 lb − 20 lb = 0 ∴ TA + TC + TD = 30 lb (1) ΣM x = 0: (10 lb )(1 ft ) − TA ( 2 ft ) = 0 or TA = 5.00 lb TC + TD = 25 lb From Equations (1) and (2) (2) (3) ΣM z = 0: TC ( 4 ft ) + TD ( amax ) − 20 lb ( 2 ft ) = 0 or ( 4 ft ) TC + TD amax = 40 lb ⋅ ft (4) continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Using Equation (3) to eliminate TC 4 ( 25 − TD ) + TD amax = 40 amax = 4 − or 60 TD By observation, a is maximum when TD is maximum. From Equation (3), (TD )max occurs when TC = 0. Therefore, (TD )max = 25 lb and amax = 4 − 60 25 = 1.600 ft Results: (a) amax = 1.600 ft (b) TA = 5.00 lb TC = 0 TD = 25.0 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 106. Free-Body Diagram: The free-body diagram indicates the forces on the camera and tripod slid along their lines of action to the plane ABCD. Note that the x-coordinate of the center of mass of the camera is: xCAM = − ( 2.4 in. − 1 in.) = −1.4 in. ΣM B = 0: or ( − 3 in.) k × C y j + ( −1.5 in.) k − (1.4 in.) i × ( − 0.44 lb ) j + ( −1.5 in.) k − ( 2.8 in.) i × ( − 0.53 lb ) j + ( −1.5 in.) k − ( 3.2 in.) i × Ay j = 0 ( 3 in.) C yi − (1.5 in.)( 0.44 lb ) i + (1.4 in.)( 0.44 lb ) k − (1.5 in.)( 0.53 lb ) i + ( 2.8 in.)( 0.53 lb ) k + (1.5 in.) Ay i − ( 3.2 in.) Ayk = 0 Setting the coefficients of the unit vectors equal to zero: k: − Ay ( 3.2 in.) + ( 0.53 lb )( 2.8 in.) + ( 0.44 lb )(1.4 in.) = 0 Ay = 0.65625 lb or A y = 0.656 lb continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System i: ( 3 in.) C y − (1.5 in.)( 0.44 lb ) − (1.5 in )( 0.53 lb ) + (1.5 in.) (0.65625 lb) = 0 C y = 0.156875 lb or C y = 0.1569 lb or B y = 0.1569 lb ΣFx = By − 0.53 lb − 0.44 lb + 0.156875 lb + 0.156875 lb = 0 By = 0.156875 lb (b) Free-Body Diagram: Condition for no tipping: By > 0 ΣM A = 0: ( 3.2 in.) i + ( −1.5 in.) k × C y j + ( 3.2 in.) i + (1.5 in.) k × B y j { } + (1.8 in.) i × ( − 0.44 lb ) j + 1.8 in. − (1.4 in.) cosθ i − (1.4 in.) sinθ k × ( − 0.53 lb ) j = 0 or ( 3.2 in.) C yk + (1.5 in.) C yi + ( 3.2 in.) By k − (1.5 in.) Byi − (1.8 in.)( 0.44 lb ) k + 1.8 in. − (1.4 in.) cosθ ( − 0.53 lb ) k + (1.4 in.) sinθ ( − 0.53 lb ) i = 0 Setting the coefficients of the unit vectors equal to zero: i: C y (1.5 in.) − By (1.5 in.) − ( 0.53 lb )(1.4 in.) sin θ = 0 C y = B y + ( 0.53 lb ) k: 1.4 sin θ 1.5 ( By + C y ) ( 3.2 in.) − ( 0.44 lb )(1.8 in.) − ( 0.53 lb ) 1.8 in. − (1.4 in ) cosθ = 0 or 1.4 2By ( 3.2 in.) + ( 0.53 lb ) ( 3.2 in.) sin θ + (1.4 in.) cosθ − ( 0.44 lb + 0.53 lb )(1.8 in.) = 0 1.5 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Solving for By : By = 1.4 1 ( 0.44 lb + 0.53 lb )1.8 in. − 0.53 lb ( 3.2 in.) sin θ + (1.4 in.) cosθ 2 ( 3.2 in.) 1.5 and By > 0 2.3531 > 2.1333sin θ + cosθ To solve for θ : 2.1333sin θ + cosθ = A cos (θ + α ) = A ( cosθ cos α − sin θ sin α ) where A= ( 2.1333)2 + (1)2 = 2.3561, and − 2.1333 , which (noting that cos α > 0) gives 1 α = tan −1 α = − 64.885° The inequality for By becomes: 2.3531 > 2.3561cos(θ − 64.885°) or cos (θ − 64.885° ) < 0.99873 or θ − 64.885° < cos −1 ( 0.99873) or θ < 64.885° ± 2.8879° θ max = 62.00° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 107. Free-Body Diagram: ΣM B = 0: or rBA × TA + rBC × TC + rBO × WAB + rBF × WBD + rBG × WAD = 0 ( ) 3 L L 3 1 − Li × TA j + − 4 i + Lk × TC j − i × − Wj 4 2 tan 60° 3 L 1 3L 1 3 3 + − i + Lk × − Wj + − i + Lk × − Wj = 0 4 4 4 3 4 3 or − LTAk − 3 3 L L 3 L 3 LTC k − LTC i + Wk + Wk + LWi − Wk + LWi = 0 4 4 6 12 12 4 12 Equating the coefficients of the unit vectors to zero: i: W 3 W 3 3 L+ L − TC L = 0 3 4 3 4 4 TC = k: 2W 3 3 − TA L + TA = W 3L W L W L 2W 3 L + + − =0 3 4 3 4 3 2 3 34 3 W 3 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System ΣFy = 0: TB + TB = W 2W + −W = 0 3 3 3 2 1 1 − W 3 3 Therefore: TA = TB = 2 1 1 − W 3 3 TC = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. W 3 2W 3 3 COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 108. Free-Body Diagram: Note that: xC = L 1 − zC 2 3 (a) Setting: TA = TB = T ΣM O = 0: or rOA × TA + rOB × TB + rOC × TC + rOH × W + rOF × WBD + rOG × WAD = 0 − L L i × TA j + i × TB j + 2 2 ( ) 3 L L 3 − 4 i + Lk × TC j 4 2 tan 60° L 1 L 1 3 3 Lk × − Wj + − i + Lk × − Wj + ( xC i + zC k ) × ( − Wj) = 0 + i + 4 4 4 3 4 3 or ( ) 3 L L L L 3 T k + LTC i − TAk + TAk + − 4 2 tan 60° C 2 2 4 − 1L 1 3 1L 1 3 Wk + LWi + Wk + LWi − xCWk + zCWi = 0 34 3 4 34 3 4 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Equating the coefficients of the unit vectors to zero: i: W 3 W 3 3L L+ L − TC + WzC = 0 3 4 3 4 4 (1) or, using the relation between xC, and zC: L 3 3 − LTC + + − 3 xC + 4 2 2 3 k: L W = 0 (2) 1 L L 3 1 1 LW + LW − xCW = 0 − T + T + L − TC − 2 2 2 4 12 12 1 3 L − TC = xCW 4 2 (3) Substituting (3) into (2) 1 1 3 3 3 − LTC + + LW − 3 L − TC = 0 4 2 4 2 2 3 4 W 3 4 ΣFy = 0: 2T + W − 2W = 0 3 W T = 3 TC = TA = TB = Therefore: TC = (b) Using TC in (1): W 3 4 W 3 W 3 W 3 4 3 L+ L − W L + WzC = 0 3 4 3 4 3 4 1 zC = 1 − L 2 3 and from geometry xC = L 1 1 zC = 2− 3 L − 2 3 3 ( ) Therefore: xC = 1 2− 3 L 3 ( ) 1 zC = 1 − L 2 3 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 109. Free-Body Diagram: (a) ΣFy = 0: 3 ( R ) − 135 N = 0 R = 45.0 N ΣM A = 0: rAB × R B + rAC × R C + rAG × FW = 0 or ( 0.9 m ) i + l k × R j + l i + ( 0.9 m ) k × R j + ( 0.450 m ) i + ( 0.450 m ) k × ( − FW j) = 0 or ( 0.9 m ) R k − lR i + lR k − ( 0.9 m ) R i − ( 0.450 m ) FW k + ( 0.450 m ) FW i = 0 Equating the coefficients of the i unit vector to zero: i: − lR − ( 0.9 m ) R + ( 0.45 m ) FW = 0 Using that FW = 3R − l − ( 0.9 m ) + ( 0.45 m )( 3) = 0 l = 0.450 m or l = 450 mm continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System (b) Free-Body Diagram: ΣM A = 0: rAB × R B + rAC × R C + rAG × FW = 0 or ( 0.9 m ) i + ( 0.5 m ) k × R j + ( 0.5 m ) i + ( 0.9 m ) k × R j + ( 0.450 m ) i + ( 0.450 m ) k × ( −135 N ) j = 0 ( 0.9 m ) R k − ( 0.5 m ) R i + ( 0.5 m ) R k − ( 0.9 m ) R i − ( 0.450 m ) FW k + ( 0.450 m ) FW i = 0 Equating the coefficients of the unit vectors to zero i: − 0.5RB − 0.9 RC + 60.75 = 0 (1) k: 0.9 RB + 0.5RC − 60.75 = 0 (2) 0.5 × [ Eq. (1)] + 0.9 × [ Eq. (2) ] gives − 0.5 ( 0.5 ) + ( 0.9 )( 0.9 ) RB + ( 0.5 − 0.9 ) 60.75 = 0 RB = 43.393 N Now using (1) − 0.5 ( 43.393) − 0.9 RC + 60.67 = 0 RC = 43.393 N ΣFy = 0: RA + 43.393 + 43.393 − 135 = 0 RA = 48.2 N RB = 43.4 N RC = 43.4 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 110. Free-Body Diagram: ΣM O = 0: ( 0.75 ft ) i × ( Ay j + Azk ) + ( 3.75 ft ) i × ( By j + Bzk ) + ( 2.25 ft ) i + ( 3 ft ) k × ( − 27 lb ) j + ( 4.5 ft ) i + ( 5.25 ft ) k × C y j = 0 or ( 0.75 ft ) Ayk − ( 0.75 ft ) Az j + ( 3.75 ft ) Byk − ( 3.75 ft ) Bz j − ( 2.25 ft )( 27 lb ) k + ( 3 ft )( 27 lb ) i + ( 4.5 ft ) C yk − ( 5.25 ft ) C y i = 0 Setting the coefficients of the unit vectors equal to zero: i: ( 27 lb )( 3 ft ) − C y ( 5.25 ft ) = 0 C y = 15.4286 lb k: ( 27 lb )(1.5 ft ) + By ( 3 ft ) − (15.4286 lb )( 3.75 ft ) = 0 By = − 5.78575 lb ΣFy = 0: Ay − 5.78575 lb − 27 lb + 15.4286 lb = 0 Ay = 17.3572 lb Therefore: (a) (b) (c) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. A y = 17.36 lb B y = 5.79 lb C y = 15.43 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 111. Free-Body Diagram: ΣM O = 0: ( 0.75 ft ) i × ( Ay j + Azk ) + ( 3.75 ft ) i × ( By j + Bzk ) + ( 2.25 ft ) i + ( 3 ft ) k × ( − 27 lb ) j + ( 3.75 ft ) i + ( 6 ft ) k × C y j = 0 or ( 0.75 ft ) Ayk − ( 0.75 ft ) Az j + ( 3.75 ft ) Byk − ( 3.75 ft ) Bz j − ( 2.25 ft )( 27 lb ) k + ( 3 ft )( 27 lb ) i + ( 3.75 ft ) C yk − ( 6.0 ft ) C y i = 0 Setting the coefficients of the unit vectors equal to zero: ΣM x = 0: ( 27 lb )( 3 ft ) − C y ( 6 ft ) = 0 C y = 13.5000 lb ΣM z = 0: − ( 27 lb )(1.5 ft ) + By ( 3 ft ) − (13.5000 lb )( 3 ft ) = 0 By = 0 ΣFy = 0: Ay + 13.5000 lb − 27 lb = 0 Ay = 13.5000 lb Therefore: A y = 13.50 lb (a) (b) (c) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. By = 0 C y = 13.50 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 112 Free-Body Diagram: Express all forces in terms of rectangular components: rE = ( 3 ft ) i + ( 3 ft ) j rB = ( 3 ft ) sin 30° j + ( 3 ft ) cos 30°k = (1.5 ft ) j + ( 2.598 ft ) k rD = − ( 3 ft ) i + ( 3 ft ) j or or rA = (10 ft ) sin 30° j − (10 ft ) cos 30°k = ( 5 ft ) j + (8.66 ft ) k uuur BE = rE − rB = ( 3 ft ) i + ( 3 ft ) j − (1.5 ft ) j − ( 2.598 ft ) k uuur BE = ( 3 ft ) i + (1.5 ft ) j − ( 2.598 ft ) k, and BE = 4.243 ft uuur BD = rD − rB = − ( 3 ft ) i + ( 3 ft ) j − (1.5 ft ) j − ( 2.598 ft ) k uuur BD = − ( 3 ft ) i + (1.5 ft ) j − ( 2.598 ft ) k, and BD = 4.243 ft Then uuur ur BD T BD = TBD = TBD ( − 0.707i + 0.3535j − 0.6123k ) BD uuur ur BE T BE = TBE = TBE ( 0.707i + 0.3535j − 0.6123k ) BE continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System rB × TBD + rB × TBE + ( 5 ft ) j + ( 8.66 ft ) k × ( − 75 lb ) j ΣM C = 0: i j k i j k 0 1.5 2.598 TBD + 0 1.5 2.598 + 649.5 i = 0 or − 0.707 0.3535 − 0.6123 0.707 0.3535 − 0.6123 Equating the coefficients of the unit vectors to zero: j: −1.837 TBD + 1.837 TBE = 0 i: −1.837 TBD + 1.837 TBE + 649.5 lb = 0 TBD = 176.8 lb TBE = 176.8 lb Force equations: C x + (176.8 )( − 0.707 ) + (176.8 )( 0.707 ) = 0, or Cx = 0 C y + (176.8 )( 0.3535 ) + (176.8 )( 0.3535 ) − 75 lb = 0, or C z + (176.8 )( − 0.6123) + (176.8 )( − 0.6123) = 0, C z = 216.5 lb or C y = − 50 lb C = − ( 50 lb ) j + ( 216.5 lb ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 113. Free-Body Diagram: Express the forces in terms of their rectangular components: uuur FB 12i − 18j + 36k 2 3 6 TFB = TFB = TFB = TFB i − TFB j + TFBk 2 2 2 FB 7 7 (12 ) + ( −18) + ( 36 ) 7 TFC = TFC uuur FC = TFC FC −12i − 18j + 36k ( −12 ) 2 2 + ( −18 ) + ( 36 ) 2 2 3 6 = − TFBi − TFB j + TFBk 7 7 7 From the free-body diagram, note that zE 12 = 27 18 z E = 18.00 ft continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Then, using TED = 2720 lb TED = 2720 − 27 j + 57.75k ( − 27 )2 + (18 + 39.75)2 TED = ( 32 lb )( − 36j + 77k ) (a) ΣM A = 0: rAD × TED + rAF × TFB + rAE × W = 0 i j k i j k i j k i j k TFB TFC or 32 0 0 39.75 + 0 18 −12 + 0 18 −12 + 2720 0 27 −18 = 0 7 7 0 − 36 77 2 −3 6 0 −1 0 − 2 −3 6 Equating the coefficients of the unit vectors to zero i: 32 ( 39.75 )( 36 ) + TFB T ( 72 ) + FC ( 72 ) + 2720 ( −18) = 0 7 7 72 72 TFB + TFC − 3168 = 0 7 7 j: (1) TFB T ( − 24 ) + FC ( 24 ) = 0 7 7 TFB = TFC (2) Substituting Eq. (2) in (1) gives 72 2 TFB − 3168 = 0 7 or TFB = 154.0 lb TFC = 154.0 lb (b) ΣFx = 0: Ax + 2 2 (154.0) − (154.0 ) = 0 7 7 Ax = 0 ΣFy = 0: Ay − 3 3 (154.0) − (154.0 ) − ( 32 )( 36 ) − 2720 = 0 7 7 Ay = 4004 lb ΣFz = 0: Az + 6 6 (154.0) + (154.0 ) + ( 32 )( 77 ) = 0 7 7 Az = − 2728 lb Therefore: A = ( 4.00 kips ) j − ( 2.73 kips ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 114. Free-Body Diagram First express tensions in terms of rectangular components: uuur BE − 8i − 8j + 4k 2 2 1 TBE = TBE = TBE = − TBE i − TBE j + TBE k 2 2 2 BE 3 3 3 ( − 8) + ( − 8) + ( 4 ) TBF = TBF uuur BF = TBF BF 8i − 8j + 14k (8) 2 2 + ( − 8 ) + (14 ) 2 = 4 4 7 TBF i − TBF j + TBF k 9 9 9 TCD = TCD ( cos φ sin θ i − sin φ j − cos φ cosθ k ) ΣM A = 0: or rAB × TBE + rAB × TBF + rAC × TCD = 0 8j × TBE T ( − 2i − 2 j + k ) + 8j × BF ( 4i − 4 j + 7k ) 3 9 + 10 j × TCD ( cos φ sin θ i − sin φ j − cos φ cosθ k ) = 0 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Equating the coefficients of the unit vectors to zero: (a) i: 8 56 TBE + TBF − 10TCD cos φ cosθ = 0 3 9 (1) k: 16 32 TBE − TBF − 10TCD cos φ sin θ = 0 3 9 (2) − 2 × Eq. (1) + Eq. ( 2 ) gives: 56 32 − 2 − TBF − 10 ( 600 ) cos10° ( − 2 cos 30° + sin 30° ) = 0 9 9 TBF = 455.00 N Using this in Eq. (1), 8 56 TBE + ( 455.00 ) − 10 ( 600 ) cos10° cos 30° = 0 3 9 TBE = 857.29 N Therefore: TBE = 857 N TBF = 455 N (b) ΣFx = 0: ΣFy = 0: Ax − 2 4 (857.29 N ) + ( 455.00 N ) + ( 600 N ) cos10° sin 30° = 0 3 9 Ax = 73.9 N 2 4 Ay − ( 857.29 N ) − ( 455.00 N ) + ( 600 N ) sin10° = 0 3 9 Ay = 878 N ΣFz = 0: Az + 1 7 (857.29 N ) + ( 455.00 N ) − ( 600 N ) cos10° cos 30° = 0 3 9 Az = −127.9 N Therefore: A = ( 73.9 N ) i + ( 878 N ) j − (127.9 N ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 115. Free-Body Diagram: First express tensions in terms of rectangular components: uuur BE − 8i − 8j + 4k 2 2 1 = TBE = − TBE i − TBE j + TBE k TBE = TBE 2 2 2 BE 3 3 3 ( − 8) + ( − 8) + ( 4 ) TBF = TBF uuur BF = TBF BF 8i − 8j + 14k (8) 2 2 + ( − 8 ) + (14 ) 2 = 4 4 7 TBF i − TBF j + TBF k 9 9 9 TCD = TCD ( cos φ sin θ i − sin φ j − cos φ cosθ k ) ΣM A = 0: or rAB × TBE + rAB × TBF + rAC × TCD = 0 8j × TBE T (− 2i − 2 j + k ) + 8j × BF (4i − 4 j + 7k ) 3 9 + 10 j × TCD ( cos φ sin θ i − sin φ j − cos φ cosθ k ) = 0 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Equating the coefficients of the unit vectors to zero: 8 56 TBE + TBF − 10TCD cos φ cosθ = 0 3 9 i: 8 56 (840 N ) + ( 450 N ) = 10TCD cos φ cosθ 3 9 (1) 16 32 TBE − TBF − 10TCD cos φ sin θ = 0 3 9 k: 16 32 (840 N ) − ( 450 N ) = 10TCD cos φ sin θ 3 9 (a) (2) Eq. ( 2) gives: Eq. (1) 16 (840) − 32 ( 450) 10TCD cos φ sin θ 3 9 = 8 10TCD cos φ cos θ (840) + 56 ( 450) 3 9 tan θ = 1 1.75 θ = 29.7° θ = 29.745° (b) Substituting into (1) gives: 8 56 (840 N ) + ( 450 N ) − 10TCD cos8° cos 29.745° = 0, 3 9 or TCD = 586.19 N or TCD = 586 N (c) ΣFx = 0: Ax − 2 4 (840 N ) + ( 450 N ) + ( 586.19 N ) cos8° sin 29.745° = 0 3 9 Ax = 72.0 N ΣFy = 0: Ay − 2 4 (840 N ) − ( 450 N ) − ( 586.19 N ) sin 8° = 0 3 9 Ay = 842 N ΣFz = 0: Az + 1 3 (840 N ) + ( 450 N ) − ( 586.19 N ) cos8° cos 29.745° = 0 3 9 Az = −126.0 N Therefore: A = ( 72.0 N ) i + ( 842 N ) j − (126.0 N ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 116. Free-Body Diagram: Express all forces in terms of rectangular components: rA = ( 2.4 m ) i rB = (1.8 m ) j uuur AD = − ( 2.4 m ) i + ( 0.3 m ) j + (1.2 m ) k uuur BE = − (1.8 m ) i + ( 0.6 m ) j − ( 0.9 m ) k W = − ( 880 N ) j Then uuur ur AD = TAD T AD = TAD AD uuur ur BE T BE = TBE = TBE BE − 2.4i + 0.3j + 1.2k ( − 2.4 ) 2 2 + ( 0.3) + (1.2 ) 2 −1.8i + 0.6 j − 0.9k ( −1.8) 2 2 + ( 0.6 ) + ( − 0.9 ) 2 8 1 4 = − TADi + TAD j + TADk 9 9 9 6 2 3 = − TADi + TAD j − TADk 7 7 7 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System ΣM C = 0: or rA × TAD + rB × TBE + rA × W = 0 i 2.4 8 − 9 j 0 1 9 k i j k 0 TAD + 1.8 0 0 TBE + ( 2.4 ) i × ( − 880 ) j = 0 4 6 2 3 − − 9 7 7 7 Equating the coefficients of the unit vectors to zero: − j: 9.6 5.4 TAD + TBE = 0 9 7 2.4 3.6 TAD + TBE − 2112 = 0 9 7 k: or TAD = 2160 N TBE = 2990 N Force equations: Cx − 8 6 ( 2160.0 N ) − ( 2986.7 N ) = 0, 9 7 Cy + 1 2 ( 2160.0 N ) + ( 2986.7 N ) − 880 N = 0, or 9 7 Cz + 4 3 ( 2160.0 N ) − ( 2986.7 N ) = 0, 9 7 or or C x = 4480.0 N C y = − 213.34 N C z = 320.01 N C = ( 4480 N ) i − ( 213 N ) j + ( 320 N ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 117. Free-Body Diagram: Express all forces in terms of rectangular components: rA = ( 2.4 m ) i rB = (1.8 m ) j uuur AD = − ( 2.4 m ) i + ( 0.3 m ) j + (1.2 m ) k uuur BE = − (1.8 m ) i + ( 0.6 m ) j − ( 0.9 m ) k WA = − ( 440 N ) j WB = − ( 440 N ) j Then uuur ur AD T AD = TAD = TAD AD uuur ur BE = TBE T BE = TBE BE − 2.4i + 0.3j + 1.2k ( − 2.4 ) 2 2 + ( 0.3) + (1.2 ) 2 −1.8i + 0.6 j − 0.9k ( −1.8) 2 2 + ( 0.6 ) + ( − 0.9 ) 2 8 1 4 = − TADi + TAD j + TADk 9 9 9 6 2 3 = − TADi + TAD j − TADk 7 7 7 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System ΣM C = 0: or rA × TAD + rB × TBE + rA × WA + rB × WB = 0 i 2.4 8 − 9 j 0 1 9 k i j k 0 TAD + 1.8 0 0 TBE + ( 2.4 ) i × (− 440) j + (1.8 ) i × (− 440) j = 0 4 6 2 3 − − 9 7 7 7 Equating the coefficients of the unit vectors to zero: j: − 9.6 5.4 TAD + TBE = 0 9 7 2.4 3.6 TAD + TBE − 1848 = 0 9 7 k: or TAD = 1890 N TBE = 2610 N Force equations: Cx − 8 6 (1890.00 N ) − ( 2613.3 N ) = 0, 9 7 Cy + 1 2 (1890.00 N ) + ( 2613.3 N ) − 440 N − 440 N = 0, 9 7 Cz + 4 3 (1890.00 N ) − ( 2613.3 N ) = 0, 9 7 or or C x = 3920.0 N or C y = −76.657 N C z = 279.99 N C = ( 3920 N ) i − ( 76.7 N ) j + ( 280 N ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 118. Free-Body Diagram: Express all forces in terms of rectangular components: rA = (140 in.) i rC = ( 72 in.) i uuur EG = − (120 in.) i + (126 in.) k uuuur FH = − (120 in.) i − ( 90 in.) k uur CI = − ( 72 in.) i + ( 44.8 in.) j W = − (140 lb ) j Then uuur ur EG = TEG T EG = TEG EG −120i + 126k ( −120 ) uuuur ur FH T FH = TFH = TFH FH uur ur CI T CI = TCI = TCI CI 2 + (126 ) 2 =− −120i − 90k ( −120 )2 + ( − 90 )2 − 72i + 44.8j ( − 72 ) 2 + ( 44.8 ) 2 =− 20 21 TEG i + TEGk 29 29 = −0.8TFH i − 0.6TFH k 45 28 TCI i + TCI j 53 53 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System ΣM D = 0: or rE × TEG + rF × TFH + rC × TCI + rA × W = 0 i j k i j k i j k TEG TFH T 120 0 10 + 120 0 −10 + 72 0 0 CI − 19600 lb ⋅ in. = 0 29 5 53 − 20 0 21 −4 0 −3 − 45 28 0 Noting that TCI = TFH and equating the coefficients of the unit vectors to zero: j: k: − 93.793TEG + 80TCI = 0 38.038TCI − 19600 lb ⋅ in. = 0 or TCI = TFH = 515 lb or TEG = 440 lb Force equations: ΣFx = 0: Dx − 20 45 4 ( 439.50 lb ) − ( 515.28 lb ) − ( 515.28 lb ) = 0, 29 53 5 ΣFy = 0: Dy + 28 ( 515.28 lb ) − 140 lb = 0, 53 ΣFz = 0: Dz + 21 3 ( 439.50 lb ) − ( 515.28) lb = 0, 29 5 or or Dx = 1152.83 lb Dy = −132.223 lb or Dz = − 9.0906 lb D = (1153 lb ) i − (132.2 lb ) j − ( 9.09 lb ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 119. Free-Body Diagram: Express all forces in terms of rectangular components: rB = (120 in.) i rC = ( 72 in.) i uuur EG = − (120 in.) i + (126 in.) k uuuur FH = − (120 in.) i − ( 90 in.) k uur CI = − ( 72 in.) i + ( 44.8 in.) j W = − (140 lb) j Then uuur ur EG T EG = TEG = TEG EG −120i + 126k uuuur ur FH T FH = TFH = TFH FH uur ur CI T CI = TCI = TCI CI ( −120 ) 2 + (126 ) 2 =− −120i − 90k ( −120 )2 + ( − 90 )2 − 72i + 44.8j ( − 72 ) 2 + ( 44.8 ) 2 =− 20 21 TEG i + TEGk 29 29 = − 0.8TFH i − 0.6TFH k 45 28 TCI i + TCI j 53 53 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System ΣM D = 0: or rE × TEG + rF × TFH + rC × TCI + rA × W = 0 i j k i j k i j k TEG TFH T 120 0 10 + 120 0 −10 + 72 0 0 CI − 19600 lb ⋅ in. = 0 29 5 53 − 20 0 21 −4 0 −3 − 45 28 0 Noting that TCI = TFH and equating the coefficients of the unit vectors to zero: j: k: − 93.793TEG + 80TCI = 0 38.038TCI − 16800 lb ⋅ in. = 0 or TCI = TFH = 442 lb TEG = 377 lb Force equations: ΣFx = 0: Dx − 20 45 4 ( 376.72 lb ) − ( 441.67 lb ) − ( 441.67 lb ) = 0, 29 53 5 ΣFy = 0: Dy + 28 ( 441.67 lb ) − 140 lb = 0, 53 ΣFz = 0: Dz + 21 3 ( 376.72 lb ) − ( 441.67 lb ) = 0, 29 5 or or Dx = 988.15 lb Dy = − 93.335 lb or Dz = − 7.7952 lb D = ( 998 lb ) i − ( 93.3 lb ) j − ( 7.80 lb ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 120. Free-Body Diagram: Geometry: Using triangle ACD and the law of sines sin α sin 50° or α = 20.946° = 15 in. 7 in. β = 50° + 20.946° = 70.946° Expressing FCD in terms of its rectangular coordinates: FCD = FCD sin β j + FCD cos β k = FCD sin 70.946° j + FCD cos 70.946°k FCD = 0.94521FCD j + 0.32646 FCDk ΣM B = 0: ( − 26 in.) i × A + ( −13 in.) i + (16 in.) sin 50°j + (16 in.) cos 50°k × ( − 75 lb ) j + ( − 26 in.) i + ( 7 in.) k × FCD = 0 or − ( 26 in.) Ayk + ( 26 in.) Az j + (13 in.)( 75 lb ) k + (16 in.)( 75 lb ) cos 50°i − ( 26 in.) ( 0.94521FCD ) k + ( 26 in.) ( 0.32646 FCD ) j − ( 7 in.) ( 0.94521FCD ) i = 0 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System (a) Setting the coefficients of the unit vectors to zero: i: ( 75 lb ) (16 in.) cos 50° − ( 0.94521FCD ) ( 7 in.) = 0 FCD = 116.6 lb (b) ΣFx = 0: k: Ax = 0 − 0.94521(116.580 lb ) ( 26 in.) + ( 75 lb )(13 in.) − Ay ( 26 in.) = 0 Ay = − 72.693 lb j: 0.32646 (116.580 lb ) ( 26 in.) + Az ( 26 in.) = 0 Az = − 38.059 lb ΣFy = 0: − 72.693 lb + 0.94521(116.580 lb ) − 75 lb + By = 0 By = 37.500 lb ΣFz = 0: − 38.059 lb + 0.32646 (116.580 lb ) + Bz = 0 Bz = 0 Therefore: A = − ( 72.7 lb ) j − ( 38.1 lb ) k B = ( 37.5 lb ) j Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 121. Free-Body Diagram: Express tension in terms of rectangular components: uuuur DG = − ( 4.8 in.) j − ( 9 in.) k uuuur − 4.7 j − 9k DG 8 15 TDG = TDG = TDG = − TDG j − TDG k 2 2 DG 17 17 ( − 4.8) + ( − 9 ) Equilibrium: ΣM F = 0: ( 6.4 in.) i + ( − 2.4 in.) j × TDG + ( 5.2 in.) j × E + ( 7.6 in.) j + ( 9.6 in.) k × ( − 55 lb ) i = 0 or 15 8 15 TDG i − ( 6.4 in.) TDG k + ( 6.4 in.) TDG j 17 17 17 ( 2.4 in.) − ( 5.2 in.) Ex k + ( 5.2 in.) Ez i + ( 7.6 in.) (55 lb)k − ( 9.6 in.) (55 lb)j = 0 Setting the coefficients of the unit vectors equal to zero: (a) j: 15 TDG ( 6.4 in.) − ( 55 lb )( 9.6 in.) = 0 17 TDG = 93.5 lb continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System (b) k: 8 (93.500 lb) ( 6.4 in.) = 0 17 ( 55 lb )( 7.6 in.) − Ex ( 5.2 in.) − E x = 26.231 lb i: 15 Ez ( 5.2 in.) + (93.500 lb) ( 2.4 in.) = 0 17 E z = − 38.077 lb ΣFx = 0: − 55 lb + 26.231 lb + Fx = 0 Fx = 28.796 lb ΣFy = 0: Fy − 8 ( 93.500 lb ) = 0 17 Fy = 44.000 lb ΣFz = 0: − 38.077 lb + Fz − 15 ( 93.500 lb ) = 0 17 Fz = 120.577 lb Therefore: E = ( 26.2 lb ) i − ( 38.1 lb ) k F = ( 28.8 lb ) i + ( 44.0 lb ) j + (120.6 lb ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 122. Free-Body Diagram: ( ) W = mg = (15 kg ) 9.81 m/s 2 = 147.15 N First note (a) ( 0.08 m ) i + ( 0.25 m ) j − ( 0.2 m ) k T TEF = λ EF TEF = TEF = EF ( 0.08i + 0.25j − 0.2k ) 0.33 ( 0.08 )2 + ( 0.25 )2 + ( 0.2 )2 m From free-body diagram of rectangular plate ΣM x = 0: (147.15 N )( 0.1 m ) − (TEF ) y ( 0.2 m ) = 0 0.25 14.715 N ⋅ m − TEF ( 0.2 m ) = 0 0.33 or TEF = 97.119 N or or TEF = 97.1 N (b) ΣFx = 0: Ax + (TEF ) x = 0 0.08 Ax + ( 97.119 N ) = 0 0.33 ∴ Ax = −23.544 N continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System ΣM B( z -axis ) = 0: − Ay ( 0.3 m ) − (TEF ) y ( 0.04 m ) + W ( 0.15 m ) = 0 0.25 − Ay ( 0.3 m ) − 97.119 N ( 0.04 m ) + 147.15 N ( 0.15 m ) = 0 0.33 or ∴ Ay = 63.765 N ΣM B( y -axis ) = 0: Az ( 0.3 m ) + (TEF ) x ( 0.2 m ) + (TEF ) z ( 0.04 m ) = 0 0.08 0.2 Az ( 0.3 m ) + TEF ( 0.2 m ) − TEF ( 0.04 m ) = 0 0.33 0.33 ∴ Az = −7.848 N and A = − ( 23.5 N ) i + ( 63.8 N ) j − ( 7.85 N ) k ΣFy = 0: Ay − W + (TEF ) y + By = 0 0.25 63.765 N − 147.15 N + ( 97.119 N ) + By = 0 0.33 ∴ By = 9.81 N ΣFz = 0: Az − (TEF ) z + Bz = 0 0.2 −7.848 N − ( 97.119 N ) + Bz = 0 0.33 ∴ Bz = 66.708 N and B = ( 9.81 N ) j + ( 66.7 N ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 123. Free-Body Diagram: ( (a) ) W = mg = (15 kg ) 9.81 m/s 2 = 147.15 N First note TEH = λ EH TEH − ( 0.3 m ) i + ( 0.12 m ) j − ( 0.2 m ) k T = T = EH − ( 0.3) i + ( 0.12 ) j − ( 0.2 ) k EH 2 2 2 0.38 ( 0.3) + ( 0.12 ) + ( 0.2 ) m From free-body diagram of rectangular plate ΣM x = 0: (147.15 N )( 0.1 m ) − (TEH ) y ( 0.2 m ) = 0 0.12 TEH ( 0.2 m ) = 0 0.38 or (147.15 N )( 0.1 m ) − or TEH = 232.99 N or TEH = 233 N (b) ΣFx = 0: Ax + (TEH ) x = 0 0.3 Ax − ( 232.99 N ) = 0 0.38 ∴ Ax = 183.938 N continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System ΣM B( z -axis ) = 0: − Ay ( 0.3 m ) − (TEH ) y ( 0.04 m ) + W ( 0.15 m ) = 0 0.12 − Ay ( 0.3 m ) − ( 232.99 N ) ( 0.04 m ) + (147.15 N )( 0.15 m ) = 0 0.38 or ∴ Ay = 63.765 N ΣM B( y -axis ) = 0: Az ( 0.3 m ) + (TEH ) x ( 0.2 m ) + (TEH ) z ( 0.04 m ) = 0 0.3 Az ( 0.3 m ) − ( 232.99 N ) ( 0.2 m ) − 0.38 or 0.2 ( 232.99 ) ( 0.04 m ) = 0 0.38 ∴ Az = 138.976 N and A = (183.9 N ) i + ( 63.8 N ) j + (139.0 N ) k ΣFy = 0: Ay + By − W + (TEH ) y = 0 0.12 63.765 N + By − 147.15 N + ( 232.99 N ) = 0 0.38 ∴ By = 9.8092 N ΣFz = 0: Az + Bz − (TEH ) z = 0 0.2 138.976 N + Bz − ( 232.99 N ) = 0 0.38 ∴ Bz = −16.3497 N and B = ( 9.81 N ) j − (16.35 N ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 124. Free-Body Diagram: Express tension, weight in terms of rectangular components: uuur EF = ( 300 mm ) i + (1350 mm ) j − ( 700 mm ) k uuur EF 300 i + 1350 j − 700 k T=T =T EF ( 300 )2 + (1350 )2 + ( − 700 )2 = 6 27 14 Ti + T j− Tk 31 31 31 ( ) W = − (mg ) j = − ( 7 kg ) 9.81 m s 2 j = − (68.67 N)j ΣM B = 0: − ( 750 mm ) i × A + − ( 375 mm ) i + ( 350 mm ) k × ( − 68.7 N ) j + ( −100 mm ) i + ( 700 mm ) k × T = 0 or − ( 750 mm ) Ayk + (125 mm ) Az j + ( 375 mm )( 68.7 N ) k + ( 350 mm )( 68.7 N ) i i j k T + −100 0 700 ( mm ) = 0 31 6 27 −14 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Setting the coefficients of the unit vectors equal to zero: (a) i: − 27 T ( 700 mm ) + ( 68.67 N )( 350 mm ) = 0 31 or T = 39.4N T = 39.422 N (b) k: 27 − Ay ( 750 mm ) + ( 68.67 N )( 375 mm ) − ( 39.422 N ) (100 mm ) = 0 31 Ay = 29.757 N j: 14 6 Az ( 750 mm ) − ( 39.422 N ) (100 mm ) + ( 39.422 N ) ( 700 mm ) = 0 31 31 Az = − 4.7476 N ΣFx = 0: Bx + 6 ( 39.422 N ) = 0 31 Bx = − 7.6301 N ΣFy = 0: 29.757 N + B y − 68.67 N + 27 ( 39.422 N ) = 0 31 By = 4.5777 N ΣFz = 0: − 4.7476 N + Bz − 14 ( 39.422 N ) = 0 31 Bz = 22.551 N Therefore: A = ( 29.8 N ) j − ( 4.75 N ) k B = − ( 7.63 N ) i + ( 4.58 N ) j + ( 22.6 N ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 125. Free-Body Diagram: Express tension, weight in terms of rectangular components: uur IF = ( 75 mm ) i + (1350 mm ) j − ( 250 mm ) k uur IF T=T =T IF = 75i + 1350 j − 250 k ( 75)2 + (1350 )2 + ( − 250 )2 3 54 10 Ti + Tj− Tk 55 55 55 ( ) W = − (mg ) j = − ( 7 kg ) 9.81 m/s 2 j = − (68.67 N)j ΣM B = 0: − ( 750 mm ) i × A + − ( 375 mm ) i + ( 350 mm ) k × ( − 68.7 N ) j + (125 mm ) i + ( 250 mm ) k × T = 0 or − ( 750 mm ) Ay k + (125 mm ) Az j + ( 375 mm )( 68.7 N ) k + ( 350 mm )( 68.7 N ) i i j k T + 125 0 250 ( mm ) = 0 55 3 54 −10 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Setting the coefficients of the unit vectors equal to zero: (a) i: − 54 T ( 250 mm ) + ( 68.67 N )( 350 mm ) = 0 55 T = 97.918 N (b) k: or T = 97.9 N 54 − Ay ( 750 mm ) + ( 68.67 N )( 375 mm ) − ( 97.918 N ) (125 mm ) = 0 55 Ay = 50.358 N j: 10 Az ( 750 mm ) − ( 97.918 N ) (125 mm ) + 55 3 55 ( 97.918 N ) ( 250 mm ) = 0 Az = − 4.7475 N ΣFx = 0: Bx + 3 ( 97.918 N ) = 0 55 Bx = − 5.3410 N ΣFy = 0: 50.358 N + B y − 68.67 N + 54 ( 97.918 N ) = 0 55 By = − 77.826 N ΣFz = 0: − 4.7475 N + Bz − 10 ( 97.918 N ) = 0 55 Bz = 22.551 N Therefore: A = ( 50.4 N ) j − ( 4.75 N ) k B = − ( 5.34 N ) i − ( 77.8 N ) j + ( 22.6 N ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 126. Free-Body Diagram: Express forces, weight in terms of rectangular components: uuur CE = ( 3 ft ) i + ( 4 ft ) j − ( 2 ft ) k FCE = FCE uuur CE = FCE CE 3i + 4 j + 2k ( 3) 2 + ( 4 )2 + ( 2 ) 2 = 0.55709 FCE i + 0.74278 FCE j + 0.37139 FCE k W = − (mg ) j = − (300 lb)j ΣM B = 0: or ( 4 ft ) k × A + (1.5 ft ) i + ( 2 ft ) k × ( − 300 lb ) j + ( 3 ft ) i + ( 4 ft ) k × FCE = 0 − ( 4 ft ) Ay i + ( 4 ft ) Az j − (1.5 ft )( 300 lb ) k + ( 2 ft )( 300 lb ) i i j k + 3 0 4 FCE ( ft ) = 0 0.55709 0.74278 0.37139 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Setting the coefficients of the unit vectors equal to zero: k: ( 0.74278 FCE ) ( 3 ft ) − ( 300 lb )(1.5 ft ) = 0 FCE = 201.94 lb or FCE = 202 lb j: Ax ( 4 ft ) + 0.55709 ( 201.94 lb ) ( 4 ft ) − 0.37139 ( 201.94 lb ) ( 3 ft ) = 0 Ax = − 56.250 lb i: − Ay ( 4 ft ) − 0.74278 ( 201.94 lb ) ( 4 ft ) + ( 300 lb )( 2 ft ) = 0 Ay = 0 ΣFx = 0: − 56.250 lb + Bx + 0.55709 ( 201.94 lb ) = 0 Bx = − 56.249 lb ΣFy = 0: 0 + By − 300 lb + 0.74278 ( 201.94 lb ) = 0 By = 150.003 lb ΣFz = 0: Bz + 0.371391( 201.94 lb ) = 0 Bz = − 74.999 lb Therefore: A = − ( 56.3 lb ) i B = − ( 56.2 lb ) i + (150.0 lb ) j − ( 75.0 lb ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 127. Free-Body Diagram: Express forces, weight in terms of rectangular components: uuur CA = − (1.2 m ) i + (1.2 m ) j − ( 0.6 m ) k uuur CB = (1.2 m ) i + (1.2 m ) j − ( 0.6 m ) k By symmetry FCA = FCB , and at the load corresponding to buckling FCA = FCB = 1.8 kN FCA uuur CA = FCA = (1.8 kN ) CA −1.2 i + 1.2 j − 0.6 k ( −1.2 )2 + (1.2 )2 + ( − 0.6 )2 FCA = − (1.2 kN ) i + (1.2 kN ) j − ( 0.6 kN ) k FCB uuur CB = FCB = (1.8 kN ) CB 1.2 i + 1.2 j − 0.6 k (1.2 )2 + (1.2 )2 + ( − 0.6 )2 FCB = (1.2 kN ) i + (1.2 kN ) j − ( 0.6 kN ) k continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System ΣM D = 0: ( 2.4 m ) i × E + ( 2.4 m ) i + (1.2 m ) j × FCB + (1.2 m ) j × FCA + (1.2 m ) i + ( 0.6 m ) j × Pk = 0 i or ( 2.4 m ) Ex j k i j k 0 0 + 2.4 1.2 0 kN ⋅ m E y Ez 1.2 1.2 − 0.6 i j k i + 0 1.2 0 kN ⋅ m + (1.2 m ) −1.2 1.2 − 0.6 0 j k ( 0.6 m ) 0 = 0 0 P Setting the coefficient of the unit vector i equal to zero: (a) i : P(0.6 m) − ( 0.6 )(1.2 ) kN ⋅ m − ( 0.6 )(1.2 ) kN ⋅ m = 0 P = 2.4000 kN or P = 2.40 kN (b) By symmetry, Dz = Ez ΣFz = 0: Dz + Dz + 2.4 kN − 0.6 kN − 0.6 kN = 0 Dz = Ez = − 0.60000 kN Therefore: E z = − ( 0.600 kN ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 128. Free-Body Diagram: Notice that the forces in the belts can be equivalently moved to the center of the pulley because their net moment about this point is zero. (a) ΣFx = 0: 3 lb + ( 3 lb ) cos 30° − T = 0 T = 5.5981 lb or T = 5.60 lb (b) ΣFy = 0: ΣFz = 0: Dy = 0 Dz − ( 3 lb ) sin 30° = 0 D = (1.500 lb ) k ΣM D = 0: M D + ( 0.72 in.) j − (1.2 in.) k × ( −T ) i + ( 0.88 in.) j − ( 3 in.) k × ( 3 lb )(1 + cos 30° ) i − ( 3 lb ) sin 30°k = 0 i or M Dx i + M Dy j + M Dz k + 0 −T ( ) j ( 0.72 in.) 0 k i 0 ( −1.2 in.) + 0 1 + cos 30° j k ( 0.88 in.) ( − 3 in.) ( 3 lb ) = 0 − sin 30° 0 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Setting the coefficients of the unit vectors equal to zero: i: M Dx − ( 3 lb ) sin 30° ( 0.88 in.) = 0 M Dx = 1.3200 lb ⋅ in. j: M Dy + ( 5.5981 lb )(1.2 in.) − ( 3 lb )( 3 in.)(1 + cos 30° ) = 0 M Dy = 10.0765 lb ⋅ in. k: M Dz + ( 5.5981 lb )( 0.72 in.) − ( 3 lb )( 0.88 in.)(1 + cos 30° ) = 0 M Dz = 0.89568 lb ⋅ in. or M D = (1.320 lb ⋅ in.) i + (10.08 lb ⋅ in.) j + ( 0.896 lb ⋅ in.) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 129. Free-Body Diagram: Express the tension in terms of its rectangular components: uuuur DG = − ( 4.8 in.) j − ( 9 in.) k TDC = TDG ΣM E = 0: uuuur DG = TDG DG − 4.8 j − 9 k ( − 4.8) 2 + ( − 9) 2 =− 8 15 TDG j − TDG k 17 17 M E + ( 6.4 in.) i + ( − 7.6 in.) j × TDG + ( 2.4 in.) j + ( 9.6 in.) k × ( − 44 lb ) i = 0 15 8 15 TDG i − ( 6.4 in.) TDGk + ( 6.4 in.) TDG j 17 17 17 or ( M Ex i + M Ey j + M Ez k ) + ( 7.6 in.) + ( 2.4 in.)( 44 lb ) k − ( 9.6 in.)( 44 lb ) j = 0 Setting the coefficient of the unit vector j equal to zero: (a) j: 15 TDG ( 6.4 in.) − ( 44 lb )( 9.6 in.) = 0 17 TDG = 74.800 lb or TDG = 74.8 lb continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System (b) ΣFx = 0: E x − 44 lb = 0, or Ex = 44.000 lb ΣFy = 0: Ey − 8 ( 74.8 lb ) = 0, or E y = 35.200 lb 17 ΣFz = 0: Ez − 15 ( 74.8 lb ) = 0, or Ez = 66.000 lb 17 or E = ( 44.0 lb ) i + ( 35.2 lb ) j + ( 66.0 lb ) k Using the moment equation again and setting the coefficients of the unit vectors i and k equal to zero: i: 15 M Ex + ( 7.6 in.) ( 74.800 lb ) = 0 17 M Ex = −501.60 lb ⋅ in. k: 8 M Ez + ( 44 lb )( 2.4 in.) − ( 74.8 lb ) ( 6.4 in.) = 0 17 M Ex = 119.680 lb ⋅ in. or M E = − ( 502 lb ⋅ in.) i + (119.7 lb ⋅ in.) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 130. Free-Body Diagram: Express forces and moments in terms of rectangular components: FDE = FDE − 40 i − 70 j + 40k ( − 40 ) 2 2 + ( − 70 ) + ( 40 ) 2 = FDE (− 4i − 7 j + 4k ) 9 FA = ( 24 N )( sin 20° i − cos 20° j) B = By j + Bzk , (a) ΣFx = 0: M B = M By j + M Bzk 4 − FDE + 24sin 20° = 0 9 FDE = 18.4691 N ΣM B = 0: or FCF or FDE = 18.47 N rBC × FCF + rBD × FDE + rBA × FA + M B = 0 i j k i j k i j k 18.4691 −1 + M B y j + M B zk 0 − 48 36 + 0 − 80 60 + ( 80 )( 24 ) 0 0 9 −4 −7 4 0 −1 0 sin 20° − cos 20° 0 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Equating the coefficients of the unit vectors to zero: i: 36FCF + 18.4691 (100 ) + (80 )( 24 )( − cos 20° ) = 0 9 FCF = 44.417 N or FCF = 44.4 N (b) j: 18.4691 ( − 240 ) + (80 )( 24 )( − sin 20° ) + M By = 0 9 M By = 1149.19 N ⋅ mm k: 18.4691 ( − 320 ) + M Bz = 0 9 M Bz = 656.68 N ⋅ mm ΣFy = 0: By − 44.417 − 7 (18.4691) − 24 cos 20° = 0 9 By = 81.3 N ΣFz = 0: Bz + 4 (18.4691) = 0 9 Bz = −8.21 N Therefore: B = ( 81.3 N ) j − ( 8.21 N ) k M B = (1.149 N ⋅ m ) j + ( 0.657 N ⋅ m ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 131. Free-Body Diagram: Express tension, weight in terms of rectangular components: uuur EF = ( 300 mm ) i + (1350 mm ) j − ( 700 mm ) k uuur EF =T T=T EF = 300 i + 1350 j − 700 k ( 300 )2 + (1350 )2 + ( − 700 )2 6 27 14 Ti + T j− Tk 31 31 31 ( ) W = − ( mg ) j = − ( 7 kg ) 9.81 m/s 2 j = − ( 68.67 N ) j ΣM B = 0: M B + − ( 375 mm ) i + ( 350 mm ) k × ( − 68.7 N ) j + ( −100 mm ) i + ( 700 mm ) k × T = 0 or ( M By j + M Bzk ) + ( 375 mm )( 68.7 N ) k + ( 350 mm )( 68.7 N ) i i j k T + −100 0 700 ( mm ) = 0 31 6 27 −14 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Setting the coefficients of the unit vector i equal to zero: (a) i: − 27 T ( 700 mm ) − ( 68.67 N )( 350 mm ) = 0 31 or T = 39.4 N T = 39.422 N (b) ΣFx = 0: Bx + 6 ( 39.422 N ) = 0 31 Bx = − 7.6301 N ΣFy = 0: By − 68.67 N + 27 ( 39.422 N ) = 0 31 By = 34.335 N ΣFz = 0: Bz − 14 ( 39.422 N ) = 0 31 Bz = 17.8035 N B = − ( 7.63 N ) i + ( 34.3 N ) j + (17.80 N ) k Using the moment equation again and setting the coefficients of the unit vectors j and k to zero: ΣM B ( y − axis) = 0: 14 M By − ( 39.422 N ) (100 mm ) + 31 6 31 ( 39.422 N ) ( 700 mm ) = 0 M By = − 3.5607 N ⋅ m ΣM B ( z − axis) = 0: 27 M Bz + ( 68.67 N )( 375 mm ) − ( 39.422 N ) (100 mm ) = 0 31 M Bz = − 22.318 N ⋅ m, Therefore: M B = − ( 3.56 N ⋅ m ) j − ( 22.3 N ⋅ m ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 132. Free-Body Diagram: Express tensions, load in terms of rectangular components: uuur BD = − ( 60 in.) i + ( 25 in.) k uuur BE = − ( 60 in.) i + ( 25 in.) j uuur CF = − ( 60 in.) i + ( 25 in.) j BD = BE = CF = TBD TBE TCF = 65 in. uuur BD 12 5 = TBD = − TBD i + TBD k BD 13 13 uuur BE 12 5 = TBE = − TBE i + TBE j BE 13 13 uuur CF 12 5 = TCF = − TCF i + TCF j CF 13 13 ΣM A = 0: or ( −60 )2 + ( 25)2 rB × TBD + rB × TBE + rC × TCF + rG × W = 0 i j k i j k i j k i j k TBD TBE TCF 60 0 0 in. + 60 0 0 in. + 60 0 − 30 in. + 60 0 −15 lb ⋅ in. = 0 13 13 13 −12 0 5 −12 5 0 −12 5 0 0 − 500 0 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Equating the coefficients of the unit vectors to zero: i: 150 TCF − 7500 = 0 13 TCF = 650.00 lb j: − 300 360 TBD + ( 650 lb ) = 0 13 13 TBD = 780.00 lb k: or TCF = 650 lb or TBD = 780 lb 300 300 TBE − 30000 + ( 650.00 lb ) = 0 13 13 TBE = 650.00 lb ΣFx = 0: Ax − or TBE = 650 lb 12 12 12 ( 780 lb ) − ( 650 lb ) − ( 650 lb ) = 0 13 13 13 Ax = 1920.00 lb ΣFy = 0: Ay + 5 5 ( 780 lb ) + ( 650 lb ) − 500 lb = 0 13 13 Ay = 0 ΣFz = 0: Az + 5 ( 780 lb ) = 0 13 Az = −300.00 lb Therefore, A = (1920 lb ) i − ( 300 lb ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 133. Free-Body Diagram: Express tensions, load in terms of rectangular components: uuur BD = − ( 60 in.) i + ( 25 in.) k uuur BE = − ( 60 in.) i + ( 25 in.) j uuur CF = − ( 60 in.) i + ( 25 in.) j BD = BE = CF = ( −60 )2 + ( 25)2 = 65 in. uuur BD 12 5 = − TBD i + TBD k BD 13 13 uuur BE 12 5 = TBE = − TBE i + TBE j BE 13 13 uuur CF 12 5 = TCF = − TCF i + TCF j CF 13 13 TBD = TBD TBE TCF WG = − ( 500 lb ) j WC = − ( 800 lb ) j Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System ΣM A = 0: rB × TBD + rB × TBE + rC × TCF + rG × WG + rC × WC = 0 i j k i j k i j k i j k TBD TBE TCF 60 0 0 in. + 60 0 0 in. + 60 0 − 30 in. + 60 0 −15 lb ⋅ in. 13 13 13 −12 0 5 −12 5 0 −12 5 0 0 − 500 0 or i j k + 60 0 −30 lb ⋅ in. = 0 0 −800 0 Equating the coefficients of the unit vectors to zero: i: 150 TCF − 7500 − 24000 = 0 13 TCF = 2730 lb j: − or TCF = 2.73 kips 300 360 TBD + ( 2730 lb ) = 0 13 13 TBD = 3276 lb k: or TBD = 3.28 kips 300 300 TBE − 30000 + ( 2730 lb ) − ( 60 )(800 lb ) = 0 13 13 TBE = 650.00 lb ΣFx = 0: Ax − or TBE = 650 lb 12 12 12 ( 3276 lb ) − ( 650 lb ) − ( 2730 lb ) = 0 13 13 13 Ax = 6144 lb ΣFy = 0: Ay + 5 5 ( 2730 lb ) + ( 650 lb ) − 500 lb − 800 lb = 0 13 13 Ay = 0 ΣFz = 0: Az + 5 ( 3276 lb ) = 0 13 Az = −1260.00 lb Therefore, A = ( 6.14 kips ) i − (1.260 kips ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 134. First note Free-Body Diagram: TDI = λ DI TDI = = TEH = λ EH TEH = = TFG = λ FGTFG = = − ( 0.65 m ) i + ( 0.2 m ) j − ( 0.44 m ) k ( 0.65)2 + ( 0.2 )2 + ( 0.44 )2 m TDI TDI ( − 0.65i + 0.2j − 0.44k ) 0.81 − ( 0.45 m ) i + ( 0.24 m ) j ( 0.45)2 + ( 0.24 )2 m TEH TEH ( − 0.45 i ) + ( 0.24 j) 0.51 − ( 0.45 m ) i + ( 0.2 m ) j + ( 0.36 m ) k ( 0.45 ) 2 2 2 + ( 0.2 ) + ( 0.36 ) m TFG TFG ( −0.45i + 0.2j + 0.36k ) 0.61 From free-body diagram of frame ΣM A = 0: rD/ A × TDI + rC/ A × ( −280 N ) j + rH / A × TEH + rF / A × TFG + rF / A × ( −360 N ) j = 0 or i j k i j k i j k i j k TDI TEH TFG 0.65 0.2 0 0.32 0 + 0.65 0 0 ( 280 N ) + 0 + 0.45 0 0.06 0.81 0.51 0.61 −0.65 0.2 −0.44 −0.45 0.24 0 −0.45 0.2 0.36 0 −1 0 i j k + 0.45 0 0.06 ( 360 N ) = 0 0 −1 0 or ( − 0.088 i + 0.286 j + 0.26 k ) + ( − 0.012 i − 0.189 j + 0.09 k ) TDI T + ( − 0.65 k ) 280 N + ( 0.144 k ) EH 0.81 0.51 TFG + ( 0.06 i − 0.45 k )( 360 N ) = 0 0.61 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System From i-coefficient T T −0.088 DI − 0.012 FG + 0.06 ( 360 N ) = 0 0.81 0.61 ∴ 0.108642TDI + 0.0196721TFG = 21.6 From j-coefficient (1) T T 0.286 DI − 0.189 FG = 0 0.81 0.61 ∴ TFG = 1.13959TDI (2) From k-coefficient T T T 0.26 DI − 0.65 ( 280 N ) + 0.144 EH + 0.09 FG 0.81 0.51 0.61 − 0.45 ( 360 N ) = 0 ∴ 0.32099TDI + 0.28235TEH + 0.147541TFG = 344 N (3) Substitution of Equation (2) into Equation (1) 0.108642TDI + 0.0196721(1.13959TDI ) = 21.6 ∴ TDI = 164.810 N TDI = 164.8 N or Then from Equation (2) TFG = 1.13959 (164.810 N ) = 187.816 N TFG = 187.8 N or And from Equation (3) 0.32099 (164.810 N ) + 0.28235TEH + 0.147541(187.816 N ) = 344 N ∴ TEH = 932.84 N TEH = 933 N or The vector forms of the cable forces are: TDI = 164.810 N ( −0.65i + 0.2j − 0.44k ) 0.81 = − (132.25 N ) i + ( 40.694 N ) j − ( 89.526 N ) k TEH = 932.84 N ( − 0.45i + 0.24 j) = − (823.09 N ) i + ( 438.98 N ) j 0.51 187.816 N ( − 0.45i + 0.2 j + 0.36k ) 0.61 = − (138.553 N ) i + ( 61.579 N ) j + (110.842 N ) k TFG = continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Then, from free-body diagram of frame ΣFx = 0: Ax − 132.25 − 823.09 − 138.553 = 0 ∴ Ax = 1093.89 N ΣFy = 0: Ay + 40.694 + 438.98 + 61.579 − 360 − 280 = 0 ∴ Ay = 98.747 N ΣFz = 0: Az − 89.526 + 110.842 = 0 ∴ Az = −21.316 N or A = (1094 N ) i + ( 98.7 N ) j − ( 21.3 N ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 135. Free-Body Diagram: First note TDI = λ DI TDI = = TEH = λ EH TEH = = TFG = λ FGTFG = − ( 0.65 m ) i + ( 0.2 m ) j − ( 0.44 m ) k ( 0.65)2 + ( 0.2 )2 + ( 0.44 )2 m TDI ( −65i + 20 j − 44k ) 81 − ( 0.45 m ) i + ( 0.24 m ) j ( 0.45)2 + ( 0.24 )2 m TDI TEH TEH ( −15i + 8j) 17 − ( 0.45 m ) i + ( 0.2 m ) j + ( 0.36 m ) k ( 0.45)2 + ( 0.2 )2 + ( 0.36 )2 m TFG TFG ( −45i + 20j + 36k ) 61 From free-body diagram of frame = ΣM A = 0: rD/ A × TDI + rC/ A × − ( 280 N ) j + ( 50 N ) k + rH / A × TEH + rF / A × TFG + rF / A × ( −360 N ) j or i j k i j k i j k TDI 0.65 0.2 0 0 + 0 0.32 0 + 0.65 0 81 −65 20 −44 −15 8 0 0 −280 50 i j k T + 0.45 0 0.06 FG 61 −45 20 36 and TEH 17 i j k + 0.45 0 0.06 ( 360 N ) = 0 0 −1 0 TDI TEH + ( −32.5j − 182k ) + ( 4.8k ) 81 17 ( −8.8i + 28.6 j + 26k ) T + ( −1.2i − 18.9 j + 9.0k ) FG + ( 0.06i − 0.45k ) ( 360 ) = 0 61 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System T T −8.8 DI − 1.2 FG 81 61 From i-coefficient + 0.06 ( 360 ) = 0 ∴ 0.108642TDI + 0.0196721TFG = 21.6 (1) T T From j-coefficient 28.6 DI − 32.5 − 18.9 FG = 0 81 61 ∴ 0.35309TDI − 0.30984TFG = 32.5 (2) From k-coefficient T T T 26 DI − 182 + 4.8 EH + 9.0 FG − 0.45 ( 360 ) = 0 81 17 61 ∴ 0.32099TDI + 0.28235TEH + 0.147541TFG = 344 −3.25 × Equation (1) Add Equation (2) (3) −0.35309TDI − 0.063935TFG = −70.201 0.35309TDI − 0.30984TFG = −0.37378TFG 32.5 = −37.701 ∴ TFG = 100.864 N TFG = 100.9 N or Then from Equation (1) 0.108642TDI + 0.0196721(100.864 ) = 21.6 ∴ TDI = 180.554 N TDI = 180.6 N or and from Equation (3) 0.32099 (180.554 ) + 0.28235TEH + 0.147541(100.864 ) = 344 ∴ TEH = 960.38 N TEH = 960 N or The vector forms of the cable forces are: TDI = 180.554 N ( −65i + 20j − 44k ) 81 = − (144.889 N ) i + ( 44.581 N ) j − ( 98.079 N ) k TEH = 960.38 N ( −15i + 8j) = − (847.39 N ) i + ( 451.94 N ) j 17 100.864 N ( −45i + 20j + 36k ) 61 = − ( 74.409 N ) i + ( 33.070 N ) j + ( 59.527 N ) k TFG = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Then from free-body diagram of frame ΣFx = 0: Ax − 144.889 − 847.39 − 74.409 = 0 ∴ Ax = 1066.69 N ΣFy = 0: Ay + 44.581 + 451.94 + 33.070 − 360 − 280 = 0 ∴ Ay = 110.409 N ΣFz = 0: Az − 98.079 + 59.527 + 50 = 0 ∴ Az = −11.448 N Therefore, A = (1067 N ) i + (110.4 N ) j − (11.45 N ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 136. Free-Body Diagram: ΣFx = 0: Bx + C x = 0, or Bx = − C x (1) ΣFy = 0: Ay + By + C y = 0 (2) ΣFy = 0: Az − P = 0, or Az = P = 40.0 lb (3) ΣM O = 0: or rOA × A + rOB × B + rOC × C + M Ai − M C k = 0 ( ) ( ) ( ) ai × Ay j + Azk + bj × Bxi + By j + ck × C x i + C y j + M Ai − M C k = 0 or a Ayk − a Az j − bBx j + cCx j − cC y i + M Ai − M C k = 0 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Equating the coefficients of the unit vectors to zero: i : − cC y + M A = 0 Cy = j: (4) − a Az + cC x = 0, or using (3) Cx = k: MA 36 lb ⋅ ft = = 36.0 lb c 1 ft a 9 in. P= ( 40 lb ) = 30.0 lb c 12 in. (5) a Ay − b Bx − M C = 0, or, using (1) and (5) b M 6 in. 0 Ay = − P + C = − = − 20.0 lb ( 40 lb ) + c a 12 in. 9 in. (6) Finally substituting into (1) and (2) gives: Βx = −30.0 lb By = − Ay − C y = 20.0 lb − 36.0 lb = −16.00 lb Therefore: A = − ( 20.0 lb ) j + ( 40.0 lb ) k B = − ( 30.0 lb ) i − (16.00 lb ) j C = ( 30.0 lb ) i + ( 36.0 lb ) j Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 137. Free-Body Diagram: ΣFx = 0: Bx + C x = 0, or Bx = − C x (1) ΣFy = 0: Ay + By + C y = 0 (2) ΣFz = 0: Az − P = 0, or Az = P = 60.0 N (3) ΣM O = 0: rOA × A + rOB × B + rOC × C + M Ai − M C k = 0 ( ) ( ) ( ) or ai × Ay j + Azk + bj × Bxi + By j + ck × C x i + C y j + M Ai − M C k = 0 or a Ayk − a Az j − bBx j + cCx j − cC y i + M Ai − M C k = 0 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Equating the coefficients of the unit vectors to zero: i: − cC y + M A = 0 Cy = j: (4) − a Az + cC x = 0, or using (3) Cx = k: MA 6.3 N ⋅ m = = 35.0 N c 0.180 m a 0.240 m P= ( 60 N ) = 80.0 N c 0.180 m (5) a Ay − b Bx − M C = 0, or, using (1) and (5) b M 0.200 m 13 N ⋅ m Ay = − P + C = − = − 12.50 N ( 60 N ) + c a 0.180 m 0.240 m. (6) Finally substituting into (1) and (2) gives: Βx = −80.0 N By = − Ay − C y = 12.50 N − 35.0 N = −22.5 N Therefore: A = − (12.50 N ) j + ( 60.0 N ) k B = − ( 80.0 N ) i − ( 22.5 N ) j C = ( 80.0 N ) i + ( 35.0 N ) j Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 138. Free-Body Diagram: ΣFx = 0: Bx = 0 ΣM D( x - axis) = 0: (80 N )( 2.6 m ) − Bz ( 2 m ) = 0 or B = (104.0 N ) k Bz = 104.000 N ΣM D ( z - axis) = 0: C y ( 4 m ) − 144 N ⋅ m = 0 C y = 36.000 N ΣM D( y - axis) = 0: − C z ( 4 m ) − (104 N )( 6 m ) + ( 80 N )( 6 m ) = 0 C z = − 36.000 N and C = ( 36.0 N ) j − ( 36.0 N ) k ΣFy = 0: Dy + 36 = 0, or Dy = −36.000 N ΣFz = 0: Dz − 36 + 104 − 80 = 0, or Dz = 12.000 N Therefore: D = − ( 36.0 N ) j + (12.00 N ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 139. Free-Body Diagram: ΣFx = 0: Bx = 0 ΣM D ( x - axis) = 0: (80 N )( 2.6 m ) − Bz ( 2 m ) = 0 or B = (104.0 N ) k Bz = 104.000 N ΣM D ( z - axis) = 0: Cy (4 m ) = 0 Cy = 0 ΣM D ( y - axis) = 0: − C z ( 4 m ) − (104 N )( 6 m ) + ( 80 N )( 6 m ) = 0 C z = − 36.000 N and C = − ( 36.0 N ) k ΣFy = 0: ΣFz = 0: Dy = 0 Dz − 36 + 104 − 80 = 0, or Dz = 12.000 N Therefore: D = (12.00 N ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 140. Free-Body Diagram: Express the forces in terms of rectangular components: ( ) W = − ( mg ) j = − ( 3 kg ) 9.81 m/s 2 j = − ( 29.43 N ) j N B = N B ( 0.8j + 0.6k ) ( xB )2 + ( 325 + 75)2 + (100 )2 LAB = 525 mm = xB = 325 mm Then, TBC = TBC uuur BC = TBC BC 325i + 400 j − 100k ( 325) 2 2 + ( 400 ) + ( −100 ) 2 = 13 16 4 TBC i + TBC j − TBC k 21 21 21 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Equilibrium: ΣM A = 0: rG/ A × W + rB/ A × N B + rC/ A × TBC = 0 i j k i j k i j k T or 162.5 − 200 50 + 325 − 400 100 N B + 650 0 0 BC = 0 21 − 29.43 0 0 0 0.8 0.6 13 16 − 4 Equating the coefficients of the unit vectors to zero: i: 1471.5 − 320 N B = 0 N B = 4.5984 N or N B = ( 3.6787 N ) j + ( 2.7590 N ) k j: − 195 N B + 2600 TBC = 0 21 TBC = 7.2425 N 13 ( 7.2425 N ) = 0 21 Ax = −4.4835 N ΣFx = 0: Ax + ΣFy = 0: Ay − 29.43 N + 3.6787 N + 16 ( 7.2425 N ) = 0 21 Ay = 20.233 N ΣFy = 0: Az + 2.7590 N − 4 ( 7.2425 N ) = 0 21 Az = −1.37948 N Therefore: (a) TBC = 7.24 N (b) A = − ( 4.48 N ) i + ( 20.2 N ) j − (1.379 Ν ) k N B = ( 3.68 N ) j + ( 2.76 N ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 141. Free-Body Diagram: (a) The force acting at E on the free-body diagram of rod AB is perpendicular to AB and CD. Letting λ E = direction cosines for force E, λE = rB/ A × k rB/ A × k − ( 32 in.) i + ( 24 in.) j − ( 40 in.) k × k = 2 2 ( 32 ) + ( 24 ) in. = 0.6i + 0.8 j Also, W = − (10 lb ) j B = Bk E = E ( 0.6i + 0.8 j) From free-body diagram of rod AB ΣM A = 0: rG/ A × W + rE/ A × E + rB/ A × B = 0 i j k i j k i j k ∴ −16 12 −20 (10 lb ) + −24 18 −30 E + −32 24 −40 B = 0 0 −1 0 0.6 0.8 0 0 0 1 ( −20i + 16k )(10 lb ) + ( 24i − 18 j − 30k ) E + ( 24i + 32 j) B = 0 From k-coefficient 160 − 30 E = 0 ∴ E = 5.3333 lb and E = 5.3333 lb ( 0.6i + 0.8 j) E = ( 3.20 lb ) i + ( 4.27 lb ) j or (b) From j-coefficient −18 ( 5.3333 lb ) + 32 B = 0 ∴ B = 3.00 lb or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. B = ( 3.00 lb ) k COSMOS: Complete Online Solutions Manual Organization System From free-body diagram of rod AB ΣF = 0: A + W + E + B = 0 Ax i + Ay j + Az k − (10 lb ) j + ( 3.20 lb ) i + ( 4.27 lb ) j + ( 3.00 lb ) k = 0 From i-coefficient Ax + 3.20 lb = 0 ∴ Ax = −3.20 lb j-coefficient Ay − 10 lb + 4.27 lb = 0 ∴ Ay = 5.73 lb k-coefficient Az + 3.00 lb = 0 ∴ Az = −3.00 lb Therefore A = − ( 3.20 lb ) i + ( 5.73 lb ) j − ( 3.00 lb ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 142. Free-Body Diagram: There is only one unknown of interest and, therefore only one equation is needed: ΣM AB = 0 Geometry: 1.05 m = 16.2602° 3.5 m θ = tan −1 xG = (1.25 m ) cos16.2602° = 1.2 m yG = 1.95 m − (1.25 m ) sin16.2602° = 1.6 m λ BA uuur BA = = BA −3.6i + 1.05j ( −3.6 )2 + (1.05 )2 =− 24 7 i+ j 25 25 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System rK/A = (1.8 m ) i − ( 0.525 m ) j + ( 0.225 m ) k rG/A = (1.2 m ) i − (1.95 m − 1.6 m ) j + ( 0.45 m ) k = (1.2 m ) i − ( 0.35 m ) j + ( 0.45 m ) k ( ) W = − ( mg ) j = − ( 25 kg ) 9.81 m/s 2 j = − ( 245.25 kg ) j PHG = PHG uuuur HG = PHG HG −0.05i + 1.6 j − 0.4 k ( −0.05) 2 2 + (1.6 ) + ( −0.4 ) 2 32 8 1 = PHG − i + j− k 33 33 33 Now, ΣM BA = 0: ( ) ( ) λ BA ⋅ rK / A × W + λ BA ⋅ rG/ A × PHG = 0 − 24 7 0 − 24 7 0 1 PHG + 1.2 − 0.35 0.45 =0 1.8 − 0.525 0.225 25 25 )( 33) ( −1 −8 0 − 245.25 0 32 − 1324.35 342.45 + P =0 25 25 ( )( 35) HG Therefore: PHG = 127.620 N or PHG = 127.6 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 143. Free-Body Diagram: There is only one unknown of interest and, therefore only one equation is needed: ΣM AB = 0 Geometry: 1.05 m = 16.2602° 3.5 m θ = tan −1 xI = ( 2.50 m ) cos16.2602° = 2.4 m yI = 1.95 m − ( 2.50 m ) sin16.2602° = 1.25 m λ BA = uuur BA = BA −3.6i + 1.05j ( −3.6 ) 2 + (1.05 ) 2 =− 24 7 i+ j 25 25 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System rK/A = (1.8 m ) i − ( 0.525 m ) j + ( 0.225 m ) k rI/A = ( 2.4 m ) i − ( 0.7 m ) j + ( 0.45 m ) k ( ) W = − ( mg ) j = − ( 25 kg ) 9.81 m/s 2 j = − ( 245.25 kg ) j PJI uur JI = PJI = PJI JI −0.025i + 1.25j − 0.25k ( −0.025)2 + (1.25)2 + ( −0.25)2 50 10 1 = PJI − i + j + k 51 51 51 Now, ΣM BA = 0: ( ) ( ) λ BA ⋅ rK / A × W + λ BA ⋅ rI / A × PJI = 0 − 24 7 0 − 24 7 0 1 PJI + 12.4 − 0.7 0.45 =0 1.8 − 0.525 0.225 25 25 51) ( )( −1 50 −10 0 − 245.25 0 − 1324.35 536.85 + P =0 25 ( 25)( 51) JI Therefore: PJI = 125.811 N or PJI = 125.8 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 144. Free-Body Diagram: Express forces in terms of their rectangular components: uuur BG − 40 i + 74 j − 32 k 37 16 20 TBG = TBG j− k = TBG = TBG − i + 2 2 2 BG 45 45 45 − + + − 40 74 32 ( ) ( ) ( ) TBH = TBH uuuur BH = TBH BH 30 i + 60 j − 60 k ( 30 )2 + ( 60 )2 + ( − 60 )2 2 2 1 = TBH i + j − k 3 3 3 P = − ( 75 lb ) j λ AD uuur AD = = AD 80 i − 60 j 2 (80 ) + ( − 60 ) 2 = 0.8 i − 0.6 j continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System rB/A = ( 40 in.) i rC/A = ( 80 in.) i Now, ΣM AD = 0: ( ) ( ) ( ) λ AD ⋅ rB/ A × TBG + λ AD ⋅ rB/ A × TBH + λ AD ⋅ rC/ A × P = 0 0.8 0 − 0.6 0.8 0 − 0.6 0.8 0 − 0.6 TBG TBH + 40 0 0 + 80 0 40 0 0 0 =0 45 3 − 20 37 −16 1 2 −2 0 − 75 0 − 888 48 TBG − TBH + 3600 = 0 45 3 Noting that TBG = TBH = T and solving: T = 100.746 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or T = 100.7 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 145. Free-Body Diagram: Express forces in terms of their rectangular components: uuur BG − 40 i + 74 j − 32 k 37 16 20 = TBG = TBG − i + TBG = TBG j− k 2 2 2 BG 45 45 45 − + + − 40 74 32 ( ) ( ) ( ) P = − ( 75 lb ) j λ AD = uuur AD = AD 80 i − 60 j (80 ) 2 + ( − 60 ) 2 = 0.8 i − 0.6 j rB/ A = ( 40 in.) i rC/ A = ( 80 in.) i Now, ΣM AD = 0: ( ) ( ) λ AD ⋅ rB/ A × TBG + λ AD ⋅ rC/ A × P = 0 0.8 0 − 0.6 0.8 0 − 0.6 TBG + 80 0 40 0 0 0 =0 45 − 20 37 −16 0 − 75 0 − 888 TBG + 3600 = 0 45 Solving for TBG : TBG = 182.432 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or TBG = 182.4 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 146. Free-Body Diagram: Express forces in terms of their rectangular components: W1 = W2 = − ( 30 lb ) j uuuur ( x − 6) i + y j − 6 k BH T=T =T BH ( x − 6 )2 + y 2 + ( − 6 )2 λ AF = uuur AF = AF 6i − 3 j − 6k ( 6) 2 2 + ( − 3) + ( − 6 ) 2 = 2 1 2 i− j− k 3 3 3 rG/ A = ( 3 ft ) i rB/ A = ( 6 ft ) i rI / A = ( 6 ft ) i − ( 3 ft ) k continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Now, ( ΣM AF = 0: ) ( ) ( ) λ AF ⋅ rG/ A × W1 + λ AF ⋅ rB/ A × T + λ AF ⋅ rI / A × W2 = 0 −1 − 2 2 −1 − 2 1 0 0 + 6 0 0 3 0 − 30 0 ( x − 6) y − 6 2 3 60 + ( −36 − 12 y ) T 3 ( x − 6 )2 + T 3 ( x − 6) 2 2 + y + 36 y 2 + 36 −1 − 2 1 0 −3 = 0 3 0 − 30 0 2 + 6 + 60 = 0 Solving for T : T = 30 30 + y ( x − 6 )2 + y 2 + 36 It is thus clear that for a given y, T will have its minimum value when x = 6 ft. Denoting this minimum by Tm: Tm = 30 3+ y y 2 + 36 Now to find the minimum of Tm, differentiate Tm with respect to y and equate the derivative to zero. dTm dy 1 ( 3 + y ) 36 + y 2 2 = ( ) − 1 2 ( ( 2 y ) − 36 + y 2 (3 + y ) 2 ) 1 2 (1) 30 =0 Setting the numerator equal to zero and simplifying: ( 3 + y ) y − y 2 − 36 = 0 y = 12 ft x = 6 ft, y = 12 ft (a) Minimum occurs at: (b) Using the expression for T: Tmin = 30 3 + 12 ( 6 − 6 )2 + (12 )2 + 36 = 26.833 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or Tmin = 26.8 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 147. Free-Body Diagram: Express forces in terms of their rectangular components: W1 = W2 = − ( 30 lb ) j uuuur BH − 6i + y j − 6k =T T=T BH ( −6 )2 + y 2 + ( − 6 )2 uuur AF 6i − 3 j − 6k 2 1 2 = = i− j− k λ AF = AF ( 6 ) 2 + ( − 3)2 + ( − 6 ) 2 3 3 3 rG/ A = ( 3 ft ) i rB/ A = ( 6 ft ) i rI / A = ( 6 ft ) i − ( 3 ft ) k continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Now, ( ΣM AF = 0: ) ( ) ( ) λ AF ⋅ rG/ A × W1 + λ AF ⋅ rB/ A × T + λ AF ⋅ rI / A × W2 = 0 2 −1 − 2 2 −1 − 2 1 3 0 0 + 6 0 0 3 −6 y −6 0 − 30 0 60 + ( − 36 − 12 y ) ( −6 )2 T 3 ( − 6 )2 + 2 −1 − 2 1 + 6 0 −3 = 0 3 + y 2 + 36 0 − 30 0 T 3 y 2 + 36 + 60 = 0 Solving for T : T = 30 30 + y T = 30 3+ y ( −6 )2 + y 2 + 36 y 2 + 72 Now to find the minimum of T, differentiate T with respect to y and equate the derivative to zero. dTm dy 1 ( 3 + y ) 72 + y 2 2 = ( ) − 1 2 ( 2 y ) − ( 72 + (3 + y ) 2 1 2 2 y ) (1) 30 =0 Setting the numerator equal to zero and simplifying: ( 3 + y ) y − y 2 − 72 = 0, or y = 24 ft x = 0, y = 24 ft (a) Minimum occurs at: (b) Using the expression for T: Tmin = 30 3 + 24 ( 24 )2 + 72 = 28.284 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or Tmin = 28.3 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 148. Free-Body Diagram: Express forces in terms of their rectangular components: ( ) ( ) ( ) WAB = − (1.25 kg/m ) 9.81 m/s 2 ( 0.9 m ) j = − (11.0363 Ν ) j WBC = − (1.25 kg/m ) 9.81 m/s 2 ( 0.3 m ) j = − ( 3.6788 Ν ) j WCD = − (1.25 kg/m ) 9.81 m/s 2 (1.35 m ) j = − (16.5544 Ν ) j uuur FE T=T =T FE −0.6i + 0.9 j − 1.35k ( − 0.6 ) 2 2 + ( 0.9 ) + ( −1.35 ) 2 = T ( −2i + 3j − 4.5k ) 33.25 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System λ AD uuur AD = = AD 0.9i − 0.3j − 1.35k ( 0.9 ) 2 2 + ( −0.3) + ( −1.35 ) 2 = 6 2 9 i− j− k 11 11 11 rG/ A = ( 0.45 m ) i rF / A = ( 0.6 m ) i rB/ A = ( 0.9 m ) i rH/A = ( 0.9 m ) i − ( 0.3 m ) j − ( 0.675 m ) k Now, ΣM AD = 0: ( ) ( ) ( ) ( ) λ AD ⋅ rG/ A × WAB + λ AD ⋅ rF / A × T + λ AD ⋅ rB/ A × WBC + λ AD ⋅ rH / A × WCD = 0 6 −2 −9 6 − 2 −9 6 −2 −9 T 1 1 0.45 0 0 + 0.6 0 0 0 0 + 0.9 11 11 33.25 11 0 −11.0363 0 0 − 3.6788 0 − 2 3 − 4.5 6 −2 −9 1 + 0.9 − 0.3 − 0.675 = 0 11 0 −16.5544 0 4.0634 − 0.34054T + 2.7089 + 6.0950 = 0 Solving for T: TBG = 37.785 N or TBG = 37.8 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 149. Free-Body Diagram: Express forces in terms of their rectangular components: ( ) ( ) ( ) WAB = − (1.25 kg/m ) 9.81 m/s 2 ( 0.9 m ) j = − (11.0363 Ν ) j WBC = − (1.25 kg/m ) 9.81 m/s 2 ( 0.3 m ) j = − ( 3.6788 Ν ) j WCD = − (1.25 kg/m ) 9.81 m/s 2 (1.35 m ) j = − (16.5544 Ν ) j uuur CE T=T =T CE −0.9 i + 1.2 j − 1.35 k ( − 0.9 ) 2 2 + (1.2 ) + ( −1.35 ) 2 = T ( −3 i + 4 j − 4.5 k ) 45.25 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System λ AD uuur AD = = AD 0.9 i − 0.3 j − 1.35 k ( 0.9 ) 2 2 + ( − 0.3) + ( −1.35 ) 2 = 6 2 9 i− j− k 11 11 11 rG/ A = ( 0.45 m ) i rC/ A = ( 0.9 m ) i − ( 0.3 m ) j rB/ A = ( 0.9 m ) i rH/A = ( 0.9 m ) i − ( 0.3 m ) j − ( 0.675 m ) k Now, ΣM AD = 0: ( ) ( ) ( ) ( ) λ AD ⋅ rG/ A × WAB + λ AD ⋅ rC/ A × T + λ AD ⋅ rB/ A × WBC + λ AD ⋅ rH / A × WCD = 0 6 −2 −9 6 − 2 −9 6 −2 −9 T 1 1 0.45 0 0 + 0.9 − 0.3 0 0 0 + 0.9 11 11 45.25 11 0 −11.0363 0 0 − 3.6788 0 − 3 4 − 4.5 6 −2 −9 1 + 0.9 − 0.3 − 0.675 = 0 11 0 −16.5544 0 4.0634 − 0.32840T + 2.7089 + 6.0950 = 0 Solving for T: T = 39.182 N or T = 39.2 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 150. Free-Body Diagram: Express forces in terms of their rectangular components: uuur FG 18 i − 6 j − 9 k T TFG = TFG = TFG = FG ( 6 i − 2 j − 3 k ) 2 2 2 FG 7 (18) + ( − 6 ) + ( − 9 ) λ AB uuur AB = = AB ΣM AB = 0: 13.5 i + 9 j − 27 k (13.5)2 + ( 9 )2 + ( − 27 )2 = 3 2 6 i+ j− k 7 7 7 λ AB ⋅ ( rAE × FE ) + λ AB ⋅ ( rBG × TFG ) = 0 3 2 −6 3 2 −6 T 1 1 −1.5 3 − 9 18 + 13.5 −13 0 FG = 0 7 7 7 0 1 0 6 − 2 −3 18 ( 9 + 27 ) + TFG (117 + 162 − 468 + 81) = 0 7 Solving for TFG: TFG = 42.000 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or TFG = 42.0 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 151. Free-Body Diagram: (a) The location of D follows from the geometry of the problem. Since the steel plate is rectangular rD/ A is perpendicular to rB/ A and therefore: rD/ A ⋅ rB/ A = 0 Denoting the coordinates of D by (0, y, z): rD/ A = − ( 0.1 m ) i + yj + ( z − 0.7 m ) k rB/ A = ( 0.3 m ) i − ( 0.4 m ) k and Thus, rD/ A ⋅ rB/ A = − 0.03 − 0.4 z + 0.28 = 0 or z = 0.625 m. rD/ A = ( − 0.1 m )2 + 2 y 2 + ( 0.625 m − 0.7 m ) = 0.75 m continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Solving for y: y = 0.73951 m x = 0, y = 0.740 m, z = 0.625 m Location of D is therefore: (b) Consider moment equilibrium about axis AB: λ AB uuur AB = = AB 0.3i − 0.4k ( 0.3)2 + ( − 0.4 )2 = 0.6i − 0.8k rD/ A = − ( 0.1 m ) i + ( 0.73951 m ) j − ( 0.075 m ) k rD/B = − ( 0.4 m ) i + ( 0.73951 m ) j + ( 0.625 m − 0.3 m ) k N D = N Di ( ) W = − ( mg ) j = − ( 40 kg ) 9.81 m/s 2 j = − ( 392.4 N ) j Then, ΣM AB = 0: ( ) ( ) λ AB ⋅ rD/ A × N D + λ AB ⋅ rG/B × W = 0 0.6 0 − 0.8 0.6 0 −0.8 − 0.1 0.73951 − 0.075 + − 0.2 0.36976 0.1625 = 0 ND − 392.4 0 0 0 0 0.59161 N D − 24.525 = 0 N D = 41.455 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or N D = ( 41.455 N ) i COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 152. Free-Body Diagram: From free-body diagram of beam ΣFx = 0: Bx = 0 so that B = By ΣFy = 0: A + B − (100 + 200 + 300 ) N = 0 A + B = 600 N or Therefore, if either A or B has a magnitude of the maximum of 360 N, the other support reaction will be < 360 N ( 600 N − 360 N = 240 N ) . (100 N )( d ) − ( 200 N )( 0.9 − d ) − ( 300 N )(1.8 − d ) ΣM A = 0: + B (1.8 − d ) = 0 d = or 720 − 1.8B 600 − B Since B ≤ 360 N, d = 720 − 1.8 ( 360 ) 600 − 360 ΣM B = 0: = 0.300 m or d ≥ 300 mm (100 N )(1.8) − A (1.8 − d ) + ( 200 N )( 0.9 ) = 0 d = or 1.8 A − 360 A Since A ≤ 360 N, d = 1.8 ( 360 ) − 360 360 = 0.800 m or d ≤ 800 mm or 300 mm ≤ d ≤ 800 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 153. Free-Body Diagram: Cmax = 1000 N Have C 2 = C x2 + C y2 Now ∴ Cy = (1000 )2 − Cx2 (1) From free-body diagram of pedal ΣFx = 0: C x − Tmax = 0 ∴ C x = Tmax (2) ΣM D = 0: C y ( 0.4 m ) − Tmax ( 0.18 m ) sin 60° = 0 ∴ C y = 0.38971Tmax (3) Equating the expressions for C y in Equations (1) and (3), with C x = Tmax from Equation (2) 2 (1000 )2 − Tmax = 0.389711Tmax 2 ∴ Tmax = 868,150 and Tmax = 931.75 N or Tmax = 932 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 154. Free-Body Diagram: From free-body diagram of inverted T-member ΣM C = 0: T ( 25 in.) − T (10 in.) − ( 30 lb )(10 in.) = 0 ∴ T = 20 lb or T = 20.0 lb ΣFx = 0: C x − 20 lb = 0 ∴ C x = 20 lb C x = 20.0 lb or ΣFy = 0: C y + 20 lb − 30 lb = 0 ∴ C y = 10 lb C y = 10.00 lb or Then and C = C x2 + C y2 = ( 20 )2 + (10 )2 = 22.361 lb Cy −1 10 = tan = 26.565° 20 Cx θ = tan −1 or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. C = 22.4 lb 26.6° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 155. Free-Body Diagram: From free-body diagram of frame with T = 300 lb 5 ΣFx = 0: C x − 100 lb + 300 lb = 0 13 ∴ C x = −15.3846 lb or C x = 15.3846 lb 12 ΣFy = 0: C y − 180 lb − 300 lb = 0 13 ∴ C y = 456.92 lb Then and C = or C y = 456.92 lb (15.3846 )2 + ( 456.92 )2 C x2 + C y2 = = 457.18 lb Cy −1 456.92 = tan = −88.072° −15.3846 Cx θ = tan −1 or C = 457 lb 88.1° 12 ΣM C = 0: M C + (180 lb )( 20 in.) + (100 lb )(16 in.) − 300 lb (16 in.) = 0 13 ∴ M C = −769.23 lb ⋅ in. or M C = 769 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 156. Free-Body Diagram: (a) From free-body diagram of rod AB ΣM C = 0: P ( l cosθ ) + P ( l sin θ ) − M = 0 or sin θ + cosθ = (b) For M Pl M = 150 lb ⋅ in., P = 20 lb, and l = 6 in. sin θ + cosθ = 150 lb ⋅ in. 5 = = 1.25 20 lb 6 in. ( )( ) 4 sin 2 θ + cos 2 θ = 1 Using identity ( sin θ + 1 − sin 2 θ (1 − sin θ ) 2 1 2 ) 1 2 = 1.25 = 1.25 − sin θ 1 − sin 2 θ = 1.5625 − 2.5sin θ + sin 2 θ 2sin 2 θ − 2.5sin θ + 0.5625 = 0 Using quadratic formula sin θ = = or − ( −2.5) ± ( 6.25) − 4 ( 2 )( 0.5625) 2 ( 2) 2.5 ± 1.75 4 sin θ = 0.95572 ∴ θ = 72.886° and sin θ = 0.29428 θ = 17.1144° and or θ = 17.11° and θ = 72.9° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 157. From geometry of forces yBE 1.5 ft β = tan −1 where yBE = 2.0 − yDE = 2.0 − 1.5 tan 35° = 0.94969 ft 0.94969 ∴ β = tan −1 = 32.339° 1.5 and α = 90° − β = 90° − 32.339° = 57.661° θ = β + 35° = 32.339° + 35° = 67.339° Applying the law of sines to the force triangle, 200 lb T B = = sin θ sin α sin 55° or (a) ( 200 lb ) sin 67.339° T = = T B = sin 57.661° sin 55° ( 200 lb )( sin 57.661° ) sin 67.339° = 183.116 lb or T = 183.1 lb (b) B= ( 200 lb )( sin 55° ) sin 67.339° = 177.536 lb or B = 177.5 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 32.3° COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 158. Free-Body Diagram: yED = xED = a, Since Slope of ED is 45° ∴ slope of HC is 45° DE = Also and 2a a 1 DH = HE = DE = 2 2 For triangles DHC and EHC sin β = a = 25 mm and sin β = R = 125 mm 25 mm = 0.141421 2 (125 mm ) ∴ β = 8.1301° and a 2R c = R sin ( 45° − β ) Now For a/ 2 = R or β = 8.13° c = (125 in.) sin ( 45° − 8.1301° ) = 75.00 in. or c = 75.0 in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 159. Free-Body Diagram: First note ( ) W = mg = (17 kg ) 9.81 m/s 2 = 166.77 N h= (1.2 )2 − (1.125)2 = 0.41758 m From free-body diagram of plywood sheet (1.125 m ) ΣM z = 0: C ( h ) − W =0 2 C ( 0.41758 m ) − (166.77 N ) ( 0.5625 m ) = 0 ∴ C = 224.65 N or C = − ( 225 N ) i ΣM B( y -axis ) = 0: − ( 224.65 N ) ( 0.6 m ) + Ax (1.2 m ) = 0 or ∴ Ax = 112.324 N A x = (112.3 N ) i ΣM B( x-axis ) = 0: (166.77 N ) ( 0.3 m ) − Ay (1.2 m ) = 0 ∴ Ay = 41.693 N or A y = ( 41.7 N ) j ΣM A( y -axis ) = 0: ( 224.65 N ) ( 0.6 m ) − Bx (1.2 m ) = 0 ∴ Bx = 112.325 N or B x = (112.3 N ) i ΣM A( x-axis ) = 0: B y (1.2 m ) − (166.77 N ) ( 0.9 m ) = 0 ∴ By = 125.078 N or B y = (125.1 N ) j ∴ A = (112.3 N ) i + ( 41.7 N ) j B = (112.3 N ) i + (125.1 N ) j C = − ( 225 N ) i Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 160. Free-Body Diagram: First note ( ) W = mg = ( 30 kg ) 9.81 m/s 2 = 294.3 N FEC = λ EC FEC = ( sin15° ) i + ( cos15° ) j FEC From free-body diagram of cover (a) ΣM z = 0: ( FEC cos15° ) (1.0 m ) − W ( 0.5 m ) = 0 or FEC cos15° (1.0 m ) − ( 294.3 N )( 0.5 m ) = 0 ∴ FEC = 152.341 N (b) or FEC = 152.3 N ΣM x = 0: W ( 0.4 m ) − Ay ( 0.8 m ) − ( FEC cos15° ) ( 0.8 m ) = 0 or ( 294.3 N )( 0.4 m ) − Ay ( 0.8 m ) − (152.341 N ) cos15° ( 0.8 m ) = 0 ∴ Ay = 0 ΣM y = 0: Ax ( 0.8 m ) + ( FEC sin15° ) ( 0.8 m ) = 0 or Ax ( 0.8 m ) + (152.341 N ) sin15° ( 0.8 m ) = 0 ∴ Ax = −39.429 N ΣFx = 0: Ax + Bx + FEC sin15° = 0 −39.429 N + Bx + (152.341 N ) sin15° = 0 ∴ Bx = 0 ΣFy = 0: FEC cos15° − W + By = 0 or (152.341 N ) cos15° − 294.3 N + B y = 0 ∴ By = 147.180 N or A = − ( 39.4 N ) i B = (147.2 N ) j Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 161. Free-Body Diagram: λCD = First note = λCE = = − ( 23 in.) i + ( 22.5 in.) j − (15 in.) k 35.5 in. 1 ( −23i + 22.5j − 15k ) 35.5 ( 9 in.) i + ( 22.5 in.) j − (15 in.) k 28.5 in. 1 ( 9i + 22.5 j − 15k ) 28.5 W = − ( 285 lb ) j From free-body diagram of plate (a) ΣM x = 0: 22.5 22.5 T (15 in.) − T (15 in.) = 0 35.5 28.5 ( 285 lb )( 7.5 in.) − ∴ T = 100.121 lb or T = 100.1 lb continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System 23 9 ΣFx = 0: Ax − T +T =0 35.5 28.5 (b) 23 ( 9 Ax − (100.121 lb ) + 100.121 lb ) =0 35.5 28.5 ∴ Ax = 33.250 lb 22.5 ΣM B( z -axis ) = 0: − Ay ( 26 in.) + W (13 in.) − T ( 6 in.) − 35.5 or 22.5 ( 6 in.) = 0 T 28.5 22.5 − Ay ( 26 in.) + ( 285 lb )(13 in.) − (100.121 lb ) ( 6 in.) 35.5 22.5 − (100.121 lb ) ( 6 in.) = 0 28.5 ∴ Ay = 109.615 lb 15 ΣM B( y -axis ) = 0: Az ( 26 in.) − T ( 6 in.) − 35.5 23 (15 in.) T 35.5 15 9 − T ( 6 in.) + T (15 in.) = 0 28.5 28.5 or 1 −1 Az ( 26 in.) + ( 90 + 345) − ( 90 − 135) (100.121 lb ) = 0 28.5 35.5 ∴ Az = 41.106 lb or A = ( 33.3 lb ) i + (109.6 lb ) j + ( 41.1 lb ) k 22.5 22.5 ΣFy = 0: By − W + T +T + Ay = 0 35.5 28.5 22.5 22.5 B y − 285 lb + (100.121 lb ) + + 109.615 lb = 0 35.5 28.5 ∴ By = 32.885 lb 15 15 ΣFz = 0: Bz + Az − T −T =0 35.5 28.5 15 15 Bz + 41.106 lb − (100.121 lb ) + =0 35.5 28.5 ∴ Bz = 53.894 lb or B = ( 32.9 lb ) j + ( 53.9 lb ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 162. First note Free-Body Diagram: TBG = λBGTBG = − (18 in.) i + (13.5 in.) k 2 2 (18) + (13.5) in. TBG = TBG ( −0.8i + 0.6k ) TDH = λDH TDH = − (18 in.) i + ( 24 in.) j (18)2 + ( 24 )2 in. TDH = TDH ( −0.6i + 0.8j) Since λFJ = λDH , TFJ = TFJ ( −0.6i + 0.8j) From free-body diagram of member ABF ΣM A( x-axis ) = 0: ( 0.8TFJ ) ( 48 in.) + ( 0.8TDH )( 24 in.) − (120 lb )( 36 in.) − (120 lb )(12 in.) = 0 ∴ 3.2TFJ + 1.6TDH = 480 ΣM A( z -axis ) = 0: (1) ( 0.8TFJ ) (18 in.) + ( 0.8TDH )(18 in.) − (120 lb )(18 in.) − (120 lb )(18 in.) = 0 ∴ − 3.2TFJ − 3.2TDH = −960 (2) Equation (1) + Equation (2) Substituting in Equation (1) ΣM A( y -axis ) = 0: TDH = 300 lb TFJ = 0 ( 0.6TFJ ) ( 48 in.) + 0.6 ( 300 lb ) ( 24 in.) − ( 0.6TBG ) (18 in.) = 0 ∴ TBG = 400 lb continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System ΣFx = 0: − 0.6TFJ − 0.6TDH − 0.8TBG + Ax = 0 −0.6 ( 300 lb ) − 0.8 ( 400 lb ) + Ax = 0 ∴ Ax = 500 lb ΣFy = 0: 0.8TFJ + 0.8TDH − 240 lb + Ay = 0 0.8 ( 300 lb ) − 240 + Ay = 0 ∴ Ay = 0 ΣFz = 0: 0.6TBG + Az = 0 0.6 ( 400 lb ) + Az = 0 ∴ Az = −240 lb Therefore, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. A = ( 500 lb ) i − ( 240 lb ) k COSMOS: Complete Online Solutions Manual Organization System Chapter 4, Solution 163. Free-Body Diagram: First note λ AE = − ( 70 mm ) i + ( 240 mm ) k ( 70 ) 2 = 2 + ( 240 ) mm 1 ( −7i + 24k ) 25 rC/ A = ( 90 mm ) i + (100 mm ) k FC = − ( 600 N ) j rD/ A = ( 90 mm ) i + ( 240 mm ) k T = λDF T = = − (160 mm ) i + (110 mm ) j − ( 80 mm ) k (160 )2 + (110 )2 + (80 )2 mm T T ( −16 i + 11j − 8k ) 21 From the free-body diagram of the bend rod ( ) ( ) ΣM AE = 0: λ AE ⋅ rC/ A × FC + λ AE ⋅ rD/ A × T = 0 ∴ −7 0 24 −7 0 24 600 T 90 0 100 =0 + 90 0 240 25 ( 21) 25 0 −1 0 −16 11 −8 600 T + (18 480 + 23 760 ) =0 25 25 ( 21) ( −700 − 2160 ) ∴ T = 853.13 N or T = 853 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 1. \ Then A, mm 2 x , mm y , mm xA, mm3 yA, mm3 1 200 × 150 = 30000 −100 250 − 30 000000 6 750 000 2 400 × 300 = 120000 200 150 24 000 000 18000000 Σ 150 000 21000 000 24 750000 X = ΣxA 21 000000 = mm ΣA 150000 or X = 140.0 mm Y = ΣyA 24 750000 = mm ΣA 150 000 or Y = 165.0 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 2. A,in 2 x ,in. y ,in. xA,in 3 yA,in 3 1 10 × 8 = 80 5 4 400 320 2 1 × 9 × 12 = 54 2 13 4 702 216 Σ 134 1102 536 Then X = ΣxA 1102 = ΣA 134 and Y = ΣyA 1102 = ΣA 134 or X = 8.22 in. or Y = 4.00 in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 3. Then A, mm 2 x , mm xA, mm3 1 1 × 90 × 270 = 12 150 2 2 ( 90 ) = 60 3 729 000 2 1 × 135 × 270 = 18 225 2 Σ 30375 X = 90 + ΣxA 3189375 mm = ΣA 30375 1 (135) = 135 3 2 460 375 3 189 375 or X = 105.0 mm For the whole triangular area by observation: Y = 1 ( 270 mm ) 3 or Y = 90.0 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 4. A,in 2 x ,in. 1 1 ( 21)( 24 ) = 252 2 2 (13)( 40 ) = 520 Σ 2 ( 21) = 14 3 21 + 1 (13) = 27.5 2 xA,in 3 y ,in. 40 − 1 ( 24 ) = 32 3 20 772 Then yA,in 3 3528 8064 14 300 10 400 17 828 18 464 X = ΣxA 17828 = in. ΣA 772 or Y = ΣyA 18464 = in. ΣA 772 or Y = 23.9 in. X = 23.1 in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 5. A, mm 2 x , mm 2 1 π ( 225 ) 2 1 ( 375)( 225) = 42 188 2 4 − = 39 761 4 ( 225 ) 3π = − 95.493 125 y , mm xA, mm3 yA, mm3 95.493 − 3 796 900 3 796 900 5 273 500 3 164 100 1 476 600 6 961 000 75 81 949 Σ Then X = ΣxA 1476600 mm = ΣA 81 949 or X = 18.02 mm Y = ΣyA 6961 000 mm = ΣA 81 949 or Y = 84.9 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 6. 1 2 3 − π 4 − A,in 2 x ,in. y ,in. xA,in 3 yA,in 3 17 × 9 = 153 8.5 4.5 1300.5 688.5 2 × ( 4.5 ) = −15.9043 8 − π 4 ( 6 )2 = − 28.274 Σ 4 × 4.5 4 × 4.5 = 6.0901 9 − = 7.0901 − 96.857 3π 3π −112.761 − 298.19 −182.466 905.45 393.27 10.5465 6.4535 108.822 Then X = ΣxA 905.45 = ΣA 108.822 and Y = ΣyA 393.27 = ΣA 108.22 or X = 8.32 in. or Y = 3.61 in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 7. A,in 2 1 π (16 ) 4 2 = 201.06 2 − ( 8 )( 8 ) = − 64 Σ 137.06 ΣxA 1109.32 = in. ΣA 137.06 Then X = and Y = X by symmetry x ,in. 4 (16 ) 3π = 6.7906 4 xA,in 3 1365.32 − 256 1109.32 or X = 8.09 in. or Y = 8.09 in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 8. A, mm 2 x , mm y , mm xA, mm3 yA, mm3 1 35 343 63.662 0 2 250 006 0 2 − 4417.9 31.831 − 31.831 −140 626 140 626.2 Σ 30925.1 2 109 380 140 626.2 Then X = ΣxA 2109 380 = ΣA 30 925.1 and Y = ΣyA 140 625 = ΣA 30 925.1 or X = 68.2 mm or Y = 4.55 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 9. A − 1 Therefore, for X = 4 π 2 Σ π2 2 π ( 2r 4 2 2 r12 r22 − r12 4r1 3π r13 π 2 4r1 − r1 =− 3 4 3π 4r2 3π π 2 4r2 2r23 r2 = 3 2 3π 1 2r23 − r13 3 ( ) ΣxA 4r1 = : ΣΑ 3π ( ( or xA ) ) 4 2r23 − r13 4r1 = 3π 3π 2r22 − r12 or x π = ) r 3 r13 2 2 − 1 r1 4 = 2 r 3π r12 2 2 − 1 r1 r 2ρ 3 − 1 , where ρ = 2 2 r1 2ρ − 1 2 ρ 3 − 2πρ 2 + (π − 1) = 0. Solving numerically for ρ and noting that ρ > 1: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. r2 = 3.02 r1 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 10. First, determine the location of the centroid. y2 = From Fig. 5.8A: = y1 = Similarly Then Σ yA = (π 2 sin 2 − α r2 π 3 −α 2 ( 2 cos α r2 π 3 −α 2 ) ( ) ( ) 2 cos α r1 π 3 −α 2 2 cosα r2 π 3 −α 2 ( ) ( ) A2 = A1 = ( π2 − α ) r12 ( π2 − α ) r22 − 23 r1 ( cosα −α 2 π ) 2 3 r2 − r13 cosα 3 π π Σ A = − α r22 − − α r12 2 2 = and π = − α r22 − r12 2 Y Σ A = Σ yA ( Now ( π2 − α ) r22 ) π 2 3 Y − α r22 − r12 = r2 − r13 cos α 2 3 ( ) Y = ( ) 2 r23 − r13 cos α 3 r22 − r12 π2 − α Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ) ( π2 − α ) r12 COSMOS: Complete Online Solutions Manual Organization System Using Figure 5.8B, Y of an arc of radius 1 ( r1 + r2 ) is 2 Y = = (π sin − α 1 ( r1 + r2 ) π 2 2 −α 2 ( ) ) 1 cos α (r1 + r2 ) π 2 −α 2 ( ( ( r2 − r1 ) r22 + r1 r2 + r12 r23 − r13 = r22 − r12 ( r2 − r1 )( r2 + r1 ) Now = (1) ) ) r22 + r1 r2 + r12 r2 + r1 r2 = r + ∆ Let r1 = r − ∆ r = Then 1 ( r1 + r2 ) 2 2 and ( r + ∆ ) + ( r + ∆ )( r − ∆ ) + ( r − ∆ ) r23 − r13 = 2 2 r2 − r1 (r + ∆) + (r − ∆) = 2 3r 2 + ∆ 2 2r In the limit as ∆ → 0 (i.e., r1 = r2 ), then r23 − r13 3 = r 2 2 2 r2 − r1 = so that Y = 3 1 × (r1 + r2 ) 2 2 2 3 cos α × ( r1 + r2 ) π 3 4 −α 2 Which agrees with Eq. (1). Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or Y = 1 cos α ! ( r1 + r2 ) π 2 −α 2 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 11. Then X = A,in 2 x ,in. xA,in 3 1 27 8.1962 221.30 2 15.5885 3.4641 54.000 3 −18.8495 3.8197 −71.999 Σ 23.739 ΣxA 203.30 = ΣA 23.739 203.30 or X = 8.56 in. and by symmetry Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Y =0 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 12. 1 2 A, mm 2 x , mm y , mm xA, mm3 yA, mm3 1 ( 240 )(150 ) = 18 000 2 160 50 2 880 000 900 000 3 ( 240 ) = 180 4 3 (150 ) = 45 10 −2160000 −540 000 720 000 360 000 − 1 ( 240 )(150 ) = 12 000 3 6000 Σ Then X = ΣxA 720000 = mm ΣA 6000 Y = ΣyA 360000 = mm ΣA 6000 or X = 120.0 mm or Y = 60.0 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 13. A,in 2 x ,in. y ,in. 1 (18)(8) = 144 −3 4 − 432 576 2 1 ( 6 )( 9 ) = 27 2 2 −3 54 −81 −5.0930 −3.8197 − 432.00 − 324.00 −810.00 171.00 3 Σ Then π 4 (12 )( 9 ) = 84.823 255.82 X = ΣxA −810.00 = in. 255.82 ΣA Y = ΣyA 171.00 = in. ΣA 255.82 xA,in 3 or yA,in 3 X = − 3.17 in. or Y = 0.668 in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 14. X = 90 mm First, by symmetry 1 2 − 3 − A, mm 2 y , mm yA, mm3 (180 )(120 ) = 21 600 60 1 296 000 π 4 π 4 ( 90 )(120 ) = − 8482.3 120 − 4 × 120 = 69.070 3π −585 870 ( 90 )(120 ) = − 8482.3 120 − 4 × 120 = 69.070 3π −585 870 4635.4 Σ Y = ΣyA 124 260 = 4635.4 ΣA 124 260 or Y = 26.8 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 15. A, mm 2 x , mm y , mm xA, mm3 yA, mm3 1 18 240 −4 12 72 960 218 880 2 −1920 − 56 54 107520 −103 680 3 − 4071.5 − 41.441 − 41.441 168 731 186 731 Σ 12 248.5 −134171 −53 531.1 Then and X = ΣxA −134171 = ΣA 12 248.5 Y = ΣyA −53 531 = ΣA 12 248.5 or X = −10.95 mm or Y = − 43.7 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 16. \ A, mm 2 2 ( 200 )( 200 ) = 26 667 3 1 − 2 2 (100 )( 50 ) = − 3333.3 3 23 334 Σ xA, mm3 yA, mm3 x , mm y , mm 75 70 2 000 000 1866 690 37.5 − 20 −125 000 66 666 1875 000 1 933 360 Then X = ΣxA 1875 000 = mm ΣA 23 334 or X = 80.4 mm Y = ΣyA 1 933 360 = mm ΣA 23 334 or Y = 82.9 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 17. Locate first Y : Note that the origin of the X axis is at the bottom of the whole area. A, in 2 Y = yA, in 3 1 8 × 15 = 120 7.5 900 2 − 4 × 10 = − 40 8 − 320 Σ Then y , in. 80 580 ΣyA 580 = = 7.2500 in. ΣA 80 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Now, to find the first moment of each area about the x-axis: Area I: QI = ΣyA = 7.75 5.75 − ( 4 × 5.75 ) , (8 × 7.75) + 2 2 or QI = 174.125 in 3 ! Area II: QII = ΣyA = − 7.75 4.25 − ( 4 × 4.25 ) , (8 × 7.25) − 2 2 or QII = −174.125 in 3 ! Note that Q( area ) = QI + QII = 0 which is expected as y = 0 and Q( area ) = yA since x is a centroidal axis. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 18. A, mm 2 Y = yA, mm3 1 (80 )( 20 ) = 1600 90 144 000 2 ( 20 )(80 ) = 1600 40 64 000 Σ Then y , mm 3200 208 000 ΣyA 208 000 = = 65.000 mm ΣA 3200 Now, for the first moments about the x-axis: Area I QI = ΣyA = 25 ( 80 × 20 ) + 7.5 ( 20 × 15 ) = 42 250 mm3 , or QI = 42.3 × 103 mm3 ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Area II QII = ΣyA = − 32.5 ( 20 × 65 ) = 42 250 mm3 , or QII = 42.3 × 103 mm3 ! Note that Q( area ) = QI + QII = 0 which is expected as y = 0 and Q( area ) = yA since x is a centroidal axis. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 19. (a) With Qx = Σ yA and using Fig. 5.8 A, ( ) 2 r sin π − θ r 2 π2 − θ − Qx = 3 π 2 − θ 2 2 = r 3 cos θ − cos θ sin 2 θ 3 ( ) ( 32 r sin θ ) 12 × 2r cos θ × r sin θ ( ) or Qx = (b) By observation, Qx is maximum when and then Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 2 3 r cos3 θ 3 θ =0 Qx = 2 3 r 3 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 20. From the problem statement: F is proportional to Qx . Therefore: FA FB = , or ( Qx ) A ( Qx )B FB = ( Qx )B F ( Qx ) A A For the first moments: Then ( Qx ) A 12 = 225 + ( 300 × 12 ) = 831 600 mm3 2 ( Qx )B 12 = ( Qx ) A + 2 225 − ( 48 × 12 ) + 2 ( 225 − 30 )(12 × 60 ) = 1 364 688 mm 3 2 FB = 1364688 ( 280 N ) , 831600 or FB = 459 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 21. Because the wire is homogeneous, its center of gravity will coincide with the centroid for the corresponding line. L, mm x , mm y , mm xL, mm 2 yL, mm 2 1 400 200 0 80 000 0 2 300 400 150 120 000 45 000 3 600 100 300 60 000 180 000 4 150 − 200 225 − 30 000 33 750 5 200 −100 150 − 20 000 30 000 6 150 0 75 0 11 250 Σ 1800 210 000 300 000 Then X = ΣxL 210 000 = = 116.667 mm ΣL 1800 or X = 116.7 mm and Y = ΣyL 300 000 = = 166.667 mm ΣL 1800 or Y = 166.7 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 22. L, in. x , in. y , in. xL, in 2 y , in 2 1 19 9.5 0 180.5 0 2 15 14.5 6 217.5 90 3 4 10 10 40 40 4 10 5 8 50 80 5 8 0 4 0 32 Σ 56 488 242 Then X = ΣxL 488 = ΣL 56 or X = 8.71 in. and Y = ΣyA 242 = 56 ΣA or Y = 4.32 in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 23. Because the wire is homogeneous, its center of gravity will coincide with the centroid for the corresponding line. L, mm x , mm y , mm xL, mm 2 yL, mm 2 600 75 0 45 000 0 187.5 112.5 81 998 49 199 2 2 − 50 625 50 625 76 373 99 824 1 2 3 3752 + 2252 = 437.32 π 2 Σ ( 225) − π ( 225) 1390.75 π ( 225) Then X = ΣxL 76 373 = ΣL 1390.75 or X = 54.9 mm and Y = ΣyL 99 824 = ΣL 1390.75 or Y = 71.8 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 24. L, mm x , mm y , mm xL, mm 2 yL, mm 2 1 75 37.5 0 2812.5 0 2 150 0 75 0 11 250 95.492 0 45 000 0 0 −112.5 0 − 8437.5 47.746 − 47.746 5625.0 − 5625.0 53 437 − 2812.5 3 (150 )π 4 5 Σ = 471.24 75 ( 75) π 2 = 117.81 889.05 Then X = ΣxL 53 437 = , ΣL 889.05 or X = 60.1 mm and Y = ΣyA − 2812.5 = ΣA 889.05 or Y = − 3.16 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 25. O From Figure 5.8 b: r = ( 20 in.) sin 30° π = 60 π in. 6 Note also that triangle ABO is equilateral, where O is the origin of the coordinate system in the figure. For equilibrium: (a) ΣM A = 0: 60 20 in. − in. cos 30° (1.75 lb ) − ( 20 in.) sin 60° TBC = 0 π Solving for TBC : TBC = 0.34960 lb (b) ΣFx = 0: or TBC = 0.350 lb Ax + ( 0.34960 lb ) cos 60° = 0 Ax = − 0.174800 lb ΣFx = 0: Ay − 1.75 lb + ( 0.34960 lb ) sin 60° = 0 Ay = 1.44724 lb Therefore: A = 1.458 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 83.1° COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 26. The wire supported only by the pin at B is a two-force body. For equilibrium the center of gravity of the wire must lie directly under B. Also, because the wire is homogeneous the center of gravity will coincide with the centroid. In other words, x = 0, or ΣxL = 0. ΣxL = − 2 (150 mm ) π 150 mm 200 mm π (150 mm ) + cosθ (150 mm ) ( 200 mm ) + 200 mm − 2 2 or cosθ = 5000 11250 or θ = 63.6° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 27. The wire supported only by the pin at B is a two-force body. For equilibrium the center of gravity of the wire must lie directly under B. Also, because the wire is homogeneous the center of gravity will coincide with the centroid. In other words, x = 0, or ΣxL = 0. ΣxL = − 2 (150 mm ) π 150 mm 200 mm π (150 mm ) + cosθ (150 mm ) ( 200 mm ) + 200 mm − 2 2 or l 2 + 300l − 197602 = 0. Solving for l : l = 319.15, and l = − 619.15, and discarding the negative root l = 319 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 28. The centroid coincides with the center of gravity because the wire is homogeneous. L 1 r 2 2θ r x − − l 3 − r sin θ θ l 2 X = Then r 2 xL − r2 2 − 2r 2 sin θ l2 2 ΣxL = 0 ⇒ ΣxL = 0 and ΣL r2 l2 − 2r 2 sin θ + = 0, or l = r 1 + 4sin θ 2 2 (a) θ = 15° : l = r 1 + 4sin15° or l = 1.427 r (b) θ = 60° : l = r 1 + 4sin 60° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or l = 2.11 r COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 29. y = Then ΣyA ΣA (a + h) a ( ab ) − kb ( a − h ) 2 2 y = ba − kb ( a − h ) or = 2 2 1 a (1 − k ) + kh 2 a(1 − k ) + kh Let c =1− k Then y = and ζ = h a a c + kζ 2 2 c + kζ (1) Now find a value of ζ (or h) for which y is minimum: ( ) 2 dy a 2kζ ( c + kζ ) − k c + kζ = =0 dζ 2 ( c + kζ ) 2 or ( ) 2ζ ( c + kζ ) − c + kζ 2 = 0 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (2) COSMOS: Complete Online Solutions Manual Organization System 2cζ + 2ζ Expanding (2) 2 ζ = Then − c − kζ − 2c ± 2 =0 or kζ 2 + 2cζ − c = 0 ( 2c )2 − 4 ( k ) ( c ) 2k Taking the positive root, since h > 0 (hence ζ > 0 ) 2 h=a − 2 (1 − k ) + 4 (1 − k ) + 4k (1 − k ) 2k 2 (a) k = 0.2: h=a (b) k = 0.6: h=a − 2 (1 − 0.2 ) + 4 (1 − 0.2 ) + 4 ( 0.2 )(1 − 0.2 ) 2 ( 0.2 ) or h = 0.472a ! 2 − 2 (1 − 0.6 ) + 4 (1 − 0.6 ) + 4 ( 0.6 )(1 − 0.6 ) 2 ( 0.6 ) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or h = 0.387a ! COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 30. From Problem 5.29, note that Eq. (2) yields the value of ζ that minimizes h. Then from Eq. (2) We see 2ζ = c + kζ 2 c + kζ (3) Then, replacing the right-hand side of (1) by 2ζ , from Eq. (3) We obtain y = a ( 2ζ) 2 But ζ= h a So y =h Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Q.E.D. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 31. \ Note that y1 = − = h x+h a h (a − x) a Choose the area element (EL) as dA = ( h − y1 ) dx = h xdx a a Then A= h a h 1 1 xdx = x 2 = ah ∫ 0 a a 2 0 2 Now, noting that xEL = x, and yEL = 1 ( h + y1 ) 2 a 1 2 a h 2 1 2 x = ∫ xdA = x xdx = 2 x3 = a ∫ 0 A ah 3 a a 3 0 y = 1 1 2 h 1 2 1 a 2 2 ∫ ( h + y1 ) dA = ah ∫ 0 2 ( h + y1 ) ( h − y1 ) dx = ah 2 ∫ 0 h − y1 dx A 2 ( ) A 1 a 2 h2 h h 1 2 2 3 1 1 = h − 2 ( a − x ) dx = x + 2 ( a − x ) = a − a = h ∫ 0 ah a a 3 3 a 3 a 0 Therefore: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. x = 2 a! 3 y = 2 h! 3 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 32. First determine k: For x = a, y = 0 and therefore ( ) 0 = h 1 − ka3 or k = a −3 , and therefore x3 y = h 1 − 3 a Choosing an area element as in the figure: xEL = x, yEL = a 0 y , 2 A = ∫ dA = ∫ ydx = ∫ ∫ xEL dA = ∫ a xydx 0 =∫ and dA = ydx a x3 x4 3 − 3 dx = h x − 3 = ah 4 a 4a 0 a h 1 0 a x2 x4 x5 3 2 − 3 dx = b − 3 = ab a 5a 0 10 2 a h x 0 2 a 1 a 2 x3 b2 a 2 x3 x 6 b2 x4 x7 9 a y 1 y dA ydx h x dx dx x ab 2 = = − = − + = − + = ∫ EL ∫0 2 ∫ 0 ∫ 0 3 3 6 3 6 2 2 2 28 2 7 a a a a a 0 Now x = 1 4 3a 2b 2 x dA = = a ∫ EL A 3ab 10 5 y = 1 4 9ab 2 3 yEL dA = = b ∫ A 3ab 28 7 and Therefore: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 2 a 5 3 y = b 7 x = COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 33. For the element (EL) shown x = a, y = h: h = k1a3 At k1 = or h a3 a = k 2 h3 k2 = or a h3 Hence, on line 1 y = h 3 x a3 and on line 2 y = h 1/3 x a1/3 Then h h dA = 1/3 x1/3 − 3 x3 dx a a and yEL = 1 h 1/3 h 3 1/3 x + 3 x 2 a a a h 1/3 h 1 1 3 ∴ A = ∫ dA = ∫ x − 3 x3 dx = h 1/3 x 4/3 − 3 x 4 = ah 1/3 2 a 4a a 4a 0 a 0 ∫ xEL dA = ∫ a h 1/3 h 1 8 2 3 x − 3 x3 dx = h 1/3 x 7/3 − 3 x5 = a h 1/3 a 5a a 7a 0 35 a x 0 1 a 1/3 3 1/3 3 ∫ yEL dA = ∫ 0 2 a1/3 x + a3 x a1/3 x − a3 x dx h h h h a h 2 a x 2/3 x 6 h 2 3 x5/3 1 x 6 8 2 = − dx = − ah = ∫ 2/3 6 0 2 a 2 5 a5/3 7 a 6 35 a 0 From 8 2 ah xA = ∫ xEL dA: x = a h 2 35 or x = 16 a 35 and 8 2 ah yA = ∫ yEL dA: y = ah 2 35 or y = 16 h 35 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 34. Choose as an area element (EL) the shaded area shown: π dA = r dr 2 xEL = 2r π and r π 1 2 π 2 r π A = ∫r 2 r dr = r 2 = r2 − r12 1 2 2 2 r1 4 ( ) Then r x = 1 4 4 r2 2r π 1 3 2 x dA rdr = = ∫ EL ∫ r A π r22 − r12 r1 π 2 π r22 − r12 3 r1 ( ) ( ) or x = 4 r23 − r13 3π r22 − r12 y = 4 r23 − r13 3π r22 − r12 and by symmetry Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 35. Note that y1 = − y2 = b b x + b = ( a − x ) , and a a b 2 a − x2 a Then for the shaded area element: dA = ( y2 − y1 ) dx = b 2 a − x 2 − ( a − x ) dx and a a a A = ∫ dA = ∫ 0 = b 2 b 1 2 x 1 a − x 2 − ( a − x ) dx = x a 2 − x 2 + a 2 sin −1 + ( a − x ) a a 2 a 2 0 b 1 π 1 2 ab (π − 2 ) × − a = 4 a2 2 2 Noting that xEL = x, and that yEL = x = 1 ( y1 + y2 ): 2 1 4 ab 2 2 ∫ xELdA = ab π − 2 ∫ 0 a x x − a − x ( a − x )dx A ( ) 21 = − a2 − x2 ab (π − 2 ) 3 2 4 ( ) 3 2 1 1 + − ax 2 + x3 3 2 a = 0 1 a 2 2 a (π − 2 ) 3 4 ( ) 3 2 1 1 + − a3 + a3 3 2 or x = 2a ! 3 (π − 2 ) continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System y = = 1 4 a 1 yEL dA = y + y1 ) ( y2 − y1 ) dx ∫ ∫ 0 ( 2 A ab (π − 2 ) 2 2 ab (π − 2 ) ( ) 2 2 ∫ y2 − y1 = 2 a 2 (π − 2 ) ∫ 2 ab 0 2 a ( ) a2 − x2 − b2 2 a − x ) dx 2( a a 2b 4b 4b a a 1 2 1 3 = 3 2 ax − x 2 dx = 3 ax − x 2 dx = 3 ax − x ∫ ∫ 0 0 3 0 a (π − 2 ) a (π − 2 ) a (π − 2 ) 2 ( ) ( ) or y = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 2b ! 3 (π − 2 ) COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 36. x =0 First note that symmetry implies For the element (EL) shown y = R cos θ, x = R sin θ dx = R cos θ d θ dA = ydx = R 2 cos 2θ dθ Hence α 1 2 α θ sin 2θ A = ∫ dA = 2∫ 0 R 2 cos 2 θ dθ = 2R 2 + = R ( 2α sin 2α ) 4 0 2 2 α ∫ yEL dA = 2∫ 0 = ( ) R3 cos 2 α sin α + 2sin α 3 ( ) R3 cos 2 α sin α + 2sin α 3 y = R2 ( 2α + sin 2α ) 2 ( But yA = ∫ yEL dA so or α R 2 1 cosθ R 2 cos 2 θ dθ = R3 cos 2 θ sin θ + sin θ 2 3 3 0 ( ) ) cos 2 α + 2 2 y = R sin α 3 ( 2α + sin 2α ) Alternatively, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. y = 2 3 − sin 2 α R sin α 3 2α + sin 2α COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 37. x = 0, y = b At b = k (0 − a) 2 y= Now xEL = x, yEL = and dA = ydx = and b a2 b 2 x − a) 2( a Then Then k = or a A = ∫ dA = ∫ 0 y b 2 = x − a) 2( 2 2a b ( x − a )2 dx a2 a b b 1 2 3 x − a dx = x − a = ab ( ) ( ) 2 2 3 0 a 3a 2 a a 3 2 2 ∫ xEL dA = ∫ 0 x a 2 ( x − a ) dx = a 2 ∫ 0 ( x − 2ax + a x )dx b = b x4 2 3 a2 2 1 2 x = ab − ax + 3 2 12 a 2 4 a ∫ yEL dA = ∫ 0 = b a b b2 1 2 b 2 5 x − a ) 2 ( x − a ) dx = x − a) 2( 4 ( 2a a 2a 5 0 1 2 ab 10 1 2 1 ab Hence xA = ∫ xEL dA: x ab = 3 12 1 2 1 yA = ∫ yEL dA: y ab = ab 3 10 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. x = y = 1 a 4 3 b 10 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 38. For the element (EL) shown on line 1 at x = a, b = k 2 a 2 ∴ y = or ∴ y = b a2 b 2 x a2 x = a, −2b = k1a3 On line 2 at k2 = or k2 = −2b a3 −2b 3 x a3 2b b dA = 2 x 2 + 3 x3 dx a a Then b 2 x3 b x3 2 x 4 A = ∫ dA = ∫ 2 x 2 + + dx = 2 x 4a a a 3 a a 0 0 1 1 5 = ab + = ab 3 2 6 and ∫ xEL dA = ∫ a b 2 2b 3 b x 4 2 x5 2 2 1 + x + 3 x dx = 2 = a b + 2 a 4 5 4 5 a a a 0 a x 0 13 2 ab 20 2b 3 b 2 2b 3 a1 b 2 ∫ yEL dA = ∫ 0 2 a 2 x − a3 x a 2 x + a3 x dx = 2 1 b 2 2b =∫ 2 x − 3 x 3 2 a a a 0 a 2 b 2 x5 2 − 2 x 7 dx = 4 2a 5 7a 0 2 13 1 = b 2a5 − = − ab 2 10 7 70 Then xA = ∫ xEL dA: yA = ∫ yEL dA: 5 13 2 x ab = ab 6 20 5 13 2 y ab − ab 6 70 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. x = 39 a 50 or y = − 39 b 175 or COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 39. Using the area element shown: xEL = x, yEL = A = ∫ dA = ∫ L h 1 0 y , 2 and dA = ydx L x x2 x 2 2 x3 5 + − 2 2 dx = h x + − = hL 2 L 2L 3 L 0 6 L L x 2 1 x3 2 x 4 x x2 x2 x3 1 2 L L ∫ xEL dA = ∫ 0 xh 1 + L − 2 L2 dx = h∫ 0 x + L − 2 L2 dx = h 2 + 3 L − 4 L2 = 3 hL 0 2 1 2 h2 L x x2 h2 L x2 x4 x x2 x3 ∫ yEL dA = 2 ∫ y dx = 2 ∫ 0 1 + L − 2 L2 dx = 2 ∫ 0 1 + L2 + 4 L4 + 2 L − 4 L2 − 4 L3 dx L h2 x3 4 x5 x 2 4 x3 x 4 4 2 h L = − 2 − 3 = x + 2 + 4 + L 2 L 0 10 3L 5L 3L Now x = 1 6 1 2 2 ∫ xEL dA = 5hL 3 hL = 5 L and A y = 1 6 4 2 12 ∫ yEL dA = 5hL 10 h L = 25 h A Therefore: x = y = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 2 L 5 12 h 25 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 40. Note that y1 = 0 at x = a, or ( ) 0 = 2b 1 − ka 2 , i.e. k = 1 a2 Also, note that the slope of y2 is y2 = − 3b and y2 = 0 at x = 2a. Therefore a 3b ( 2a − x ) . a Pick the area element dA ( EL ) such that: for 0 ≤ x ≤ a dA = ( 3b − y1 ) dx, and xEL = x, yEL = 1 ( 3b + y1 ) 2 and for a ≤ x ≤ 2a dA = y2 dx, and xEL = x, yEL = 1 y2 2 Then: 2b a 2a a 2 a 3b A = ∫ dA = ∫ 0 ( 3b − y1 ) dx + ∫a y2dx = ∫ 0 3b − 2 a 2 − x 2 dx + ∫a ( 2a − x ) dx = a a ( a b 0 ) a 2b 2 3b 1 2 a 3b + 2 x 2 dx + ∫a ( 2a − x ) dx = b x + 2 x3 + − ( 2a − x )2 ∫ a a 2 a 3a 0 2a = a continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System 2 3b 19 2 ab 1 + − ab − ( 2a − a ) = 3 2 a 6 Now for the centroid: x = 1 6 a 2 2 3b 2a ∫ xdA = 19ab b∫ 0 x 1 + a 2 x dx + a ∫a x ( 2a − x ) dx = A 6 1 2 1 3 1 x + 2 x 4 + ax 2 − x3 19a 2 3 a 2a 0 a 2a a = 6 1 1 8 1 = + + 3 4 − − 1 + 3 3 19 2 2 or x = y = 18 a! 19 1 6 a1 1 yEL dA = ( 3b + y1 )( 3b − y1 ) dx + ∫ a2a y2 y2dx ∫ ∫ 0 A 19ab 2 2 = 1 6 a1 2a 1 2 y2 dx = 9b 2 − y12 dx + ∫ a ∫ 2 19ab 0 2 2 = 2 2 1 6 a 1 2 4b 2 2 2 2a 9b 2 ∫ 0 9b − 4 a − x dx + ∫a 2 ( 2a − x ) dx 2 19ab 2 a a = 3b a 8 4 2 2a 9 5 + 2 x 2 − 4 x 4 dx + ∫ a 2 ( 2a − x ) dx ∫ 0 19a a a a = a 2a 3b 8 4 9 1 3 5 x + 2 x3 − 4 x5 + 2 − ( 2a − x ) 19a a 3a 5a 0 a 3 = 3b 8 4 3 5 + − + 3 (1) 19 3 5 ( ) ( ) y = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 148 b! 95 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 41. For y2 x = a, y = b : a = kb2 at or a b2 k = b 1/2 x a Then y2 = Now xEL = x a y b x1/2 x1/2 : yEL = 2 = , dA = y2dx = b dx 2 2 2 a a and for 0≤ x≤ For a 1 b x 1 x1/2 ≤ x ≤ a : yEL = ( y1 + y2 ) = − + 2 2 2a 2 a x1/2 x 1 dA = ( y2 − y1 ) dx = b − + dx a a 2 Then a/2 A = ∫ dA = ∫ 0 b x1/2 x 1 x1/2 a dx + ∫a/2 b − + dx a a a 2 a = a/2 2 x3/2 b 2 3/2 x2 1 x + b − + x 2a 2 a/2 a 3 0 3 a 3/2 3/2 2 b a 3/2 a = + ( a ) − 3 a 2 2 2 1 a 1 a + b − a 2 − + ( a ) − 2 2 2 2a ( ) 13 ab 24 1/2 x1/2 x 1 a/2 x a x dA x b dx x b = + − + dx ∫ EL ∫0 ∫ a a/2 a a 2 = and b = a a a/2 2 x5/2 x3 x 4 2 5/2 x + b − + 5 3a 4 a/2 0 5 a continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System = 5/2 5/2 2 b a 5/2 a + ( a ) − 5 a 2 2 3 2 1 3 a 1 2 a + b − ( a ) − + ( a ) − 2 4 2 3a 71 2 = ab 240 b x1/2 x1/2 a/2 dx b ∫ yEL dA = ∫ 0 2 a a 1 x1/2 x1/2 x 1 a b x + ∫ a/2 − + − + dx b 2a 2 a a a 2 a a/2 3 b2 1 2 b 2 x 2 1 x 1 = + − − x 2a 2 0 2 2a 3a a 2 a/2 = 2 2 3 b a 2 a b2 a 1 − + ( a ) − − 4a 2 2 6a 2 2 = 11 2 ab 48 Hence xA = ∫ xEL dA: yA = ∫ yEL dA: 71 2 13 x ab = ab 24 240 13 11 2 y ab = ab 24 48 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. x = 17 a = 0.546a ! 130 y = 11 b = 0.423b ! 26 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 42. First note that because the wire is homogeneous, its center of gravity coincides with the centroid of the corresponding line Now Then and xEL = r cos θ and dL = rd θ 7π /4 7π /4 L = ∫ dL = ∫π /4 rdθ = r [θ ]π /4 = 3 πr 2 7π /4 ∫ xEL dL = ∫π /4 r cosθ ( rdθ ) 1 1 7π /4 2 = r 2 [sin θ ]π /4 = r 2 − − = −r 2 2 2 Thus 3 xL = ∫ xdL : x π r = −r 2 2 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. x =− 2 2 r 3π COSMOS: Complete Online Solutions Manual Organization System SOLUTION 5.43 CONTINUED ( dy = a 2/3 − x 2/3 dx Then Then and Hence 1/2 −1/3 xEL = x Now and ) ( −x ) dy dL = 1 + dx 2 dx = 1 + a 2/3 − x 2/3 ( a L = ∫ dL = ∫ 0 ) ( −x ) 1/2 −1/3 1/2 2 dx a a1/3 3 3 dx = a1/3 x 2/3 = a 1/ 3 2 x 2 0 a 1/3 3 2 a a 1/3 3 5/3 x dL x dx a x = = ∫ EL ∫ 0 x1/3 5 = 5a 0 3 3 xL = ∫ xEL dL : x a = a 2 2 5 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. x = 2 a 5 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 43. First note that because the wire is homogeneous, its center of gravity coincides with the centroid of the corresponding line Now xEL = a cos3 θ dx 2 + dy 2 dL = and x = a cos3 θ : dx = −3a cos2 θ sin θ dθ Where y = a sin 3 θ : dy = 3a sin 2 θ cosθ dθ Then ( dL = −3a cos 2 θ sin θ dθ 1/2 ) + (3a sin θ cosθ dθ ) 2 2 2 ( = 3a cosθ sin θ cos 2 θ + sin 2 θ ) 1/2 dθ = 3a cosθ sin θ dθ π /2 ∴ L = ∫ dL = ∫0 = and π /2 1 3a cosθ sin θ dθ = 3a sin 2 θ 2 0 3 a 2 π /2 3 ∫ xELdL = ∫0 a cos θ ( 3a cosθ sin θ dθ ) π /2 1 = 3a − cos5 θ 5 0 2 = 3 2 a 5 3 3 xL = ∫ xEL dL : x a = a 2 2 5 Hence x = Alternative solution x x = a cos3 θ ⇒ cos 2 θ = a y y = a sin 3 θ ⇒ sin 2 θ = a x ∴ a 2/3 y + a 2/3 =1 or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 2/3 2/3 ( y = a 2/3 − x 2/3 ) 3/2 2 a ! 5 COSMOS: Complete Online Solutions Manual Organization System ( dy = a 2/3 − x 2/3 dx Then Then and Hence 1/2 −1/3 xEL = x Now and ) ( −x ) dy dL = 1 + dx 2 dx = 1 + a 2/3 − x 2/3 ( a L = ∫ dL = ∫ 0 ) ( −x ) 1/2 −1/3 1/2 2 dx a a1/3 3 3 dx = a1/3 x 2/3 = a 1/ 3 2 x 2 0 a 1/3 3 2 a a 1/3 3 5/3 x dL = x dx = a x ∫ EL ∫ 0 x1/3 5 = 5a 0 3 3 xL = ∫ xEL dL : x a = a 2 2 5 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. x = 2 a ! 5 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 44. First note that because the wire is homogeneous, its center of gravity coincides with the centroid of the corresponding line Have at x = a, y = a : a = ka 2 Thus y = Then dy 2 dL = 1 + dx = 1 + x dx dx a 1 2 x a dy = and ∴ L = ∫ dL = ∫ = 2 x 4 4x2 a 2 4x2 1 + 2 x 2 dx = 1 + 2 + ln x + 1 + 2 4 a 2 a a a ( a 0 ) a a 5 + ln 2 + 5 = 1.4789a 2 4 ∫ xEL dL = ∫ a 3/2 4 4x2 2 a2 1 + 2 dx = 1 + 2 x 2 3 8 a a 0 a x 0 a 2 3/2 5 − 1 = 0.8484a 2 12 xL = ∫ xEL dL: x (1.4789a ) = 0.8484a 2 = Then 1 a 2 xdx a 2 a 0 k = or ( ) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. x = 0.574a COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 45. xEL = x, Have 1 πx x sin L 2 dA = ydx and L/2 A = ∫ dA = ∫0 x sin and yEL = L/2 L2 πx L πx − x cos dx = 2 sin π L L L 0 π πx = L2 π2 πx L/2 x = ∫ xEL dA = ∫0 x x sin dx L L/2 2 L2 π x 2 L3 π x L 2 π x = 2 x sin + 3 cos − x sin L π L π L 0 π Also L/2 1 y = ∫ yEL dA = ∫0 2 x sin = L3 π2 −2 L3 π3 πx πx dx x sin L L L/2 1 2 L2 πx L 2 L3 πx = 2 x sin − x − 3 cos 2 π L π L π 0 = Hence L2 L L3 1 1 L3 1 6 + π2 − = ( ) − 2 2 2 6 8 4π 2 96π ( ) L2 z 1 xA = ∫ xEL dA: x 2 = L3 2 − 3 π π π or L2 L3 1 2 − 3 yA = ∫ yEL dA: y 2 = 2 2 π π 96π π or y = 0.1653L ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. x = 0.363L ! COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 46. First note that by symmetry y = 0. Using the area element shown in the figure, xEL = dA = 2 2 r cosθ = R cos 2θ cosθ 3 3 1 2 1 r dθ = R 2 cos 2 2θ dθ 2 2 π π π 1 1 A = ∫ dA = R 2 ∫ 4π cos 2 θ dθ = R 2 ∫ 04 cos 2 θ dθ = R 2 ∫ 04 (1 + cos 4θ ) dθ − 2 2 4 π 1 1 4 1 = R 2 θ + sin 4θ = π R 2 2 4 0 8 π 2 1 2 π 2 2 2 3 ∫ xEL dA = ∫−4π 3 R cos 2θ cosθ 2 R cos 2θ dθ = 3 R ∫ 04 cos 2θ cosθ dθ ρ π = 2 3 4 R ∫ 0 1 − 2sin 2 θ 3 ( ) 3 cosθ dθ = π 2 3 4 R ∫ 0 1 − 6sin 2 θ + 12sin 4 θ − 8sin 6 θ cosθ dθ 3 ( ) π 2 12 8 4 = R3 sin θ − 2sin 3 θ + sin 5 θ − sin 7 θ 3 5 7 0 = 2 3 2 2 12 1 8 1 16 2 3 1− + R − = R 3 2 2 5 4 7 8 105 Now: x= 1 8 16 2 3 128 2 xEL dA = R = R ∫ 2 A 105π π R 105 or x = 0.549 R y =0 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 47. From the solution to problem 5.2: A = 134 in 2 , ΣxA = 1102 in 3, ΣyA = 536 in 3 and from the solution of problem 5.22 L = 56 in., and ΣxL = 488 in 2 Applying the theorems of Pappus-Guldinus, we have (a) Rotation about the x-axis: ( ) Volume = 2π yarea A = 2πΣyA = 2π 536 in 3 = 3367.8 in 3 or V = 1.949 ft 3 Area = 2π ylength L = 2πΣyL = 2π 6 (15 ) + 10 ( 4 ) + 8 (10 ) + 4 (18 ) = 1520.53 in 2 or A = 10.56 ft 2 (b) Rotation about x = 19 in.: ( ) Volume = 2π (19 − xarea ) A = 2π (19 A − ΣxA ) = 2π (19 in ) 134 in 2 − 1102 in 3 = 9072.9 in 3 or V = 5.25 ft 3 Area = 2π (19 − xline ) L = 2π (19L − ΣxL ) = 2π (19 in.)( 56 in.) − 488 in 2 = 3619.1 in 2 or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. A = 25.1 ft 2 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 48. From the solution to problem 5.4: A = 772 in 2 , ΣxA = 17828 in 3 , ( Area ) ΣyA = 18464 in 3 and for the line L y xL yL 1 13 27.5 0 357.5 0 2 40 34 20 1360 800 3 34 17 40 578 1360 10.5 28 334.85 892.92 21 8 336 128 2966.4 3180.9 4 (a) x 212 + 242 = 31.890 5 16 Σ 134.89 ( ) or V = 64.8 ft 3 ! ( ) or A = 129.4 ft 2 ! V = 2π xarea A = 2πΣxA = 2π 17828 in 3 = 112 017 in 3 A = 2π xline L = 2πΣxL = 2π 2966.4 in 2 = 18 638.1 in 2 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System (b) V = 2π ( 40 − yarea ) A = 2π ( 40 A − ΣyA ) ( ) = 2π ( 40 in.) 772 in 2 − 18 464 in 3 = 78 012 in 3 or V = 45.1 ft 3 ! A = 2π ( yline ) y = 40 L = − 2π ΣL ( y − 40 ) = − 2π ( ΣLy − 40ΣL ) = − 2π ( 3180.9 − 40 × 134.89 ) = 13 915.3 in 2 or A = 96.6 ft 2 ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 49. From the solution of Problem 5.1: A = 150000 mm 2 , x A = 140 mm, y A = 165 mm From the solution of Problem 5.21: L = 1800 mm, xL = 116.667 mm, yL = 166.667 mm Applying the theorems of Pappus-Guldinus, we have (a) Rotation about the x-axis: Ax = 2π yL L = 2π (166.667 mm )(1800 mm ) = 1884 960 mm 2 ( or A = 1.885 × 106 mm 2 or V = 155.5 × 106 mm3 ) Vx = 2π y A = 2π (165 mm ) 150 000 mm 2 = 155 509 000 mm 3 (b) Rotation about x = 400 mm: Ax = 400 mm = 2π ( 400 mm − xL ) L = 2π ( 400 − 116.667 ) mm (1800 mm ) = 3 204 420 mm 2 or ( A = 3.20 × 106 mm 2 ) Vx = 2π ( 400 mm − x A ) A = 2π ( 400 − 140 ) mm 150 000 mm 2 = 245 040 000 mm 3 or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. V = 245 × 106 mm3 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 50. Applying the second theorem of Pappus-Guldinus, we have (a) Rotation about axis AA′: π ab 2 2 Volume = 2π yA = 2π ( a ) =π a b 2 V = π 2a 2b (b) Rotation about axis BB′: π ab 2 2 Volume = 2π yA = 2π ( 2a ) = 2π a b 2 V = 2π 2a 2b (c) Rotation about y-axis: 4a π ab 2 2 Volume = 2π yA = 2π = πa b 3π 2 3 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. V = 2 2 πa b 3 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 51. The area A and circumference C of the cross section of the bar are A= π 4 d 2 and C = π d . Also, the semicircular ends of the link can be obtained by rotating the cross section through a horizontal semicircular arc of radius R. Now, applying the theorems of Pappus-Guldinus, we have for the volume V: V = 2 (Vside ) + 2 (V end ) = 2 ( AL ) + 2 (π RA) = 2 ( L + π R ) A 2 π or V = 2 3 in. + π ( 0.75 in.) ( 0.5 in.) = 2.1034 in 3 4 or V = 2.10 in 3 For the area A: A = 2 ( Aside ) + 2 ( Aend ) = 2 ( CL ) + 2 (π RC ) = 2 ( L + π R ) C or A = 2 3 in. + π ( 0.75 in.) π ( 0.5 in.) = 16.8270 in 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or A = 16.83 in 2 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 52. Following the second theorem of Pappus-Guldinus, in each case a specific generating area A will be rotated about the x axis to produce the given shape. Values of y are from Fig. 5.8A. (1) Hemisphere: the generating area is a quarter circle Have 4a π V = 2π yA = 2π a 2 3π 4 or V = 2 3 πa ! 3 (2) Semiellipsoid of revolution: the generating area is a quarter ellipse Have 4a π V = 2π yA = 2π ha 3π 4 or V = 2 2 πa h! 3 (3) Paraboloid of revolution: the generating area is a quarter parabola Have 3 2 V = 2π yA = 2π a ah 8 3 or V = 1 2 πa h! 2 or V = 1 2 πa h! 3 (4) Cone: the generating area is a triangle Have a 1 V = 2π yA = 2π ha 3 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 53. The required volume can be generated by rotating the area shown about the y axis. Applying the second theorem of Pappus-Guldinus, we have 5 1 V = 2π xA = 2π + 7.5 mm × × 5 mm × 5 mm 3 2 or V = 720 mm3 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 54. Applying the first theorem of Pappus-Guldinus, the contact area AC of a belt is given by: AC = π yL = π ΣyL where the individual lengths are the lengths of the belt cross section that are in contact with the pulley. (a) 0.125 0.125 in. AC = π 2 ( y1L1 ) + y2 L2 = π 2 3 − + ( 3 − 0.125 ) in. ( 0.625 in.) in. 2 cos 20° or AC = 8.10 in 2 (b) 0.375 0.375 in. AC = π 2 ( y1L1 ) = 2π 3 − 0.08 − in. 2 cos 20° or AC = 6.85 in 2 (c) 2 ( 0.25 ) AC = π 2 ( y1L1 ) = π 3 − in. π ( 0.25 in.) π or AC = 7.01 in 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 55. Volume: The volume can be obtained by rotating the triangular area shown through π radians about the y axis. The area of the triangle is: A= 1 ( 52 )( 60 ) = 1560 mm2 2 Applying the theorems of Pappus-Guldinus, we have ( V = π xA = π ( 52 mm ) 1560 mm 2 ) or V = 255 × 103 mm3 ! The surface area can be obtained by rotating the triangle shown through an angle of π radians about the y axis. Considering each line BD, DE, and BE separately: 22 = 31 mm 2 Line BD : L1 = 222 + 602 = 63.906 mm x1 = 20 + Line DE : L2 = 52 mm x2 = 20 + 22 + 26 = 68 mm Line BE : L3 = 742 + 602 = 95.268 mm x1 = 20 + 74 = 57 mm 2 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Then applying the theorems of Pappus-Guldinus for the part of the surface area generated by the lines: AL = πΣxA = π ( 31)( 63.906 ) + ( 68 )( 52 ) + ( 57 )( 95.268 ) = π [10947.6] = 34.392 × 103 mm 2 The area of the “end triangles”: 1 AE = 2 ( 52 )( 60 ) = 3.12 × 103 mm 2 2 Total surface area is therefore: A = AL + AE = ( 34.392 + 3.12 ) × 103 mm 2 or A = 37.5 × 103 mm 2 ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 56. The mass of the escutcheon is given by m = ( density )V , where V is the volume. V can be generated by rotating the area A about the x-axis. From the figure: L1 = 752 − 12.52 = 73.9510 m L2 = 37.5 = 76.8864 mm tan 26° a = L2 − L1 = 2.9354 mm φ = sin −1 α= 12.5 = 9.5941° 75 26° − 9.5941° = 8.2030° = 0.143168 rad 2 Area A can be obtained by combining the following four areas: Applying the second theorem of Pappus-Guldinus and using Figure 5.8 a, we have V = 2π yA = 2π ΣyA continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System A, mm 2 Seg . 1 1 ( 76.886 )( 37.5) = 1441.61 2 2 − α ( 75 ) = − 805.32 2 3 − 1 ( 73.951)(12.5) = − 462.19 2 − ( 2.9354 )(12.5 ) = − 36.693 4 y A , mm3 y , mm 1 ( 37.5) = 12.5 3 18 020.1 2 ( 75) sin α sin (α + φ ) = 15.2303 3α −12 265.3 1 (12.5) = 4.1667 3 −1925.81 1 (12.5) = 6.25 2 − 229.33 Σ 3599.7 Then ( ) V = 2π ΣyA = 2π 3599.7 mm3 = 22618 mm3 m = ( density )V ( )( = 8470 kg/m3 22.618 × 10−6 m3 ) = 0.191574 kg or m = 191.6 g ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 57. The volume of the waste wood is: Vwaste = Vblank − Vtop , where 2 Vblank = π ( 22 in.) (1.25 in.) = 1900.664 in 3 Vtop = V1 + V2 + V3 + V4 The volumes Vi can be obtained through the use of the theorem of Pappus-Guldinus: 2 2 Vtop = π ( 21.15 in.) ( 0.75 in.) + π ( 21.4 in.) ( 0.5 in.) ( 4 )( 0.5) in. × π 0.5 in. 2 + 2π 21.15 + ( 4 )( 0.75) in. × π 0.75 in. 2 + 2π 21.4 + ( ) ( ) 3π 4 3π 4 = (1053.979 + 719.362 + 26.663 + 59.592 ) in 3 = 1859.596 in 3 Therefore Vwaste = 1900.664 in 3 − 1859.596 in 3 = 41.068 in 3 Then Wwaste = γ woodVwaste N tops ( )( ) = 0.025 lb/in 3 41.068 in 3 ( 5000 tops ) = 5133.5 lb,or Vwaste = 5.13 kips Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 58. The total surface area can be divided up into the top circle, bottom circle, and the edge. ATotal = ATop circle + ABottom circle + AEdge,or 2 2 ATotal = π ( 21.4 in.) + π ( 21.15 in.) 2 ( 0.5 ) π + 2π 21.4 + in. × ( 0.5 in.) + π 2 2 ( 0.75 ) π in. × ( 0.75 in.) 2π 21.15 + π 2 = (1438.72 + 1405.31 + 107.176 + 160.091) = 3111.3 in 2 Now, knowing that 1 gallon of lacquer covers 500 ft2, the number of gallons needed, NGallons is N Gallons = ASurface × coverage × ( number of tops ) × ( number of coats ) N Gallons = 3111.3 in 2 × 1 Gallon ( 500 ) (144 in 2 ) × 5000 × 3 = 648.19 gal or N Gallons = 648 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 59. The mass of the lamp shade is given by m = ρV = ρ At where A is the surface area and t is the thickness of the shade. The area can be generated by rotating the line shown about the x axis. Applying the first theorem of Pappus-Guldinus we have A = 2π yL = 2πΣyL = 2π ( y1L1 + y2 L2 + y3L3 + y4 L4 ) 13 mm 13 + 16 or A = 2π (13 mm ) + mm × 2 2 16 + 28 + mm × 2 ( 32 mm )2 + ( 3 mm )2 (8 mm )2 + (12 mm )2 28 + 33 + mm × 2 ( 28 mm )2 + ( 5 mm )2 = 2π ( 84.5 + 466.03 + 317.29 + 867.51) = 10903.4 mm 2 Then ( )( ) m = ρ At = 2800 kg/m 3 10.9034 × 10−3 m 2 ( 0.001 m ) or m = 30.5 g Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 60. Free-Body Diagram: First note that the required surface area A can be generated by rotating the parabolic cross section through 2π radians about the x axis. Applying the first theorem of Pappus-Guldinus, we have A = 2π yL 2 Now, since x = ky , x = a : a = k ( 7.5 ) at 2 or a = 56.25 k (1) x = ( a + 15 ) mm: a + 15 = k (12.5 ) At 2 or (2) a + 15 = 156.25k Then Eq. (2) a + 15 156.25k : = Eq. (1) a 56.25k or a = 8.4375 mm Eq. (1) ⇒ k = 0.15 ∴ x = 0.15 y 2 and 1 mm dx = 0.3 y dy 2 Now dx dL = 1 + dy = 1 + 0.09 y 2 dy dy So A = 2π yL yL = ∫ ydL and 12.5 ∴ A = 2π ∫7.5 y 1 + 0.09 y 2 dy 2 1 2 = 2π 1 + 0.09 y 3 0.18 ( = 1013 mm 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 12.5 3/2 ) 7.5 or A = 1013 mm 2 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 61. (a) Note that in the free-body diagram: R1 = 1 ( 4.2 m )( 600 N/m ) = 1260 N, 2 and R2 = 1 ( 4.2 m )( 240 N/m ) = 504 N 2 Then for the equivalence of the systems of forces: ΣFy : R = R1 + R2 = 1260 + 504 = 1764 N ΣM A : 1 2 − x (1764 N ) = 2 + 4.2 m (1260 N ) + 2 + 4.2 m ( 504 N ) = 3.8000 m 3 3 R = 1764 N or x = 3.80 m (b) Equilibrium: ΣFx = 0: Ax = 0 ΣFy = 0: Ay − 1764 = 0 A = 1764 N ΣΜ Α = 0: M A − ( 3.80 m )(1764 N ) = 0 M A = 6.70 kN ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 62. With R1 = ( 20 lb/ft )(18 ft ) = 360 lb, and R2 = ΣFy : or 1 ( 60 lb/ft )(18 ft ) = 360 lb: 3 − R = − R1 − R2 R = 360 lb + 360 lb = 720 lb R = 720 lb + ΣM A : − x ( 720 lb ) = − ( 9 ft )( 360 lb ) − (13.5 ft )( 360 ft ) x = 11.25 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 63. R = (1800 N/m )( 3.2 m ) = 5.76 kN + ΣM A = 0: − ( 5.76 kN )(1.2 m + 1.6 m ) + By ( 3.6 m ) = 0, or By = 4.48 kN B = 4.48 kN ΣFy = 0: Ay + 4.48 − 5.76 = 0, or Ay = 1.28 kN + ΣFx = 0: Ax = 0 Therefore: A = 1.28 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 64. kN R1 = 1.5 (1.6 m ) = 2.4 kN m R2 = 1 kN 3 ( 2.4 m ) = 3.6 kN 2 m kN R3 = 3 (1.6 m ) = 4.8 kN m Equilibrium: + ΣFx = 0: Ax = 0 + ΣM B = 0: ( 4.8 m )( 2.4 kN ) + ( 2.4 m )( 3.6 kN ) + ( 0.8 m )( 4.8 kN ) − ( 4.0 m ) Ay Ay = 6.0000 kN + ΣFy = 0: 6 kN − 2.4 kN − 3.6 kN − 4.8 kN + By = 0 By = 4.8000 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. =0 A = 6.00 kN B = 4.80 kN COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 65. lb R1 = 240 ( 4.8 ft ) = 1152 lb ft R2 = 1 lb 180 ( 3.6 ft ) = 324 lb 2 ft Equilibrium: + ΣFx = 0: Ax = 0 + ΣFy = 0: Ay − 1152 lb + 324 lb = 0 Ay = 828.00 lb + ΣM A = 0: A = 828 lb M A − ( 2.4 ft )(1152 lb ) + ( 6 ft )( 324 lb ) = 0 M A = 820.80 lb ⋅ ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M A = 821 lb ⋅ ft COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 66. The distributed load given can be simplified as in the diagram below with the resultants R1 and R2. The resultants are: R1 = ( 6 ft )( 30 lb/ft ) = 180 lb, and R2 = 1 ( 4.5 ft )(120 lb/ft ) = 270 lb 2 Now, for equilibrium: ΣFx = 0: Ax = 0 ΣFy = 0: Ay + 180 − 270 = 0 Ay = 90.0 lb Therefore: ΣM A = 0: A = 90.0 lb or M = 675 lb ⋅ ft 2 M A + ( 3 ft )(180 lb ) − 1.5 + × 4.5 ft × ( 270 lb ) = 0 3 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 67. kN R1 = 1.5 ( 2.4 m ) = 3.6 kN m R2 = 2 kN 9 ( 2.4 m ) = 14.4 kN 3 m Equilibrium: + ΣFx = 0: + ΣM B = 0: Ax = 0 − ( 3.3 m ) Ay − (1.8 m )( 3.6 kN ) + ( 2.1 m )(14.4 kN ) = 0 Ay = 7.2000 kN + ΣFy = 0: A = 7.20 kN B = 3.60 kN 7.2 kN + 3.6 kN − 14.4 kN + By = 0 By = 3.6000 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 68. The resultants: R1 = 2 ( 3.2 ft )(120 lb/ft ) = 256 lb 3 R2 = 1 ( 2.4 ft )(120 lb/ft ) = 96 lb 3 R3 = 1 (1.6 ft )( 45 lb/ft ) = 24 lb 3 Then for equilibrium: ΣFx = 0: ΣM B = 0: Ax = 0 3 − ( 7.2 ft ) Ay + 4 + × 3.2 ft × ( 256 lb ) 8 3 1 + 1.6 + × 2.4 ft × ( 96 lb ) + × 1.6 ft ( 24 lb = 0 ) 4 4 Ay = 231.56 lb ΣFy = 0: A = 232 lb B = 144.4 lb 23.56 − 256 − 96 − 24 + By = 0 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 69. Have RI = 1 ( 9 m )( 2 kN/m ) = 9 kN 2 RII = ( 9 m )(1.5 kN/m ) = 13.5 kN Then ΣFx = 0: C x = 0 ΣM B = 0: − 50 kN ⋅ m − (1 m )( 9 kN ) − ( 2.5 m )(13.5 kN ) + ( 6 m ) C y = 0 or C y = 15.4583 kN C = 15.46 kN B = 7.04 kN ΣFy = 0: By − 9 kN − 13.5 kN + 15.4583 = 0 or By = 7.0417 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution70. Have RI = 1 ( 9 m ) ( 3.5 − w0 ) kN/m = 4.5 ( 3.5 − w0 ) kN 2 RII = ( 9 m ) ( w0 kN/m ) = 9w0 kN (a) Then or ΣM C = 0: − 50 kN ⋅ m + ( 5 m ) 4.5 ( 3.5 − w0 ) kN + ( 3.5 m ) ( 9w0 kN ) = 0 9w0 + 28.75 = 0 so w0 = − 3.1944 kN/m w0 = 3.19 kN/m C = 1.375 kN Note: the negative sign means that the distributed force w0 is upward. (b) ΣFx = 0: C x = 0 ΣFy = 0: − 4.5 ( 3.5 + 3.19 ) kN + 9 ( 3.19 ) kN + C y = 0 or C y = 1.375 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 71. The distributed load can be represented in terms of resultants: R1 = ( 8 m )( 300 N/m ) = 2400 N R2 = 1 ( 8 − a ) m ( 2400 N/m ) = 1200 ( 8 − a ) N 2 For equilibrium: ΣM B = 0: 1 − 8 Ay + 4 ( 2400 ) + ( 8 − a ) 1200 ( 8 − a ) = 0 3 Ay = 1200 + 50 ( 8 − a ) ΣM A = 0: 2 (1) 2 8By − 4 ( 2400 ) − a + ( 8 − a ) 1200 ( 8 − a ) = 0 3 By = 1200 + 50 (16 + a )( 8 − a ) (a) ΣFy = 0: (2) Ay + By − 2400 − 1200 ( 8 − a ) = 0 (3) Using the requirement By = 2 Ay and (1) 2 3 1200 + 50 ( 8 − a ) − 2400 − 1200 ( 8 − a ) = 0 or (8 − a )2 − 8 (8 − a ) + 8 = 0, which gives continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System (8 − a ) = 8± ( − 8 )2 − 4 ( 8 ) 2 = 6.82843 m or 1.17157 m a = 1.17157 m or a = 6.82843 m, and therefore amin = 1.17157 m or amin = 1.172 m ! (b) ΣFx = 0: Ax = 0 Equation (1) gives: Ay = 1200 + 50 ( 6.82843) 2 = 3531.4 N or A = 3.53 kN ! B = 7.06 kN ! By = 2 Ay gives By = 2 ( 3531.4 N ) , and Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 72. The distributed load can be represented in terms of resultants: R1 = ( 8 m )( 300 N/m ) = 2400 N R2 = 1 ( 8 − a ) m ( 2400 N/m ) = 1200 ( 8 − a ) N 2 For equilibrium: ΣM B = 0: 1 − 8 Ay + 4 ( 2400 ) + ( 8 − a ) 1200 ( 8 − a ) = 0 3 Ay = 1200 + 50 ( 8 − a ) ΣM A = 0: 2 (1) 2 8By − 4 ( 2400 ) − a + ( 8 − a ) 1200 ( 8 − a ) = 0 3 By = 1200 + 50 (16 + a )( 8 − a ) (2) (a) Dividing Equation (1) by Equation (2): By Ay = 1200 + 50 (16 + a )( 8 − a ) 1200 + 50 ( 8 − a ) 2 = ( ) 24 + ( 64 − 16a + a ) = 152 − 8a − a 2 88 − 16a + a 2 24 + 128 − 8a − a 2 2 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Differentiating d By da Ay By Ay : ( ) ( ) ( − 8 − 2a ) 88 − 16a + a 2 − 152 − 8a − a 2 ( −16 + 2a ) =0 = 2 88 − 16a + a 2 ( ) 2 a − 20a + 72 = 0 or a= or 20 ± ( − 20 )2 − 4 ( 72 ) 2 Knowing that a ≤ 8 m: a = 4.7085 m or a = 4.71 m ! (b) For equilibrium: ΣFx = 0: Ax = 0 and from (1): Ay = 1200 + 50 ( 8 − 4.7085 ) 2 = 1741.70 N A = 1.742 kN ! B = 4.61 kN ! Also, ΣFy = 0: 1741.70 − 2400 − 1200 ( 8 − 4.7085 ) + By = 0 By = 4608.1 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 73. R1 = ( 3.6 ft )( wA kips/ft ) = 3.6wA kips R2 = 1 1 ( 5.4 ft ) wA kips/ft = 1.35wA kips 2 2 1 R3 = ( 5.4 ft ) wA kips/ft = 2.7wA kips 2 Equilibrium: − (1.8 ft ) ( 3.6wA ) kips + (1.8 ft ) (1.35wA ) kips + ΣM C = 0: + ( 2.7 ft ) ( 2.7 wA ) kips + ( 2.1 ft )( 6 kips ) − ( 2.4 ft )( 4.5 kips ) − ( 3.6 ft )(1 kip ) = 0 wA = 0.55556 kips/ft + ΣFyA = 0: or wA = 556 lb/ft RR − ( 3.6 )( 0.55556 ) kips + 1.35 ( 0.55556 ) kips + 2.7 ( 0.55556 ) kips − 6 kips − 4.5 kips − 1 kip = 0 Solving for RR : RR = 7.2500 kips or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. RR = 7.25 kips COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 74. R1 = ( 3.6 ft )( wA kips/ft ) = 3.6wA kips R2 = 1 ( 5.4 ft )( 0.6wA kips/ft ) = 1.62wA kips 2 R3 = ( 5.4 ft )( 0.4wA kips/ft ) = 2.16wA kips Equilibrium: + ΣM A = 0: − (1.8 ft ) ( 3.6wA ) kips + ( 3.6 ft ) RR + ( 5.4 ft ) (1.62wA ) kips + ( 6.3 ft ) ( 2.16 wA ) kips − (1.5 ft )( 6 kips ) − ( 6 ft )( 4.5 kips ) − ( 7.2 ft ) P = 0 or + ΣFy y = 0: or 28.836wA + 3.6RR − 7.2 P − 36 = 0 (1) RR + 3.6wA + 1.62wA + 2.16wA − 6 − 4.5 − P = 0 7.38wA + RR − P − 10.5 = 0 ( 28.836 ) Eq. ( 2 ) − ( 7.38) Eq. (1) = 0 gives 2.268RR − 37.098 + 24.3P = 0 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (2) COSMOS: Complete Online Solutions Manual Organization System Since RR ≥ 0, the maximum acceptable value of P is that for which RR = 0, and P = 1.52667 kips or P = 1.527 kips ! (b) Now, from (2): 7.38wA − 1.52667 − 10.5 = 0 or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. wA = 1.630 kips/ft ! COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 75. Noting that the weight of a section of the dam is Wi = γ Vi (Vi being the volume of that section ) : lb W1 = 150 3 (10.5 ft )( 9 ft )(1 ft ) = 14175 lb ft lb 1 W2 = 150 3 (10.5 ft )( 21 ft )(1 ft ) = 16537.5 lb ft 2 lb W3 = 150 3 (18 ft )( 30 ft )(1 ft ) = 81000 lb ft lb 1 W4 = 150 3 ( 3 ft )( 30 ft )(1 ft ) = 6750 lb 2 ft From the free-body diagram: x1 = 5.25 ft, x2 = 2 (10.5 ft ) = 7 ft, x3 = 19.5 ft, and x4 = 29.5 ft 3 For the distance a: a 3 = , or a = 2.4 ft 24 30 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Therefore: lb 1 Ws = 62.4 3 ( 2.4 ft )( 24 ft )(1 ft ) = 1797.12 lb, and ft 2 xs = 31.5 − 1 ( 2.4 ) = 30.7 ft 3 Now, for the pressure force P: P= = 1 1 PB A = (γ W hB ) A 2 2 1 lb 62.4 3 ( 24 ft ) ( 24 ft )(1 ft ) 2 ft = 17971.2 lb Then, for equilibrium: (a) ΣFx = 0: H −P=0 H = 17971.2 lb or H = 17.97 kips ΣFy = 0: ! V − 14175 − 16537.5 − 81000 − 6750 − 1797.12 = 0 V = 120259.62 lb or V = 120.3 kips ! (b) From moment equilibrium: ΣM A = 0: 1 x (120259.62 lb ) + × 24 ft (17971.2 lb ) − ( 5.25 ft )(14175 lb ) − ( 7 ft )(16537.5 lb ) 3 (19.5 ft )(81000 lb ) − ( 29.5 ft )( 6750 lb ) − ( 30.7 ft )(1797.12 lb ) = 0 or x = 15.63 ft ! (c) free-body diagram for section of water: continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System For equilibrium: ΣF = 0: Ws + P + ( − R ) = 0 where R is the force of the water on the face BD of the dam, and P = 17971.2 lb, and Ws = 1797.12 lb Then from the force triangle: R= (17971.2 lb )2 + (1797.12 lb )2 = 18.06 kips 1797.12 θ = tan −1 = 5.71° 17971.2 Therefore: R = 18.06 kips Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 5.71° ! COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 76. Free-Body Diagram: Locations of centers of gravity: x1 = 1 x2 = 5 + ( 2 ) m = 6 m 2 5 ( 5 m ) = 3.125 m 8 1 25 x3 = 7 + ( 4 ) = m 3 3 5 x4 = 7 + ( 4 ) = 9.5 m 8 Weights: Wi = ρi gVi 2 W1 = 2400 kg/m3 9.81 m/s 2 ( 5 m )( 8 m )(1 m ) = 627 840 N 3 ( )( ) ( )( ) W2 = 2400 kg/m3 9.81 m/s 2 ( 2 m )( 8 m )(1 m ) = 376 700 N 1 W3 = 2400 kg/m3 9.81 m/s 2 ( 4 m )( 6 m )(1 m ) = 188 352 N 3 ( )( ) 2 W4 = 2400 kg/m3 9.81 m/s 2 ( 4 m )( 6 m )(1 m ) = 156 960 N 3 The pressure force P is: 1 1 P = Aρ gh = ( 6 m )(1 m ) 1000 kg/m3 9.81 m/s 2 ( 6 m ) = 176 580 N 2 2 ( )( ) ( )( ) Equilibrium: (a) + ΣFx = 0: H − 176.580 kN = 0 H = 176.580 kN + ΣFy = 0: H = 176.6 kN ! V − 627.84 kN − 376.70 kN − 188.352 kN − 156.960 kN = 0 V = 1349.85 kN (b) + ΣM A = 0: or or V = 1350 kN x (1349.85 kN ) − ( 3.125 m )( 627.84 kN ) − ( 6 m )( 376.70 kN ) 25 − m (188.352 kN ) − ( 9.5 m )(156.960 kN ) + ( 2 m )(176.580 kN ) = 0 3 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ! COSMOS: Complete Online Solutions Manual Organization System x = 5.1337 m Thus the point of application of the resultant is: 5.13 m to the right of A. ! (c) Free-body diagram and force triangle for the water section BCD From the force triangle: R= (176.580 )2 + (156.960 )2 = 236.26 kN 156.960 θ = tan −1 = 41.634° 176.580 or on the face BD of the dam Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. R = 236 kN 41.6° ! COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 77. Free-Body Diagram: Note that valve opens when B = 0. Pressures p1 and p2 at top and bottom of valve: ( = (10 )( ) kg/m )( 9.81 m/s ) ( d ) = ( 9810d ) N/m p1 = 103 kg/m 3 9.81 m/s 2 ( d − 0.225 m ) = ( 9810d − 2207.3) N/m 2 p2 3 3 2 2 Force P1 and P2: P1 = 1 1 p1 A = ( 9810d − 2207.3) N/m 2 ( 0.225 m )( 0.225 m ) 2 2 = ( 248.32d − 55.872 ) N P2 = 1 1 p2 A = ( 9810d ) N/m 2 ( 0.225 m )( 0.225 m ) 2 2 = ( 248.32d ) N + ΣM A = 0: − ( 0.15 − 0.09 ) m ( 248.32d − 55.872 ) N + ( 0.09 − 0.075 ) m ( 248.32d ) N = 0 Thus d = 0.30000 m, or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. d = 300 mm COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 78. Free-Body Diagram: Note that valve opens when B = 0. Pressures p1 and p2 at top and bottom of valve: ( = (10 )( ) kg/m )( 9.81 m/s ) ( 0.450 m ) = 4414.5 N/m p1 = 103 kg/m 3 9.81 m/s 2 ( 0.225 m ) = 2207.3 N/m 2 p2 3 3 2 2 Force P1 and P2: P1 = 1 1 p1 A = 2207.3 N/m 2 ( 0.225 m )( 0.225 m ) 2 2 ( ) = 55.872 N P2 = 1 1 p2 A = 4414.5 N/m 2 ( 0.225 m )( 0.225 m ) 2 2 ( ) = 111.742 N + ΣM A = 0: − ( 0.15 − h ) m ( 55.872 N ) + ( h − 0.075 ) m (111.742 N ) = 0 Solving for h: h = 0.100 000 m, or h = 100.0 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 79. Since gate is 4 ft wide: p1 = 4γ ( h − 3) p2 = 4γ h p1′ = 4γ ′ ( d − 3) p2′ = 4γ ′d ) ) ( ( 1 1 ( 3 ft ) p1′ − p1 = ( 3 ft ) 4γ ′ ( d − 3) − 4γ ( h − 3) = 6γ ′ ( d − 3) − 6γ ( h − 3) 2 2 1 1 P2′ − P2 = ( 3 ft ) p2′ − p2 = ( 3 ft ) [ 4γ ′d − 4γ h ] = 6γ ′d − 6γ h 2 2 P1′ − P1 = This gives the free-body diagram: + ΣM A = 0: or ( 3 ft ) B − (1 ft ) ( P1′ − P1 ) − ( 2 ft ) ( P2′ − P2 ) = 0 B= = ) ( ( 1 ′ 2 ′ P1 − P1 − P2 − P2 3 3 ) 1 2 6γ ′ ( d − 3) − 6γ ( h − 3) − [ 6γ ′d − 6γ h ] 3 3 = 2γ ′ ( d − 3) − 2γ ( h − 3) + 4γ ′d − 4γ h or + ΣFx = 0: B = 6γ ′ ( d − 1) − 6γ ( h − 1) ( ) ( (1) ) A + B − P1′ − P1 − P2′ − P2 = 0, or using (1) A + 6γ ′ ( d − 1) − 6γ ( h − 1) − 6γ ′ ( d − 3) − 6γ ( h − 3) − [ 6γ ′d − 6γ h ] = 0, or A = 6γ ′ ( d − 2 ) − 6γ ( h − 2 ) Using the given data in (1) and (2): h = 6 ft, d = 9 ft, γ = 62.4 lb/ft 3 , γ ′ = 64 lb/ft 3 A = 6 ( 64 )( 9 − 2 ) − 6 ( 62.4 )( 6 − 2 ) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (2) COSMOS: Complete Online Solutions Manual Organization System = 2688 lb − 1497.6 lb = 1190.4 lb B = 6 ( 64 )( 9 − 1) − 6 ( 62.4 )( 6 − 1) = 3072 lb − 1872 lb = 1200 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. A = 1190 lb ! B = 1200 lb ! COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 80. First, determine the force on the dam face without the silt. Pw = Have = 1 1 Apw = A ( ρ gh ) 2 2 1 ( 6 m )(1 m ) 103 kg/m 3 9.81 m/s 2 ( 6 m ) 2 ( )( ) = 176.58 kN Next, determine the force on the dam face with silt. Pw′ = Have 1 ( 4.5 m )(1m ) 103 kg/m 3 9.81 m/s 2 ( 4.5 m ) 2 ( )( ) = 99.326 kN ( Ps )I ( )( ) = (1.5 m )(1 m ) 103 kg/m 3 9.81 m/s 2 ( 4.5 m ) = 66.218 kN ( Ps )II = 1 (1.5 m )(1 m ) 1.76 × 103 kg/m3 9.81 m/s 2 (1.5 m ) 2 ( )( ) = 19.424 kN Then P′ = Pw′ + ( Ps )I + ( Ps )II = 184.97 kN The percentage increase, % inc., is then given by % inc. = (184.97 − 176.58) × 100% = 4.7503% P′ − Pw × 100% = 176.58 Pw % inc. = 4.75% Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 81. From Problem 5.80, the force on the dam face before the silt is deposited, is Pw = 176.58 kN. The maximum allowable force Pallow on the dam is then: Pallow = 1.5Pw = (1.5 )(176.58 kN ) = 264.87 kN Next determine the force P′ on the dam face after a depth d of silt has settled. Have Pw′ = ( )( )( ) ) 1 ( 6 − d ) m × (1 m ) 103 kg/m3 9.81 m/s 2 ( 6 − d ) m 2 2 = 4.905 ( 6 − d ) kN ( Ps )I ( = d (1 m ) 103 kg/m3 9.81 m/s 2 ( 6 − d ) m ( ) = 9.81 6d − d 2 kN ( Ps )II = ( )( ) 1 d (1 m ) 1.76 × 103 kg/m3 9.81 m/s 2 ( d ) m 2 = 8.6328d 2 kN ( ) ( ) P′ = Pw′ + ( Ps )I + ( Ps )II = 4.905 36 − 12d + d 2 + 9.81 6d − d 2 + 8.6328d 2 kN = 3.7278d 2 + 176.58 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Now required that P′ = Pallow to determine the maximum value of d. ∴ or Finally (3.7278d 2 ) + 176.58 kN = 264.87 kN d = 4.8667 m 4.8667 m = 20 × 10−3 m ×N year or N = 243 years ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 82. Pressure force from the water on board AB: 1 Api where p1 and p2 are the pressures at the top and bottom of the board: 2 1 kg m P1 = ( 0.5 m )(1.5 m ) 103 3 9.81 2 ( 0.6 m ) = 2207.3 N 2 m s Pi = P2 = 1 kg m ( 0.5 m )(1.5 m ) 103 3 9.81 2 (1 m ) = 3678.8 N 2 m s Free-Body Diagram: Ax denotes the force from one piling and is therefore multiplied by two in the free-body diagram. 1 2 + ΣM A = 0: − ( 0.3 m ) B + ( 0.5 ) m ( 2207.3 N ) + ( 0.5) m ( 3678.8 N ) = 0, or 3 3 B = 5313.8 N 4 4 + ΣFx = 0: 2 Ax + ( 2207.3 N ) + ( 3678.8 N ) = 0, or 5 5 Ax = − 2354.4 N 3 3 5318.8 N − ( 2207.3 N ) − ( 3678.8 N ) + Ay = 0, or + ΣFy = 0: 5 5 Ay = −1782.14 N Therefore: (a) A x = 2.35 kN (b) (c) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ! A y = 1.782 kN ! B = 5.31 kN ! COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 83. Pressure force from the water on board AB: Pi = 1 Api where p1 and p2 are the pressures at the top and bottom of the board: 2 P1 = 1 kg m ( 0.5 m )(1.5 m ) 103 3 9.81 2 ( 0.6 m ) = 2207.3 N 2 m s P2 = 1 kg m ( 0.5 m )(1.5 m ) 103 3 9.81 2 (1 m ) = 3678.8 N 2 m s Note that the board can move in two ways: by rotating about A if the rope is pulled upward, and by sliding down at A if the rope is pulled sideways to the left. Case 1 (rotation about A): For minimum tension the rope will be perpendicular to the board. Free-Body Diagram: + ΣM A = 0: 1 − ( 0.5 m ) TBC + ( 0.5 ) m ( 2207.3 N ) + 3 2 3 ( 0.5 ) m ( 3678.8 N ) = 0, or TBC = 3188.3 N Case 2 (sliding down at A): When the board is just about to slide down at A, A y = 0. continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Free-Body Diagram: + ΣM B = 0: 1 − ( 0.4 m ) ( 2 Ax ) − ( 0.5 ) m ( 3678.8 N ) − 3 2 3 ( 0.5 ) m ( 2207.3 N ) = 0, or 2 Ax = − 3372.3 N + ΣFx = 0: − TBC − 3372.3 + 4 4 ( 2207.3 N ) + ( 3678.8 N ) = 0, or 5 5 TBC = 1336.58 N Thus: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ( TBC )min = 1.337 kN ! COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 84. Free-Body Diagram: Force from water pressure: 1 ApB where A is the rectangular cross sectional area through line BD, and pB is the pressure at 2 point B. Thus 1 1 P = A (γ h ) = (16 ft )(10 ft ) 62.4 lb/ft 3 (10 ft ) = 18720.0 lb = 18.72 kips 2 2 1 W = γ V = 62.4 lb/ft 3 ( 3 ft )( 6 ft )( 6 ft ) = 3369.61 lb = 3.3696 kips 2 Equilibrium: 20 + ΣM A = 0: (18.72 kips ) ft − B ( 3 ft ) + ( 3.3696 kips )( 2 ft ) = 0. 3 P− ( ( ) ) Solving for B: B = 43.846 kips, or + ΣFx = 0: B = 43.8 kips 18.72 kips + Ax = 0, or Ax = −18.7200 kips + ΣFy = 0: Ay − 3.3693 kips + 43.846 kips = 0, or Ay = − 40.476 kips A= ( −18.7200 )2 + ( −40.476 )2 = 44.595 kips 40.476 θ = tan −1 = 65.180° 18.7200 Therefore: A = 44.6 kips Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 65.2° COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 85. Consider a 1-in. thick section of the gate and a triangular section BDE of water above the gate Free-Body Diagram: Pressure force P: 1 1 1 ApB = ( d × 1 in.)(γ d ) = γ d 2 lb 2 2 2 Weight of water section above gate: P= 4 1 8 WW = γ VW = γ × d × d × 1 in. = γ d 2 lb 2 15 15 For impending motion of gate: B y = 0, and for equilibrium: + ΣM a = 0: 2 1 8 4 d 1 2 2 (16 ) − d γ d − − 6 γ d = 0, and 3 15 15 3 2 3 d = 27.301 in., or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. d = 27.3 in. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 86. Consider a 1-in. thick section of the gate and a triangular section BDE of water above the gate Free-Body Diagram: Pressure force P: 1 1 1 ApB = ( d × 1 in.)(γ d ) = γ d 2 lb 2 2 2 Weight of water section above gate: P= 4 1 8 WW = γ VW = γ × d × d × 1 in. = γ d 2 lb 2 15 15 For impending motion of gate: B y = 0, and for equilibrium: + ΣM a = 0: 2 1 8 4 d 1 2 2 (16 ) − d γ d − − (10 − h ) γ d = 0, and 3 3 15 15 3 2 with d = 30 in. 2 1 8 4 2 (16 ) − 30 γ 30 − 3 3 15 15 d 1 2 3 − (10 − h ) 2 γ 30 = 0, and h = 2.8444 in., or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. h = 2.84 in. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 87. Free-Body Diagram: ( ) W = (125 kg ) 9.81 m/s 2 = 1226.25 N Denoting the water pressure at a depth h by ph, the forces due to the water pressure P1, P2, P3, P4 can be obtained as follows: 1 P1 = ADC p( 0.15 m ) , or with 2 ( )( ) 1 = ( 0.15 m )(1 m ) (1471.50 N/m ) = 110.363 N 2 p( 0.15 m ) = 1000 kg/m3 9.81 m/s 2 ( 0.15 m ) = 1471.50 N/m 2 P1 2 P2 = ACB p( 0.15 m) , or ( ) P2 = ( 0.6 m )(1 m ) 1471.50 N/m 2 = 882.90 N 1 ABA p( 0.15 m ) , or 2 1 P3 = ( 0.6 m )(1 m ) 1471.50 N/m 2 = 441.45 N 2 1 P4 = ABA p( 0.75 m ) , or with 2 P3 = ( ( ) )( ) p( 0.75 m ) = 1000 kg/m3 9.81 m/s 2 ( 0.75 m ) = 7357.5 N/m 2 P4 = ( ) 1 ( 0.16 m )(1 m ) 7357.5 N/m 2 = 2207.3 N 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Now from the free-body diagram: − (1.2 m ) D + ( 0.6 m )(1226.25 N ) + ( 0.3 m )(1226.25 N ) + ΣM A = 0: − ( 0.6 + 0.05 m ) (110.363 N ) − ( 0.3 m )( 882.90 N ) − ( 0.4 m )( 441.45 N ) − ( 0.2 m )( 2207.3 N ) = 0, or D = 124.149 N, and D = 124.1 N + ΣFx = 0: ! Ax + 110.363 N + 441.45 N + 2207.3 N = 0, or Ax = −2759.1 N + ΣFy = 0: Ay − 3 (1226.25 N ) + 882.90 N = 0, or Ay = 2795.9 N Then, A= ( −2759.1)2 + ( 2795.9 )2 θ = tan −1 = 3930 N, and 2795.9 = 45.4° 2759.1 Therefore: A = 3930 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 45.4° ! COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 88. Free-Body Diagram: ( ) W = (125 kg ) 9.81 m/s 2 = 1226.25 N Denoting the water pressure at a depth h by ph, the forces due to the water pressure P1, P2, P3, P4 can be obtained as follows: 1 P1 = ADC p( d − 0.6 m ) , or w 2 1 P1 = ( d − 0.6 ) m × (1 m ) γ N/m3 ( d − 0.6 ) m 2 1 2 = γ ( d − 0.6 ) N 2 where γ denotes the specific weight of water. In the same way 1 P2 = ACB p( d − 0.6 m) , or 2 ( ( ) ) P2 = ( 0.6 m ) × (1 m ) γ N/m3 ( d − 0.6 ) m = 0.6γ ( d − 0.6 ) N 1 ABA p( d − 0.6 m ) , or 2 1 P3 = ( 0.6 m ) × (1 m ) γ N/m3 ( d − 0.6 ) m 2 = 0.3γ ( d − 0.6 ) N P3 = ( ) 1 ABA p( d m ) , or 2 1 P4 = ( 0.6 m ) × (1 m ) γ N/m3 ( d m ) 2 = 0.3γ d N P4 = ( ) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Now from the free-body diagram: + ΣM A = 0: ( 0.6 m )(1226.25 N ) + ( 0.3 m )(1226.25 N ) 1 1 2 − 0.6 m + ( d − 0.6) m γ ( d − 0.6) N − ( 0.3 m ) 0.6γ ( d − 0.6) N 2 3 2 1 − ( 0.6 m ) 0.3γ ( d − 0.6 ) N − ( 0.6 m ) 0.3γ ( d − 0.6 ) N + 0.18γ N = 0, or 3 3 1 1103.63 − 0.036 ( d − 0.6 )3 + 0.3 ( d − 0.6 )2 + 0.36 ( d − 0.6 ) = γ 6 ( )( ) With γ = 1000 kg/m3 9.81 m/s 2 = 9810 N/m3 , this gives 1 1103.63 − 0.036 = 0.076501 ( d − 0.6 )3 + 0.3 ( d − 0.6 )2 + 0.36 ( d − 0.6 ) = 6 9810 N/m3 Solving for d numerically: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. d = 0.782 m ! COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 89. (a) Free-body diagram for a 24-in. long parabolic section of water: In the free body diagram force P is: P= 1 1 1 3 24 3 AP = A (γ h ) = ft ft 62.4 lb/ft 3 ft = 3.9000 lb 2 2 2 12 12 12 Ww = γ V ( ) 2 4.5 3 24 = 62.4 lb/ft 3 ft ft ft 3 12 12 12 = 7.8000 lb ( ) From the force triangle: R= P 2 + Ww 2 = θ = tan −1 ( 3.9 )2 + ( 7.8)2 = 8.7207 lb Ww 7.8 = tan −1 = 63.435°, or P 3.9 R = 8.72 lb (b) 63.4° Free-body diagram for a 24-in. long section of the water: From (a) WW = 7.8000 lb From the free-body diagram: By = 7.8000 lb +ΣM B = 0: M B + ( 2.25 − 1.8 ) in. ( 7.8000 lb ) = 0, or M B = −3.5100 lb ⋅ in. Therefore, the force-couple system on the gutter is: R = 7.8 lb ; M = 3.51 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 90. Note, for the axes shown y yV −R −2π R 4 3 − r 8 1 4 πr 4 V 1 (π R ) ( 2R ) = 2π R 2 2 − π r3 3 Σ r3 2π R 3 − 3 2 3 r4 −2π R 4 − 8 1 R4 − r 4 Σ yV 8 Y = =− 1 ΣV 3 R − r3 3 Then 1− 1 r 8 R 1− 1 r 3 R = (a ) r = 4 3 3 R: y = − 4 1− 1 3 3 4 1 3 1− 3 4 4 3 R or y = −1.118R 1− (b) y = −1.2R : − 1.2R = − 4 or 1 r 8 R 1 r 1− 3 R 4 3 R 3 r r − 3.2 + 1.6 = 0 R R Solving numerically Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. r = 0.884 R COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 91. Labeling the two parts of the body as follows: ΣyV Then Y = = ΣV ( 7 π a 2h 2 24 2 π a 2h 3 ( ) ) V y yV 1 1 2 πa h 2 h 2 1 2 2 πa h 4 2 1 2 πa h 6 h 4 1 π a 2h 2 24 Σ 2 2 πa h 3 7 π a 2h 2 24 or Y = 7 h 16 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 92. Labeling the two parts of the body as follows: z V 1 2 Σ Then Z = ( ( − 12 a3h ΣzV = 2 π a 2h ΣV 3 1 2 πa h 2 1 2 πa h 6 2 2 πa h 3 − 4a 3π a π zV 2 − a 3h 3 1 3 ah 6 1 − a 3h 2 ) ) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or Z = − 3a 4π COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 93. V x xV Rectangular prism Lab 1 L 2 1 2 L ab 2 Pyramid 1 b a h 3 2 1 ΣV = ab L + h 6 Then Now L+ ΣxV = X ΣV = ΣxV 1 h 4 1 1 abh L + h 6 4 1 2 1 ab 3L + h L + h 6 4 so that 1 1 1 X ab L + h = ab 3L2 + hL + h 2 6 6 4 1 h 1 h 1 h2 X 1 + L 3 = + + 6 L 6 L 4 L2 or (a) X = ? when h = Substituting (1) 1 L 2 h 1 = into Eq. (1) L 2 2 1 1 1 1 11 X 1 + = L 3 + + 6 2 6 2 4 2 or X = (b) 57 L 104 X = 0.548L h = ? when X = L L Substituting into Eq. (1) or or 1 h 1 h 1 h2 L 1 + = L 3 + + 6 L 6 L 4 L2 1+ 1h 1 1h 1 h2 = + + 6L 2 6 L 24 L2 h2 = 12 L2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ∴ h = 2 3 L COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 94. Assume that the machine element is homogeneous so that its center of gravity coincides with the centroid of the volume. V , mm3 y , mm z , mm yV , mm 4 zV , mm 4 1 ( 60 )(105)(10 ) = 63000 −5 52.5 − 315 000 3 307 500 2 1 2 π ( 30 ) (10 ) = 14 137.2 2 −5 − 70 686 1 664 400 3 (15)( 30 )( 60 ) = 27 000 15 30 405 000 810 000 4 − π (19 ) (10 ) = −11 341.1 −5 105 56 706 −1 190 820 5 1 2 − π (19 ) (15 ) = − 8505.9 2 30 −186 585 −255 180 −110 565 4 335 900 2 Σ Then Y = 30 − 4 (19 ) 3π = 21.936 105 + 4 ( 30 ) 3π =117.732 84 290 ΣyV −110 565 mm = 84 290 ΣV Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or Y = −1.312 mm COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 95. Assume that the machine element is homogeneous so that its center of gravity coincides with the centroid of the volume. Then Z = V , mm3 z , mm zV , mm 4 1 ( 60 )(105)(10 ) = 63000 52.5 3 307 500 2 1 2 π ( 30 ) (10 ) = 14 137.2 2 3 (15)( 30 )( 60 ) = 27 000 4 105 + 4 ( 30 ) 3π = 117.732 1 664 400 30 810 000 − π (19 ) (10 ) = −11 341.1 105 −1 190 820 5 1 2 − π (19 ) (15 ) = − 8505.9 2 30 − 255 180 Σ 84 290 2 ΣzV 4 335 900 = mm ΣV 84 290 4 335 900 or Z = 51.4 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 96. Assume that the bracket is homogeneous so that its center of gravity coincides with the centroid of the volume. V , mm3 x , mm xV , mm 4 1 (100 )(88)(12 ) =105600 50 5 280 000 2 (100 )(12 )(88) = 105600 50 5 280 000 3 1 ( 62 )( 51)(10 ) = 15 810 2 39 616 590 4 − 1 ( 66 )( 45)(12 ) = −17 820 2 Σ Then X = 34 + 2 ( 66 ) = 78 3 209 190 ΣxV 9 786 600 = mm ΣV 209190 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. −1 389 960 9 786 600 or X = 46.8 mm COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 97. Assume that the bracket is homogeneous so that it center of gravity coincides with the centroid of the volume. V , mm 1 (100 )(88)(12 ) = 105600 2 (100 )(12 )(88) = 105600 3 1 ( 62 )( 51)(10 ) = 15 810 2 4 − 1 ( 66 )( 45)(12 ) = −17 820 2 Σ Then Z = 3 z , mm zV , mm 4 6 633 600 12 + 1 (88) = 56 2 5 913 600 12 + 1 ( 51) = 29 3 458 490 55 + 2 ( 45) = 85 3 209 190 ΣzV 5 491 000 = mm ΣV 209 190 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. −1 514 700 5 491 000 or Z = 26.2 mm COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 98. Assume that the machine element is homogeneous so that its center of gravity coincides with the centroid of the volume. Then X = V , in 3 x , in. xV , in 4 1 ( 8)( 0.9)( 2.7) = 19.44 4 77.76 2 1 ( 2.1)( 6)( 2.7) = 17.01 2 2 34.02 3 1 2 π (1.35) ( 0.9) = 2.5765 2 2 4 − π ( 0.8 ) ( 0.9 ) = −1.80956 Σ 37.217 ΣxV 119.392 = in. ΣV 37.217 8+ 1.8 8 22.088 π −14.4765 119.392 or X = 3.21 in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 99. Assume that the machine element is homogeneous so that its center of gravity coincides with the centroid of the volume. Then Y = V , in 3 y , in. yV , in 4 1 ( 8)( 0.9)( 2.7) = 19.44 0.45 8.748 2 1 ( 2.1)( 6)( 2.7) = 17.01 2 1.6 27.216 3 1 2 π (1.35) ( 0.9) = 2.5765 2 0.45 1.15943 4 − π ( 0.8 ) ( 0.9 ) = −1.80956 0.45 − 0.81430 Σ 37.217 ΣyV 36.309 = in. ΣV 37.217 2 36.309 or Y = 0.976 in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 100. Labeling the five parts of the body as follows, and noting that the center of gravity coincides with the centroid of the area due to the uniform thickness. 4 × 150 z5 = − 300 − = − 236.34, 3π A5 = − π 2 (150 )2 = −11 250π = − 35 343 xA,106 mm3 yA, 106 mm3 zA, 106 mm3 A mm 2 x , mm y , mm z , mm 1 ( 600 )( 400 ) = 240000 300 200 0 72 48 0 2 ( 300 )( 400 ) = 120000 600 200 −150 72 24 −18 3 − (120 )( 280 ) = − 3360 600 140 − 240 − 20.160 − 4.7040 8.0640 4 ( 600 )( 300 ) = 180000 300 400 −150 54 72 − 27 5 − 35 343 240 400 − 236.34 − 2.7000 − 4.5 2.6588 Σ 471 057 169.358 125.159 − 28.583 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Therefore: X = ΣxA 169 358 000 = = 359.53 mm 471 057 ΣA or X = 360 mm ! Y = ΣyA 125159 000 = = 265.70 mm 471 057 ΣA or Y = 266 mm ! Z = ΣzA − 28 583 000 = = − 60.678 mm 471 057 ΣA Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or Z = − 60.7 mm ! COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 101. Assume that the body is homogeneous so that its center of gravity coincides with the centroid of the area. A, in 2 x , in. y , in. z , in. xA, in 3 yA, in 3 zA, in 3 1 1 ( 4.5)( 3) = 6.75 2 1.5 7 0 10.125 47.25 0 2 ( 4.5)(10 ) = 45 2.25 3 4 101.25 135 180 3 − ( 2.25 )( 5 ) = −11.25 − 2.25 1.125 1.5 6 −12.6563 −16.875 − 67.5 2.25 0 17.8925 0 71.211 116.611 165.375 183.71 1 4 π 2 ( 2.25)2 = 7.9522 Σ 48.452 8+ 4 ( 2.25 ) 3π Then X = ΣxA 116.611 = in. ΣA 48.452 or X = 2.41 in. Y = ΣyA 165.375 = in. ΣA 48.452 or Y = 3.41 in. Z = ΣzA 183.711 = in. 48.452 ΣA or Z = 3.79 in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 102. Assume that the body is homogeneous so that its center of gravity coincides with the centroid of the area. X = 150 mm ! First note that by symmetry: For 1: y = 180 + 96 + 4 (150 ) = 339.7 mm 3π z =0 For 2: y = 180 + z = 2 ( 96 ) π 2 ( 96 ) π = 241.1 mm = 61.11 mm For 3: Length DE = (180 )2 + ( 96 )2 y = 90 mm, = 204 mm z = 48 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System y , mm z , mm yA, mm3 zA, mm3 (150 )2 = 35.34 × 103 339.7 0 12.005 × 106 0 ( 96 )( 300 ) = 45.24 × 103 244.1 61.11 10.907 × 106 2.765 × 106 90 48 5.508 × 106 2.938 × 106 28.420 × 106 5.702 × 106 A, mm 2 π 1 2 2 π 2 3 ( 204 )( 300 ) = 61.2 × 103 − 2.25 Σ 141.78 × 103 Then Y = ΣyA 28.420 × 106 = mm ΣA 141.78 × 103 Z = ΣzA 5.702 × 106 = mm ΣA 141.78 × 103 or Y = 200 mm ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or Y = 40.2 mm ! COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 103. Assume that the body is homogeneous so that its center of gravity coincides with the centroid of the area. A, mm 2 x , mm y , mm xA, mm3 yA, mm3 1 ( 360 )( 270 ) = 97 200 0 135 0 13 122 000 2 ( 339 )( 270 ) = 91 530 168 135 15 377 000 12 356 600 3 1 ( 339 )( 72 ) = 12 204 2 224 294 2 733 700 3 588 000 4 ( 360 )( 343.63) = 123 707 168 306 20 783 000 37 854 000 5 1 ( 343.63)( 45) = 7731.73 2 224 318 1 731 900 2 458 700 6 7731.7 224 318 1 731 900 2 458 700 7 12 204 224 294 2 733 700 3 588 000 8 91 530 168 135 15 377 000 12 356 600 Σ 443 838 60 468 200 87 782 600 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Then X = ΣxA 60 468 200 = mm ΣA 443 838 or X = 136.2 mm ! Y = ΣyA 87 782 600 = mm ΣA 443 838 or Y = 197.8 mm ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 104. Assume that the body is homogeneous so that its center of gravity coincides with the centroid of the area. Note that by symmetry X = 9 in. A, in 2 y , in. z , in. yA, in 3 zA, in 3 1 16.2 1.8 2 29.16 32.4 2 16.2 1.8 2 29.16 32.4 3 97.2 2.7 0 262.44 0 4 1017.876 −15.2789 20.72113 −15552 21091.54 5 1017.876 −15.2789 20.72113 −15552 21091.54 6 − 706.858 −12.7324 23.2676 9000 −16446.9 7 − 706.858 −12.7324 23.2676 9000 −16446.9 8 1017.876 − 22.9183 13.08169 − 23328 13315.54 Σ 1769.511 − 36111.24 22669.6 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Therefore X = 9 in. ! Y = ΣyA − 36111.24 = ΣA 1769.511 or Y = − 20.4 in. ! Z = ΣzA 22669.6 = ΣA 1769.511 or Z = 12.81 in. ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 105. Assume that the body is homogeneous so that its center of gravity coincides with the centroid of the area. 1 2 A, in 2 x , in. y , in. xA, in 3 yA, in 3 π ( 8 )(12 ) = 96π 0 6 0 576π 10 −128 −160π 12 − 42.667 96π − π 2 π 3 2 ( 4 )2 = 8π = π − 4 ( 4) 3π 8 π =− 16 3π 4 (8)(12 ) = 96 6 12 576 1152 5 (8)(12 ) = 96 6 8 576 768 8 − 42.667 − 64π 6 Then 2 ( 4) (8)( 4 ) = −16π − π 2 ( 4 )2 = − 8π 4 ( 4) 3π = 16 3π 7 ( 4 )(12 ) = 48 6 10 288 480 8 ( 4 )(12 ) = 48 6 10 288 480 Σ 539.33 1512.6 4287.4 X = ΣxA 1514.67 = in. or X = 2.81 in. ΣA 539.33 Y = ΣyA 4287.4 = in. or Y = 7.95 in. ΣA 539.33 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 106. First, assume that the sheet metal is homogeneous so that the center of gravity of the awning coincides with the centroid of the corresponding area. yII = yVI = 80 + zII = zVI = yIV = 80 + zIV = 3π ( 2 )( 500 ) π 2 π 4 = 292.2 mm = 212.2 mm = 398.3 mm π ( 2 )( 500 ) π 3π ( 4 )( 500 ) AII = AVI = AIV = ( 4 )( 500 ) = 318.3 mm ( 500 )2 = 196 350 mm 2 ( 500 )( 680 ) = 534 071 mm 2 yA, mm3 zA, mm3 A, mm 2 y , mm z , mm I (80)(500) = 40 000 40 250 1.6 × 106 10 × 106 II 196 350 292.2 212.2 57.4 × 106 41.67 × 106 III (80)(680) = 54 400 40 500 0.2176 × 106 27.2 × 106 IV 534 071 398.3 318.3 212.7 × 106 170 × 106 V (80)(500) = 40 000 40 250 1.6 × 106 10 × 106 VI 196 350 292.2 212.2 57.4 × 106 41.67 × 106 332.9 × 106 300.5 × 106 Σ 1.061 × 106 X = 340 mm Now, symmetry implies and ( ) Y ΣA = Σ yA: Y 1.061 × 106 mm 2 = 332.9 × 106 mm 3 ( 6 Z ΣA = Σ zA: Z 1.061 × 10 mm 2 ) = 300.5 × 10 or Y = 314 mm 6 mm 3 or Z = 283 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 107. Assume that the body is homogeneous so that its center of gravity coincides with the centroid of the area. 1 A,in 2 y ,in. z , in. yA, in 3 zA, in 3 (15)(14 ) = 120 0 7 0 1470 1.25 7 43.75 245 1.25 0 46.875 0 1.25 7 43.75 245 6.5 0 − 510.51 0 −21.848 4 (14)( 2.5) = 35.0 (15)( 2.5) = 37.5 (14)( 2.5) = 35.0 5 − π ( 5 ) = − 78.540 0 6 1 2 − π (1.5 ) = −1.76715 4 0 7 ( 4 )(12 ) = 48 6 10 288 480 8 ( 4 )(12 ) = 48 6 10 288 480 Σ 235.43 134.375 1405.79 2 3 2 13 − 4 (1.5 ) 3π = 12.36348 Then Y = ΣyA 134.375 = in. ΣA 235.43 or Y = 0.571 in. Z = ΣzA 1405.79 = in. ΣA 235.43 or Z = 5.97 in. and by symmetry Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. X = 7.50 in. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 108. 2 2 2 AB 2 = ( 500 mm ) + ( 750 mm ) + ( 300 mm ) , or AB = 950 mm L, mm x , mm y , mm z , mm xL, mm 2 yL, mm 2 zL, mm 2 AB 950 250 375 150 237.5 × 103 356.25 × 103 142.5 × 103 BD 300 500 0 150 150 × 103 0 45 × 103 DO 500 250 0 0 125 × 103 0 0 OA 750 0 375 0 0 281.25 × 103 0 Σ 2500 512.5 × 103 637.5 × 103 187.5 × 103 Then X = ΣxL 512.5 × 103 = 2500 ΣL or X = 205 mm Y = ΣyL 637.5 × 103 = 2500 ΣL or Y = 255 mm Z = ΣzL 187.5 × 103 = ΣL 2500 or Z = 75 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 109. Assume that the body is homogeneous so that its center of gravity coincides with the centroid of the line 1 2 3 4 Σ π 2 L, mm x , mm y , mm z , mm xL, mm 2 yL, mm 2 zL, mm 2 300 280 260 0 140 230 150 0 0 0 0 120 0 39 200 59 800 45 000 0 0 0 0 31 200 3 2 × 300 360 = 5 π π 600 480 π π 54 000 90 000 72 000 153 000 135 000 103 200 ( 300 ) = 150π 1311.24 Then X = ΣxL 153 000 = ΣL 1311.24 or X = 116.7 mm Y = ΣyL 135 000 = ΣL 1311.24 or Y = 103.0 mm Z = ΣzL 103 200 = ΣL 1311.24 or Z = 78.7 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 110. Assume that the body is homogeneous so that its center of gravity coincides with the centroid of the line. L,ft x , ft y ,ft xL, ft 2 yL,ft 2 1 10 4cos 45° = 2.8284 5 28.284 50 2 10 4cos 45° = 2.8284 5 28.284 50 3 4π 0 12.5465 0 157.664 4 4π 2 ( 4) 10 32 125.664 5 2π 2 ( 4) 12.5465 16 78.832 Σ 51.416 104.568 462.16 π π = = 8 π 8 π Then X = ΣxL 104.568 = ΣL 51.416 or Y = ΣyL 462.16 = ΣL 51.416 or Y = 8.99 ft and by symmetry: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. X = 2.03 ft COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 111. First note by symmetry: Z = 3.00 ft To simplify the calculations replace: (a) The two rectangular sides with an element of length L(a) = 2 2 ( 7 ft ) + 2 ( 5 ft ) = 48 ft and center of gravity at (3.5 ft, 2.5 ft, 3 ft) (b) The two semicircular members with an element of length Lb = 2 π ( 3 ft ) = 6π ft 2×3 ft, 3 ft = ( 2 ft, 6.9099 ft, 3 ft ) and with center of gravity at 2 ft, 5 + π (c) The cross members 1 and 2 with an element of length Lc = 2 ( 6 ft ) = 12 ft and with center of gravity at ( 2 ft, 5 ft, 3 ft ) (d) This leaves a single straight piece of pipe, labeled (d) in the figure. Now for the centroid of the frame: L,ft x , ft y ,ft xL, ft 2 yL,ft 2 (a) 48 3.5 2.5 (b) 6π = 18.8496 2 6.9099 168 37.699 120 130.249 (c) (d) 12 6 85.850 2 7 5 5 24 42 271.70 60 30 340.25 Σ Then X = ΣxL 271.70 = ΣL 84.850 or Y = ΣyL 340.25 = ΣL 84.850 or Y = 4.01 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. X = 3.20 ft COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 112. Y = Z = 0 First, note that symmetry implies xI = 5 2π ( 0.5 in.) = 0.3125 in., WI = 0.0374 lb/in 3 ( 0.5 in )3 = 0.009791 lb 8 3 ( ) ( ) 2 xII = 1.6 in. + 0.5 in. = 2.1 in. WII = 0.0374 lb/in 3 (π )( 0.5 in ) ( 3.2 in.) = 0.093996 lb 2 π xIII = 3.7 in. − 1 in. = 2.7 in., WIII = − 0.0374 lb/in 3 ( 0.12 in ) ( 2 in.) = −0.000846 lb 4 ( ) 2 2 π xIV = 7.3 in. − 2.8 in. = 4.5 in., WIV = 0.284 lb/in 3 ( 0.12 in ) ( 5.6 in ) = 0.017987 lb 4 ( xV = 7.3 in. + π 1 ( 0.4 in.) = 7.4 in., WV = 0.284 lb/in 3 ( 0.06 in )2 ( 0.4 in.) = 0.000428 lb 4 3 ( Σ Have ) ) W , lb x , in. xW , in ⋅ lb I 0.009791 0.3125 0.003060 II 0.093996 2.1 0.197393 III −0.000846 2.7 −0.002284 IV 0.017987 4.5 0.080942 V 0.000428 7.4 0.003169 0.12136 0.28228 X ΣW = ΣxW : X ( 0.12136 lb ) = 0.28228 in. ⋅ lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or X = 2.33 in. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 113. Determine first the masses of the component pieces: π m1 = 8800 kg/m3 0.0162 − 0.0122 m 2 × ( 0.014 m ) = 0.0108372 kg 4 ( ) ( ) π m2 = 1250 kg/m 3 0.0362 − 0.0162 m 2 × ( 0.014 m ) = 0.0142942 kg 4 ( ) ( ) π m3 = 1250 kg/m 3 0.0602 − 0.0362 m 2 × ( 0.006 m ) = 0.0135717 kg 4 ( ) ( ) π m4 = 1250 kg/m3 0.0802 − 0.0602 m 2 × ( 0.010 m ) = 0.027489 kg 4 ( ) ( ) Now, for the center of mass: Then X = m, kg x , mm xm, kg ⋅ mm 1 0.0108372 7 0.075860 2 0.0142942 7 0.100059 3 0.0135717 3 0.040715 4 0.027489 5 0.137445 Σ 0.066192 0.35408 Σxm 0.35408 or = 0.066192 Σm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. X = 5.35 mm COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 114. Assume that the stone is homogeneous so that its center of gravity coincides with the centroid of the volume and locate the center of gravity. To determine the centroid of the truncated pyramid note that: 3 1 y1 = (1.4 m ) = 1.05 m, and V1 = ( 0.3 m )( 0.3 m )(1.4 m ) = 0.042 m3 4 3 y2 = 3 ( 0.7 m ) = 0.525 m, and 4 V2 = − 1 ( 0.15 m )( 0.15 m )( 0.7 m ) = − 0.00525 m3 3 Then Vstone = V1 + V2 = 0.042 m3 − 0.00525 m3 = 0.03675 m3, and ( ) ( 3 3 ΣyV (1.05 m ) 0.042 m + ( 0.525 m ) − 0.00525 m y= = ΣV 0.03675 m3 ) = 1.12500 m The center of gravity of the stone is therefore 0.425 m (i.e. 1.125 m – 0.7m) above the base. Now to determine the center of gravity of the marker: ( )( )( ) = ( 7860 kg/m )( 9.81 m/s ) ( 0.3 m )( 0.3 m ) h = ( 6939.6 h ) N Wstone = ( ρ gV ) stone = 2570 kg/m3 9.81 m/s 2 0.03675 m3 = 926.53 N Wsteel = ( ρ gV ) steel 3 2 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Then ymar ker = 0.3 m = ΣyW , or ΣW ( 0.425 m )( 926.53 N ) + ( − h2 m ) ( 6939.6 h ) N , or ( 926.53 + 6939.6 h ) N h 2 + 0.6 h − 0.033378 = 0. Solving for h and discarding the negative root, this gives h = 0.051252 m, or h = 50 mm ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 115. Since the brass plates are equally spaced and by the symmetry of the cylinder: X =Y =0! For the pipe: Specific weight of steel: γ s = 0.284 lb/in 3 y1 = 4 in. outside diameter: 2.5 in. Inside diameter: 2.5 in. − 2 ( 0.25 in.) = 2.00 in. π ( 2.5 ) 2 − 2.02 8 = 14.137 in 3 Volume: V1 = Weight: W1 = γ sV1 = 0.284 lb/in 3 14.137 in 3 = 4.015 lb 4 ( )( ) For each brass plate: Specific weight for brass: γ B = 0.306 lb/in 3 8 2.667 in. 3 1 Volume: V2 = ( 8 )( 4 )( 0.2 ) = 3.2 in 3 2 y2 = ( )( ) Weight: W1 = γ sV1 = 0.306 lb/in 3 3.2 in 3 = 0.979 lb continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System For flagpole base: ΣW = ( 4.015 lb ) + 3 ( 0.979 lb ) = 6.952 lb ΣyW = ( 4 in.)( 4.015 lb ) + 3 ( 2.667 in.)( 0.979 lb ) = 23.892 in.⋅ lb, or Y = ΣyW 23.892 in.⋅ lb = = 3.437 in. ΣW 6.952 lb Y = 3.437 in. ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 116. Choose as the element of volume a disk of radius r and thickness dx. Then dV = πr 2dx, xEL = x The equation of the generating curve is r 2 = a 2 − x 2 and then ( x 2 + y 2 = a 2 so that ) dV = π a 2 − x 2 dx Component 1 a/2 x3 a/2 V1 = ∫0 π a 2 − x 2 dx = π a 2 x − 3 0 ( = and ) 11 3 πa 24 a/2 2 2 ∫1 xEL dV = ∫0 x π ( a − x ) dx a/2 x2 x4 = π a 2 − 4 0 2 = Now 7 π a4 64 7 11 x1V1 = ∫1 xEL dV : x1 π a3 = π a4 24 64 or x1 = Component 2 a x3 a V2 = ∫a /2 π a 2 − x 2 dx = π a 2 x − 3 a/2 ( ) ⎧ a3 2 a ⎪ 2 = π ⎨a ( a ) − − a − 3 2 ⎪ ⎩ 3 ⎫ ( a2 ) ⎪⎬ 3 ⎪ ⎭ continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 21 a! 88 COSMOS: Complete Online Solutions Manual Organization System = 5 π a3 24 and a x π a/2 ∫2 xELdV = ∫ ( a x2 x4 a − x dx = π a 2 − 4 a/2 2 2 2 ) 2 ⎧ 2 4 a ) 2 a2 ( ⎪ 2 (a) − a = π ⎨a − − 2 4 2 ⎪ ⎩ 9 = π a4 64 ( ) Now ⎫ ⎪⎬ 4 ⎪ ⎭ ( a2 ) 4 9 5 x2V2 = ∫2 xELdV : x2 π a3 = π a4 24 64 or x2 = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 27 a! 40 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 117. Choose as the element of volume a disk of radius r and thickness dx. Then dV = πr 2dx, xEL = x x2 y2 + = 1 so that h2 a 2 The equation of the generating curve is r2 = a2 2 h − x 2 and then 2 h ( ) dV = π a2 2 h − x 2 dx 2 h ( ) Component 1 h/2 V1 = ∫0 π = and a2 2 a2 2 − = h x dx π h2 h2 ( ) h/2 2 x3 h x − 3 0 11 2 πa h 24 2 h/2 a 2 2 x dV x π = ∫1 EL ∫0 h 2 h − x dx ( ) h/2 a2 x2 x4 = π 2 h2 − 4 0 h 2 7 π a 2h 2 64 7 11 x1V1 = ∫1 xEL dV : x1 π a 2h = π a 2h 2 24 64 = Now or x1 = continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 21 h! 88 COSMOS: Complete Online Solutions Manual Organization System Component 2 h V2 = ∫h/2 π h a2 2 a2 2 x3 2 − = − π h x dx h x 3 h/2 h2 h2 ( ) 3 ⎧ 3 h ⎫ h) 2 h a 2 ⎪ 2 ( 2 ⎪ − h − = π 2 ⎨h ( h ) − ⎬ 3 2 3 ⎪ h ⎪ ⎭ ⎩ 5 πa 2 h = 24 () and a2 h 2 2 ∫2 xELdV = ∫h/2 x π h2 ( h − x ) dx =π a2 h2 h 2 x2 x4 − h 4 h/2 2 2 ⎧ 2 4 h ) 2 h2 ( a2 ⎪ 2 ( h ) − h = π 2 ⎨h − − 2 4 2 h ⎪ ⎩ 9 = π a 2h 2 64 ( ) Now ⎫ ⎪⎬ 4 ⎪ ⎭ ( h2 ) 4 9 5 x2V2 = ∫2 xEL dV : x2 π a 2h = π a 2h 2 24 64 or x2 = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 27 h! 40 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 118. Choose as the element of volume a disk of radius r and thickness dx. Then dV = πr 2dx, xEL = x x=h− The equation of the generating curve is r2 = h 2 y so that a2 a2 ( h − x ) and then h dV = π a2 ( h − x ) dx h Component 1 h/2 V1 = ∫0 π a2 ( h − x ) dx h h/2 a2 x2 = π hx − h 2 0 = and 3 2 πa h 8 a2 a2 =π h = Now h/2 ∫1 xELdV = ∫0 x π h ( h − x ) dx h/2 x 2 x3 − h 3 0 2 1 π a 2h 2 12 1 3 x1V1 = ∫1 xEL dV : x1 π a 2h = π a 2h 2 8 12 or x1 = continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 2 h! 9 COSMOS: Complete Online Solutions Manual Organization System Component 2 h h V2 = ∫h/2 π a2 a2 x2 ( h − x ) dx = π hx − 2 h/2 h h ⎧ 2 h) h ( a2 ⎪ = π ⎨ h (h) − − h − 2 2 h ⎪ ⎩ 1 = πa 2 h 8 ⎫ ⎪⎬ 2 ⎪ ⎭ ( h2 ) 2 h and a2 a 2 x 2 x3 h ∫2 xEL dV = ∫h/2 x π h ( h − x ) dx = π h h 2 − 3 h/2 2 ⎧ 2 3 h ) h2 ( a2 ⎪ ( h ) − h =π − − ⎨h 3 2 h ⎪ 2 ⎩ 1 = π a 2h 2 12 ( ) Now x2V2 = 3 ⎫ ( h2 ) ⎪⎬ 3 ⎪ ⎭ 2 2 2 ∫2 xEL dV : x2 8 π a h = 12 π a h 1 1 or x2 = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 2 h! 3 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 119. y = 0! First note that symmetry implies z = 0! Choose as the element of volume a disk of radius r and thickness dx. Then dV = πr 2dx, xEL = x ⎛ x2 ⎞ Now r = b⎜⎜1 − 2 ⎟⎟ so that a ⎠ ⎝ 2 2⎛ x2 ⎞ dV = πb ⎜⎜1 − 2 ⎟⎟ dx a ⎠ ⎝ Then ⎛ a π b 2 ⎜⎜1 0 2 ⎛ x2 ⎞ 2x2 x4 ⎞ a − 2 ⎟⎟ dx = ∫0 π b 2 ⎜⎜1 − 2 + 4 ⎟⎟ dx a ⎠ a a ⎠ ⎝ ⎝ V =∫ a 2⎛ 2 x3 x5 ⎞ = π b ⎜⎜ x − 2 + 4 ⎟⎟ 3a 5a ⎠ ⎝ 0 2 1⎞ ⎛ = π ab 2 ⎜1 − + ⎟ 3 5⎠ ⎝ 8 = π ab 2 15 and 2x2 x4 ⎞ a 2 ⎛ 1 x dV π b x = − + 4 ⎟⎟ dx ⎜ ∫ EL ∫0 ⎜ a2 a ⎠ ⎝ 2⎛ x2 2x4 x6 ⎞ = π b ⎜⎜ − 2 + 4 ⎟⎟ 4a 6a ⎠ ⎝ 2 a 0 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System ⎛1 1 1⎞ = π a 2b 2 ⎜ − + ⎟ ⎝2 2 6⎠ = Then 1 2 2 πa b 6 1 ⎛ 8 ⎞ xV = ∫ xEL dV : x ⎜ π ab 2 ⎟ = π a 2b 2 ⎝ 15 ⎠ 16 or x = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 15 a! 6 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 120. y = 0 First, note that symmetry implies z = 0 Choose as the element of volume a disk of radius r and thickness dx. Then dV = πr 2dx, xEL = x Now r = 1 − 1 so that x 2 1 dV = π 1 − dx x 2 1 = π 1 − + 2 dx x x 3 Then 2 1 1 3 V = ∫1 π 1 − + 2 dx = π x − 2 ln x − x x 1 x 1 1 = π 3 − 2 ln3 − − 1 − 2 ln 1 − 3 1 = ( 0.46944π ) m 3 and 3 x2 2 1 1 − + 2 dx = π − 2 x + ln x x x 2 1 3 x π 1 ∫ x EL dV = ∫ 32 13 = π − 2 ( 3) + ln 3 − − 2 (1) + ln1 2 2 = (1.09861π ) m Now ( ) xV = ∫ x EL dV : X 0.46944π m 3 = 1.09861π m 4 or x = 2.34 m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 121. First, by symmetry: x =a! y =0! Next determine the constants k in y = kx1/3 : x = a, b = ka1/3 or k = At b a1/3 b 1/3 a x , or x = 3 y 3 1/3 a b Choosing horizontal disks of thickness dy for volume elements ( dV in the figure above) Therefore, y = 2 b V = ∫0 π a 2 − ( a − x ) b ( ) = π ∫0 2ax − x 2 dy a a2 b = π ∫0 2a × 3 y 3 − 6 y 6 dy b b b a2 1 1 1 5 = π 3 2 × y 4 − 3 × y 7 = π a 2b 4 7 0 14 b b 1 ∫ yELdV , or V 14 b a 2 3 a 2 6 y= ∫ y π 2 y − b6 y dy 5π a 2b 0 b3 Now y = b 14 y5 1 y8 = 4 2 × − 3 5 5b b 8 0 or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. y= 77 b! 100 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 122. First note that by symmetry: y =0! z = 0! Choose as a volume element a disk of radius y and thickness dx. Then: xEL = x, and dV = π y 2dx, or dV = π h 2 cos 2 πx 2a dx Using the identity: cos 2 x = dV = 1 (1 + cos 2 x ) , this gives 2 1 2 πx π h 1 + cos dx. 2 a Then: V = ∫ dV = π h2 a πx π h2 a πx 1 a 1 cos dx x + sin + = = π h 2a. ∫ 0 2 a 2 π a 0 2 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Also, ∫ xELdV = = = = π h2 πx a x + x cos ∫ 0 2 a π h 2 x 2 dx. Integrating by parts, a a πx π x sin sin + − x ∫ 2 2 0 π a a 0 π h 2 a 2 2 2 + a a a πx a π x sin + cos x π a π a 0 π h 2 a 2 a 2a 1 2 2 4 + 0 − 0 − = π a h 1 − 2 2 2 π π 4 π Now, x= 1 2 1 2 2 4 xEL dV = π a h 1 − 2 , or ∫ 2 V πh a 4 π x= Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 1 4 a 1 − 2 ! 2 π COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 123. First note that by symmetry: x =0! y =0! Choosing the volume element shown in the figure, i.e. a cylindrical shell of radius r, height h and thickness dr: yEL = 1 y, 2 and dV = 2π ry dr = 2π r cos πr dr , and 2a πr a V = ∫ dV = 2π h ∫0 r cos dr , or, integrating by parts 2a a V = 2π h 2a πr πr r sin dr − ∫ sin π 2a 2a 0 a π r 2a πr cos = 4ah r sin + π 2 a 2a 0 2a 2 2 = 4ah a − = 4a h 1 − π π Also, a 2 2 ∫ yEL dV = π h ∫0 r cos π h 2 1 πr 2a dr = π h2 πr a ∫ r 1 + cos a dr 2 0 a a πr π r = + − ∫ sin r sin dr r 2 2 0 π a a 0 2 a continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System = = π h 2 1 a a πr a π r 2 + + a r sin cos π π 2 2 a a 0 π h2 1 2a 1 2 2 4 a 2 a + 0 + 0 − = π a h 1 − 2 π π 4 2 2 π Now, y= 1 ∫ yEL dV = V 1 2 2 1 4 π a h 1 − 2 , or 2 4 π 4a 2 h 1 − π y= Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (π + 2) h! 16 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 124. Choose as the element of a horizontal slice of thickness dy. For any number N of sides, the area of the base of the pyramid is given by Abase = kb 2 where k = k ( N ) ; see note below. Using similar triangles, have s h− y = b h or s= b (h − y) h Then dV = Aslicedy = ks 2dy = k and V = ∫0 k h = Also b2 2 h − y ) dy 2( h h b2 b2 1 2 3 h y dy k − = − (h − y) ( ) h2 h 2 3 0 1 2 kb h 3 yEL = y 2 b2 h h b 2 so then ∫ y EL dV = ∫0 y k 2 ( h − y ) dy = k 2 ∫0 h 2 y − 2hy 2 + y 3 dy h h ( ) h 2 1 1 2 2 b2 1 kb h = k 2 h 2 y 2 − hy 3 + y 4 = 3 4 0 12 h 2 Now 1 2 2 1 yV = ∫ y EL dV : y kb 2h = kb h 3 12 or y = Note: 1 Abase = N × b × 2 N = b2 π 4 tan N = k ( N ) b2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. b 2 tan πN 1 h Q.E.D. 4 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 125. Since the spherical cup is uniform, the center of gravity will coincide with the centroid. Also, because the cup is thin, it can be treated like an area in finding the centroid. An element of area is obtained by rotating arc ds about the y axis. With the y axis pointing downwards, dA = 2π rds = 2π ( R sin θ ) Rdθ = 2π R 2 sin θ dθ yEL = y = R cosθ φ φ A = ∫ dA = 2π R 2 ∫0 sin θ dθ = 2π R 2 [ − cosθ ]0 = 2π R 2 (1 − cos φ ) φ 2 3 φ ∫ yEL dA = ∫0 ( R cosθ ) ( 2π R sin θ dθ ) = 2π R ∫0 cosθ sin θ dθ φ 1 = 2π R3 − cos 2 θ = π R3 1 − cos 2 φ 2 0 ( ) Then, y= 1 1 3 2 ∫ yEL dA = 2π R 2 1 − cos φ π R 1 − cos φ , or A ( ) y= R (1 + cos φ ) 2 ( ) Using cos φ = y= R−h h =1− : R R R h h 1 + 1 − = R − R 2 2 The center of gravity is therefore located at a distance of h h R − y = R − R − = , above the base.(Q.E.D) 2 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 126. (a) Bowl First note that symmetry implies x = 0! z = 0! for the coordinate axes shown below. Now assume that the bowl may be treated as a shell; the center of gravity of the bowl will coincide with the centroid of the shell. For the walls of the bowl, an element of area is obtained by rotating the arc ds about the y axis. Then dAwall = ( 2π R sin θ )( Rdθ ) and Then and ( yEL ) wall = − R cos θ π /2 π /2 Awall = ∫π /6 2π R 2 sin θ dθ = 2π R 2 [ − cosθ ]π /6 = π 3R 2 ywall Awall = ∫ ( yEL )wall dA ( π /2 = ∫π /6 ( − R cosθ ) 2π R 2 sin θ dθ = π R3 cos 2 θ ) π /2 π /6 3 = − π R3 4 π R2, By observation Abase = Now y ΣA = ΣyA or or 4 ybase = − 3 R 2 π 3 π 3 y π 3R 2 + R 2 = − π R3 + R 2 − R 4 4 4 2 y = −0.48763R R = 350 mm ∴ y = −170.7 mm ! (b) Punch First note that symmetry implies x = 0! z = 0! and that because the punch is homogeneous, its center of gravity will coincide with the centroid of the corresponding volume. Choose as the element of volume a disk of radius x and thickness dy. Then dV = π x 2dy, yEL = y continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System x2 + y 2 = R2 Now so that 0 V = ∫− Then ( ) dV = π R 2 − y 2 dy ( ) π R 2 − y 2 dy = π R 2 y − 3/2 R 0 1 3 y 3 − 3/2 R 3 3 1 3 3 = −π R 2 − R − − R = π 3R3 2 3 2 8 and 0 ∫ yELdV = ∫− 0 y π R 2 − y 2 ) dy = π 3/2 R ( ) ( 1 2 2 1 4 R y − y 4 − 2 3/2 R 4 1 3 1 3 15 = −π R 2 − R − − R = − π R4 2 2 4 2 64 2 Now or 15 3 yV = ∫ yEL dV : y π 3 R3 = − π R 4 64 8 y =− 5 8 3 R R = 350 mm ∴ y = −126.3 mm ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 127. The centroid can be found by integration. The equation for the bottom of the gravel is: y = a + bx + cz, where the constants a, b, and c can be determined as follows: For x = 0, and z = 0: y = − 3 in., and therefore − 3 1 ft = a, or a = − ft 12 4 For x = 30 ft, and z = 0: y = − 5 in., and therefore − 5 1 1 ft = − ft + b ( 30 ft ) , or b = − 12 4 180 For x = 0, and z = 50 ft: y = − 6 in., and therefore − 6 1 1 ft = − ft + c ( 50 ft ) , or c = − 12 4 200 Therefore: 1 1 1 y = − ft − x− z 4 180 200 Now x dV x = ∫ EL V A volume element can be chosen as: dV = y dxdz, or dV = 1 1 1 x+ z dx dz, and 1 + 4 45 50 xEL = x continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Then 50 30 ∫ xEL dV = ∫0 ∫0 4 1 + 45 x + 50 z dx dz x 1 1 30 1 50 x 2 1 3 z 2 = ∫0 + x + x dz 4 2 135 100 0 = 1 50 ∫ ( 650 + 9 z ) dz 4 0 = 1 9 650 z + z 2 4 2 0 50 = 10937.5 ft 4 The volume is: 50 30 1 V ∫ dV = ∫0 ∫0 1 1 x+ z dx dz 1 + 4 45 50 30 1 50 1 2 z = ∫0 x + x + x dz 4 90 50 0 = 1 50 3 40 + z dz ∫ 0 4 5 50 1 3 2 = 40 z + z 4 10 0 = 687.50 ft 3 Then x dV 10937.5ft 4 x = ∫ EL = = 15.9091 ft V 687.5 ft 3 Therefore: V = 688 ft 3 x = 15.91 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 128. Choosing the element of volume shown, i.e. a filament of sides, y, dx, and dz: dV = y dx dy, and z EL = z x z b a V = ∫ dV = ∫ 0 ∫ 0 y0 − y1 − y2 dx dz a b =∫ b y x 0 0 a x2 zx 1 a b − y1 − y2 dz = ∫ 0 y0a − y1a − y2 z dz b 0 b 2a 2 b 1 a z2 1 1 = y0az − y1az − y2 = y0 − y1 − y2 ab b 2 0 2 2 2 xz z2 dx dz b a ∫ zEL dV = ∫ 0 ∫ 0 y0 z − y1 a − y2 b =∫ b y zx 0 0 a x2 z z2x za z 2a b − y1 − y2 − y2 dz dz = ∫ 0 y0 za − y1 b 0 b 2a 2 b z 2a z 2a z 3a 1 1 2 1 = y0 − y1 − y2 = y0 − y1 − y2 ab 2 4 3b 0 2 4 3 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Now, z = 1 1 1 1 1 z EL dV = y0 − y1 − y2 ab 2 , or ∫ 1 1 2 4 3 V y0 − y1 − y2 ab 2 2 1 1 1 y0 − y1 − y2 2 4 3 b z = 1 1 y0 − y1 − y2 2 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 129. x =0 First note that symmetry implies Choose as the element of volume a vertical slice of width 2x, thickness dz, and height y. Then 1 dV = 2 xy dz, yEL = y, zEL = z 2 h h h z Now and y = − z = 1 − x = a2 − z2 2 2a 2 a z dV = h a 2 − z 2 1 − dz a So Then V =∫ = = Then a h 0 z 1 2 1 z a − z 1 − dz = h z a 2 − z 2 + a 2 sin −1 + a − z2 a a 3a 2 2 ( 2 3/2 ) a − a 1 2 −1 a h sin (1) − sin −1 ( −1) 2 π 2 a 2h h z a 1 2 2 ∫ yELdV = ∫ − a 2 × 2 1 − a h a − z 1 − = z dz a h2 a z z2 2 2 a z − − + 1 2 dz ∫ a a 2 4 −a continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System = h2 4 1 2 2 2 2 2 −1 z a − z2 z a − z + a sin + a a 2 3 ( 1 z + 2 − a2 − z 2 a 4 ( = 3 2 a 3 2 a2 z 2 a4 z + a − z 2 + sin −1 8 8 a −a 5h 2a 2 −1 sin (1) − sin −1 ( −1) 32 π a2 yV = ∫ yEL dV : y 2 Then ) ) 5h 2a 2 h = (π ) 32 or y = and 5 h 16 z a 2 2 ∫ zELdV = ∫ − a z h a − z 1 − a dz 1 = h − a 2 − z 2 3 ( =− ) 3 2 1 z − − a 2 − z 2 a 4 ( ) 3 2 a2z 2 a 4 −1 z + a − z2 + sin 8 8 a a −a a3h −1 sin (1) − sin −1 ( −1) 8 π a 2h π a 3h zV = ∫ z EL dV : z = − 8 2 or z = − Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. a 4 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 130. A, mm 2 1 xA, mm3 yA, mm3 x , mm y , mm 21 × 22 = 462 1.5 11 693 5082 2 − 1 ( 6 )( 9 ) = −27 2 −6 2 162 −54 3 − 1 ( 6 )(12 ) = −36 2 8 2 −288 −72 567 4956 Σ 399 Then X = Σ xA 567 mm 3 = ΣA 399 mm 2 or X = 1.421 mm and Y = Σ yA 4956 mm 3 = ΣA 399 mm 2 or Y = 12.42 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 131. A, in 2 1 2 Σ 1 (10)(15) = 50 3 π 4 (15)2 = 176.71 x , in. y , in. xA, in 3 yA, in 3 4.5 7.5 225 375 6.366 16.366 1125 2892 226.71 1350 3267 X Σ A = Σx A Then ( ) X 226.71 in 2 = 1350 in 3 or X = 5.95 in. Y ΣA = Σy A and ( ) Y 226.71 in 2 = 3267 in 3 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or Y = 14.41 in. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 132. First note that because the wire is homogeneous, its center of gravity will coincide with the centroid of the corresponding line. L, mm 1 y , mm xL, mm 2 yL, mm 2 6 3 80.50 40.25 2 16 12 14 192 224 3 21 1.5 22 31.50 462 4 16 −9 14 −144 224 − 4.5 3 − 48.67 32.45 111.32 982.7 5 Σ Then 122 + 62 = 13.416 x , mm 62 + 92 = 10.817 77.233 X ΣL = Σx L X (77.233 mm) = 111.32 mm 2 and or X = 1.441 mm Y ΣL = Σ y L Y (77.233 mm) = 982.7 mm 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or Y = 12.72 mm COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 133. First note that for equilibrium, the center of gravity of the wire must lie on a vertical line through C. Further, because the wire is homogeneous, its center of gravity will coincide with the centroid of the corresponding line. Thus ΣM C = 0, which implies that x = 0 or Σ xi Li = 0 Hence L ( L ) + ( − 4 in.)(8 in.) + ( − 4 in.)(10 in.) = 0 2 or L2 = 144 in 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or L = 12.00 in. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 134. For the element (EL) shown At x = a, y = h : h = ka3 Then x= h a3 k = or a 1/3 y h1/3 dA = xdy Now = xEL = h A = ∫ dA =∫ 0 Then a 1/3 y dy h1/3 1 1 a 1/3 x= y , yEL = y 2 2 h1/ 3 a 1/3 3 a y dy = y 4/3 4 h1/3 h1/3 ( ) h = 0 3 ah 4 h 1 a 1/3 a 1/3 1 a 3 5/3 3 2 and ∫ xEL dA = ∫ y 1/3 y dy = y = a h 1/3 2/3 2h h 2 h 5 0 10 h 0 h a 3 7/3 3 2 a 1/3 ∫ yEL dA = ∫ y h1/3 y dy = h1/3 7 y = 7 ah 0 h 0 Hence 3 2 3 xA = ∫ xEL dA : x ah = a h 4 10 x = 2 a 5 3 3 yA = ∫ yEL dA: y ah = ah 2 4 7 y = 4 h 7 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 135. For 2b = ka 2 y1 at x = a, y = 2b or k = 2b a2 2b 2 x a2 Then y1 = By observation y2 = − b x ( x + 2b) = b 2 − a a xEL = x Now and for 0 ≤ x ≤ a : 1 b y1 = 2 x 2 2 a and dA = y1dx = 1 b x y2 = 2 − 2 2 a and x dA = y2dx = b 2 − dx a yEL = 2b 2 x dx a2 For a ≤ x ≤ 2a : yEL = Then a A = ∫ dA = ∫ 0 2b 2 x 2a x dx + ∫ a b 2 − dx 2 a a 2a a 2 a 2b x3 x 7 = 2 + b − 2 − = ab a 2 6 a 3 0 0 and x a 2b 2 2a ∫ xEL dA = ∫ 0 x a 2 x dx + ∫ a x b 2 − a dx a 2a = 2 x3 2b x 4 + b x − 2 3a 0 a 4 0 = 1 2 1 2 2 2 3 2a − ( a ) a b + b ( 2a ) − ( a ) + 3a 2 = 7 2 ab 6 { Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ( ) COSMOS: Complete Online Solutions Manual Organization System x x a b 2 2b 2 2a b ∫ yEL dA = ∫ 0 a 2 x a 2 x dx + ∫ 0 2 2 − a b 2 − a dx 2a a 3 2b 2 x5 b2 a x = 4 + − 2 − 2 3 a a 5 0 a 17 2 = ab 30 Hence 7 7 xA = ∫ xEL dA: x ab = a 2b 6 6 7 17 2 yA = ∫ yEL dA: y ab = ab 6 30 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. x =a y = 17 b 35 COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 136. The volume can be generated by rotating the triangle and circular sector shown about the y axis. Applying the second theorem of Pappus-Guldinus and using Fig. 5.8A, we have V = 2π xA = 2πΣxA = 2π ( x1 A1 + x2 A2 ) 1 1 1 1 3 2R sin 30o o π 2 = 2π × R × R × R + cos 30 R 2 3 × π 6 3 2 2 2 6 R3 R3 3 3 = 2π + π R3 = 8 16 3 2 3 = Since 3 3 3 π (12 in.) = 3526.03 in 3 8 1 gal = 231 in 3 V = 3526.03 in 3 = 15.26 gal 231 in 3/gal V = 15.26 gal Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 137. Have RI = ( 9 ft )( 200 lb/ft ) = 1800 lb RII = Then 1 ( 3 ft )( 200 lb/ft ) = 300 lb 2 ΣFx = 0: Ax = 0 ΣM A = 0: − ( 4.5 ft )(1800 lb ) − (10 ft )( 300 lb ) + ( 9 ft ) B y = 0 or By = 1233.3 lb B = 1233 lb A = 867 lb ΣFy = 0: Ay − 1800 lb − 300 lb + 1233.3 lb = 0 or Ay = 866.7 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 138. Have Then RI = 1 ( 4 m )( 2000 kN/m ) = 2667 N 3 RII = 1 ( 2 m )(1000 kN/m ) = 666.7 N 3 ΣFx = 0: Ax = 0 ΣFy = 0: Ay − 2667 N − 666.7 N = 0 or Ay = 3334 N A = 3.33 kN ΣM A = 0: M A − (1 m )( 2667 N ) − ( 5.5 m )( 666.7 N ) or M A = 6334 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M A = 6.33 kN ⋅ m COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 139. Consider the free-body diagram of the side. Have Now P= 1 1 Ap = A (γ d ) 2 2 ΣM A = 0: ( 9 ft ) T − d P=0 3 Then, for d max: ( 9 ft ) ( 0.2 ) ( 40 × 103 lb ) − d max 1 3 (12 ft ) ( d max ) 62.4 lb/ft d max = 0 3 2 or 3 216 × 103 ft 3 = 374.4 d max or 3 d max = 576.92 ft 3 ( Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ) d max = 8.32 ft COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 140. First, assume that the machine element is homogeneous so that its center of gravity coincides with the centroid of the corresponding volume. x , in. I II V , in 3 (4)(3.6)(0.75) = 10.8 (2.4)(2.0)(0.6) = 2.88 2.0 3.7 0.375 1.95 21.6 10.656 4.05 5.616 III π(0.45)2 (0.4) = 0.2545 4.2 2.15 1.0688 0.54711 1.2 0.375 − 0.7068 − 0.22089 32.618 9.9922 IV Σ 2 − π (0.5) (0.75) = − 0.5890 13.3454 y , in. xV , in 4 yV , in 4 X ΣV = Σ x V Have ( ) X 13.3454 in 3 = 32.618 in 4 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or X = 2.44 in. COSMOS: Complete Online Solutions Manual Organization System Chapter 5, Solution 141. First, assume that the sheet metal is homogeneous so that the center of gravity of the bracket coincides with the centroid of the corresponding area. Then (see diagram) zV = 22.5 − 4 ( 6.25 ) 3π = 19.85 mm AV = − π 2 ( 6.25)2 = − 61.36 mm 2 A, mm 2 x , mm y , mm z , mm xA, mm3 yA, mm3 zA, mm3 I ( 25)( 60) = 1500 12.5 0 30 18 750 0 45 000 II (12.5)( 60 ) = 750 25 − 6.25 30 18 750 − 4687.5 22 500 III ( 7.5)( 60 ) = 450 28.75 −12.5 30 12 937.5 − 5625 13 500 IV − (12.5 )( 30 ) = − 375 10 0 37.5 − 3750 0 −14 062.5 V − 61.36 10 0 19.85 − 613.6 0 −1218.0 Σ 2263.64 46 074 −10 313 65 720 Have X ΣA = ΣxA ( ) X 2263.64 mm 2 = 46 074 mm 3 Y ΣA = Σ yA ( ) Y 2263.64 mm 2 = −10 313 mm 3 or X = 20.4 mm or Y = − 4.55 mm Z ΣA = Σ zA ( ) Z 2263.64 mm 2 = 65 720 mm 3 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or Z = 29.0 mm COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 1. \ Joint FBDs: Joint B: FAB 800 lb FBC = = 15 8 17 so FAB = 1500 lb T FBC = 1700 lb C Joint C: FAC Cx 1700 lb = = 8 15 17 FAC = 800 lb T Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 2. Joint FBDs: Joint B: ΣFx = 0: 1 4 FAB − FBC = 0 5 2 ΣFy = 0: 1 3 FAB + FBC − 4.2 kN = 0 5 2 7 FBC = 4.2 kN 5 so Joint C: FAB = ΣFx = 0: 12 2 kN 5 FBC = 3.00 kN C ! FAB = 3.39 kN C ! 4 12 (3.00 kN) − FAC = 0 5 13 FAC = 13 kN 5 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FAC = 2.60 kN T ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 3. Joint FBDs: Joint B: FAB FBC 450 lb = = 12 13 5 FAB = 1080 lb T so FBC = 1170 lb C Joint C: ΣFx = 0: 3 12 FAC − (1170 lb ) = 0 5 13 FAC = 1800 lb C Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 4. Joint FBDs: Joint D: FCD FAD 500 lb = = 8.4 11.6 8 FAD = 725 lb T FCD = 525 lb C Joint C: ΣFx = 0: FBC − 525 lb = 0 FBC = 525 lb C This is apparent by inspection, as is FAC = C y ΣFx = 0: 8.4 3 (725 lb) − FAB − 375 lb = 0 11.6 5 Joint A: FAB = 250lb T ΣFy = 0: FAC − 4 8 (250 lb) − (725 lb) = 0 5 11.6 FAC = 700 lb C Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 5. FBD Truss: ΣFx = 0 : Cx = 0 By symmetry: C y = D y = 6 kN Joint FBDs: Joint B: ΣFy = 0: − 3 kN + 1 FAB = 0 5 FAB = 3 5 = 6.71 kN T Joint C: ΣFx = 0: ΣFy = 0: Joint A: ΣFx = 0: ΣFy = 0: 2 FAB − FBC = 0 5 FBC = 6.00 kN C 3 FAC = 0 5 FAC = 10.00 kN C 6 kN − 6 kN − 4 FAC + FCD = 0 5 FCD = 2.00 kN T 1 3 − 2 3 5 kN + 2 10 kN − 6 kN = 0 check 5 5 By symmetry: FAE = FAB = 6.71 kN T FAD = FAC = 10.00 kN C FDE = FBC = 6.00 kN C Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 6. FBD Truss: ΣM A = 0: (10.2 m ) C y + ( 2.4 m )(15 kN ) − ( 3.2 m )( 49.5 kN ) = 0 C y = 12.0 kN Joint FBDs: Joint FBDs: Joint C: FBC F 12 kN = CD = 7.4 7.4 8 FBC = 18.50 kN C FCD = 18.50 kN T Joint B: ΣFX = 0: 4 7 (18.5 kN) = 0 FAB − 5 7.4 FAB = 21.875 kN; ΣFy = 0: FAB = 21.9 kN C 3 2.4 (21.875 kN) − 49.5 kN + (18.5 kN) + FBD = 0 5 7.4 FBD = 30.375 kN; FBD = 30.4 kN C Joint D: ΣFx = 0: − 4 7 FAD + (18.5 kN ) + 15 kN = 0 5 7.4 FAD = 40.625 kN; Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FAD = 40.6 kN T COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 7. Joint FBDs: Joint E: FBE FDE 3 kN = = 5 4 3 FBE = 5.00 kN T FDE = 4.00 kN C Joint B: ΣFx = 0: − FAB + 4 (5 kN) = 0 5 FAB = 4.00 kN T ΣFy = 0: FBD − 6 kN − 3 (5 kN) = 0 5 FBD = 9.00 kN C Joint D: ΣFy = 0: 3 FAD − 9 kN = 0 5 FAD = 15.00 kN T ΣFx = 0: FCD − 4 (15 kN) − 4 kN = 0 5 FCD = 16.00 kN C Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 8. Joint FBDs: Joint B: FAB = 12.00 kips C By inspection: FBD = 0 Joint A: FAC FAD 12 kips = = 5 13 12 FAC = 5.00 kips C FAD = 13.00 kips T Joint D: ΣFx = 0: FCD − 12 (13 kips) − 18 kips = 0 13 FCD = 30.0 kips C ΣFy = 0: 5 (13 kips) − FDF = 0 13 FDF = 5.00 kips T Joint C: ΣFx = 0: 30 kips − 12 FCF = 0 13 FCF = 32.5 kips T ΣFy = 0: FCE − 5 kips − 5 (32.5 kips) 13 FCE = 17.50 kips C Joint E: by inspection: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FCF = 0 COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 9. FCH = 0 ! First note that, by inspection of joint H: and FCG = 0 ! then, by inspection of joint C: and Joint D: FBC = FCD FBG = 0 ! then, by inspection of joint G: and Joint FBDs: FDH = FGH FFG = FGH FBF = 0 ! then, by inspection of joint B: and FAB = FBC FCD FDH 10 kips = = 12 13 5 Joint A: FCD = 24.0 kips T ! so FDH = 26.0 kips C ! FAB = FBC = 24.0 kips T ! and, from above: FGH = FFG = 26.0 kips C ! FAF F 24 kips = AE = 5 4 41 FAF = 30.0 kips C ! Joint F: FAE = 25.6 kips T ! ΣFx = 0: FEF − 12 (26 kips) = 0 13 FEF = 24.0 kips C ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 10. FBD Truss: ΣFx = 0: H x = 0 By symmetry: A y = H y = 4 kips FAC = FCE and FBC = 0 by inspection of joints C and G : FEG = FGH and FFG = 0 also, by symmetry FAB = FFH , FBD = FDF , FCE = FEG and FBE = FEF Joint FBDs: Joint A: FAB FAC 3 kips = = 5 4 3 FAB = 5.00 kips C so FAC = 4.00 kips T FFH = 5.00 kips C and, from above, and Joint B: FCE = FEG = FGH = 4.00 kips T 4 4 10 (5 kips) − FBE − FBD = 0 5 5 109 ΣFx = 0: ΣFy = 0: 3 3 3 FBD + FBE = 0 ( 5 kips ) − 2 − 5 5 109 so FBD = 3.9772 kips, FBE = 0.23810 kips FBD = 3.98 kips C or Joint E: FBE = 0.238 kips C FDF = 3.98 kips C and, from above, FEF = 0.238 kips C ΣFy = 0 : FDE − 2 3 (0.23810 kips) = 0 5 FDE = 0.286 kips T Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 11. FBD Truss: ΣFx = 0: Ax = 0 ΣM G = 0: 3a Ay − 2a (3 kN) − a (6 kN) = 0 A y = 4 kN by inspection of joint C, FAC = FCE and FBC = 0 by inspection of joint D, FBD = FDF and FDE = 6.00 kN C Joint FBDs: Joint A: FAC FAB 4 kN = = 21 29 20 FAB = 5.80 kN C FAC = 4.20 kN C from above, Joint B: ΣFy = 0: 20 20 ( 5.80 kN ) − 3 kN − FBE = 0 29 29 FBE = ΣFx = 0: FCE = 4.20 kN C 29 20 FBE = 1.450 kN T 21 29 kN − FBD = 0 5.80 kN + 29 20 FBD = 5.25 kN C FDF = 5.25 kN C from above, Joint F: ΣFx = 0: 5.25 kN − 21 FEF = 0 29 FEF = 7.25 kN T ΣFy = 0: FFG − 20 (7.25 kN) − 1 kN = 0 29 FFG = 6.00 kN C by inspection of joint G, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FEG = 0 COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 12. FBD Truss: ΣFx = 0: Ax = 0 By symmetry: A y = B y = 4.90 kN FAB = FEG , FAC = FFG , FBC = FEF and FBD = FDE , FCD = FDF 5 4 FAC − FAB = 0 5 29 2 3 FAC − FAB + 4.9 kN = 0 5 29 ΣFx = 0: Joint FBDs: Joint A: ΣFy = 0: FAC = 2.8 29 kN FAC = 15.08 kN T FAD = 17.50 kN C Joint B: ΣFx = 0: ΣFy = 0: 4 1 FBC = 0 (17.5 kN − FBD ) − 5 2 3 1 FBC − 2.8 kN = 0 (17.5 kN − FBD ) + 5 2 FBD = 15.50 kN C FBC = 1.6 2 kN; Joint C: ΣFy = 0: FBC = 2.26 kN C 4 1 1.6 2 kN − FCD − 5 2 ΣFx = 0: FCF 2 (2.8 29 kN) = 0 29 FCD = 9.00 kN T 1 3 5 1.6 2 kN + (9 kN) − (2.8 29 kN) = 0 + 5 2 29 FCF = 7.00 kN T ( ( ) ) from symmetry, FEG = 17.50 kN C FFG = 15.08 kN T FEF = 2.26 kN C FDE = 15.50 kN C FDF = 9.00 kN T Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 13. FBD Truss: ΣFx = 0: A x = 0 ΣM A = 0: (8 m) Gy − (4 m)(4.2 kN) − (2m)(2.8 kN) = 0 G y = 2.80 kN ΣFy = 0: Ay − 2.8 kN − 4.2 kN + 2.8 kN = 0 A y = 4.2 kN Joint FBDs: 5 4 FAC − FAB = 0 5 29 2 3 FAC − FAB + 4.2 kN = 0 5 29 ΣFx = 0: Joint A: ΣFy = 0: FAB = 15.00 kN C ! FAC = 12.92 kN T ! FAC = 2.4 29 Joint B: ΣFx = 0: ΣFy = 0: 4 1 FBC = 0 (15.00 kN − FBD ) − 5 2 3 1 FBC − 2.8 kN = 0 (15.00 kN − FBD ) + 5 2 FBD = 13.00 kN C ! FBC = 1.6 2 kN, Joint C: ΣFy = 0: ( 4 FCD − 5 FBC = 2.26 kN C ! ) 2 1 2.4 29 kN − (1.6 2 kN) = 0 29 2 FCD = 8.00 kN T ! ΣFx = 0: FCF + 3 (8.00 kN ) − 5 + 5 (2.4 29 kN) 29 1 (1.6 2 kN) = 0 2 FCF = 5.60 kN T ! continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System By inspection of joint E, FDE = FEG and FEF = 0 ! Joint F: ΣFy = 0: ΣFx = 0: 4 FDF − 5 2 FFG = 0 29 3 5 − 5.6 kN − FDF + FFG = 0 5 29 FDF = 4.00 kN T ! FFG = 1.6 29 kN Joint G: ΣFx = 0: 4 FEG − 5 FFG = 8.62 kN T ! 5 (1.6 29 kN) = 0 29 FEG = 10.00 kN C ! from above (joint E) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FDE = 10.00 kN C ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 14. FBD Truss: ΣFx = 0: A x = 0 ΣM A = 0: 4a H y − 3a (1.5 kN) − 2a (2 kN) − a (2 kN) = 0 ΣFy = 0: Ay − 1 kN − 2 kN − 2 kN − 1.5 kN − 1 kN + 3.625 kN = 0 Joint FBDs: Joint A: A y = 3.875 kN FAB FAC 2.625 kN = = 1 29 26 FAB = 15.4823 kN, FAB = 15.48 kN C ! FAC = 14.6597 kN, FAC = 14.66 kN T ! By inspection of joint C: Joint B: H y = 3.625 kN ΣFy = 0: FCE = FAC = 14.66 kN T, 2 (15.4823 kN − FBD ) − 2 kN = 0 29 FBD = 10.0971 kN, ΣFx = 0: FBC = 0 ! FBD = 10.10 kN C ! 5 (15.4823 kN − 10.0971 kN ) − FBE = 0 29 FBE = 5.0000 kN, FBE = 5.00 kN C ! continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Joint D: FDF = 10.0971 kN, By symmetry: ΣFy = 0: FDF = 10.10 kN C ! 2 10.0971 kN − 2 kN = 0 − FDE + 2 29 FDE = 5.50 kN T ! FGH FFH 2.625 kN = = 1 26 29 Joint H: By inspection of joint G: ΣFx = 0 : Joint F: FFH = 14.1361 kN FFH = 14.14 kN C ! FGH = 13.3849 kN FGH = 13.38 kN T ! FEG = FGH = 13.38 kN T FEF + and FFG = 0 ! 2 (10.0971 kN − 14.1361 kN ) = 0 29 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FEF = 3.75 kN C ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 15. FBD Truss: ΣFx = 0: A x = 0 ΣM A = 0: 8a ( J y − 1 kN) − 7a (1 kN) − 6a (2.8 kN) − 4a (4.5 kN) − 2a (4 kN) − a(1 kN) = 0 J y = 6.7 kN ΣFy = 0: − 1 kN − 1 kN + 6.7 kN = 0 Joint FBDs: Joint A: Ay − 1 kN − 1 kN − 1.4 kN − 4.5 kN − 2.8 kN ΣFy = 0: 5 kN − A y = 6.0 kN 3 5 13 FAB = 0, FAB = kN 3 13 FAB = 6.01 kN C ! ΣFx = 0: Joint B: ΣFx = 0: FAC − 2 13 5 13 kN = 0, 3 FAC = 3.33 kN T ! 2 5 13 kN − FBC − FBD = 0, 13 3 5 13 kN 3 3 5 13 kN + FBC − FBD − 1 kN = 0, 13 3 4 13 FBD − FBC = kN 3 3 13 kN FBD = FBD = 5.41 kN C ! 2 1 13 kN FBC = FBC = 0.601 kN C ! 6 FBC + FBD = ΣFy = 0: continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System FEF = 0 ! By inspection of joint F: Joint E: FDE = FEG By symmetry: ΣFy = 0: 2 1 FDE − 4.5 kN = 0, 17 FDE = 9 17 kN 4 FDE = 9.28 kN C ! ΣFx = 0: 2 3 4 9 13 kN − 17 kN = 0 13 2 17 4 FDF + Joint D: FDF = 6.00 kN T ! ΣFy = 0: 3 3 1 9 13 kN − 1.4 kN − FCD − 17 kN = 0 13 2 17 4 FCD = 0.850 kN T ! Joint C: ΣFy = 0: 0.850 kN − FCG = ΣFx = 0: FCI − 3 13 13 3 kN − FCG = 0 5 6 1.75 kN 3 FCG = 0.583 kN C ! 10 4 1.75 2 13 kN − kN − kN = 0 5 3 13 6 3 FCI = 3.47 kN ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 16. \ FBD Truss: ΣFx = 0: ΣM A = 0: Ax = 0 8a( J y − 1 kN) − 7a(1 kN) − 6a(2.8 kN) − 4a(4.5 kN) − 2a(4 kN) − a(1 kN) = 0 J y = 6.7 kN ΣFy = 0: Ay − 1 kN − 1 kN − 1.4 kN − 4.5 kN − 2.8 kN −1 kN − 1 kN + 6.7 kN = 0 Joint FBDs: Joint J: ΣFy = 0: (6.7 − 1) kN − 3 FHJ = 0, 13 A = 6.0 kN FHJ = 1.9 13 kN FHJ = 6.85 kN C ! ΣFx = 0: Joint H: ΣFx = 0: ΣFy = 0: 2 (1.9 13 kN) − FIJ = 0, 13 2 ( FGH + FHI − 1.9 13 kN) = 0 13 3 ( FHI − FGH + 1.9 13 kN) − 1 kN = 0 13 26 13 kN, FGH = FGH = 6.25 kN C ! 15 FHI = Joint I: ΣFx = 0: 3.80 kN − FGI − 13 kN, 6 FHI = 0.601 kN C ! 2 13 kN − FCI = 0 13 6 FCI = ΣFy = 0: FIJ = 3.80 kN T ! 10.4 kN, 3 3 13 kN = 0, 13 6 FCI = 3.47 kN T ! FGI = 0.500 kN T ! continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System FEF = 0 ! By inspection of joint F, By symmetry FDE = FEG Joint E: ΣFy = 0: 1 FEG − 4.5 kN = 0, 2 17 FEG = 9 17 kN 4 FEG = 9.28 kN C ! Joint G: ΣFy = 0: 3 26 3 1 9 1 13 kN − kN − FCG − 17 kN 5 13 15 17 4 2 − 2.8 kN = 0 FCG = − ΣFx = 0: 1.75 kN 3 FCG = 0.583 kN C ! 4 9 4 1.75 17 kN − FFG − − 5 3 17 4 − 2 26 13 kN = 0 13 15 FFG = 6.00 kN T ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 17. FBD Truss: By load symmetry, ΣFx = 0: θ = tan −1 Joint FBDs: A y = H y = 1600 lb Ax = 0 6.72 ft = 16.2602° 23.04 ft ΣFy′ = 0: (1600 lb − 400 lb) cosθ − FAC sin θ = 0 FAC = 4114.3 lb Joint A: ΣFx = 0: FAC cos 2θ − FAB cosθ = 0 FAB = 3613.5 lb ΣFx′ = 0: Joint B: Joint C: FBC = 0.768 kips C ! FCD sin 2θ − (768 lb) cosθ = 0 FCD = 1371.4 lb ΣFx′′ = 0: FBD = 3.84 kips C ! FBC − (800 lb) cosθ = 0 FBC = 768.00 lb ΣFy′′ = 0: FAB = 3.61 kips C ! 3613.5 lb − FBD + (800 lb)sin θ = 0 FBD = 3837.5 lb ΣFy′ = 0: FAC = 4.11 kips T ! FCD = 1.371 kips T ! FCE + (1371.4 lb) cos2θ − (768 lb)sin θ − 4114.3 lb = 0 FCE = 2742.9 lb FCE = 2.74 kips T ! continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Joint E: ΣFy = 0: (2742.9 lb)sin 2θ − FDE cosθ = 0 FDE = 1536.01 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FDE = 1.536 kips C ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 18. FBD Truss: A y = H y = 1600 lb By load symmetry, ΣFx = 0: Ax = 0 θ = tan −1 6.72 ft = 16.2602° 23.04 ft Joint FBDs: Joint H: ΣFy = 0: 1600 lb − 400 lb − FFH sin θ = 0 FFH = 4285.7 lb, ( 4285.7 lb ) cosθ ΣFx = 0: Joint F: − FGH = 0 FGH = 4114.3 lb ΣFy′ = 0: FGH = 4.11 kips T FFG − ( 800 lb ) cosθ = 0 FFG = 768.0 lb ΣFx′ = 0: FFH = 4.29 kips C FFG = 0.768 kips C FDF + ( 800 lb ) sin θ − 4285.7 lb = 0 FDF = 4061.7 lb FDF = 4.06 kips C Joint G: ΣFy = 0: FDG sin 2θ − (768 lb) cosθ = 0 FDG = 1371.4 lb ΣFx = 0: FDG = 1.371 kips T 4114.3 lb − (1371.4 lb ) cosθ − FEG − (768 lb) sin θ = 0 FEG = 2742.9 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FEG = 2.74 kips T COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 19. FBD Truss: ΣFx = 0: ΣM L = 0: Ax = 0 (1.5 m ) (6.6 kN) + (3.0 m)(2.2 kN) + (5.5 m)(6 kN) − (11 m) Ay = 0 A y = 4.5 kN Joint FBDs: Joint A: ΣFy = 0: 4.5 kN − 6 kN − 2.2 kN − 6.6 kN + L = 0 L = 10.3 kN 4.5 kN FAC F = = AB , 1 2 5 FAC = 9.00 kN T ! FAB = 4.5 5, Joint C: FAB = 10.06 kN C ! 9 kN FBC F = = CE , 16 5 281 FBC = 45 kN 16 FBC = 2.81 kN C ! FCE = Joint B: ΣFx = 0: ΣFy = 0: Solving: 9 281, 16 FCE = 9.43 kN T ! 2 16 FBD + (4.5 5) kN + FBE = 0 5 265 1 FBD + (4.5 5) kN − 5 3 45 kN = 0 FBE + 16 265 72 5 kN, 11 45 265 kN, FBE = 176 FBD = − Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FBD = 14.64 kN C ! FBE = 4.16 kN T ! COSMOS: Complete Online Solutions Manual Organization System Joint E: ΣFx = 0: 16 9 FEG − 16 281 FEG = ΣFy = 0: 16 45 281 kN − 265 kN = 0 265 176 9 281 kN, 11 FEG = 13.72 kN T ! 5 9 9 281 kN − 281 kN + 16 281 11 3 45 265 kN 265 176 + FDE = 0, FDE = − Joint D: ΣFx = 0: ΣFy = 0: Solving: 45 kN, 22 FDE = 2.05 kN C ! 2 72 10 FDG = 0 5 kN + FDF + 11 5 101 1 72 1 45 FDG + 5 kN − kN = 0 FDF + 11 22 5 101 7.5 101 kN, 22 FDG = 3.43 kN T ! FDF = − 8.25 5 kN, FDF = 18.45 kN C ! FDG = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 20. FBD Truss: ΣFx = 0: ΣM L = 0: Ax = 0 (1.5 m ) (6.6 kN) + (3.0 m)(2.2 kN) + (5.5 m)(6 kN) − (11 m) Ay = 0 A y = 4.5 kN Joint FBDs: ΣFy = 0: 4.5 kN − 6 kN − 2.2 kN − 6.6 kN + L = 0 Joint L: L = 10.3 kN 10.3 kN FKL FJL = = , 1 2 5 FKL = 20.6 kN T ! FJL = 10.3 5 kN, FJL = 23.0 kN C ! 20.6 kN FJK F = = IK , 16 5 281 Joint K: FJK = 51.5 kN 8 FJK = 6.44 kN C ! FIK = Joint J: ΣFx = 0: ΣFy = 0: Solving: − 10.3 281 kN, 8 ( FIK = 21.6 kN T! ) 2 16 FHJ + 10.3 5 kN − FIJ = 0 5 265 ( ) 1 FHJ + 10.3 5 kN − 5 FHJ = − FIJ = − 3 51.5 kN = 0 FIJ − 6.6 kN + 8 265 112 5 kN, 11 1.3 265 kN, 88 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FHJ = 22.8 kN C ! FIJ = 0.240 kN C ! COSMOS: Complete Online Solutions Manual Organization System Joint I: 16 10.3 16 1.3 281 kN − 265 kN = 0 − FGI + 8 88 281 265 ΣFx = 0: FGI = ΣFy = 0: ΣFx = 0: ΣFy = 0: − 10.4 kN, 88 1 112 1 10.4 FGH − 2.2 kN − 5 kN − kN = 0 FFH + 11 88 5 101 FFH = − 8.25 5 kN, FGH = − 34 101 kN, 88 FFH = 18.45 kN C ! FGH = 3.88 kN C ! FDF = 8.25 5 kN By symmetry: ΣFy = 0: FHI = 0.1182 kN T ! 2 112 10 FGH = 0 5 kN − FFH + 11 5 101 Solving: Joint F: FGI = 21.3 kN T ! 5 112 10.3 281 kN − 281 kN + FHI 8 281 88 3 1.3 265 kN = 0 − 265 88 FHI = Joint H: 112 281 kN, 88 ( ) 2 8.25 5 kN − 6 kN − FFG = 0 5 FFG = 10.50 kN T ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 21. Joint FBDs: FDF F 500 lb = EF = 916 916 480 Joint F: FDF = FEF = 954.17 lb FDF = 954 lb T ! or FEF = 954 lb C ! Joint D: FBD FDE 954.17 lb = = 884 240 916 FBD = 920.84 lb FDE = 250.00 lb FBD = 921 lb T ! or FDE = 250 lb C ! By symmetry of joint A vs. joint F FAB = 954 lb T ! FAC = 954 lb C ! Joint B: ΣFx = 0: 920.84 lb − 884 4 ( 954.17 lb ) + FBE = 0 916 5 FBE = 0 ! ΣFy = 0: FBC − 240 ( 954.17 lb ) = 0 916 FBC = 250.00 lb or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FBC = 250 lb C ! COSMOS: Complete Online Solutions Manual Organization System Joint C: ΣFx = 0: 884 ( 954.17 lb ) − FCE = 0 916 FCE = 920.84 lb ΣFy = 0: FCH − 240 (954.17 lb) − 250.00 lb = 0 916 FCH = 500.00 lb ΣFx = 0: FCE = 921 lb C ! or 920.84 lb − or FCH = 500 lb C ! 884 4 ( 954.17 lb ) − FHE = 0 916 5 FHE = 0 ! Joint E: ΣFy = 0: FEJ − 240 (954.17 lb) − 250.00 lb = 0 916 FEJ = 500.00 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or FEJ = 500 lb C ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 22. Joint FBDs: FJL F 500 lb = KL = 1212 1212 480 Joint L: FJL = FKL = 1262.50 lb FJL = 1263 lb T ! FKL = 1263 lb C ! Comparing joint G to joint L: FGH = 1263 lb T ! FGI = 1263 lb C ! Joint J: ΣFx = 0: 1188 (1262.50 lb ) − FHJ = 0 1212 FHJ = 1237.50 lb, ΣFy = 0: FJK − 240 (1262.50 lb ) − 500 lb = 0 1212 FJK = 750.00 lb, Joint H: ΣFx = 0: FHJ = 1238 lb T ! 1237.50 lb − FJK = 750 lb C ! 1188 4 (1262.50 lb ) + FHK = 0 1212 5 FHK = 0 ! ΣFy = 0: FHI − 240 3 (1262.50 lb) − 500 lb − (0) = 0 1212 5 FHI = 750 lb C ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Joint I: ΣFx = 0: 1188 (1262.50 lb ) − FIK = 0 1212 FIK = 1237.50 lb, ΣFy = 0: FIN − 240 (1262.50 lb ) − 750.00 lb = 0 1212 FIN = 1000.00 lb, Joint K: ΣFx = 0: FIK = 1238 lb C ! 1237.50 lb − FIN = 1000 lb C ! 1188 4 (1262.50 lb ) − FKN = 0 1212 5 FKN = 0 ! ΣFy = 0: FKO − 240 (1262.50 lb) − 750.00 lb = 0 1212 FKO = 1000 lb C ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 23. FBD Truss: ΣFx = 0: ΣM A = 0: Ax = 0 (12 m ) (M y − 1 kN) − (2.4 m + 4.8 m + 6 m + 8.4 m + 10.8 m) (1.5 kN) = 0 M y = 5.05 kN ΣFy = 0: Ay − 2(1 kN) − 5(1.5 kN) + M y = 0 A y = 4.45 kN Joint FBDs: ΣFy = 0: 4.45 kN − 1 kN − Joint A: ΣFx = 0: ΣFx = 0: Joint C: ΣFy = 0: ΣFy = 0: Joint B: FAC − 5 FAB = 0, 13 12 (8.97 kN ) = 0, 13 FAC = 8.28 kN T ! 12 FCE − 8.28 kN = 0, 13 FCE = 8.97 kN T ! 5 (8.97 kN) − FBC = 0, 13 FBC = 3.45 kN C ! 5 5 (8.97 kN ) − 1.5 kN + 3.45 kN − FBD = 0 13 13 FBD = 14.04 kN ΣFx = 0: FAB = 8.97 kN C ! FBD = 14.04 kN C ! 12 12 (8.97 kN) − (14.04 kN) + FBE = 0 13 13 FBE = 4.68 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FBE = 4.68 kN T ! COSMOS: Complete Online Solutions Manual Organization System Joint E: ΣFx = 0: 6 12 FEH − 4.68 kN − (8.97 kN) = 0 13 37 FEH = 13.1388 kN ΣFy = 0: FDE − 5 (8.97 kN ) − 13 or 1 (13.1388) = 0 37 FDE = 5.6100 kN Joint D: ΣFx = 0: ΣFy = 0: FEH = 13.14 kN T ! or FDE = 5.61 kN T ! 12 12 1 (14.04 kN ) − FDG − FDH = 0 13 13 2 5 5 (14.04 kN ) − FDG − 1.5 kN − 5.61 kN 13 13 1 + FDH = 0 2 Solving: FDG = 8.60 kN C ! FDH = 7.10 kN C ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 24. FBD Truss: ΣFx = 0: Ax = 0 ΣM A = 0: (12 m ) (M y − 1 kN) − (2.4 m + 4.8 m + 6 m + 8.4 m + 10.8 m) (1.5 kN) = 0 M y = 5.05 kN Joint FBDs: ΣFy = 0: Ay − 2(1 kN) − 5(1.5 kN) + M y = 0 A y = 4.45 kN Joint M: ΣFy = 0: 5.05 kN − 1 kN − 5 FKM = 0, 13 ΣFx = 0: 12 (10.53 kN) − FLM = 0, 13 ΣFx = 0: 9.72 kN − FKM = 10.53 kN C ! FLM = 9.72 kN T ! 6 FJL = 0, 37 FJL = 1.62 37 Joint L: FJL = 9.85 kN T ! ΣFy = 0: ΣFx = 0: Joint K: ΣFy = 0: 1 (1.62 37 kN) − FKL = 0, 37 12 FIK − 13 FKE = 1.620 kN C ! 24 12 FJK − (10.53 kN) = 0 13 577 5 5 (10.53 kN) − FIK − 13 13 1 FJK 577 − 1.5 kN + 1.62 kN = 0 Solving: FIK = 10.8136 kN, FIK = 10.81 kN C ! FJK = 0.26205 kN, FJK = 0.262 kN T ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Joint J: ΣFx = 0: 24 (0.26205 kN) − 577 6 ( FHJ − 9.85 kN) = 0 37 FHJ = 10.1154 kN, ΣFy = 0: 1 (10.1154 kN ⋅ 9.85 kN) − 37 FHJ = 10.12 kN T ! 1 (0.26205 kN) − FIJ = 0 577 FIJ = 0.054541 kN, Joint I: ΣFx = 0: ΣFy = 0: Solving: Joint G: 12 24 ( FGI − 10.8136 kN ) + FHI = 0 13 25 5 7 (10.8136 kN − FGI ) + FHI − 1.5 kN + 0.05454 kN = 0 13 25 FGI = 8.6029 kN, FGI = 8.60 kN C ! FHI = 2.1257 kN, FHI = 2.13 kN C ! By symmetry: ΣFy = 0: FIJ = 54.5 N C ! FOG = 8.60 kN C ! 5 2 (8.6029 kN) − 1.5 kN − FGH = 0 13 FGH = 5.12 kN T ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 25. FBD Truss: ΣFx = 0: 180 lb − Ax = 0 A x = 180 lb ΣM A = (12 ft ) G y − ( 6 ft )( 480 lb ) − ( 2 ft )(180 lb ) − (8 ft)(120 lb) = 0, ΣFy = 0: G y = 350 lb Ay − 480 lb − 120 lb + 350 lb = 0 A y = 250 lb Joint FBDs: Joint A: ΣFx = 0: 1 FAC − 180 lb = 0, FAC = 180 2 lb 2 FAC = 255 lb T ! ΣFy = 0: Joint B: ΣFx = 0: ΣFy = 0: Solving: 1 (180 2 lb) + 250 lb − FAB = 0, 2 FAB = 430 lb C ! 4 2 FBD + FBC = 0 5 5 3 1 430 lb − FBD + FBC = 0 5 5 180 lb − FBC = 590 5 lb, FBC = 1319 lb T ! FBD = 1700 lb C ! Joint C: ΣFy = 0: 5 1 1 (590 5 lb) − (180 2 lb) = 0 FCD − 41 5 2 FCD = 154 41 lb, ΣFx = 0: FCD = 986 lb T ! 4 2 (154 41 lb) − (590 5 lb) 41 5 1 − (180 2 lb) = 0 12 FCE = 744 lb T ! FCE + By inspection of joint G: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FFG = 350 lb C and FEG = 0 ! COSMOS: Complete Online Solutions Manual Organization System Joint F: FDF F 350 = EF = ; 5 1 20 FDF = 1750 lb C ! FEF = 700 5 lb, FEF = 1565 lb T ! Joint E: ΣFy = 0: 5 1 (700 5 lb) = 0 FDE − 120 lb − 41 5 FDE = 164 41 lb, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FDE = 1050 lb T ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 26. Joint FBDs: Joint A: ΣFy = 0: 9 FAC − 1.8 kips = 0, 41 40 FAB − 8.20 kips = 0, 41 ΣFx = 0: DE = ΣFy = 0: FBD = 8.00 kips C ! FBC = 0.6 kips, and then Note: FAB = 8.00 kips C ! FBD = FAB By inspection of joint B, Joint C: FAC = 8.20 kips T ! FBC = 0.600 kips C ! 9.2 (4.5 ft) = 2.07 ft, 20 CE = 4.14 ft = 2 DE 1 FCD − 0.6 kips = 0, 5 FCD = 0.6 5 kips FCD = 1.342 kips T ! ΣFx = 0: 8.2 kips + ( ) 2 0.6 5 kips − FCE = 0 5 FCE = 9.20 kips C ! Joint D: ΣFy = 0: ( ) 40 2 0.6 5 kips = 0 ( FDG − 8.2 kips ) − 41 5 FDG = 9.43 kips T ! ΣFx = 0: FDE − ( ) 9 1 0.6 5 kips = 0 ( 9.43 kips − 8.2 kips ) − 41 5 FDE = 0.330 kips C ! Joint E: ΣFy = 0: ΣFx = 0: 5 FEG − 0.33 kips = 0, 13 FEG = 0.858 kips T ! 12 ( 0.858 kips ) + 9.2 kips − FEF = 0 13 FEF = 9.992 kips, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FEF = 9.99 kips C ! COSMOS: Complete Online Solutions Manual Organization System Joint F: By vertical symmetry FFG = FFH ΣFx = 0: 4 9.992 kips − 2 FFG = 0, 5 FFG = 5.995 kips FFG = FFH = 6.00 kips C ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 27. P6.14 Starting with ABC, add, in order, joints E, D, F, G, H ∴simple truss P6.15 Starting with DEF, add, in order, G, C, B, A, I, H, J ∴simple truss P6.23 Starting with ABC, add, in order, E, F, D, H, G, I, J, K, L, M ∴simple truss Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 28. P6.21 Starting with ABC, add, in order, joints E, D, F, H, J, K, L, I, G, N, P, Q, R, O, M, S, T ∴simple truss P6.25 Starting with ABC, add, in order, joints D, E, F, G ∴simple truss P6.29 Starting with ABD, add, in order, joints H, G, F, E, I, G, J ∴simple truss Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 29. ΣFx = 0: Fx = 0 Then, by inspection of joint F, FFG = 0 Then, by inspection of joint G, FGH = 0 By inspection of joint J, FIJ = 0 Then, by inspection of joint I, FHI = 0 FEI = 0 Then, by inspection of joint E, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FBE = 0 COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 30. By inspection of joint D, FDI = 0 By inspection of joint E, FEI = 0 Then, by inspection of joint I, FAI = 0 By inspection of joint F, FFK = 0 By inspection of joint G, FGK = 0 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 31. \ By inspection of joint C: FBC = 0 Then, by inspection of joint B: FBE = 0 Then, by inspection of joint E: FDE = 0 By inspection of joint H : FFH = 0 and FHI = 0 By inspection of joint Q : FOQ = 0 and FQR = 0 By inspection of joint J : Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FLJ = 0 COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 32. By inspection of joint C : FBC = 0 By inspection of joint G : FFG = 0 Then, by inspection of joint F : FFE = 0 By inspection of joint I : FIJ = 0 By inspection of joint M : FMN = 0 Then, by inspection of joint N : FKN = 0 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 33. By inspection of joint C: FBC = 0 ! By inspection of joint M : FLM = 0 ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 34. By inspection of joint A: FAF = 0 By inspection of joint C : FCH = 0 By inspection of joint E : FDE = FEI = 0 By inspection of joint L : FGL = 0 By inspection of joint N : FIN = 0 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 35. (a) By inspection of joint H : FCH = 0 Then, by inspection of joint C : FCG = 0 Then, by inspection of joint G : FBG = 0 Then, by inspection of joint B : FBF = 0 (b) By inspection of joint J : Then, by inspection of joint I : FIJ = 0 FEI = 0 FHI = 0 Then, by inspection of joint E : also, ΣFx = 0; FBE = 0 Fx = 0 So, by inspection of joint F : FFG = 0 And by inspection of joint G : FGH = 0 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 36. FBD Truss: ΣFz = 0: Bz = 0 ΣM x = 0: − ( 0.47 m ) C y + ( 0.08 m )( 940 N ) = 0 C y = 160 Nj Joint FBDs: Joint D: where FAD = FAD FBD = FBD = FBD FCD = FCD ΣFy = 0: ΣFx = 0: ΣFz = 0: 4 FBD − 940 N = 0, 21 10 80 − FAD − FCD − 89 101 1 39 − FAD + FCD − 89 101 Solving: − 0.80 m i − 0.08 m k ( 0.8) 2 = FAD 2 + ( 0.08 ) m −10i − k 101 − 0.8 m i − 0.16 m j − 0.2 m k ( 0.8 m )2 + ( 0.16 m )2 + ( 0.2 m )2 − 20i + 4 j − 5k 21 − 0.8 m i + 0.39 m k ( 0.8 m ) 2 + ( 0.39 m ) FBD = 4935 N, 2 = FCD − 80i + 39k 89 FBD = 4.94 kN T ! 20 ( 4935 N ) = 0 21 5 ( 4935 N ) = 0 21 FAD = − 590 101 N, FAD = 5.93 kN C ! FCD = 1335 N, FCD = 1.335 kN T ! continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Joint C: FBC = FBC 0.16 m j − 0.59 m k ( 0.16 m )2 + ( 0.59 m )2 = FBC 16 j − 59k 3737 16 FBC + 160 N = 0 3737 ΣFy = 0: FBC = −10 3737 N ΣFz = 0: − FAC − ( FBC = 611 N C ! ) 59 39 −10 3737 N − (1335 N ) = 0 89 3737 FAC = 5.00 N T ! Joint B: FAB = FAB ΣFy = 0: − 0.16 m j + 0.12 m k ( 0.16 m ) − 4 FAB + 5 2 + ( 0.12 m ) 2 ( − 4 j + 3k 5 = FAB ) 16 4 10 3737 N − ( 4935 N ) = 0 21 3737 FAB = 975 N C ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 37. FBD Truss: ΣFz = 0: Bz + 987 N = 0 B z = − 987 N k ΣM x = 0: − ( 0.47 m ) C y − ( 0.16 m )( 987 N ) + ( 0.08 m )( 940 N ) = 0 C y = −176.0 N j Joint FBDs: Joint D: FAD = FAD FBD = FBD FCD = FCD ΣFy = 0: ΣFx = 0: ΣFz = 0: − 0.8 m i − 0.08 m k ( 0.8 m )2 + ( 0.08 m )2 FAD ( −10i − k ) 101 = − 0.8 m i − 0.16 m j − 0.2 m k ( 0.8 m ) 2 2 + ( 0.16 m ) + ( 0.2 m ) − 0.8 m i + 0.39 m k ( 0.8 m )2 + ( 0.39 m )2 = 2 = FCD ( − 80i + 39k ) 89 4 FBD − 940 N = 0, FBD = 4935 N, 21 10 80 20 − FAD − FCD − ( 4935 N ) = 0 89 21 101 1 39 5 − FAD + FCD − ( 4935 N ) + 987 N = 0 89 21 101 Solving: FBD ( − 20i + 4 j − 5k ) 21 FCD = − 534 N, FAD = − 422 101 N, FBD = 4.94 kN T ! FCD = 534 N C ! FAD = 4.24 kN C ! continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Joint C: FBC = FBC 0.16 m j − 0.59 m k ( 0.16 m ) 2 + ( 0.59 m ) 2 = FBC (16 j − 59k ) 3737 16 FBC − 176 N = 0, FBC = 11 3737 N 3737 ΣFy = 0: FBC = 672 N T ! ΣFz = 0: − FAC − ( ) 59 39 11 3737 N + ( 534 N ) = 0 89 3737 FAC = − 415 N, FAC = 415 N C ! Joint B: FAB = FAB ΣFy = 0: − 0.16 m j + 0.12 m k ( 0.16 m )2 + ( 0.12 m )2 − 4 FAB − 5 ( = FAB ( − 4 j + 3k ) 5 ) 16 4 11 3737 N − ( 4935 N ) = 0 21 3737 FAB = −1395 N, FAB = 1.395 kN C ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 38. FBD Truss: ΣM BD = 0: ΣM x = 0: ΣFz = 0: ( 4 ft )( 50 lb ) + ( 4 ft )( Ez ) = 0 E z = − ( 50 lb ) k ( 4 ft )( 300 lb ) + ( 4 ft )( − 50 lb ) + ( 4 ft )( Dz ) = 0 D z = − ( 250 lb ) k Bz − 50 lb − 250 lb = 0 B z = ( 300 lb ) k ΣM Bz = 0: ( 2 ft )( 300 lb ) − ( 4 ft ) ( C y ) = 0 C y = (150 lb ) j AB = AC = 20 ft AD = AE = 6 ft CD = 4 2 ft ΣFx = 0: ΣFy = 0: B x = − ( 50 lb ) i Bx + 50 lb = 0 By + 150 lb − 300 lb = 0 B y = (150 lb ) j FAE = FAE = 2 ft i − 4 ft j + 4 ft k ( 2 ft )2 + ( 4 ft )2 + ( 4 ft )2 FAE ( 2i − 4 j + 4k ) 3 Joint FBDs: Joint E: ΣFz = 0: ΣFx = 0: 2 FAE − 50 lb = 0, 3 1 FDE + ( 75 lb ) = 0, 3 FAE = 75.0 lb T ! FDE = − 25 lb FDE = 25.0 lb C ! ΣFy = 0: − FCE − 2 ( 75 lb ) = 0, 3 FCE = − 50 lb FCE = 50.0 lb C ! continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System − 2 ft i − 4 ft j + 4 ft k FAD = FAD ( 2 ft ) Joint D: ΣFx = 0: 2 + ( 4 ft ) + ( 4 ft ) − 4 ft i − 4 ft j FCD = FCD ΣFz = 0: 2 ( 4 ft ) 2 + ( 4 ft ) 2 = 2 ft i + 4 ft k FAC = FAC ( 2 ft ) ) Joint B: FAB = FAB 2 + ( 4 ft ) 2 = FAC = 0 ! FBC − 100 lb = 0, − 2 ft i + 4 ft k ( 2 ft ) 2 ΣFz = 0: + ( 4 ft ) 2 = FBD = 150.0 lb C ! FAC ( i + 2k ) 5 2 FAC = 0, 5 ΣFz = 0: ΣFx = 0: FAD ( − i − 2 j + 2k ) 3 2 FAD − 250 lb = 0, FAD = 375 lb, FAD = 375 lb T ! 3 1 1 FCD − ( 375 lb ) = 0, FCD = −100 2 lb 25 lb − 3 2 FCD = 141.4 lb C ! 1 2 − FBD − −100 2 lb − ( 375 lb ) = 0 3 2 FBD = − 150 lb Joint C: = FCD ( − i − j) 2 ( ΣFy = 0: 2 FBC = 100.0 lb T ! FAB ( − i + 2k ) 5 2 FAB + 300 lb = 0 5 FAB = −150 5 lb, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FAB = 335 lb C ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 39. (a) FBD Truss: Bx = 0 ΣM y = 0: Bx = 0 ΣM z = 0: (1.7 m ) Az + ( 0.6 m )(1700 N ) = 0, − (1.7 m ) Ax − (1.125 m )(1700 N ) = 0 ΣFx = 0: Cx − 1125 N = 0 Cx = 1125 N C y − 1700 N = 0 C y = 1700 N Bz − 600 N = 0 Bz = 600 N ΣM x = 0: ΣFy = 0: ΣFz = 0: Az = − 600 N Ax = −1125 N A = − (1125 Ν ) i − ( 600 N ) k so B = ( 600 Ν ) k C = (1125 Ν ) i + (1700 N ) j (b) Find zero force members: by inspection of joint B, FAB = 0 ! by inspection of joint D, FAD = 0 ! by inspection of joint C , FBC = 0 ! Joint FBDs: Joint E: FAE = FAE ΣFy = 0: −1.125 m i + 1.7 m j − 0.6 m k (1.125 m ) 2 2 + (1.7 m ) + ( 0.6 m ) 1.7 FAE − 1700 N = 0, 2.125 2 = FAE ( −1.125i + 1.7 j − 0.6k ) 2.125 FAE = 2125 N FAE = 2.13 kN T ! ΣFx = 0: − FBE − 1.125 ( 2125 N ) , FBE = −1125 N 2.125 FBE = 1.125 kN C ! ΣFz = 0: − FDE − 0.6 ( 2125 N ) = 0, 2.125 FDE = − 600 N FDE = 600 N C ! continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Joint D: FBD = FBD ΣFz = 0: −1.125 m i + 0.6 m k (1.125 m )2 + ( 0.6 m )2 600 N − 0.6 FBD = 0, 1.275 = FBD ( −1.125i + 0.6k ) 1.275 FBD = 1275 N FBD = 1.275 kN T ! ΣFx = 0: − FCD − 1.125 (1275 N ) = 0, 1.275 FCD = −1125 N FCD = 1.125 kN C ! Joint C: By inspection: FAC = −1700 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FAC = 1.700 kN C ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 40. (a) (b) To check for simple truss, start with ABDE and add three members at a time which meet at a single new joint, successively adding joints G, F, H and C. ∴ This is a simple truss ! There are six reaction force components, Ax, Ay, Az, By, Bz, and Gy, no two of which are colinear, so all can be determined with the six equilibrium equations. Motion is prevented by the constraints. ∴ Truss is completely constrained, and statically determinate. ! FBD Truss: ΣM AB = 0: ( 9.60 ft ) G y + (10.08 ft )( 240 lb ) = 0 G y = − 252 lb ΣM z = 0: G y = − 252 lb j (11.00 ft ) ( By − 252 lb ) − (10.08 ft )( 275 lb ) = 0 B y = 504 lb j ΣFx = 0: ΣM y = 0: − Ax + 275 lb = 0, A x = − 275 lb i − ( 9.6 ft )( 275 lb ) − (11.0 ft )( Bz ) = 0 Bz = − 240 lb, B z = − 240 lb k ΣFy = 0: − Ay + 504 lb − 252 lb = 0, A y = − 252 lb j ΣFz = 0: Az − 240 lb + 240 lb = 0 Az = 0 Determine zero force members: By inspection of joint C : FBC = FCD = FGC = 0 By inspection of joint F : FBF = FEF = FFG = 0 By inspection of joint A: with Az = 0, By inspection of joint H : FDH = 0 FAD = 0 And finally, considering joint D knowing that FAD = FCD = FDH = 0, and recognizing that the three remaining members are not co-planar, they must also carry zero load, FBD = FDE = FGH = 0. The only load bearing members are thus AB, AE, BE, BG, EG, EH, GH. continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Joint FBDs FAB = 275 lb T, By inspection: from above: Joint A: FAE = 252 lb T ! FDE = 0 ! FEF = 0 ! FEH = 240 lb C ! By inspection of joint H ΣFy = 0: − 252 lb − 10.08 FBE = 0 1492 FBE = − 373 lb, Joint E: ΣFz = 0: 240 lb − FBE = 373 lb C ! 9.6 FEG = 0 14.6 FEG = 365 lb T ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 41. (a) (b) To check for simple truss, start with ABDE and add three members at a time which meet at a single new joint, successively adding joints G, F, H and C. ∴ This is a simple truss ! There are six reaction force components, Ax, Ay, Az, By, Bz, and Gy, no two of which are colinear, so all can be determined with the six equilibrium equations. Motion is prevented by the constraints. ∴ Truss is completely constrained, and statically determinate. ! FBD Truss: ΣM AB = 0: ( 9.60 ft ) G y + (10.08 ft )( 240 lb ) = 0 G y = − 252 lb, ΣM z = 0: G y = − 252 lb j (11.00 ft ) ( By − 252 lb ) − (10.08 ft )( 275 lb ) = 0 B y = 504 lb j ΣFx = 0: ΣM y = 0: − Ax + 275 lb = 0, Ax = − 275 lb i − ( 9.6 ft )( 275 lb ) − (11.0 ft )( Bz ) = 0 Bz = − 240 lb, B z = − 240 lb k ΣFy = 0: − Ay + 504 lb − 252 lb = 0, A y = − 252 lb j ΣFz = 0: Az − 240 lb + 240 lb = 0 Az = 0 Determine zero force members: By inspection of joint C : FBC = FCD = FGC = 0 By inspection of joint F : FBF = FEF = FFG = 0 By inspection of joint A: with Az = 0, By inspection of joint H : FDH = 0 FAD = 0 And finally, considering joint D knowing that FAD = FCD = FDH = 0, and recognizing that the three remaining members are not co-planar, they must also carry zero load, FBD = FDE = FGH = 0. The only load bearing members are thus AB, AE, BE, BG, EG, EH, GH. continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Now, by inspection of joint H, FGH = 275 lb C ! FCG = 0 ! from above, FDG = 0 ! FFG = 0 ! FBD Joint G: FBG = FBG −10.08j + 9.6k 13.92 FEG = FEG −11i + 9.6k 14.6 ΣFx = 0: ΣFy = 0: 275 lb − − 11 FEG = 0, 14.6 10.08 FBG − 252 lb = 0, 13.92 FEG = 365 lb T ! FBG = − 348 lb FBG = 348 lb C ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 42. FBD Truss: ΣFx = 0: Kx = 0 ( ) 6a K y − 125 lb − 5a ( 250 lb ) ΣM A = 0: − 4a ( 250 lb ) − 3a ( 375 lb ) − 2a ( 500 lb ) − a ( 500 lb ) = 0 K y = 937.5 lb Ay − 3 ( 250 lb ) − 2 ( 500 lb ) ΣFy = 0: − 375 lb − 125 lb + 937.5 lb = 0 A y = 1312.5 lb FBD Section ABEC: ( 2 ft ) FCF + ( 4 ft )( 500 lb ) ΣM E = 0: + ( 8 ft )( 250 lb − 1312.5 lb ) = 0 FCF = 3250 lb, ΣFy = 0: FCF = 3.25 kips T 1312.5 lb − 250 lb − 2 ( 500 lb ) − FEF = 62.5 5 lb, ΣFx = 0: 3250 lb + ( 1 FEF = 0 5 FEF = 139.8 lb T ) 2 62.5 5 lb − FEG = 0 5 FEG = 3375 lb, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FEG = 3.38 kips C COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 43. FBD Truss: ΣFx = 0: ΣM A = 0: Kx = 0 ( ) 6a K y − 125 lb − 5a ( 250 lb ) − 4a ( 250 lb ) − 3a ( 375 lb ) − 2a ( 500 lb ) − a ( 500 lb ) = 0 K y = 937.5 lb ΣFy = 0: Ay − 3 ( 250 lb ) − 2 ( 500 lb ) − 375 lb − 125 lb + 937.5 lb = 0 A y = 1312.5 lb FBD Section IJLK: ΣM z = 0: ( 4 ft )( 937.5 lb −125 lb ) − ( 2 ft ) FHJ = 0 FHJ = 1625 lb, ΣFy = 0: 937.5 lb − 125 lb − 250 lb − FHI = 562.5 5 lbs, ΣFx = 0: 1.625 kips + ( FHJ = 1.625 kips C 1 FHI = 0 5 FHI = 1.258 kips C ) 2 0.5625 5 kips − FFI = 0 5 FFI = 2.75 kips T Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 44. FBD Truss: ΣFx = 0: Ax = 0 By load symmetry: A y = L y = 840 N ΣM E = 0: 2 24 (1.75 m ) FBD + ( 2 m )( 240 N ) 3 25 − ( 4 m )( 840 N − 120 N ) = 0 FBD = FBD Section ABC: ΣM B = 0: FBD = 2.14 kN C 1.75 m FCE − ( 2 m )( 840 N − 120 N ) = 0 3 FCE = ΣM A = 0: 15000 N, 7 17280 N, 7 FCE = 2.47 kN T ( 4 m ) 7 FBE − ( 2 m )( 240 N ) = 0 25 FBE = 3000 N, 7 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FBE = 429 N C COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 45. FBD Truss: ΣFx = 0: Ax = 0 By load symmetry A y = L y = 840 N 0.4 2 = 3 15 3.5 7 IK = 3 = 4 24 2.3 23 IJ = = 3 30 slope: GI = FBD Section JKL: Resolve FIK and FGJ at L ΣM J = 0: ( 3 m ) 7 24 FIK − ( 0.4 m ) FIK 25 25 + ( 3 m )( 840 N − 120 N ) − (1 m )( 240 N ) = 0 FIK = 4210.53 N, ΣM I = 0: FIK = 4.21 kN C 3.5 15 2 FGJ − FGJ m 229 229 3 (4 m) + ( 4 m )( 840 N − 120 N ) − ( 2 m )( 240 N ) = 0 FGJ = 3823.0 N, ΣFx = 0: FGJ = 3.82 kN T 7 15 30 FIJ = 0 ( 4210.5 N ) − ( 3823.0 N ) − 25 229 1429 FIJ = 318 N T Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 46. \ FBD Truss: ΣFx = 0: By symmetry, Ax = 0 A y = M y = 8.5 kN FBD Section ABDC: ΣM D = 0: (1 m )(1.5 kN − 8.5 kN ) + ( 0.5 m ) 40 FCE = 0 41 FCE = 14.35 kN T ΣM E = 0: (1 m )(1.5 kN ) + ( 2 m )(1.5 kN − 8.5 kN ) + ( 0.5 m ) 40 FDF = 0, 41 FDF = 25.625 kN FDF = 25.6 kN C ΣFx = 0: 40 40 FDE = 0 (14.35 kN − 25.625 kN ) + 41 1721 FDE = 11.4084 kN, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FDE = 11.41 kN T COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 47. FBD Truss: ΣFx = 0: By symmetry, Ax = 0 A y = M y = 8.5 kN FBD Section IMNJ: ΣM J = 0: ( 2 m )(8.5 kN − 1.5 kN ) − (1 m )(1.5 kN ) − ( 0.5 m ) 40 FGI = 0 41 FGI = 25.625 kN, ΣM G = 0: FGI = 25.6 kN T ( 3 m )(8.5 kN − 1.5 kN ) − ( 2 m )(1.5 kN ) 40 FHJ = 0 41 FHJ = 30.8 kN C − (1 m )( 3 kN ) − ( 0.5 m ) FHJ = 30.75 kN, ΣFx = 0: 40 ( 30.75 kN − 25.625 kN ) − 41 40 FGJ = 0 2441 FGJ = 6.18 kN T Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 48. FBD Truss: ΣFx = 0: A x = 0 By symmetry: A y = L y = 6 kN FBD Section: Notes: 15 m 6 2 5 5 yD = ⋅ = m 3 2 3 2 2 yE = ⋅ 1 = m 3 3 5 yF − yD = m 6 yG = 1 m yF = yD − yG = 2 m 3 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System ΣM D = 0: (1 m ) 6 FEG + ( 2 m )( 2 kN ) + ( 4 m )(1 kN − 6 kN ) = 0 37 FEG = 8 37 kN 3 FEG = 16.22 kN T ! 1 3 ΣM A = 0: ( 2 m )( 2 kN ) + ( 4 m )( 2 kN ) − ( 6 m ) FDG − (1 m ) FDG = 0 10 10 FDG = ΣFx = 0: 4 10 kN 3 6 3 12 FEG − FDG − FDF = 0 13 37 10 FDG = 4.22 kN C ! 16 − 4 − FDF = 13 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 12 FDF = 0 13 FDF = 13.00 kN C ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 49. FBD Truss: ΣFx = 0: A x = 0 By symmetry: A y = L y = 6 kN FBD Section: Notes: so 2 3 2 = 3 yI = m yH ⋅ 5 5 = m 2 3 yH − yI = 1 m continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System ΣM I = 0: ( 4 m )( 6 kN − 1 kN ) − ( 2 m )( 2 kN ) − (1 m ) 12 FHJ = 0 13 FHJ = ΣM H = 0: FHJ = 17.33 kN C ! 6 FGI = 0 37 ( 4 m )( 6 kN − 1 kN ) − ( 2 m )( 2 kN ) − (1 m ) FGI = ΣM L = 0: 52 kN 3 8 37 kN 3 ( 2 m )( 2 kN ) − ( 4 m ) FHI FGI = 16.22 kN T ! =0 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FHI = 1.000 kN T ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 50. FBD Truss: Distance between loads = 1.5 m ΣFx = 0: By symmetry, Ax = 0 A y = K y = 18 kN FBD Section ABC: FBD Section ABC: ΣM D = 0: (1.5 m ) FCE + (1.5 m )( 6 kN ) − ( 3 m )(18 kN − 3 kN ) = 0 FCE = 22.5 kN T ! ΣM A = 0: (1.8 m ) 4 FCD − (1.5 m )( 6 kN ) = 0 5 FCD = 6.25 kN T ! ΣFy = 0: 18 kN − 3 kN − 6 kN − 8 4 FBD + ( 6.25 kN ) = 0 17 5 FBD = 29.8 kN C ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 51. FBD Truss: Distance between loads = 1.5 m ΣFx = 0: By symmetry, Ax = 0 A y = K y = 18 kN FBD Section ABC: FBD Section GHK: FBD section GHK: ΣM F = 0: ( 4.5 m )(18 kN − 3 kN ) − ( 3 m )( 6 kN ) − (1.5 m )( 6 kN ) − ( 2.4 m ) FEG = 0 FEG = 16.875 kN, ΣM K = 0: 8 FFG = 0 73 (1.5 m )( 6 kN ) + ( 3 m )( 6 kN ) − ( 3.6 m ) FFG = 8.0100 kN, ΣFx = 0: FEG = 16.88 kN T ! 15 FFH − 17 FFG = 8.01 kN T ! 3 (8.0100 kN ) − 16.875 kN = 0 73 FFH = 22.3 kN C ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 52. FBD Truss: ΣFX = 0: A x + 4 kips − 4 kips = 0 Ax = 0 By symmetry, Ay = Ny = 0 FBD Section ABDC: ΣM D = 0: (18 ft )( 4 kips ) − ( 9 ft ) 4 FCE = 0 5 FCE = 10.00 kips C ! ΣM E = 0: (18 ft )( 4 kips ) − (12 ft ) 3 FDF = 0 5 FDF = 10.00 kips C ΣFx = 0: 4 kips + 4 (10 kips − 10 kips ) − FDE = 0 5 FDE = 4.00 kips C ! FBD Joint E: ΣFy = 0: 4 3 FEF − ( 4 kips ) = 0 5 5 FEF = 3.00 kips T ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 53. FBD Truss: ΣFx = 0: A x + 4 kips − 4 kips = 0 Ax = 0 Ay = Ny = 0 By symmetry, FBD Section IJNM: ΣM G = 0: 4 − ( 27 ft )( 4 kips ) + ( 9 ft ) FHI = 0 5 FHI = 15.00 kips T ! ΣM N = 0: 4 5 ( 9 ft ) (15 kips ) − ( 27 ft ) FGI =0 FGI = 4.00 kips C ! FBD Joint I: ΣFx = 0: 3 4 ( 4 kips ) − FIJ = 0 5 5 FIJ = 3.00 kips T ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 54. FBD Truss: ΣFx = 0: Ax = 0 A y = M y = 7.5 kips By symmetry, FBD Section IJNM: ( 9 ft )( 7.5 kips − 0.5 kips ) − ( 4.5 ft )(1 kip ) ΣM J = 0: 4 − ( 5.25 ft ) FGI = 0, 17 FGI = 11.4858 kips. FGI = 11.49 kips T ! (12 ft )( 7.5 kip − 0.5 kips ) − ( 7.5 ft )(1 kip ) ΣM G = 0: − ( 3 ft )( 3 kips ) + ( 4.5 ft ) FHJ = 0 FHJ = 15 kips C By inspection of joint H, ΣFy = 0: FFH = 15.00 kips C ! 1 (11.4858 kips ) + 7.5 kips − 4.5 kips 17 − 3 FGJ = 0 13 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FGJ = 6.95 kips T ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 55. FBD Truss: ΣFx = 0: A x = 0 By symmetry: A y = v y = 4.5 kips FBD Joint K: ΣFx = 0: ΣFy = 0: 1 ( FIK − FKN ) = 0 2 1 FIK − 1 kip = 0 2 2 so FIK = FKN FIK = 2 kip 2 FIK = 0.707 kip C ! FBD Section ABEIJ: ΣFy = 0: ΣM I = 0: 4.5 kips − 1 kip − 2 (1.5 kips ) − 1 2 3 FJL = 0, kips + 2 2 2 ( 3 ft )(1.5 kips ) + ( 6 ft )(1 kip − 4.5 kips ) + 3 ( 3 ft ) ( FJM ) = 0 2 FJM = FJL = 0 ! 11 kips 3 FJM = 6.35 kips T ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 56. FBD Truss: ΣFx = 0: ΣM N = 0: Ax = 0 ( 4.8 ft )( 300 lb ) + ( 7.2 ft )( 750 lb ) + (11.52 ft )( 750 lb ) + (16.8 ft )(1950 lb ) + (19.2 ft )( 900 lb ) + ( 26.4 ft )(1050 lb ) ( ) + ( 33.6 ft ) 150 lb − Ay = 0 Ay = 2925 lb ΣFy = 0: 2925 lb − 2 (150 lb ) − 2 ( 750 lb ) − 1050 lb − 900 lb − 1950 lb − 300 lb + N y = 0 FBD Section ABC: N y = 3075 lb ΣM B = 0: ( 3.6 ft ) FCE − ( 7.2 ft )( 2925 lb − 150 lb ) = 0 FCE = 5550 lb, ΣM A = 0: ( 7.2 ft ) FCE = 5.55 kips T ! 1 2 FBE + ( 3.6 ft ) FBE − ( 7.2 ft )(1050 lb ) = 0 5 5 FBE = 525 5 lb, ΣFx = 0: ( FBE = 1.174 kips C ! ) 2 FBD − 525 5 lb + 5550 lb = 0 5 FBD = −5031.2 lb By inspection of joint D, FDF = FBD , so Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FDF = 5.03 kips C ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 57. FBD Truss: ΣFx = 0: Ax = 0 ( 4.8 ft )( 300 lb ) + ( 7.2 ft )( 750 lb ) + (11.52 ft )( 750 lb ) + (16.8 ft )(1950 lb ) + (19.2 ft )( 900 lb ) + ( 26.4 ft )(1050 lb ) + ( 33.6 ft ) (150 lb − Ay ) = 0 ΣM N = 0: Ay = 2925 lb FBD Section KJMN: 2925 lb − 2 (150 lb ) − 2 ( 750 lb ) − 1050 lb ΣFy = 0: − 900 lb − 1950 lb − 300 lb + N y = 0 N y = 3075 lb ( 7.2 ft )( 3075 lb − 150 lb ) − ( 2.4 ft )( 300 lb ) ΣM J = 0: − (1.8 ft ) FIK = 0 FIK = 11300 lb, ΣM I = 0: FIK = 11.30 kips T (11.52 ft )( 3075 lb − 150 lb ) − ( 6.72 ft )( 300 lb ) 2 − ( 4.32 ft )( 750 lb ) + ( 3.96 ft ) FHJ = 0 5 ΣFx = 0: FBD Joint I: FHJ = −3590.5 5 lb, FHJ = 8.03 kips C ! 2 12 − −3590.9 5 lb − FIJ − 11300 lb = 0 13 5 ( ) FIJ = − 4461.4 lb, ΣFx = 0: 11300 lb − FIJ = 4.46 kip C ! 12 ( 4461.4 lb ) − FGI = 0 13 FGI = 7181.8 lb, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FGI = 7.18 kips T ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 58. FBD Truss: Notes: α = 20°, β = 40°, γ = 60°, δ = 80°, φ = 22.5°, θ = 45°, ψ = 60° outer members AC, CE, etc. are each 1.0 m radial members AB, CD, etc. are each 0.4 m By symmetry , Ay = By = 2.6 kN ΣFx = 0: A x = 0 FBD Section ABDC: ΣM F = 0: ( resolve FCE at E ) 1 1 2 ( 0.4 m ) FCE sin 40° + 2 ( 0.4 m ) ( FCE cos 40° ) 1 + (1 m ) sin 40° + ( 0.4 m ) ( 0.4 kN ) 2 1 − (1 m ) sin 20° + (1 m ) sin 40° + ( 0.4 m ) ( 2.6 kN ) = 0, 2 FCE = 7.3420 kN, FCE = 7.34 kN C ! (1 m ) cos 40° − ( 0.4 m ) sin 45° + ( 0.4 m ) sin 22.5° (1 m ) sin 40° + ( 0.4 m ) cos 45° − ( 0.4 m ) cos 22.5° (1 m ) cos 40° − ( 0.4 m ) sin 45° = 27.566° = tan −1 (1 m ) sin 40° + ( 0.4 m ) cos 45° note σ = tan −1 and ε Then, ΣM C = 0: = 48.848° ( 0.4 m ) FDF cos ( 90° − 22.5° − 48.848°) − (1 m ) sin 20° ( 2.6 kN ) = 0, FDF = 2.3464 kN, and, ΣFx = 0: FDF = 2.35 kN T ! FCF ( cos 27.566° ) + ( 2.3464 kN )( cos 48.848° ) − ( 7.3420 kN ) sin 40° = 0 FCF = 3.5819 kN, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FCF = 3.58 kN T ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 59. FBD Truss: Notes: α = 20°, β = 40°, γ = 60°, δ = 80°, φ = 22.5°, θ = 45°, ψ = 60° outer members AC, CE, etc. are each 1.0 m radial members AB, CD, etc. are each 0.4 m By symmetry, Ay = By = 2.6 kN ΣFx = 0: A x = 0 FBD Section ABDFHGEC: ( resolve FGI at I ) ( 0.4 m ) FGI sin 80° + (1 m )( sin 80°)(1 kN ) ΣM J = 0: + (1 m ) sin 80° + (1 m ) sin 60° ( 0.6 kN ) + (1 m ) sin 80° + (1 m ) sin 60° + (1 m ) sin 40° ( 0.4 kN ) − (1 m ) sin 80° + (1 m ) sin 60° + (1 m ) sin 40° + (1 m ) sin 20° ( 2.6 kN ) = 0 FGI = 10.8648 kN, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FGI = 10.86 kN C ! COSMOS: Complete Online Solutions Manual Organization System Note: so, σ = tan −1 ΣM H = 0: 0.4 m − (1 m ) cos80° = 12.9443° (1 m ) sin 80° ( 0.4 m ) cos 60° ( FGJ sin12.9443° ) − ( 0.4 m ) sin 60° ( FGJ cos12.9443° ) − ( 0.4 m ) sin 60° (10.8648 kN ) sin 80° + ( 0.4 m ) cos 60° (10.8648 kN ) cos80° + ( 0.4 m ) cos 60° (1 kN ) + (1 m ) sin 60° + ( 0.4 m ) cos 60° ( 0.6 kN ) + (1 m ) sin 60° + (1 m ) sin 40° + ( 0.4 m ) cos 60° ( 0.4 kN ) − (1 m )( sin 60° + sin 40° + sin 20° ) + ( 0.4 m ) cos 60° ( 2.6 kN ) = 0 FGJ = 0.93851 kN, FGJ = 939 N T ! FBD Joint I: By symmetry: ΣFy = 0: FIK = 10.8648 kN − FIJ − 1.2 kN + 2 (10.8648 kN ) cos80° = 0 FIJ = 2.5733 kN, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FIJ = 2.57 kN T ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 60. FBD Truss: ΣFx = 0: A x = 0 By symmetry, Ay = Ny = 1.6 kips FBD Section using cut a–a: ΣM D = 0: ( 9 ft ) FFH + ( 6 ft )( 0.5 kip ) − (12 ft )(1.6 kips ) = 0 FFH = 1.800 kips T ! ΣFx = 0: 1.800 kips − FDG = 0 FDG = 1.800 kips C ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 61. \ FBD Truss: ΣFx = 0: A x = 0 By symmetry Ay = Ny = 1.6 kips FBD Joint J: ΣFx = 0: − FGJ − FHJ = 0, FHJ = − FGJ By inspection of joint I, FIJ = 0.6 kip C FBD Section using cut b-b: 3 FGJ − ( − FGJ ) − 0.6 kip − 0.5 kip + 1.6 kips = 0 5 ΣFy = 0: FGJ = − 2.5 kip, 6 ΣM J = 0: FGJ = 0.417 kip C ! (12 ft )(1.6 kips ) − ( 6 ft )( 0.5 kip ) − ( 4.5 ft )( FHK ) − ( 4.5 ft )( FIL ) = 0 ΣFx = 0: FIL − FHK = 0 so FIL = FHK and FIL = 1.800 kips C ! FHK = 1.800 kips T ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 62. FBD Section above a-a: ΣM G = 0: 27 FIK − ( 2.7 m )( 40 kN ) − ( 5.4 m )( 40 kN ) = 0 793 ( 5.9 m ) FIK = 57.275 kN, ΣFy = 0: FIK = 57.3 kN C 27 ( 57.275 kN − FGJ ) = 0 793 FGJ = 57.275 kN T FBD Section ACIG: 27 ( 57.275 kN − 57.275 kN ) 793 ΣFy = 0: + ΣFx = 0: 18 ( FHK − FHJ ) = 0, 949 3 ( 40 kN ) − 2 FHJ = FHK 25 FHK = 0 949 FHK = 53.884 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FHK = 53.9 kN C COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 63. FBD Section ACFBD: ΣM D = 0: ( 4.3 m ) 27 FFI − ( 2.7 m )( 40 kN ) = 0 793 FFI = 26.196 kN, ΣFy = 0: FFI = 26.2 kN C ! 27 ( 26.196 kN − FDG ) = 0 793 FDG = 26.196 kN T FBD Section ACFD: ΣFy = 0: 27 ( 26.196 kN − 26.196 kN ) 793 + ΣFx = 0: 54 ( FEI − FEG ) = 0, 6397 −2 − FEI = FEG 59 ( FEG ) + 2 ( 40 kN ) 6397 8 ( 26.196 kN + 26.196 kN ) = 0 793 FEG = 44.136 kN, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FEG = 44.1 kN T ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 64. FBD Truss: ΣFx = 0: ΣM F = 0: Ax = 0 ( 2.4 m )(8 kN ) + ( 5.1 m )(12 kN ) − ( 7.5 m ) Ay = 0, A y = 10.72 kN Since only CD can provide an upward force necessary for equilibrium, it must be in tension, and FBE = 0 FBD Section ABC: ΣFy = 0: 10.72 kN − 12 kN + FCD = 2.4229 kN, ΣM C = 0: 1.68 FCD = 0 3.18 FCD = 2.42 kN T (1.68 m ) FBD − ( 2.4 m )(10.72 kN ) = 0 FBD = 15.3143 kN, ΣFx = 0: FCE + FBD = 15.31 kN C 2.7 ( 2.4229 kN ) − 15.3143 kN = 0 3.18 FCE = 13.26 kN T Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 65. FBD Truss: ΣFx = 0: ΣM F = 0: Ax = 0 ( 2.4 m )(8 kN ) + ( 5.1 m )( 6 kN ) − ( 7.5 m ) Ay =0 A y = 6.64 kN FBD Section ABC: Since only BE can provide the downward force necessary for equilibrium, it must be in tension, so FCD = 0 ΣFy = 0: 6.64 kN − 6 kN − FBE = 1.21143 kN, ΣM = 0: FBE = 1.211 kN T ! (1.68 m ) FCE − ( 2.4 m )( 6.64 kN ) = 0 FCE = 9.4857 kN, ΣFx = 0: 1.68 FBE = 0 3.18 9.4857 kN + FCE = 9.49 kN T ! 2.7 (1.21143 kN ) − FBD = 0 3.18 FBD = 10.51 kN C ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 66. FBD Truss: ΣFx = 0: ΣM C = 0: Cx = 0 (8 ft )( 6 kips ) − (8 ft )( 9 kips ) + (16 ft ) G y − ( 24 ft )(12 kips ) = 0 G y = 19.5 kips FBD Section ABC: ΣFy = 0: 19.5 kips + C y − 6 kips − 9 kips − 12 kips = 0 C y = 7.5 kips Since only BE can provide the downward force necessary for equilibrium, it must be in tension, so CD is slack, FCD = 0 ΣFy = 0: − 6 kips + 7.5 kips − 3 FBE = 0 5 FBE = 2.50 kips T ! FBD Section FGH: Since only EF can provide the downward force necessary for equilibrium, it must be in tension, so DG is slack, FDG = 0 ΣFy = 0: 19.5 kips − 12 kips − 3 FEF = 0 5 FEF = 12.00 kips T ! Knowing that FCD = FDG = 0, inspection of joint D gives FDE = 0 ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 67 FBD Truss: ( 32 ft ) H y − ( 24 ft )(12 kips ) − (16 ft )( 9 kips ) ΣM A = 0: − ( 8 ft )( 6 kips ) = 0, ΣFy = 0: H y = 15 kips Ay − 6 kips − 9 kips − 12 kips + 15 kips = 0 A y = 12 kips ΣFx = 0: FBD Section ABC: Ax = 0 Since only BE can provide the downward force necessary for equilibrium, it must be in tension, so CD is slack, FCD = 0 ΣFy = 0: 12 kips − 6 kips − 3 FBE = 0 5 FBE = 10.00 kips T ! Since only EF can provide the downward force necessary for equilibrium, it must be in tension, so DG is slack, FDG = 0 FBD Section FGH: ΣFy = 0: 15 kips − 12 kips − 3 FEF = 0 5 FEF = 5.00 kips T ! Knowing that FCD = FDF = 0, inspection of joint D gives FDE = 0 ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 68 FBD Section ABDC: Since only DE can provide the leftward force necessary for equilibrium, it must be in tension, and CF must be slack, FCF = 0 ΣFx = 0: ΣM D = 0: 20 kN − 4 FDE = 0, 5 FDE = 25.0 kN C ! ( 3.2 m ) FCE − ( 2.4 m )( 20 kN ) = 0 FCE = 15.00 kN T ! ΣFy = 0: FDF − 15.00 kN − 3 ( 25 kN ) = 0 5 FDE = 30.0 kN C ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 69. FBD Section ABFE: It is not apparent which counter is active, so we guess that FEH = 0; ΣM F = 0: 24 FEG + 40 kN − ( 4.8 m )( 20 kN ) = 0 745 ( 3.2 m ) FEG = −11.3728 kN FEG = 11.37 kN C ! ΣM G = 0: 24 FFH − ( 7.2 m )( 20 kN ) − (1.3 m )( 40 kN ) = 0 745 ( 5.8 m ) FFH = 38.432 kN, ΣFx = 0: 20 kN − FFH = 38.4 kN C ! 13 15 ( 38.432 kN − 11.3728 kN ) − FFG = 0 17 745 FFG = 8.0604 kN, FFG = 8.06 kN T ! Since FEG is in tension, our guess was correct. A negative answer would be impossible, indicating an incorrect guess. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 70. Structure (a): Non-simple truss with r = 3, m = 16, N = 10, so 2N > m + r ∴ partially constrained ! Structure (b): Non-simple truss with r = 3, m = 15, N = 10, so 2N > m + r ∴ partially constrained ! Structure (c): Non-simple truss with r = 4, m = 16, N = 10, so N = 2m + r Examine Forces: FHJ = 0, FIJ = P C By inspection of joint J, Then, by inspection of joint H, By inspection of joint I, FFH = 0, FGI = 0, FGH = P C Iy = 0 Although several members carry no load with the given truss loading, they do constrain the motion of GH and IJ. Truss ABFG is a simple truss with r = 3, m = 11, N = 7 (2N = r + m) so the structure is completely constrained, and determinate. ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 71. Structure (a): Structure (b): Structure (c): Simple truss with r = 4, m = 16, n = 10 So m + r = 20 = 2n so completely constrained and determinate ! Compound truss with r = 3, m = 16, n = 10 so So m + r = 19 < 2n = 20 partially constrained ! Non-simple truss with r = 4, m = 12, n = 8 So m + r = 16 = 2n but must examine further, note that reaction forces A x and H x are aligned, so no equilibrium equation will resolve them. Also consider ∴ Statically indeterminate ! For ΣFy = 0: H y = 0, but then ΣM A ≠ 0 in FBD Truss, ∴ Improperly constrained ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 72. Structure (a): Simple truss (start with ABC and add joints alphabetical to complete truss), with r = 4, m = 13, n = 8 r + m = 17 > 2n = 16 so Structure is completely constrained but indeterminate. ! Structure (b): From FBD II: FBD I: FBD II: ΣM G = 0 ⇒ Jy ΣFx = 0 ⇒ Fx ΣM A = 0 ⇒ Fy ΣFy = 0 ⇒ Ay ΣFx = 0 ⇒ Ax ΣFy = 0 ⇒ Gy Thus have two simple trusses with all reactions known, so structure is completely constrained and determinate. ! Structure (c): Structure has r = 4, m = 13, n = 9 so r + m = 17 < 2n = 18, structure is partially constrained ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 73. Non-Simple truss with r = 4, m = 12, N = 8, so 2N = r + m, but we must examine further: Structure (a): ΣFx = 0: E x = 0 By symmetry, FBD = FDF and FCD = FDG FBD joint D: Vertical equilibrium cannot be satisfied with FCD = FDG, Improperly constrained ! Structure (b): Non-simple truss with r = 3, m = 10, N = 7, so 2N = m + r ∴ Partially constrained ! Structure (c): Non-simple truss with r = 3, m = 13, N = 8, but we must examine further so 2N = r + m, ΣM A = 0: 3a G y − ( a + 3a + 4a ) P = 0 Gy = Joint H: ΣFy = 0: Joint F: 1 FFH − P = 0 2 FFH = P 2 T ΣFy = 0: FFG − P − 8 P 3 Joint G: ( ) 1 P 2 =0 2 FFG = 2P C Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ΣFy ≠ 0 Improperly constrained ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 74. Structure (a): No. of members m = 12 No. of joints n=8 m + r = 16 = 2n No. of react. comps. r =4 unks = eqns FBD of EH: ΣM H = 0 → FDE ; ΣFx = 0 → FGH ; ΣFy = 0 → H y Then ABCDGF is a simple truss and all forces can be determined. This example is completely constrained and determinate. ! Structure (b): No. of members m = 12 No. of joints n=8 m + r = 15 < 2n = 16 No. of react. comps. r =3 unks < eqns partially constrained ! Note: Quadrilateral DEHG can collapse with joint D moving downward: in (a) the roller at F prevents this action. Structure (c): No. of members m = 13 No. of joints n=8 m + r = 17 > 2n = 16 No. of react. comps. r =4 unks > eqns completely constrained but indeterminate ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 75. Structure (a): Rigid truss with r = 3, m = 14, n = 8 so r + m = 17 > 2n = 16 so completely constrained but indeterminate ! Structure (b): Simple truss (start with ABC and add joints alphabetically), with r = 3, m = 13, n = 8 so r + m = 16 = 2n so completely constrained and determinate ! Structure (c): Simple truss with r = 3, m = 13, n = 8 so r + m = 16 = 2n, but horizontal reactions ( Ax and Dx ) are collinear so cannot be resolved by any equilibrium equation. ∴ structure is improperly constrained ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 76. \ FBD member AE: Ax = 120 lb ΣFx = 0: − Ax + 120 lb = 0, on ABCD ΣM A = 0: A x = 120.0 lb ! (8 in.)( C ) − ( 2 in.)(120 lb ) = 0 C = 30 lb ΣFy = 0: 30 lb − Ay = 0, Ay = 30 lb A y = 30.0 lb ! on ABCD FBD member ABCD: ΣFx = 0: 120 lb − Bx = 0, ΣM B = 0: B x = 120.0 lb ! ( 6 in.) D − ( 4 in.)( 30 lb ) − ( 4 in.)( 30 lb ) − ( 2 in.)(120 lb ) = 0 D = 80.0 lb ! ΣFy = 0: 30 lb − By − 30 lb + 80 lb = 0 B y = 80.0 lb ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 77. FBD member ABC: Note that BD is a two-force member (a) ΣΜ C = 0: (16 in.) 4 FBD − ( 24 in.)( 80 lb ) = 0 5 FBD = 150 lb, (b) ΣFy = 0: ΣFx = 0: Cy − Cx − FBD = 150.0 lb 3 (150 lb ) = 0, 5 C y = 90 lb 4 (150 lb ) + 80 lb = 0, 5 Cx = 40 lb C = 98.5 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 36.9° 66.0° COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 78. FBD Frame: ΣM A = 0: ( 0.25 m ) Dx − ( 0.95 m )( 480 N ) = 0 D x = 1824 N FBD member DF: Note that BE is a two-force member, Ex = Ey ΣFx = 0: −1824 N + Ex = 0, E x = 1824 N so ΣM D = 0: E y = 1824 N ( 0.50 m )(1824 N ) − ( 0.75 m ) C + ( 0.95 m )( 480 N ) = 0 C = 1824 N ΣFy = 0: − D y + 1824 N − 1824 N + 480 N = 0 D y = 480 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 79. FBD Frame: ΣM A = 0: ( 0.25 m ) Dx − 400 N ⋅ m = 0 D x = 1600 N E x = 1600 N ∴ E y = 1600 N FBD member DF: Note BE is a two-force member, so Ex = Ey ΣFx = 0: 1600 N − E x = 0, ΣM D = 0: − ( 0.50 m )(1600 N ) + ( 0.75 m ) C − 400 N ⋅ m = 0 C = 1600 N ΣFy = 0: Dy − 1600 N + 1600 N = 0 Dy = 0 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 80. FBD Ring: (a) ΣM A = 0: (8 in.) ( FBC cos 35° ) − (8 in.)( 6 lb ) = 0 FBC = 7.3246 lb, (b) ΣFx = 0: FBC = 7.32 lb C Ax − ( 7.3246 lb ) cos 35° = 0 Ax = 6 lb ΣFy = 0: Ay + ( 7.3246 lb ) sin 35° − 6 lb = 0 Ay = 1.79876 lb A = 6.26 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 16.69° COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 81. FBD Ring: (a) FBC = (b) (8 in.) ( FBC cos 20° − 6 lb ) = 0 ΣM A = 0: 6 lb , cos 20° ΣFx = 0: ΣFy = 0: FBC = 6.39 lb C Ax − Ay − 6 lb cos 20° = 0, cos 20° Ax = 6 lb 6 sin 20° − 6 lb = 0, cos 20° Ay = 8.1838 lb A = 10.15 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 53.8° COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 82. FBD Frame: ΣM A = 0: 2 180 N = 0 2 ( 0.2 m ) Bx − ( 0.36 m ) Bx = 162 2 N, B x = 229 N 2 (180 N ) = 0 2 ΣFx = 0: −162 2 N + Ax − Ax = 252 2 N, ΣFy = 0: By − A x = 356 N 2 (180 N ) = 0 2 B y = 127.3 N B y = 90 2 N, FBD member ABD: ΣM C = 0: ( 0.20 m ) ( 252 ) ( 2 N − ( 0.08 m ) 90 2 N − ( 0.20 m ) D = 0, ) D = 216 2 N D = 305 N ΣFx = 0: 252 2 N − 162 2 N − C x = 0 Cx = 90 2 N, C x = 127.3 N ΣFy = 0: 90 2 N + C y − 216 2 N = 0 C y = 126 2 N, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. C y = 178.2 N COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 83. FBD Frame: ΣM B = 0: ( 0.2 m ) Ax − 60 N ⋅ m = 0 A x = 300 N ΣFx = 0: 300 N − Bx = 0, B x = 300 N ΣFy = 0: By = 0, By = 0 FBD member ABD: ΣM C = 0: ( 0.20 m )( 300 N ) − ( 0.20 m ) Dy =0 D y = 300 N ΣFy = 0: C y − 300 N = 0 ΣFx = 0: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. C y = 300 N Cx = 0 COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 84. (a) FBD AC: Note: CE is a two-force member ΣM A = 0: FCE FCE + ( 2 in.) − ( 6 in.)( 24 lb ) = 0 2 2 (8 in.) FCE = 14.4 2 lb, so E x = 14.40 lb E y = 14.40 lb ΣFx = 0: − Ax + 14.4 lb = 0 A x = 14.40 lb ΣFy = 0: Ay − 24 lb + 14.40 lb = 0 A y = 9.60 lb (b) FBD CE: ! ! ! ! Note AC is a two-force member ΣM E = 0: 1 4 FAC + FAC − (1 in.)( 24 lb ) = 0 17 17 ( 3 in.) FAC = 1.6 17 lb, A x = 6.40 lb A y = 1.600 lb ( ) ( ) ΣFx = 0: E x − 4 1.6 17 lb = 0, 17 ΣFy = 0: 1 1.6 17 lb − 24 lb = 0 17 Ey + E x = 6.40 lb E y = 22.4 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ! ! ! ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 85. (a) FBD AC: Note: CE is a two-force member ΣM A = 0: 1 1 FCE + FCE − ( 0.3 m )( 320 lb ) 2 2 ( 0.4 m ) E x = 120.0 N FCE = 120 2 N, E y = 120.0 N (b) FBD CE: ( ) 1 120 2 N = 0, 2 ΣFx = 0: − Ax + ΣFy = 0: Ay − 320 N + ( A x = 120.0 N ) 1 120 2 N = 0 2 A y = 200 N ! ! ! ! Note: AC is a two-force member ΣM E = 0: 1 1 FAC + FAC − ( 0.15 m )( 320 N ) = 0 2 2 ( 0.25 m ) FAC = 96 2 N, A x = 96.0 N A y = 96.0 N ΣFx = 0: Ex − 96.0 N = 0 ΣFy = 0: E y − 320 N + 96.0 N = 0 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. E x = 96.0 N E y = 224 N ! ! ! ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 86. (a) FBD AC: Note: CE is a two-force member ΣM A = 0: 1 1 − ( 8 in.) FCE − ( 2 in.) FCE + 192 lb ⋅ in. = 0 2 2 E x = 19.20 lb FCE = 19.2 2 lb, E y = 19.20 lb (b) FBD CE: ΣFx = 0: Ax − 19.2 lb = 0, ΣFy = 0: Ay − 19.2 lb = 0, A x = 19.20 lb A y = 19.20 lb ! ! ! ! Note: AC is a two-force member ΣM E = 0: 4 1 FAE + FAE + 192 lb ⋅ in. = 0 17 17 ( 3 in.) FAE = −12.8 17 lb, Ax = 4 FAE , 17 Ay = 1 FAE , 17 ΣFx = 0: Ex − 51.2 lb = 0, ΣFy = 0: E y − 12.80 lb = 0, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. A x = 51.2 lb A y = 12.80 lb E x = 51.2 lb E y = 12.80 lb ! ! ! ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 87. (a) FBD AC: Note: CE is a two-force member ΣM A = 0: 2 FCE = 0, 120 N ⋅ m − ( 0.4 m ) 2 FCE = 150 2 N E x = 150.0 N E y = 150.0 N (b) FBD CE: ΣFx = 0: Ax − 150.0 N = 0, ΣFy = 0: Ay − 150.0 N = 0, A x = 150.0 N A y = 150.0 N ! ! ! ! Note: AC is a two-force member 2 ΣM E = 0: − ( 0.25 m ) FAC + 120 N ⋅ m = 0 2 FAC = 240 2 N, A x = 240 N A y = 240 N ΣFx = 0: 240 N − Ex = 0, ΣFy = 0: E y − 240 N = 0, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. E x = 240 N E y = 240 N ! ! ! ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 88. FBD Frame: Note: In analysis of entire frame, location of M is immaterial. Note also that AB, BC, and FG are two force members. ΣM H = 0: ( 6 ft ) I y − 180 lb ⋅ ft = 0, ΣFy = 0: 30 lb − 5 FAB = 0, 13 ΣM C = 0: ( 2.5 ft ) I y = 30.0 lb ! (a) FBD AI: 12 78 lb − FFG = 0, 13 ΣFx = 0: FBC − 12 78 lb − 72 lb = 0, 13 FAB = 78.0 lb 22.6° ! FGH = 72.0 lb ! FBC = 144.0 lb ! (b) FBD AI: FAB = 78.0 lb As above, ΣFy = 0 yields Then: 12 ΣM C = 0: ( 2.5 ft ) 78.0 lb − FFG − 180 lb ⋅ ft = 0 13 22.6° ! FFG = 0 ! ΣFx = 0: FBC − 12 ( 78.0 lb ) = 0, 13 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FBC = 72.0 lb ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 89. (a) FBD ACF: Note: BC is a two-force member ΣM F = 0: 1 FBC = 0, 26 ( 0.1 m )(120 N ) − ( 0.3 m ) B x = 200 N FBC = 40 26 N, B y = 40.0 N ΣFx = 0: (b) FBD BCE: ΣFy = 0: ( ) 5 40 26 N − Fx = 0, 26 ( Fx = 200 N ) 1 40 26 N = 0, 26 Fy − 120 N − Fy = 160.0 N ! ! ! ! Note ACF is a two-force member ΣM B = 0: 1 FCF = 0, 5 ( 0.4 m )(120 N ) − ( 0.3 m ) FCF = 160 5 N, Fx = 320 N Fy = 160.0 N ΣFx = 0: Bx − ΣFy = 0: ( ( ) 2 160 5 N = 0, 5 B x = 320 N ! ! ! ) 1 160 5 N − 120 N − B y = 0 5 B y = 40.0 N ! (c) Moving the 120 N force from D to E does not affect the reactions. The answers are the same as in part (b). ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 90. (a) FBD AF: Note: BC is a two-force member ΣM F = 0: 1 FBC − 48 N ⋅ m = 0, 26 ( 0.3 m ) FBC = 160 26 N so B x = 800 N B y = 160.0 N (b & c) FBD BCE: ΣFx = 0: Fx − 800 N = 0, ΣFy = 0: − Fy + 160 N = 0, Fx = 800 N Fy = 160.0 N ! ! ! ! Note: ACF is a two-force member, and that the application point of the couple is immaterial. ΣM B = 0: 1 FCF − 48 N ⋅ m = 0 5 ( 0.3 m ) FCF = 160 5 N, Fx = 320 N Fy = 160.0 N ΣFx = 0: 320 N − Bx = 0, ΣFy = 0: −160 N + By = 0, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. B x = 320 N B y = 160.0 N ! ! ! ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 91. \ First note that, when a cable or cord passes over a frictionless, motionless pulley, the tension is unchanged. ΣM C = 0: rT1 − rT2 = 0 (a) Replace each force with an equivalent force-couple. (b) Cut cable and replace forces on pulley with equivalent pair of forces at A as above. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. T1 = T2 COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 92. FBD Pipe 2: ΣFx′ = 0: NG − 3 ( 220 lb ) = 0, 5 NG = 132 lb ΣFy′ = 0: ND − 4 ( 220 lb ) = 0, 5 N D = 176 lb FBD Pipe 1: θ = 90° − 2 tan −1 ΣFx′ = 0: 3 = 16.2602° 4 N F cos (16.2602° ) − 132 lb − 3 ( 220 lb ) = 0 5 N F = 275.00 lb ΣFy′ = 0: N C + ( 275 lb ) cos (16.2602° ) − 4 ( 220 lb ) = 0 5 NC = 99.00 lb FBD Frame & Pipes: ΣM A = 0: 4 5 ( 48 in.) E y − 24 in. + 24 in. + (10 in.) (220 lb) = 0 E y = 256 ΣFy = 0: ΣFx = 0: 2 lb, 3 Ay − 2 ( 220 lb ) + 256 Ay = 183 1 lb 3 Ax − E x = 0, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. E y = 257 lb A y = 183.3 lb 2 lb = 0 3 Ax = E x COSMOS: Complete Online Solutions Manual Organization System FBD BE: ΣM B = 0: ( 24 in.) 256 2 15 lb − (18 in.) E x + in. ( 275 lb ) = 0 3 4 E x = 399.5 lb, E x = 400 lb From above, A x = 400 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 93. FBD Pipe 2: FBD Pipe 1: ΣFx' = 0: NG − 3 ( 220 lb ) = 0, 5 NG = 132 lb ΣFy′ = 0: ND − 4 ( 220 lb ) = 0, 5 N D = 176 lb ΣFx′ = 0: ΣFy′ = 0: ΣM B = 0: FBD BE: NF − NC − 3 ( 220 lb ) − 132 lb = 0, 5 4 ( 220 lb ) = 0, 5 N F = 264 lb NC = 176 lb ( 24 in.) E y − ( 32 in.) Ex + ( 5 in.) ( 264 lb ) = 0 4Ex − 3E y = 165 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (1) COSMOS: Complete Online Solutions Manual Organization System FBD Frame with Pipes: ΣM A = 0: ( 48 in.) E y − (14 in.) Ex + ( 5 in.) ( 264 lb ) − ( 35 in. + 45 in.) (176 lb ) = 0 (2) solving with (1) above: E y = 355 ΣFx = 0: 2 lb, 3 Ax − 308 lb − E y = 356 lb 4 3 ( 264 lb ) + ⋅ 2 (176 lb ) = 0 5 5 A x = 308 lb ΣFy = 0: Ay + 355 ! ! 2 3 4 lb − ( 264 lb ) − ⋅ 2 (176 lb ) = 0 3 5 5 A y = 84.3 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 94. FBD AC: ΣM c = 0: ( 0.6 m ) Ax − ( 0.06 m )(170 N ) = 0, A x = 17.00 N ΣFx = 0: FBD CE: ΣFx = 0: −17 N + 133 N − 15 (170 N ) − Cx = 0, 17 Cx = 133 N 15 (170 N ) + Ex = 0, 17 E x = 17.00 N ΣM C = 0: ( 0.48 m )(17.00 N ) + ( 0.90 m ) E y − ( 0.45 m ) (170 N ) = 0, E y = 75.9 N FBD Frame: ΣFy = 0: Ay − 170 N + 75.9 N = 0, A y = 94.1 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 95. FBD Frame & pulley: ΣM B = 0: ( 0.6 m ) Ay − ( 0.075 m )( 240 N ) = 0, A y = 30.0 N ΣFy = 0: − 30.0 N + By − 240 N = 0, B y = 270 N ΣFx = 0: FBD AD: ΣM D = 0: − Ax + Bx = 0, Ax = Bx ( 0.200 m ) Ax − ( 0.075 m ) ( 240 N ) + ( 0.30 m ) ( 30 N ) = 0 A x = 45.0 N From above Ax = Bx , Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. B x = 45.0 N COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 96. (a) FBD Entire machine: ΣM A = 0: ( 95 in.) (16 kips) − ( 35 in.)(18 kips ) + (145 in.) ( 2B ) − (170 in.) ( 50 kips ) = 0, B = 26.241 kips ΣFy = 0: B = 26.2 kips −16 kips + 2 A − 18 kips + 2 ( 26.241 kips ) − 50 kips = 0, A = 15.76 kips (b) FBD Motor unit: ΣM D = 0: ( 30 in.) Cx + (85 in.)( 52.482 kips ) − (110 in.)( 50 kips ) = 0 Cx = 34.634 kips, C x = 34.6 kips ΣFx = 0: Dx − 34.634 kips = 0, D x = 34.6 kips ΣFy = 0: 52.482 kips − 50 kips − Dy = 0, D y = 2.48 kips Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 97. (a) FBD Entire Machine: (145 in.) (2B) − ( 35 in.)(18 kips ) ΣM A = 0: − (170 in.)( 50 kips ) = 0 2B = 62.966 kips, ΣFy = 0: B = 31.5 kips ! 2 A + 62.966 kips − 18 kips − 50 kips = 0 2 A = 5.034 kips, A = 2.52 kips ! where A and B are single wheel forces (b) ΣM D = 0: FBD Motor unit: (85 in.)( 62.966 kips ) − (110 in.)( 50 kips ) + (30 in.) Cx = 0, Cx = 4.9297 kips C x = 4.93 kips ΣFy = 0: − Dy − 50 kips + 62.966 kips = 0 D y = 12.97 kips ΣFx = 0: ! ! Dx − C x = 0, Dx = Cx , D x = 4.93 kips Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 98. FBD Frame: ( 0.625 m ) F − ( 0.75 m )( 4 kN ) − (1.25 m )( 3 kN ) = 0 ΣM A = 0: Fx = 10.8 kN ΣFx = 0: Ax − 10.8 kN = 0, ΣFy = 0: Ay − 4 kN − 3 kN = 0, FBD BF: (I) A x = 10.80 kN A y = 7.00 kN FBD ABD: (II) I: ΣM C = 0: ( 0.375 m )(10.8 kN ) − ( 0.25 m ) Bx = 0, II: ΣM D = 0: ( 0.25 m )(10.8 kN + 16.2 kN ) + ( 0.5 m ) By − (1.00 m )( 7.0 kN ) = 0, Bx = 16.2 kN, By = 0.5 kN, ΣFx = 0: −10.8 kN − 16.20 kN + Dx = 0, Dx = 27 kN, ΣFy = 0: 7.0 kN − 0.5 kN − Dy = 0, Dy = 6.5 kN, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. B x = 16.20 kN B y = 500 N D x = 27.0 kN D y = 6.50 kN COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 99. FBD Frame: ( 0.3 m ) Dx = − ( 0.4 m ) ( 900 N ) = 0, ΣM A = 0: Dx = 1200 N D x = 1.200 kN ΣFx = 0: 1.200 kN − Ax = 0, ΣFy = 0: Ax = 1.200 kN, A x = 1.200 kN Ay − 900 N = 0 A y = 900 N Note: AG is a two-force member. ( 0.2 m ) By − ( 0.4 m ) ( 900 N ) = 0, ΣM A = 0: FBD AC: ΣFy = 0: 900 N + 1800 N − 900 N − ( FAGx = 2400 N, FAG = 3000 N ΣFx = 0: − ΣM E = 0: ΣFx = 0: FBD DF: ΣFy = 0: 3 FAG = 0 5 FAGy = 1800 N 4 ( 3000 N ) − 1200 N + Bx = 0, 5 On GBEH: By = 1800 N G x = 2.40 kN , B x = 3.60 kN , ) Bx = 3600 N G y = 1.800 kN ! B y = 1.800 kN 3 FDH = 0, 5 1200 N − Ex = 0 − ( 0.2 m ) ! FDH = 0 Ex = 1200 N Ey = 0 On GBEH: E x = 1.200 kN H x = 0, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. , Ey = 0 ! Hy = 0 ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 100. FBD Frame: ( 6 in.) Dx − (13.5 in.) ( 48 lb ) − (16.5 in.) ( 20 lb ) = 0 ΣM A = 0: Dx = 163 lb ΣFx = 0: − A x + 20 lb + 48 lb + 163 lb = 0 Ax = 231 lb ΣFy = 0: Ay = 0 FBD DE: ΣM E = 0: (19.5 in.)(163 lb ) − ( 6 in.) Bx = 0 Bx = 529.75 lb ΣM C = 0: ( 4.5 in.) By − ( 7.5 in.)( 231 lb ) = 0, B x = 530 lb On ABC: ΣFx = 0: FBD ABC: ΣFy = 0: On ABC: By = 385 lb , − 231 lb + 529.75 lb − Cx = 0, C y − 385 lb = 0, B y = 385 lb Cx = 298.75 lb C y = 385 lb C x = 299 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. , C y = 385 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 101. FBD Frame: ΣM E = 0: ( 6 in.)(84 lb ) − ( 42 in.) Ay = 0 Ay = 12.00 lb FBD CF: (I) I: II: II: ΣM D = 0: ΣM B = 0: ΣFx = 0: ΣFy = 0: FBD ABC: (II) ( 3.5 in.) Cx + ( 7 in.) C y − ( 5 in.) (84 lb ) = 0, Cx + 2C y = 120 lb (12 in.) C y − ( 3.5 in.) Cx − (12 in.) (12 lb ) = 0, − Bx + 60.632 lb = 0, 12 lb + By + 29.684 lb = 0, 3.5 Cx − 12 C y = 144 lb Solving: Cx = 60.632 lb, C y = 29.684 lb On ABC: C x = 60.6 lb, C y = 29.7 lb Bx = 60.632 lb, By = − 41.684 lb, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. B x = 60.6 lb B y = 41.7 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 102. FBD Stool: w 1 N = ( 56 kg ) 9.81 = 274.68 N 2 2 kg ΣM A = 0: ( 0.350 m ) By − ( 0.150 m )( 274.68 N ) = 0, By = 117.72 N FBD BE: ΣM E = 0: 1 FFG = 0 2 (1.25 m )(117.72 N ) − ( 0.15 m ) FFG = 98.1 2 N ΣFx = 0: ΣFy = 0: Ex − 1 (98.1 2) N = 0, 2 − Ey + E x = 98.1 N 1 (98.1 2 N) + 117.72 N = 0 2 E y = 215.82 N, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. E y = 216 N COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 103. FBD BC: Note that only one of the forces B y , B′y exists. ( ) M C B y or B′y − ( 0.15 m ) ΣM C = 0: 2 FFG = M B or B′y 0.15 m C y ( ( So we seek a maximum of M C By or B′y 1 FFG = 0 2 ) (1) ) ( ) M C ( B′y ) = ( 0.175 m ) B′y M C By = ( 0.125 m ) By where FBD stool: w = ( 56 kg ) ( 9.81 N/kg ) = 549.36 N consider contact at A′, A y = 0, either ΣM A′ = ( 0.425 m ) By − ( 0.225 m ) w =0 2 ( ) M C By = ( 0.03309 m ) w By = 0.26471 w, or ( M A′ ) = ( 0.475 m ) B′y − ( 0.225 m ) (i) w =0 2 ( ) B′y = ( 0.23684 ) w, M C B′y = ( 0.04145 m ) w (ii) consider contact at A, A′y = 0, either ΣM A = 0: ( 0.35 m ) By − ( 0.15 m ) w =0 2 ( ) By = 0.21429 w, M C By = ( 0.02678 m ) w or ΣM A = 0: B′y = 0.1875 w, ( 0.40 m ) B′y − ( 0.15 m ) (iii) w =0 2 ( ) M C B′y = ( 0.03281 m ) w (iv) (a) The maximum is (ii), with contact at A′ and B′, and ! 2 (b) FFG max = ( 0.04145 m ) ( 549.36 N ) = 214.69 N, 0.15 m FFG max = 215 N T ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 104. Members FBDs: I: ΣM A = 0: (12.8 ft ) Bx − ( 32 ft ) By − ( 20 ft )(14 kips ) = 0 II: ΣM C = 0: ( 7.2 ft ) Bx + ( 24 ft ) By − (12 ft )( 21 kips ) = 0 Solving: Bx = 27.5 kips, By = 2.25 kips, I: ΣFx = 0: A x = 27.5 kips ΣFy = 0: Ax − 27.5 kips = 0, Ax = 27.5 kips, (a) ! Ay − 14 kips − 2.25 kips = 0, Ay = 16.25 kips, A y = 16.25 kips (b) B x = 27.5 kips B y = 2.25 kips Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ! ! ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 105. Member FBDs: II: ΣM C = 0: ( 7.2 ft ) Bx − ( 24 ft ) By − (12 ft )(14 kips ) = 0 I: ΣM A = 0: (12.8 ft ) Bx + ( 32 ft ) By − ( 20 ft )( 21 kips ) = 0 Solving: Bx = 28.75 kips, By = 1.675 kips, I: ΣFx = 0: A x = 28.8 kips ΣFy = 0: Ax − 28.75 kips = 0, Ax = 28.75 kips, (a) ! Ay − 21 kips + 1.625 kips, Ay = 19.375 kips , A y = 19.38 kips (b) B x = 28.8 kips B y = 1.625 kips Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ! ! ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 106. \ FBD Frame: ΣM A = 0: (12 in.) Dx − ( 28 in.)( 411 lb ) = 0 D x = 959 lb FBD DF: Note that BF and CE are two-force members. ΣFx = 0: ΣM D = 0: Solving: 959 lb + 4 15 FCE − FBF = 0 5 17 (12 in.) 3 8 FCE + ( 34.5 in.) FBF = 0 5 17 FBF = 357 lb, ΣM E = 01: ( 22.5 in.) ( 357 lb ) − (12 in.) Dy = 0 D y = 315 lb , 8 17 so (a) (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. D = 1009 lb 18.18° FBF = 357 lb T COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 107. FBD Frame: (12 in.) Dx − ( 34.5 in.)( 274 lb ) = 0 ΣM A = 0: Dx = 787.75 lb FBD DF: ΣM D = 0: ΣFx = 0: Solving: ΣM E = 0: (12 in.) 3 8 FCE + ( 34.5 in.) FBF − 274 lb = 0 5 17 787.75 lb + 4 15 FCE − FBF = 0 5 17 FBF = 684.25 lb, ( 22.5 in.) ( 684.25 lb ) − 274 lb − (12 in.) Dy Dy = 90 lb, 8 17 so (a) (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. D = 793 lb =0 6.52° FBF = 684 lb T COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 108. FBD AC: Note that BE is a two force member ΣFy = 0: 1 FBE − P = 0 5 FBE = 5 P ΣΜ Α = 0: 1 5 ( 0.4 m ) ( ) 2 5 P + ( 0.1 m ) 5 ( ) 5P − a P + ( 0.3 m ) C = 0 so ( a − 0.6 m ) P = ( 0.3 m ) C since P > 0 and C ≥ 0, a – 0.6 m ≥ 0 a ≥ 0.6 m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 109. Member FBDs: ΣΜ Α = 0: ( 0.6 m ) 4 4 FCF − ( 0.9 m ) FDG = 0 5 5 4 4 ΣΜ Ε = 0: − ( 0.3 m ) FCF + ( 0.6 m ) FDG − ( 0.9 m )( 800 N ) = 0 5 5 Solving: FCF = 9000 N, FDG = 6000 N FCF = 9.00 kN C FDG = 6.00 kN T Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 110. Member FBDs: 4 FDG = 0 5 ΣM A = 0: ( 0.3 m ) FBF − ( 0.9 m ) ΣM E = 0: 4 − ( 0.3 m ) FBF + ( 0.6 m ) FDG − ( 0.9 m )( 0.8 kN ) = 0 5 Solving: FBE = − 3 kN, FBF = − 7.2 kN so FBF = 7.20 kN T FDG = 3.00 kN C Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 111. Member FBDs: ΣM A = 0: ΣM E = 0: Solving: ( 0.6 m ) 4 4 FCH − ( 0.3 m ) FBG = 0 5 5 4 4 − ( 0.9 m ) FCH + ( 0.6 m ) FBG − ( 0.9 m )( 0.8 kN ) = 0 5 5 FBG = 6 kN, FCH = 3 kN so FBG = 6.00 kN T FCH = 3.00 kN C Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 112. Member FBDs: I: ΣM J = 0: 2a C y + a Cx − a P = 0 Solving: I: II: Cx = II: ΣM K = 0: 2a C y − a C x = 0 P P , Cy = 2 4 ΣFx = 0: 1 FBG − Cx = 0, 2 ΣFy = 0: FAF + ΣFx = 0: Cx − ΣFy = 0: − 1 2 P P − P + = 0, 4 2 2 1 FDG = 0, 2 2 P, 2 FBG = 2C x = FAF = FDG = 2C x = P 1 2 P + FEH = 0, + 4 2 2 FBG = 0.707 P T P , 4 FAF = 0.250 P T 2 P, 2 FDG = 0.707 P T P 4 FEH = 0.250 P C FEH = − Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 113. Note that, if we assume P is applied to BF, each individual member FBD looks like: Fshort = 2Flong = so 2 Fload 3 (by moment equations about S and L). Labeling each interaction force with the letter corresponding to the joint of application, we have: F = 2(P + E) 3 = 2B C D = 3 2 B A C = = 3 2 E = so 2(P + E) = 2 B = 6C = 18E 3 P + E = 27 E P 26 E= so D = 2E = A = 2C = 3E F = 2 P P + 3 26 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. A= F= P 13 3P 13 9P 13 COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 114. Note that, if we assume P is applied to EG, each individual member FBD looks like so 2Fleft = 2 Fright = Fmiddle Labeling each interaction force with the letter corresponding to the joint of its application, we see that B = 2 A = 2F C = 2B = 2D G = 2C = 2H P + F = 2G ( = 4C = 8B = 16 F ) = 2E From P + F = 16 F , F = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. P 15 so A = P 15 D= 2P 15 H= 4P 15 E= 8P 15 COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 115. (a) Member FBDs: FBD II: ΣFy = 0: FBD I: ΣM A = 0: By = 0 ΣM B = 0: aF2 = 0 aF2 − 2aP = 0 F2 = 0 but F2 = 0 so P = 0 not rigid for P ≠ 0 ! (b) Member FBDs: ( ) Note: 7 unknowns Ax , Ay , Bx , By , F1, F2 , C but only 6 independent equations. System is statically indeterminate ! System is, however, rigid ! (c) FBD whole: FBD right: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System FBD I: ΣM A = 0: 5aBy − 2aP = 0 ΣFy = 0: Ay − P + FBD II: FBD I: ΣM c = 0: 2 P=0 5 By = Ay = a 5a Bx − By = 0 2 2 ΣFx = 0: Ax + Bx = 0 2 P 5 3 P 5 Bx = 5By Ax = − Bx B x = 2P A x = 2P A = 2.09P 16.70° ! B = 2.04P 11.31° ! System is rigid ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 116. Note: In all three cases, the right member has only three forces acting, two of which are parallel. Thus the third force, at B, must be parallel to the link forces. (a) FBD whole: ΣM A = 0: − 2aP − a 4 1 B + 5a B=0 4 17 17 4 B=0 17 ΣFx = 0: Ax − ΣFy = 0: Ay − P + 1 B=0 17 B = 2.06 P B = 2.06P 14.04° ! A = 2.06P 14.04° ! A x = 2P Ay = P 2 rigid ! (b) FBD whole: Since B passes through A, ΣM A = 2aP = 0 only if P = 0 ∴ no equilibrium if P ≠ 0 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. not rigid ! COSMOS: Complete Online Solutions Manual Organization System (c) FBD whole: ΣM A = 0: 5a 1 3a 4 B+ B − 2aP = 0 4 17 17 ΣFx = 0: Ax + 4 B=0 17 ΣFy = 0: Ay − P + 1 B=0 17 B= 17 P 4 B = 1.031P 14.04° ! A = 1.250P 36.9° ! Ax = − P Ay = P − P 3P = 4 4 System is rigid ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 117. (a) Member FBDs: FBD I: ΣM A = 0: aF1 − 2aP = 0 FBD II: ΣM B = 0: − aF2 = 0 F1 = 2P; ΣFy = 0: Ay − P = 0 F2 = 0 ΣFx = 0: Bx + F1 = 0, Bx = − F1 = −2P B x = 2P ΣFy = 0: By = 0 FBD I: Ay = P ΣFx = 0: − Ax − F1 + F2 = 0 Ax = F2 − F1 = 0 − 2P so B = 2P ! A x = 2P so A = 2.24P 26.6° ! Frame is rigid ! (b) FBD left: FBD I: FBD II: FBD whole: ΣM E = 0: a a 5a P + Ax − Ay = 0 2 2 2 ΣM B = 0: 3aP + aAx − 5aAy = 0 Ax − 5 Ay = − P Ax − 5 Ay = −3P This is impossible unless P = 0 ∴ not rigid ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System (c) Member FBDs: FBD I: ΣFy = 0: A − P = 0 FBD II: ΣM D = 0: aF1 − 2aA = 0 F1 = 2 P ΣFx = 0: F2 − F1 = 0 F2 = 2 P ΣM B = 0: 2aC − aF1 = 0 C = ΣFx = 0: F1 − F2 + Bx = 0 ΣFx = 0: By + C = 0 F1 = P 2 A= P ! C= P ! Bx = P − P = 0 By = −C = − P B= P ! Frame is rigid ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 118. FBD ABC: ΣM C = 0: 0.045 m + ( 0.30 m ) sin 30° ( 400 N ) sin 30° + 0.030 m + ( 0.30 m ) cos 30° ( 400 N ) cos 30° 12 5 − ( 0.03 m ) FBD − ( 0.045 m ) FBD = 0 13 13 FBD = 3097.64 N ΣFx = 0: 5 ( 3097.64 N ) − ( 400 N ) sin 30° − Cx = 0 13 C x = 991.39 N ΣFy = 0: 12 ( 3097.64 N ) − ( 400 N ) cos 30° − C y = 0 13 C y = 2512.9 N FBD Blade: (a) Vertical component at D = 12 ( 3097.64 N ) 13 = 2.86 kN (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. C = 2.70 kN 68.5° COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 119. FBD Blade: ΣFy = 0: FBD ABC: ΣM C = 0: 3 kN − 12 FBD = 0: FBD = 3.25 kN C 13 0.045 m + ( 0.3 m ) sin 30° P sin 30° + 0.030 m + ( 0.3 m ) cos 30° P cos 30° − ( 0.045 m ) − ( 0.03 m ) 5 ( 3.25 kN ) 13 12 ( 3.25 kN ) = 0 13 P = 0.41968 kN so ΣFx = 0: P = 420 N (a) − ( 0.41968 kN ) sin 30° + 5 ( 3.25 kN ) − Cx = 0 13 C x = 1.04016 kN ΣFy = 0: − ( 0.41968 kN ) cos30° + 12 ( 3.25 kN ) − C y = 0 13 C y = 2.6365 kN so (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. C = 2.83 kN 68.5° COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 120. FBD Stamp D: ΣFy = 0: E − FBD cos 20° = 0, ΣM A = 0: FBD ABC: E = FBD cos 20° ( 0.2 m )( sin 30°)( FBD cos 20°) + ( 0.2 m )( cos 30° )( FBD sin 20° ) − ( 0.2 m ) sin 30° + ( 0.4 m ) cos15° ( 250 N ) = 0 FBD = 793.64 N C and, from above, E = ( 793.64 N ) cos 20° E = 746 N (a) ΣFx = 0: ! Ax − ( 793.64 N ) sin 20° = 0 A x = 271.44 N ΣFy = 0: Ay + ( 793.64 N ) cos 20° − 250 N = 0 A y = 495.78 N so (b ) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. A = 565 N 61.3° ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 121. \ FBD Stamp D: ΣFy = 0: 900 N − FBD cos 20° = 0, FBD = 957.76 N C (a) FBD ABC: ΣM A = 0: ( 0.2 m )( sin 30° ) ( 957.76 N ) cos 20° + ( 0.2 m )( cos 30° ) ( 957.76 N ) sin 20° − ( 0.2 m ) sin 30° + ( 0.4 m ) cos15° P = 0 P = 301.70 N, P = 302 N (b) ΣFx = 0: Ax − ( 957.76 N ) sin 20° = 0 A x = 327.57 N ΣFy = 0: − Ay + ( 957.76 N ) cos 20° − 301.70 N = 0 A y = 598.30 N so Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. A = 682 N 61.3° COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 122. FBD ABC: ( 45 mm ) sin 25° − 10 mm θ = sin −1 ΣM C = 0: 100 mm = 5.1739° ( 70 mm )(110 N ) − ( 45 mm ) sin 25° FBD cos 5.1739° + ( 45 mm ) cos 25° FBD sin 5.1739° = 0 FBD = 504.50 N ΣFx = 0: ( 504.50 N ) cos 5.1739° − (110 N ) sin 25° − Cx = 0, Cx = 455.96 N FBD CE: ΣFx = 0: 455.96 N − Q = 0 Q = 455.96 N, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (a) Q = 456 N (b) FBD = 540 N T COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 123. Member FBDs: θ = tan −1 = tan −1 ( BC + CD ) sin 60° AF + ( AB + BC − CD ) cos 60° ( 2.5 in. + 1 in.) sin 60° 4.5 in. + (1.5 in. + 2.5 in. − 1 in.) cos 60° θ = 26.802° From FBD CDE: ΣM C = 0: ( 7.5 in.)( 20 lb ) − (1 in.) FDF cos ( 30° − 26.802°) = 0, FDF = 150.234 lb C ΣFx = 0: (150.234 lb ) cos ( 26.802°) − ( 20 lb ) sin 60° − Cx = 0, Cx = 116.774 lb ΣFy = 0: (150.234 lb ) sin 26.802° − ( 20 lb ) cos 60° − C y =0 C y = 57.742 lb From FBD ABC: ΣM A = 0: (1.5 in.) sin 60° Bx + (1.5 in.) cos 60° By − ( 4 in.) sin 60° (116.774 lb ) + ( 4 in.) cos 60° ( 57.742 lb ) = 0, 3 Bx + By = 385.37 lb continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (1) COSMOS: Complete Online Solutions Manual Organization System From FBD BFG: ΣM G = 0: − (1.5 in.) (150.234 lb ) sin 26.802° + (1.5 in.) cos 30° (150.234 lb ) cos 26.802° − (1.5 in.) cos 30° Bx − 6 in. + (1.5 in.) sin 30° B y = 0, Bx = 243.32 lb, Solving (1) and (2): ΣFx = 0: ΣFy = 0: 3Bx − 9 B y = 96.775 lb By = − 36.075 lb 243.32 lb − (150.234 lb ) cos 26.802° − Gx = 0, G x = 109.226 lb G y = 31.667 lb G y − (150.234 lb ) sin 26.802° + 36.075 lb = 0, On G, G = 113.7 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 16.17° ! (2) COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 124. Member FBDs: θ = tan −1 = tan −1 ( BC + CD ) sin 60° AF + AB cos 75° + ( BC − CD ) cos 60° ( 2.5 in. + 1 in.) sin 60° 4.5 in. + (1.5 in.) cos 75° + ( 2.5 in. − 1 in.) cos 60° θ = 28.262° From FBD CDE: ΣM C = 0: ( 7.5 in.)( 20 lb ) − (1 in.) FDF cos ( 30° − 28.262°) = 0 FDF = 150.069 lb ΣFx = 0: (150.069 lb ) cos 28.262° − ( 20 lb ) sin 60° − Cx = 0 Cx = 114.859 lb ΣFy = 0: (150.069 lb ) sin 28.262° − ( 20 lb ) cos 60° − C y =0 C y = 61.058 lb From FBD ABC: ΣM A = 0: (1.5 in.) sin 75° Bx − (1.5 in.) cos 75° By − (1.5 in.) sin 75° + ( 2.5 in.) sin 60° (114.859 lb ) + (1.5 in.) cos 75° + ( 2.5 in.) cos 60° ( 61.058 lb ) = 0 or 1.44889 Bx − 0.38823 B y = 315.07 lb (1) continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System From FBD BFG: ΣM G = 0: − (1.5 in.) (150.069 lb ) sin 28.262° + (1.5 in.) cos15° (150.069 lb ) cos 28.262° − (1.5 in.) cos15° Bx + ( 6 in.) + (1.5 in.) sin15° B y = 0 or 1.44889 Bx − 6.3882 B y = 84.926 lb Solving (1) and (2): Bx = 227.74 lb, (2) By = 38.358 lb ΣFx = 0: 227.74 lb − (150.069 lb ) cos 28.262° − Gx = 0, G x = 95.560 lb ΣFy = 0: G y − (150.069 lb ) sin 28.262° + 38.358 lb = 0, G y = 32.700 lb So force on G is Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. G = 101.8 lb 18.89° ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 125. FBD Piston: ΣFy = 0: 180 lb − FCE cos 20° = 0, FCE = 191.552 lb C FBD Joint C: FBC 191.552° = sin 40° sin 40° FBC = 191.552 lb FBD AB: ΣM A = 0: ( 6 in.)(191.552 lb ) cos 30° − M =0 M = 995 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 126. FBD AB: ΣM A = 0: ( 6 in.) FBC cos 30° − 660 lb ⋅ in. = 0, FBC = 127.017 lb T FBD Piston: 180 lb C cos φ ΣFy = 0: 180 lb − FCE cos φ = 0, FCE = ΣFy = 0: 180 lb cos φ + (127.017 lb ) sin 30° cos φ − FCD cos φ = 0, FBD Joint C: FCD cos φ = 243.51 lb ΣFx = 0: (1) (127.017 lb ) cos30° − 180 lb sin φ − FCD sin φ = 0 cos φ FCD sin φ = 110.000 lb − (180 lb ) tan φ divide (2) by (1) (2) tan φ = 0.45173 − 0.73919 tan φ tan φ = 0.25974, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. φ = 14.56° COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 127. (a) FBD E: ΣFx = 0: FDE cos α −160 N = 0, where α = tan −1 FBD Joint D: β = tan −1 FDE = 160 N cosα 38.8 mm = 22.823°, so FDE = 173.59 N C 92.2 mm 37.5 mm − 18.8 mm = 25.732° 38.8 mm FCD cos ( 45° − 25.732° ) ΣFx = 0: − (173.59 N ) cos ( 25.732° + 22.823° ) = 0 FCD = 121.717 N C FBD BC: ΣM B = 0: ( 0.045 m )(121.717 N ) sin 45° − M M = 3.873 N ⋅ m, = 0, M = 3.87 N ⋅ m (b) FBD E: ΣFx = 0: FDE cos α −160 N = 0, where α = tan −1 FDE = 160 N cos α 20 mm + 35.4 mm − 26.4 mm = 16.8584° 92.2 mm + 27.8 mm − 24.3 mm so FDE = 167.185 N C continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ! COSMOS: Complete Online Solutions Manual Organization System FBD Joint D: β = tan −1 27.8 mm − 24.3 mm = 7.5520° 26.4 mm γ = tan −1 20 mm + 35.4 mm − 26.4 mm = 42.363° 24.3 mm + 7.5 mm ΣFy′ = 0: (167.185 N ) sin (16.8584° + 42.363°) − FCD sin ( 90° − 7.5520° − 42.363° ) = 0, FCD = 223.07 N C FBD BC: δ = tan −1 35.4 mm = 51.857° 27.8 mm ΣM B = 0: M − ( 0.045 m )( 223.07 N ) sin ( 90° − 51.857° − 7.5520° ) = 0 M = 5.12 N ⋅ m ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 128. (a) FBD BC: ( 0.045 m ) FCD sin 45° − 6.00 N ⋅ m = 0 ΣM B = 0: FCD = 188.562 N C FBD Joint D: α = tan −1 38.8 mm = 22.823° 92.2 mm β = tan −1 37.5 mm − 18.8 mm = 25.732° 38.8 mm ΣFx′ = 0: (188.562 N ) cos ( 45° − 25.732°) − FDE cos ( 22.823° + 25.732° ) = 0, FDE = 268.92 N C FBD E: ( 268.92 N ) cos ( 22.823°) − P = 0, ΣFx = 0: P = 248 N (b) FBD BC: δ = tan −1 35.4 mm = 51.857° 27.8 mm β = tan −1 27.8 mm − 24.3 mm = 7.5520° 26.4 mm ΣM B = 0: ! ( 0.045 m ) FCD sin ( 90° − 51.857° − 7.5510°) − 6.00 N ⋅ m = 0 FCD = 262.00 N C continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System FBD Joint D: β = 7.5520°, α = tan −1 γ = tan −1 20 mm + 35.4 mm − 26.4 mm = 42.363° 24.3 mm + 7.5 mm 20 mm + 35.4 mm − 26.4 mm = 16.8584° 92.2 mm + 27.8 mm − 24.3 mm ΣFy′ = 0: FDE sin (16.8584° + 42.363° ) − ( 262.00 N ) sin ( 90° − 7.5520° − 42.363° ) = 0, FDE = 196.366 N C FBD E: ΣFx = 0: (196.366 N )( cos16.8584°) − P = 0, P = 187.9 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 129. Member FBDs: BCD: AB: ΣFy = 0: By = 0 ΣM C = 0: ( 0.128 m ) Bx − ( 0.10 m )(80 N ) = 0, ΣM A = 0: (0.15 m) ( 62.5 N ) − M = 0, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Bx = 62.5 N M = 9.38 N ⋅ m ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 130. FBD BCD: d = 0.24 m ΣFy = 0: 0.100 m = 0.1875 m 0.128 m (80 N ) sin 45° − By =0 By = 40 2 N ΣM C = 0: ( 0.100 m )(80 N ) cos 45° + ( 0.1875 m )( 80 N ) sin 45° ( + ( 0.24 m ) 40 2 N ) − ( 0.128 m ) Bx = 0 Bx = 233.13 N FBD AB: ΣM A = 0: ( 0.2 m ) ( 40 ) 2 N − ( 0.15 m )( 233.13 N ) = 0 M = 46.3 N ⋅ m. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 131. FBD BD: θ = 90° − 25° = 65° ΣM B = 0: 2 ( 0.2 m ) cos 25° D sin 65° −15 N ⋅ m = 0 D = 45.654 N FBD AC: ΣM A = 0: M A = ( 0.2 m )( 45.654 N ) = 0 M A = 9.13 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 132. FBD BD: ΣM B = 0: 2 ( 0.2 m ) cos 25° C −15 N ⋅ m = 0 C = 41.377 N FBD AC: ΣM A = 0: M A − ( 0.2 m )( 41.377 N ) sin 65° = 0 M A = 7.50 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 133. FBD Member CD: Noting that B is Perpendicular to CD, ΣFx′ = 0: Dy sin 30° − ( 80 lb ) cos 30° = 0, D y = 138.564 lb FBD Machine: ΣM A = 0: 10 in. (138.564 lb ) − M = 0, sin 30° M = 2771.3 lb ⋅ in. M = 2.77 kip ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 134. FBD CD: Since B is ⊥ to CD ΣFx′ = 0: Dy sin 30° − ( 80 lb ) cos 30° = 0 D y = 138.564 lb FBD Whole: a = 10 in. − ( 8 in.) cos 30° = 3.07180 in. b= a = 5.32051 in. tan 30° d = b − 4 in. = 1.32051 in. ΣM A = 0: (10 in.)(80 lb ) + (1.32051 in.)(138.564 lb ) − M =0 M = 983 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 135. FBD ABD: First note, by inspection, that P = W = 250 lb. Note: that BC is a two-force member ΣM D = 0: ( 5 in.) 3 1 FBC + ( 3 in.) FBC − ( 9 in.)( 250 lb ) = 0 10 10 FBC = 125 10 lb T ΣFx = 0: Dx − ( ) 3 125 10 lb = 0 10 D x = 375 lb ΣFy = 0: 250 lb − ( ) 1 125 10 lb − Dy = 0 10 D y = 125 lb (note, that Dy = 125 lb is evident by symmetry of the barrel) so D = 395 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 18.43° COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 136. \ FBD whole: By symmetry A = B = 22.5 kN FBD ADF: ΣM F = 0: ( 75 mm ) CD − (100 mm )( 22.5 kN ) = 0 CD = 30 kN ΣFx = 0: ΣFy = 0: Fx − CD = 0 22.5 kN − Fy = 0 Fx = CD = 30 kN Fy = 22.5 kN so F = 37.5 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 36.9° COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 137. FBD Joint A: TB TC 2.1 kN = = 17 17 30 TB = TC = 1.19 kN FBD BF and CF w/cables to A: By symmetry Ex = Fx = 1.05 kN and E y = Fy FBD Machine: By symmetry H x = I x = 1.05 kN and H y = I y ΣM D = 0: FBD BF: ( 0.075 m ) Fy − ( 0.08 m ) (1.05 kN ) 15 (1.19 kN ) 17 8 − ( 0.16 m ) (1.19 kN ) = 0 16 Fy = 4.48 kN − ( 0.15 m ) ΣM G = 0: ( 0.075 m ) ( 4.48 kN ) + ( 0.08 m ) (1.05 kN ) + ( 0.02 m ) (1.05 kN ) − ( 0.15 m ) H y = 0 FBD FGH: H y = 2.94 kN ΣFy = 0: 2.94 kN − G y + 4.48 kN = 0 , G y = 7.42 kN ΣFx = 0: −1.05 kN + Gx + 1.05 kN = 0 , Gx = 0 so H = 3.12 kN 70.3° ! G = 7.42 kN ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 138. FBD Machine: By inspection, P = W = 110 lb, By symmetry: ΣFy = 0: H x = Ix, 110 lb − 2H y = 0 , ΣFy = 0: H y = I y = 55 lb, FCE = FBD By symmetry: FBD ABC: Hy = Iy 4 110 lb − 2 FCE = 0 , 5 FCE = FBD = 550 lb C 8 4 550 3 550 lb + (17 in.) lb 5 8 5 8 ( 2.5 in.) ΣM H = 0: − (4 in.) FFG = 0 FBD DFH: FFG = 209.69 lb, ΣFx = 0: 209.69 lb − FFG = 210 lb 3 550 lb − H x = 0 5 8 H x = 168.440 lb so Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. H = 177.2 lb 18.08° COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 139. FBD top handle: Note CD and DE are two-force members ΣM A = 0: ( 4 in.) 6 5 FCD − (1.5 in.) FCD − (13.2 in.) ( 90 lb ) = 0 61 61 FCD = 72 61 lb FDE = FCD = 72 61 lb By symmetry: FBD Joint D: ΣFx = 0: D−2 ( ) 5 72 61 lb = 0, 61 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. D = 720 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 140. FBD top handle: By symmetry the horizontal force at F must be zero ΣFx = 0: Dx = 0 ΣM F = 0: ( 0.015 m ) Fy − ( 0.185 m )(135 N ) = 0 Dy = 1665 N FBD ABD: ΣM B = 0: ( 40 mm ) (1665 N ) − ( 30 mm ) A = 0 A= 2220 N A= 2.22 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 141. FBD cutter AC: ΣM C = 0: ( 32 mm )1.5 KN − ( 28 mm ) Ay − (10 mm ) Ax =0 11 10 Ax + 28 Ax = 48 kN 13 Ax = 1.42466 kN Ay = 1.20548 kN FBD handle AD: ΣM D = 0: (15 mm )(1.20548 kN ) − ( 5 mm )(1.42466 kN ) − (70 mm) P = 0 P = 0.1566 kN = 156.6 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 142. FBD CD: θ = tan − 1 ΣM D = 0: 0.85 in. − 0.3 in. = 22.932° 2.6 in. − 1.3 in. ( 3.4 in.)( 30 lb ) − ( 0.8 in.) FAC sin 22.932° + ( 0.3 in.) FAC cos 22.932° = 0 FAC = 2879.6 lb ΣFx = 0: Dx − ( 2879.6 lb ) cos 22.932° = 0, Dx = 2652.0 lb ΣFy = 0: Dy − ( 2879.6 lb ) sin 22.932° + 30 lb = 0, Dy = 1092.00 lb FBD BD: ΣM B = 0: ( 2.6 in.) F + ( 0.2 in.)(1092.00 lb ) − ( 0.85 in.)( 2652.0 lb ) = 0 F = 783 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 143. FBD Joint B: α = tan − 1 1 = 5.7106° 10 ΣFx′ = 0: FBC cos ( 30° + 5.7106° ) − ( 54 lb ) cos 30° = 0 FBC = 57.595 lb T FCD = 57.595 lb By symmetry: FBD Joint C: ΣFx′′ = 0: 2 ( 57.595 lb ) sin ( 5.7106° ) − P = 0 P = 11.4618 lb so Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. P = 11.46 lb 30.0° COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 144. FBD BC: ΣM B = 0: (1 in.) Cx − ( 2.65 in.) ( 270 lb ) = 0 Cx = 715.5 lb FBD CF: ( 3.5 in.) P − ( 0.75 in.) FDE cos 40° + ( 0.65 in.) FDE sin 40° = 0 ΣM C = 0: FDE = 22.333 P ΣFx = 0: C x − ( 22.333 P ) cos 40° + P sin 30° = 0 P = 43. 081 lb P = 43.1 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 60.0˚ COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 145. FBD Handles: ΣM C = 0: − aBx + b (100 N − 100 N ) = 0 Bx = 0 FBD top handle: ΣM A = 0: ( 28 mm ) By − (110 mm ) (100 N ) = 0 By = 392.86 N FBD top blade: ΣM D = 0: ( 40 mm ) ( 392.86 N ) − ( 30 mm ) E = 0 E = 523.81 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. E = 524 N COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 146. FBD BE: ΣM B = 0: ( ) 746 mm C − ( 640 mm ) ( 0.25 kN ) = 0 C= 160 kN 746 FBD Blade: ΣM A = 0: 2 160 kN 5 746 ( 38 mm ) F − ( 47 mm ) 1 160 kN = 0 − ( 23 mm ) 5 746 F = 8.82 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 147. FBD Boom with bucket and man: θ = tan − 1 3 ft + ( 6 ft ) sin 35° = 62.070° ( 6 ft ) cos 35° − 1.5 ft ΣM A = 0: ( 6 ft ) cos 35° ( FBD sin 62.070° ) − ( 6 ft ) sin 35° ( FBD cos 62.070° ) − ( 9ft ) cos 35° (1400 lb ) − ( 20 ft ) cos 35° ( 450 lb ) = 0 FBD = 17693 lb, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FBD = 6.48 kips 62.1° COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 148. FBD AED: ΣM A = 0: (a) ( 36 in.) (1500 lb ) − ( 25 in.) F = 0, F = 2160 lb ΣFy = 0: Ay − 1500 lb = 0, ΣFy = 0: Ax − 2160 lb = 0, FBD Entire machine: ΣM B = 0: Ay = 1500 lb Ax = 2160 lb (84 in.) (1500 lb ) − ( 25 in.) Gx = 0, Gx = 5040 lb ΣM C = 0: FBD AG: ( 24 in.) ( Gy + 1500 lb ) − (12.5 in.) ( 5040 lb − 2160 lb ) = 0, Gy = 0 (b) ΣFy = 0: C y − 1500 lb + 0 = 0, C y = 1500 lb ΣFx = 0: Cx − 2160 lb − 5040 lb = 0, Cx = 7200 lb so on BCF, C x = 7.20 kips Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. , C y = 1.500 kips COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 149. FBD boom: θ = tan −1 Note: ( 3.2sin 24° − 1) m ( 3.2cos 24° − 0.6 ) m θ = 44.73° (a) ΣM A = 0: ( 6.4 m ) cos 24° ( 2.3544 kN ) − ( 3.2 m ) cos 24° B sin 44.73° + ( 3.2 m ) sin 24° B cos 44.73° = 0 B = 12.153 kN B = 12.15 kN 44.7° ΣFx = 0: Ax − (12.153 kN ) cos 44.73° = 0 A x = 8.633 kN (b) ΣFy = 0: − 2.3544 kN + (12.153 kN ) sin 44.73° − Ay = 0 A y = 6.198 kN On boom: On carriage: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. A = 10.63 kN A = 10.63 kN 35.7° 35.7° COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 150. FBD Bucket (one side): (a) ΣM D = 0: ( 0.8 m ) ( 2.4525 kN ) − ( 0.5 m ) FAB = 0 FAB = 3.924 kN w = ( 250 kg ) ( 9.81 N/kg ) = 2452.5 N = 2.4525 kN FBD link BE: ΣM E = 0: ( 0.68 m )( 3.924 kN ) − ( 0.54 m ) 80 FCD 89 39 + ( 0.35 m ) FCD = 0, 89 FCD = 7.682 kN FCD = 7.68 kN C FBD top blad (b) FBD Entire linkage: ΣM G = 0: ( 2.5 m ) ( 2.4525 kN ) 1 1 FGH − ( 0.6 m ) FGH = 0, 2 2 FFH = 21.677 kN, FFH = 21.7 kN C + ( 0.2 m ) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 151. \ FBD Central Gear: By symmetry: F1 = F2 = F3 = F ΣM A = 0: 3 ( rA F ) − 15 N ⋅ m = 0, ΣM C = 0: rB ( F − F4 ) = 0, F = 5 N⋅m rA FBD Gear C: ΣFx′ = 0: C x′ = 0 ΣFy′ = 0: C y′ − 2 F = 0, F4 = F C y′ = 2 F Gears B and D are analogous, each having a central force of 2F FBD Spider: ΣM A = 0: 75 N ⋅ m − 3 ( rA + rB ) 2 F = 0 25 N ⋅ m − ( rA + rB ) 10 N⋅m = 0 rA rA + rB r = 2.5 = 1 + B , rA rA FBD Outer gear: Since rA = 24 mm, ΣM A = 0: rB = 1.5 rA rB = 36.0 mm ! (a) 3 ( rA + 2rB ) F − M E = 0 3 ( 24 mm + 72 mm ) (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 5 N⋅m −ME = 0 24 mm M E = 60.0 N ⋅ m ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 152. FBD Gear A: looking from C (a) M A = 15 lb ⋅ ft ΣM A = 0: rA = 4 in. M A − P rA = 0 P= M A 180 lb ⋅ in. = rA 4 in. P = 45 lb FBD Gear B: looking from F ΣM B = 0: M 0 − rB P = 0 M 0 = rB P = ( 2.5 in.)( 45 lb ) = 112.5 lb ⋅ in. M 0 = 112.5 lb ⋅ in. i ! FBD ABC: looking down (b) ( 2 in.)( 45 lb ) − ( 5 in.) C ΣM B = 0: ΣFz = 0: FBD BEG: =0 45 lb − B + 18 lb = 0 By analogy, using FBD DEF ΣFz = 0: E = 63 lb k C = 18 lb k B = −63 lb k F = 18 lb k Gz + 63 lb − 63 lb = 0 Gz = 0 ΣFy = 0 Gy = 0 ΣM G = 0 M G − ( 6.5 in.)( 63 lb ) = 0 M G = ( 410 lb ⋅ in.) i ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System FBD CFH: ΣF = 0: Hz = H y = 0 ΣM H = 0 M H = − ( 6.5 in.)(18 lb ) = −117 lb ⋅ in. M G = − (117.0 lb ⋅ in.) i ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 153. Note: The couples exerted by the two yokes on the crosspiece must be equal and opposite. Since neither yoke can exert a couple along the arm of the crosspiece it contacts, these equal and opposite couples must be normal to the plane of the crosspiece. If the crosspiece arm attached to shaft CF is horizontal, the plane of the crosspiece is normal to shaft AC, so couple M C is along AC. FBDs shafts with yokes: (a) ΣM x = 0: FBD CDE: M C cos30° − 50 N ⋅ m = 0 M C = 57.735 N ⋅ m FBD BC: ΣM x′ = 0: M A − M C = 0 (b) M A = 57.7 N ⋅ m ΣM C = 0: M A i′ + ( 0.5 m ) Bz j′ − ( 0.5 m ) By′ k = 0 ΣF = 0: B + C = 0 so B=0 C=0 FBD CDF : ΣM Dy = 0: − ( 0.6 m ) Ez + ( 57.735 N ⋅ m ) sin 30° = 0 E z = 48.1 N k ΣFx = 0: Ex = 0 ΣM Dz = 0: ( 0.6 m ) E y = 0 Ey = 0 0 ΣF = 0: C + D + E = 0 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. so E = ( 48.1 N ) k D = −E = − ( 48.1 N ) k COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 154. Note: The couples exerted by the two yokes on the crosspiece must be equal and opposite. Since neither yoke can exert a couple along the arm of the crosspiece it contacts, these equal and opposite couples must be normal to the plane of the crosspiece. If the crosspiece arm attached to CF is vertical, the plane of the crosspiece is normal to CF, so the couple M C is along CF. (a) FBD CDE: FBD BC: ΣM x = 0: M C − 50 N ⋅ m = 0 ΣM x′ = 0: M A − M C cos 30° = 0 M C = 50 N ⋅ m M A = ( 50 N ⋅ m ) cos 30° M A = 43.3 N ⋅ m (b) ΣM Cy′ = 0: M C sin 30° + ( 0.5 m ) Bz = 0 ΣM Cz = 0: − ( 0.5 m ) By = 0 ΣF = 0: B + C = 0 FBD CDE: Bz = − ( 50 N ⋅ m )( 0.5) 0.5 m = −50 N so B = − ( 50.0 N ) k By = 0 C = −B so C = ( 50 N ) k on BC ΣM Dy = 0: − ( 0.4 m ) C z − ( 0.6 m ) Ez = 0 4 Ez = − ( 50 N ) = −33.3 N 6 ΣM Dz = 0: E y = 0 ΣFx = 0: Ex = 0 ΣF = 0: C + D + E = 0 so E = − ( 33.3 N ) k − ( 50 N ) k + D − ( 33.3 N ) k = 0 D = ( 83.3 N ) k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 155. FBD Joint A: By inspection of FBD of entire device, FA = w = 1500 lb By symmetry, FAB = FAC 1 FAC = 0, 1500 lb − 2 5 ΣFy = 0: FBD CDF: ΣFx = 0: ( FAC = 750 5 lb ) 2 750 5 lb = 0, 5 Dx − Fx − Dx − Fx = 1500 lb ΣFy = 0: ( (1) ) 1 750 5 lb = 0, 5 Fy − D y + Dy − Fy = 750 lb ΣM D = 0: FBD EF: (2) 1 2 (4.6 ft) 750 5 lb + ( 0.6 ft ) 750 5 lb 5 5 ( ) ( ) − (1 ft ) Fy − ( 3.6 ft ) Fx = 0, 3.6 Fx + Fy = 4350 lb By symmetry: ΣM F = 0: Ex = Dx , E y = Dy Hy = Jy = w = 750 lb, 2 (4), (5) H y = 750 lb ! ( 3 ft ) E y − ( 3.6 ft ) Ex − (1 ft ) H y + ( 0.6 ft )( 750 lb ) = 0 3.6Ex − 3E y + H y = 450 lb ΣFx = 0: (3) Dx + Fx − H x = 0, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (6) (7) COSMOS: Complete Online Solutions Manual Organization System Solving Eqns, (1)–(7), on EFH Fx = 540 lb Fy = 2410 lb E x = 2040 lb E y = 3160 lb H x = 2580 lb H y = 750 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ! ! ! ! ! ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 156. FBD Truss: ΣM E = 0: ( 9 ft ) Fy − ( 6.75 ft )( 4 kips ) − (13.5 ft )( 4 kips ) = 0 Fy = 9 kips ΣFy = 0: − E y + 9 kips = 0 E y = 9 kips ΣFx = 0: − Ex + 4 kips + 4 kips = 0 E x = 8 kips By inspection of joint E: FEF = 8.00 kips T ! Joint FBDs: Joint F: FEC = 9.00 kips T ! By inspection of joint B: FAB = 0 ! FBD = 0 ! ΣFx = 0: Joint C: 4 FCF − 8 kips = 0 5 ΣFy = 0: FDF − 3 (10 kips) = 0 5 ΣFx = 0: 4 kips − FCF = 10.00 kips C ! FDF = 6.00 kips T ! 4 (10 kips ) + FCD = 0 5 FCD = 4.00 kips T ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System ΣFy = 0: FAC − 9 kips + 3 (10 kips ) = 0 5 FAC = 3.00 kips T ! Joint A: ΣFx = 0: 4 kips − 4 FAD = 0 5 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FAD = 5.00 kips C ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 157. FBD Truss: ΣM A = 0: ( 6 ft ) 6Ly − 3 ( 0.5 kip ) − 2 (1 kip ) − 1(1 kip ) = 0 L y = 0.75 kip FJK = 0 ! Inspection of joints K , J , and I , in order, shows that FIJ = 0 ! FHI = 0 ! Joint FBDs: FIK = FKL ; FHJ = FJL and FGI = FIK and that 0.75 F F = JL = KL 1 8 5 FJL = 2.1213 kips FKL = 1.6771 kips FJL = 2.12 kips C ! FKL = 1.677 kips T ! FHJ = 2.12 kips C ! and, from above: FGI = FIK = 1.677 kips T ! ΣFx = 0: 2 1 ( FFH + FGH ) − ( 2.1213 kips ) = 0 5 2 ΣFy = 0: 1 1 ( FGH + FFH ) + ( 2.1213 kips ) = 0 5 2 Solving: FFH = 2.516 kips FGH = − 0.8383 kips Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FFH = 2.52 kips C ! FGH = 0.838 kips T ! COSMOS: Complete Online Solutions Manual Organization System ΣFx = 0: 2 ( FDF − 2.516 kips ) = 0 5 ΣFy = 0: FFG − 0.5 kip + FDF = 2.52 kips C 1 ( 2 )( 2.516 kips ) = 0 5 FFG = 1.750 kips T ! Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 158. FBD Truss: ΣM F = 0: (10 m ) G y − ( 7.5 m )( 80 kN ) − ( 8 m )( 30 kN ) = 0 G y = 84 kN ΣFx = 0: − Fx + 30 kN = 0 Fx = 30 kN ΣFy = 0: Fy + 84 kN − 80 kN = 0 Fy = 4 kN FEG = 0 ! By inspection of joint G: FCG = 84 kN C ! 84 kN F F = CE = AC = 10.5 kN 8 61 29 Joint FBDs: FCE = 82.0 kN T ! FAC = 56.5 kN C ! ΣFy = 0: 2 6 FAE + (82.0 kN ) − 80 kN = 0 5 61 FAE = 19.01312 ΣFx = 0: − FDE − 1 (19.013 kN ) + 5 FDE = 43.99 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FAE = 19.01 kN T ! 5 (82.0 kN ) = 0 61 FDE = 44.0 kN T ! COSMOS: Complete Online Solutions Manual Organization System ΣFx = 0: 1 FDF − 30 kN = 0 5 FDF = 67.082 kN ΣFy = 0: 2 ( 67.082 kN ) − FBF − 4 kN = 0 5 FBF = 56.00 kN ΣFx = 0: 30 kN + ΣFy = 0: 56 kN − Solving: ΣFy = 0: FDF = 67.1 kN T ! 5 FBD − 61 6 FBD − 61 FBF = 56.0 kN C ! 5 FAB = 0 29 3 FAB = 0 29 FBD = 42.956 kN FBD = 43.0 kN T ! FAB = 61.929 kN FAB = 61.9 kN C ! 6 2 ( 42.956 N ) + ( FAD − 67.082 N ) = 0 61 5 FAD = 30.157 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FAD = 30.2 N T ! COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 159. FBD Truss: ΣFx = 0: A x = 0 By load symmetry, A y = I y = 8 kips FBD Section: ΣM D = 0: ( 7 ft )( 2 kips − 8 kips ) + ( 3 ft ) ( FCE ) = 0 FCE = 14 kips ΣM E = 0: FCE = 14.00 kips T ( 7 ft ) 1( 4 kips ) + 2 ( 2 kips − 8 kips ) ( 4.5 ft ) FDF = 7 FDF = 0 51.25 8 51.25 kips 4.5 ΣFy = 0: 8 kips − 2 kips − 4 kips + FDF = 12.73 kips C 1.5 8 51.25 kips − 51.25 4.5 FDE = −1.692 kips Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 3 FDE = 0 58 FDE = 1.692 kips C COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 160. FBD Section: p = 8.4 ( 2.7 m ) = 1.89 m Note: BG 12.0 ΣM A = 0: ( 2.7 m ) FFG − ( 3.6 m )(8 kN ) − ( 7.8 m )(8 kN ) − (12 m )( 4 kN ) = 0 FFG = 51.56 kN ΣM G = 0: FFG = 51.6 kN C (1.89 m ) 12 FAB − ( 4.2 m )( 8 kN ) − ( 8.4 m )( 4 kN ) = 0 12.3 FAB = 36.44 kN ΣM D = 0: FAB = 36.4 kN T ( 4.2 m )(8 kN ) + (8.4 m )(8 kN ) − ( 8.4 m ) 3 FAG = 0 5 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FAG = 20.0 kN T COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 161. FBD Truss: ΣM A = 0: ( 24 ft ) K x − (18 ft )( 2 kips ) − ( 36 ft )( 2 kips ) = 0 K x = 4.5 kips FBD Section: ΣM F = 0: (12 ft )( 4.5 kips ) − (18 ft )( 2 kips ) − ( 36 ft )( 2 kips ) + ( 36 ft ) FEJ = 0 FEJ = 1.500 kips T ΣM J = 0: (18 ft )( 2 kips ) + (12 ft )( 4.5 kips ) − ( 36 ft ) FAF =0 FAF = 2.50 kips T Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 162. FBD Frame: ΣM F = 0: (10.8 ft ) Ay − (12 ft )( 4.5 kips ) = 0 A y = 5.00 kips ΣFx = 0: − Ax + 4.5 kips = 0 A x = 4.50 kips FBD member ABC: Note: BE is a two-force member ΣM C = 0: (12 ft ) FBE + (10.8 ft )( 5 kips ) − (18 ft )( 4.5 kips ) = 0 FBE = 2.25 kips ΣFx = 0: Cx + 2.25 kips − 4.5 kips = 0 C x = 2.25 kips ΣFy = 0: C y − 5 kips = 0 C y = 5.00 kips Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 163. FBD Frame: ΣM E = 0: ( 3.75 in.) Bx + (8.75 in.)( 75 lb ) = 0 Bx = 175 lb FBD member ACE: B x = 175.0 lb ΣFx = 0: Ex − Bx = 0 ΣFy = 0: E y + By − 75 lb = 0 E x = 175.0 lb By = 75 lb − E y ΣM C = 0: − (1.25 in.)( 75 lb ) + ( 3.75 in.)(175 lb ) − ( 4.5 in.) E y = 0 E y = 125.0 lb Thus By = 75 lb − 125 lb = −50 lb B y = 50.0 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 164. FBD Frame: Q = 65 N P = 15 N ΣM D = 0: ( 0.25 m )( P + Q ) − (.15 m )( P + Q ) − ( 0.08 m ) Ex Ex = 1.2 ( P + Q ) = 100 N ΣFx = 0: (b) Dx − Ex = 0 = Dx − 100 N (a) ΣFy = 0: E x = 100.0 N Dx = 100 N D x = 100.0 N E y − Dy − 2P − 2Q = 0 E y = D y + 2 ( P + Q ) = Dy + 160 N FBD member BF: ΣM C = 0: ( 0.15 m )( 65 N ) − ( 0.1 m ) Dy − ( 0.04 m )(100 N ) − ( 0.25 m )(15 N ) = 0 Dy = 20 N From above (a) D y = 20.0 N E y = 20 N + 160 N = 180 N (b) E y = 180.0 N ΣFx = 0: − C x + 100 N = 0 (a) ΣFy = 0: C x = 100.0 N − 65 N + C y − 20 N − 15 N = 0 (a) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. C y = 100.0 N =0 COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 165. Member FBDs: FBD I: ΣM C = 0: R ( FBD sin 30° ) − R (1 − cos 30° ) ( 200 N ) − R ( 100 N ) = 0 FBD = 253.6 N ΣFx = 0: (b) FBD = 254 N T − C x + ( 253.6 N ) cos 30° = 0 C x = 219.6 N ΣFy = 0: C y + ( 253.6 N ) sin 30° − 200 N − 100 N = 0 C y = 173.2 N (c) so C = 280 N ΣM A = 0: aP − a ( 253.6 N ) cos 30° = 0 FBD II: (a) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 38.3° P = 220 N COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 166. FBD jaw AB: ΣFx = 0: Bx = 0 ΣM B = 0: ( 0.01 m ) G − ( 0.03 m ) A = 0 A= ΣFy = 0: G 3 A + G − By = 0 By = A + G = 4G 3 FBD handle ACE: By symmetry and FBD jaw DE: D = A = E y = By = ΣM C = 0: G , Ex = Bx = 0, 3 4G 3 ( 0.105 m )( 240 N ) + ( 0.015 m ) G 4G − ( 0.015 m ) =0 3 3 G = 1680 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 6, Solution 167. Note: By symmetry the vertical components of pin forces C and D are zero. FBD handle ACF: (not to scale) ΣFy = 0: ΣM C = 0: ΣFx = 0: Ay = 0 (13.5 in.)( 20 lb ) − (1.5 in.) Ax = 0 Ax = 180 lb C − Ax − 20 lb = 0 C = (180 + 20 ) lb = 200 lb FBD blade DE: ΣM D = 0: ( 9 in.) E − ( 3 in.)(180 lb ) = 0 E = 60.0 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 1. FBD FRAME: ΣM A = 0: ( 0.3 m ) Dx − ( 0.4 m )( 900 N ) = 0 ∴ D x = 1200 N FBD JEHDF: ΣFx = 0: 1200 N + V = 0 V = −1200 N ΣFy = 0: F = 0 ΣM J = 0: ( 0.15 m )(1200 N ) − M =0 M = + 180 N ⋅ m Thus, ( on JE ) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. F =0 V = 1200 N M = 180.0 N ⋅ m COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 2. FBD FRAME: ΣM A = 0: ( 0.95 m )( 480 N ) − ( 0.25 m ) Dx = 0, D x = 1824 N ΣFy = 0: FBD ABC: Ay + Dy + 480 N = 0 (1) Note: BE is a two-force member ΣM B = 0: ( 0.75 m ) Ay Then, from (1) above, =0 Ay = 0 Dy = − 480 N D y = 480 N FBD sect. DJ: ΣFx = 0: F − 1824 N = 0 ΣFy = 0: − 480 N – V = 0 ΣM J = 0: F = 1.824 kN V = − 480 N V = 480 N M = 120.0 N ⋅ m M + ( 0.25 m )( 480 N ) = 0 M = −120 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 3. FBD CEF: ΣFx = 0: C x − ΣΜ E = 0: 1 (180 N ) 2 C x = 90 2 N ( 0.2 m ) C y − ( 0.05 m ) ( 90 2 N ) − ( 0.15 m + 0.08 m )(180 N ) = 0 C y = 126 2 N FBD sect. CJ: ΣFx = 0: 90 2 N − F = 0 F = 127.3 N ΣFy = 0: −126 2 N + V = 0 ΣM J = 0: ( 0.05 m ) ( 90 ) V = 178.2 N ( ) 2 N − ( 0.10 m ) 126 2 N − M = 0 M = 11.46 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 4. FBD Frame: Note: AC is a two-force member, resolve FAC at C: ΣM E = 0: ( 0.25 m + 0.25 m ) 1 FAC − ( 0.15 m )( 320 N ) = 0 2 FAC = 96 2 N FBD sect. AB: ΣFx = 0: − 96 N + ΣFy = 0: 96 N + 3 7 V + F =0 4 4 7 3 V − F =0 4 4 Solving: V = 8.50 N 41.4° F = 135.5 N 46.8° 4− 7 ΣM B = 0: M − ( 0.3 m )( 96 N ) + 10 m ( 96 N ) = 0 M = 15.799 N ⋅ m, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M = 15.80 N ⋅ m COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 5. FBD Frame: Note: AB is a two-force member, so Ay Ax = 12 5 ΣM C = 0: (1) (15 in.) Ax − ( 24 in.)( 78 lb ) = 0 A x = 124.8 lb From (1) above, A y = 52.0 lb FBD AJ: ΣFx = 0: −124.8 lb + F = 0 ΣFy = 0: 52 lb − V = 0 ΣM J = 0: M − (10 in.)( 52 lb ) = 0 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. F = 124.8 lb V = 52.0 lb M = 520 lb ⋅ in. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 6. FBD CD: Note: AB is a two-force member ΣΜ C = 0: 5 12 FAB + ( 7.5 in.) FAB 13 13 (18 in.) − ( 24 in.)( 78 lb ) = 0 FAB = 135.2 lb ΣFx = 0: Cx − 12 (135.2 lb ) = 0 13 C x = 124.8 lb ΣFy = 0: Cy + 5 (135.2 lb ) − ( 78 lb ) = 0 13 C y = 26 lb FBD CK: ΣFx′ = 0: −F + 12 5 (124.8 lb ) + ( 26 lb ) = 0 13 13 F = 125.2 lb ΣFy′ = 0: V − 5 12 (124.8 lb ) + ( 26 lb ) = 0 13 13 V = 24.0 lb ΣM K = 0: 22.6° ( 5 in.)(124.8 lb ) − (12 in.)( 26 lb ) − M 67.4° =0 M = 312 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 7. FBD half-section: By symmetry, Ay = B y = W 2 Where W = ( 9 kg )( 9.81 N/kg ) = 88.29 N FBD AJ: ΣFx = 0: F = 0 ΣFy = 0: F =0 W W − −V = 0 2 2 ΣM J = 0: M − ( r − x ) but x= V =0 W =0 2 2 W = 2.406 N ⋅ m , so M = 1 − r π 2 π 2r M = 2.41 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 8. FBD AJ: Note: Cut is just left of contact with ground. W = ( 9 kg )( 9.81 N/kg ) = 88.29 N Also x= ΣFx = 0: ΣFy = 0: 2r π and r = 0.15 m F =0 − ΣM J = 0: M = F=0 W +V =0 2 V = 44.1 N x W −M =0 2 2 ( 0.15 m ) π 88.29 N 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M = 4.22 N ⋅ m COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 9. SOLUTION FBD AB: FBD sect. BJ: ΣM A = 0: ΣFy′ = 0: ( ) r By − 12 lb = 0 B y = 12 lb (12 lb ) cos 30° − (12 lb ) sin 30° − F = 0 F = 4.39 lb ΣFx′ = 0: (12 lb ) cos 30° + (12 lb ) sin 30° − V =0 V = 16.39 lb ΣM J = 0: 60° 30° ( 4 in.) sin 30° (12 lb ) + ( 4 in.)(1 − cos 30° )(12 lb ) − M M = 30.4 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. =0 COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 10. FBD AB: ΣM A = 0: ΣΜ J = 0: FBD BJ: ( ) r By − 12 lb = 0 B y = 12 lb ( 4 in.) sin θ (12 lb ) + ( 4 in.)(1 − cosθ )(12 lb ) − M M = ( 48 lb ⋅ in.)(1 − cosθ + sin θ ) (a) to maximize M, set =0 (1) dM =0 dθ dM = ( 48 lb ⋅ in.)( sin θ + cosθ ) = 0 dθ so tan θ = −1 θ = − 45°, 135° (only θ = 135° is on ring) (b) ΣFy′ = 0: F + (12 lb ) cosθ − (12 lb ) sin θ = 0 θ = 135°, so F = 16.97 lb@135° ΣFx′ = 0: (12 lb ) cosθ + (12 lb ) sin θ θ = 135° −V = 0 F = 16.97 lb 45° θ = 135°, V = 0 From (1) above, M = ( 48 lb ⋅ in.)(1 − cos135° + sin135° ) = 115.88 lb ⋅ in. M = 115.9 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 11. FBD Frame: ΣM A = 0: (16.4 in.) 24 FEC − (12.6 in.)(120 lb ) = 0 25 FEC = 93.75 lb FBD CBD: ΣΜ C = 0: (16.2 in.)(120 lb ) − (13.5 in.) By =0 By = 144 lb ΣFy = 0: 144 lb + 7 ( 93.75 lb ) − 120 lb − C y = 0 25 C y = 50.25 lb ΣFx = 0: Cx − 24 ( 93.75 lb ) = 0 27 C x = 90.0 lb FBD CJ: ΣFy′ = 0: F + ( 50.25 lb ) cos30° − ( 90.0 lb ) sin 30° = 0 F = 1.482 lb ΣFx′ = 0: V − ( 90 lb ) cos 30° + ( 50.25 lb ) sin 30° = 0 V = 103.1 lb ΣM O = 0: 60° (8.4 in.)( 50.25 lb + 1.482 lb ) − M 30° =0 M = 435 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 12. FBD Frame: ΣM A = 0: (16.4 in.) 24 FEC − (12.6 in.)(120 lb ) = 0 25 FEC = 93.75 lb FBD CBD: ΣM C = 0: (16.2 in.)(120 lb ) − (13.5 in.) By =0 B y = 144 lb FBD DK: ΣFx′ = 0: (144 lb − 120 lb ) sin 30° − F = 0 F = 12.00 lb ΣFy′ = 0: (144 lb − 120 lb ) cos 30° − V =0 V = 20.8 lb ΣΜ O = 0: 30° (8.4 in.)(12 lb − 144 lb ) + (11.1 in.)(120 lb ) − M 60° =0 M = 223 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 13. FBD AB: ( 0.8 m )(1.8 kN ) − ( 0.24 m ) Ax = 0 ΣΜ B = 0: A x = 6.0 kN Geometry: y = kx 2 ; at B, 0.24 m = k ( 0.8 m ) so k = 0.375 2 1 m 1 2 J , y J = 0.375 ( 0.48 m ) = 0.0864 m m at dy = 2kx dx slope of parabola at J , dy 1 = 2 0.375 ( 0.48 m ) = 0.36 = tan θ J dx m θ J = 19.799° FBD AJ: ΣFx′ = 0: ( 6 kN ) cos19.799° − (1.8 kN ) sin19.799° − F = 0 F = 6.26 kN ΣFy′ = 0: ( 6 kN ) sin19.799° − (1.8 kN ) cos19.799° − V V = 0.3387 kN ΣM J = 0: 19.80° V = 339 N ( 0.48 m )(1.8 kN ) − ( 0.0864 m )( 6 kN ) − M M = 0.3456 kN ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. =0 70.2° =0 M = 346 N ⋅ m COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 14. FBD AB: ΣΜ B = 0: LP − hAx = 0, Ax = L P h Geometry: h hx 2 y , = L2 L2 y = kx 2 , at B: h = kL2 , so k = at J: y J = ka 2 = slope = FBD AJ: ΣM J = 0: ha 2 L2 dy = 2kx, dx aP − at J : slope = 2ha = tan −1 θ J 2 L ha 2 LP −M =0 L2 h a2 M = P a − L dM =0 da a or P 1 − 2 = 0, L To maximize set Then M max a= L 2 2 L L PL 2 = P − = 2 L 4 PL 4 at a = L 2 M max = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 15. FBD Frame with pulley and cord: ΣΜ Α = 0: (1.8 m ) Bx − ( 2.6 m )( 360 N ) − ( 0.2 m )( 360 N ) = 0 B x = 560 N FBD BE: Note: Cord forces have been moved to pulley hub as per Problem 6.91. ΣΜ Ε = 0: (1.4 m )( 360 N ) + (1.8 m )( 560 N ) − ( 2.4 m ) By =0 By = 630 N FBD BJ: ΣFx′ = 0: F + 360 N − 3 4 ( 630 N − 360 N ) − ( 560 N ) = 0 5 5 F = 250 N ΣFy′ = 0: V + 4 3 ( 630 N − 360 N ) − ( 560 N ) = 0 5 5 V = 120.0 N ΣM J = 0: 36.9° 53.1° M + ( 0.6 m )( 360 N ) + (1.2 m )( 560 N ) − (1.6 m )( 630 N ) = 0 M = 120.0 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 16. FBD Frame with pulleys and cord: ΣM B = 0: (1.8 m ) Ax − ( 2.0 m )( 360 N ) − ( 2.6 m )( 360 N ) = 0 A x = 920 N FBD AE: Note: Cord forces have been moved to pulley hub as per Problem 6.91. ΣM E = 0: ( 2.4 m ) Ay − (1.8 m )( 360 N ) = 0 A y = 270 N FBD AK: ΣFx = 0: 920 N − 360 N − F = 0 F = 560 N ΣFy = 0: − 270 N + 360 N − V = 0 V = 90.0 N ΣM K = 0: (1.6 m )( 270 N ) − (1.0 m )( 360 N ) − M =0 M = 72.0 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 17. FBD Frame: ΣM A = 0: (1 m ) Dy − ( 2.675 m )( 360 N ) = 0 D y = 963 N FBD DEF: ΣM F = 0: (1 m )( 963 N ) − ( 2.4 m ) Dx − ( 0.125 m )( 360 N ) = 0 D x = 3825 N FBD DJ: ΣFy′ = 0: F− 12 5 ( 963 N ) − ( 382.5 N ) = 0 13 13 F = 1036 N ΣFx′ = 0: F = 1.036 kN 67.4° 5 12 ( 963 N ) − ( 382.5 N ) − V = 0 13 13 V = 17.31 N ΣM J = 0: ( 0.5 m )( 963 N ) − (1.2 m )( 382.5 N ) − M 22.6° =0 M = 22.5 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 18. FBD AC: Note: Cord forces moved to pulley hub as per Problem 6.91. To determine θ the coordinates of C are xC = 2.55 m, yC = 4 ( 2.55 m ) = 3.40 m, and 3 xG = 0, yG = 3.75 m ∴ θ = tan −1 3.75 m − 3.40 m = 7.8153° 2.55 m ΣM A = 0: ( 3.75 m ) ( 360 N ) cos 7.8153° − ( 2.55 m )( 360 N ) − ( 3 m ) FBG =0 FBG = 139.820 N FBD KC: ΣFy′ = 0: F− 4 4 ( 360 N ) − ( 360 N ) cos 7.8153° + tan −1 = 0 5 3 F = 462.8 N ΣFx′ = 0: − V + 139.820 N + F = 463 N 53.1° 3 ( 360 N ) 5 4 − ( 360 N ) sin 7.8153° + tan −1 = 0 3 V = 41.1 N ΣM K = 0: − M − (1.5 m )(139.820 N ) − 36.9° 4 ( 2.75 m )( 360 N ) 5 4 + ( 2.75 m )( 360 N ) sin 7.8153° + tan −1 = 0 3 M = 61.7 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 19. FBD Frame and pipe: W = (10 ft )(18.5 lb/ft ) = 185 lb ΣM A = ( 24 in.) Cx − (12.6 in.)185 lb = 0 C x = 97.125 lb FBD pipe: By symmetry N E = N D = N 21 2 N − 185 N = 0, N = 127.738 lb 29 ΣFy = 0: Also note 20 20 8 = in. a = r tan tan −1 = ( 2.8 in.) 21 21 3 FBD BC: ΣM B = 0: 8 in. (127.735 lb ) + (12 in.)( 97.125 lb ) 3 − (12.6 in.) C y = 0 C y = 119.534 lb FBD CJ: ΣFx′ = 0: F − 21 20 ( 97.125 lb ) − (119.534 lb ) = 0 29 29 F = 152.8 lb ΣFy′ = 0: −V − 20 21 ( 97.125 lb ) + (119.534 lb ) = 0 29 29 V = 19.58 lb ΣM C = 0: 46.4° 44.6° M − ( 8.7 in.)(19.58 lb ) = 0 M = 170.3 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 20. FBD Frame: W = (10 ft )(18.5 lb/ft ) = 185 lb ΣM C = 0: ( 24 in.) Ax − (12.6 in.)(185 lb ) = 0 A x = 97.125 lb FBD Pipe By symmetry N E = N D ΣFy = 0: Also note FBD AD: ΣM B = 0: 21 2 N D − 185 lb = 0, 29 N D = 127.738 lb 20 20 8 a = r tan tan −1 = ( 2.8 in.) = in. 21 21 3 (12.6 in.)( 97.125 lb ) − (12.6 in.) Ay 8 − in. (127.738 lb ) = 0 3 A y = 65.465 lb FBD AK: ΣFx′ = 0: ΣFy′ = 0: ΣM A = 0: 21 20 ( 97.125 lb ) + ( 65.465 lb ) − F = 0 29 29 F = 115.5 lb 44.6° 20 21 ( 97.125 lb ) − ( 65.465 lb ) + V = 0 29 29 V = 19.58 lb 46.4° M − ( 8.7 in.)(19.58 lb ) = 0 M = 170.3 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 21. (a) FBD Rod: ΣFx = 0: ΣM D = 0: Ax = 0 aP − 2aAy = 0 Ay = P 2 ΣFx = 0: V = 0 FBD AJ: ΣFy = 0: P −F =0 2 F= P 2 ΣM J = 0: M = 0 (b) FBD Rod: ΣM A = 0 4 3 2a D + 2a D − aP = 0 5 5 ΣFx = 0: ΣFy = 0: Ax − D= 4 5 P=0 5 14 Ay − P + 3 5 P=0 5 14 5P 14 Ax = Ay = 2P 7 11P 14 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System 2 P −V = 0 7 ΣFx = 0: FBD AJ: V = 11P −F =0 14 ΣFy = 0: ΣM J = 0: (c) FBD Rod: ΣM A = 0: ΣFx = 0: ΣFy = 0: FBD AJ: a 4 5P =0 5 2 Ay − P − ΣFx = 0: F= 11P 14 M = 2 aP 7 2P −M =0 7 a 4D − aP = 0 2 5 Ax − 2P 7 3 5P =0 5 2 D= 5P 2 Ax = 2 P Ay = 5P 2 2P − V = 0 V = 2P ΣFy = 0: 5P −F =0 2 F= ΣM J = 0: 5P 2 a ( 2P ) − M = 0 M = 2aP Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 22. (a) FBD Rod: ΣM D = 0: aP − 2aA = 0 P 2 A= ΣFx = 0: V − P =0 2 V = FBD AJ: ΣFy = 0: ΣM J = 0: F =0 M −a P =0 2 M = (b) FBD Rod: ΣM D = 0: A= P 2 aP − aP 2 a4 A = 0 25 5P 2 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System FBD AJ: ΣFx = 0: 3 5P −V = 0 5 2 V = ΣFy = 0: 3P 2 4 5P −F =0 5 2 F = 2P M = (c) FBD Rod: ΣM D = 0: 3 4 aP − 2a A − 2a A = 0 5 5 A= ΣFx = 0: 5P 14 3 5P V − =0 5 14 V = ΣFy = 0: 3 aP 2 3P 14 4 5P −F =0 5 14 F= ΣM J = 0: 2P 7 3 5P M − a =0 5 14 M = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 3 aP 14 COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 23. FBD Rod: FBD JB: ΣM A = 0: Note: r = 2r rB − r − W =0 π r sin φ φ 2 = 2 x= ΣM J = 0: r sin 30° 2 B = 1 − W π 60° 2 = 3r π 180° π 3r 1 3r r 3 − = 3− 2 2π 2 π M + r 2 r 3 2 1 − W − 3 − W = 0 π π 3 2 2 M = 0.774Wr on BK Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 24. FBD Rod: 2r 1 2r B − r − W =0 π 2 ΣM A = 0: 1 1 B = 2 − W 2 π FBD JB: 60° r sin 2 = 3r r = π π 30° 180° x = r sin 60° − r sin 30° x= 1 3 3 − r π 2 21 1 r sin 60° + r (1 − cos 60° ) 2 2 − π W ΣM J = 0: − 1 3 2W −M =0 3 − r π 3 2 M = − 0.01085Wr Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M = 0.01085Wr COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 25. FBD Rod: ΣFy = 0: Ay − W = 0 Ay = W ΣM B = 0: r ( Ax − W ) + 2r π W =0 2 A x = 1 − W π FBD AJ: W′ = θ 2θ W = W π π 2 r =r ΣM J = 0: sin θ 2 = 2r sin θ θ θ 2 2 2 r sin θ 1 − W − r (1 − cosθ )W π 2r 2θ θ θ W −M =0 + sin cos − r cosθ θ 2 2 π 2θ M = Wr sin θ − 1 + cosθ − cosθ π For Mmax, dM 2 2θ sin θ = 0 = Wr cosθ − sin θ − cosθ + dθ π π or tan θ = π −2 π − 2θ Solving numerically: θ = 0.48338 rod = 27.7° M max = 0.0777Wr Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 26. FBD Rod: 2 1 1 2 rB − r 1 − W = 0 B = 2 − W π 2 π 1 1 1 1 1 2 − W = 0 A x = − W ΣFx = 0: Ax − 2 π 2 2 π 1 1 1 1 1 2 − W = 0 A y = + W ΣFy = 0: Ay − W + 2 2 π 2 π FBD AJ: W′ = ΣM A = 0: θ 2θ W = W π π 2 2r θ r = sin θ 2 ΣM J = 0: 1 1 1 1 M + r sin θ − W − r (1 − cosθ ) + W π 2 2 π 2r 2θ θ θ + sin cos − r cosθ W = 0 θ 2 2 π 1 1 2θ M = Wr + (1 − sin θ − cosθ ) + cosθ π 2 π For M max , 1 1 dM 2 2θ sin θ = 0 = Wr + ( − cosθ + sin θ ) + cosθ − dθ π π 2 π or tan θ = π −2 π + 2 − 4θ Solving numerically θ = 0.27539 rad = θ1 or θ = 1.16164 rad = θ 2 M (θ1 ) = − 0.0230Wr , M (θ 2 ) = 0.0362Wr so M max = 0.0362Wr at θ = θ 2 = 66.6° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 27. Note: α = 180° − 60° π = 60° = 2 3 r = r α sin α = 3r 3 3 3 r = π 2 2π Weight of section = W ΣFy′ = 0: F− ΣM O = 0: 120 4 = W 270 9 4 W cos30° = 0 9 rF − ( r sin 60° ) 2 3 3 3 3 − M = r 2π 2 9 F = 2 3 W 9 4W −M =0 9 2 3 1 4 − Wr W = π 9 9 M = 0.0666Wr Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 28. ΣFx = 0: FBD Rod: ΣM B = 0: FBD AJ: rAy + 2r W 2r 2W − =0 π 3 π 3 Ay = 2W 3π α = Note: Ax = 0 60° π = 30° = 2 6 Weight of segment = W F = ΣM J = 0: M = 2W 9 r α sin α = ( r cosα − r sin 30° ) 60 2W = 270 9 r 3r sin 30° = π /6 π 2W 2W + ( r − r sin 30° ) −M =0 9 3π 3r 3 r 3 1 3r 1 − + − + = Wr 2 2π 9 3π π 2 3π M = 0.1788Wr Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 29. (a) FBD Beam: ΣM C = 0: ΣFy = 0: LAy − M 0 = 0 Ay = M0 L C= M0 L − Ay + C = 0 Along AB: ΣFy = 0: − ΣM J = 0: M0 −V = 0 L x V =− M0 +M =0 L M0 L M =− straight with M = − M0 at B 2 M0 −V = 0 L V =− M0 x L Along BC: ΣFy = 0: ΣM K = 0: − M +x x M = M 0 1 − L M0 − M0 = 0 L straight with M = (b) From diagrams: M0 L M0 at B 2 V max M = 0 at C = M0 everywhere L M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max = M0 at B 2 COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 30. FBD Beam: (a) ΣFx = 0: Ax = 0, by symmetry Ay = By = P ΣFy = 0: Along AB: P −V = 0 V = P ΣM J = 0: M − xP = 0 M = Px Along BC: ΣFy = 0: P − P −V = 0 V =0 ΣM K = 0: M − xP + ( x − a ) P = 0 M = Pa Along CD: ΣFy = 0: P − P − P −V = 0 V = −P ΣM L = 0: M − xP + ( x − a ) P + ( x − L + a) P = 0 M = P ( L − x) Note: Symmetry in M diag. follows symmetry of FBD (b) V max = P along AB and CD M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max = Pa along BC COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 31. FBD Section: ΣFy = 0: − V − 1 x x w0 = 0 2 L V =− (a) 1 w0 2 x 2 L 1 V ( L ) = − w0 L 2 ΣM J = 0: M + 1 1 x x x w0 = 0 3 2 L M =− M ( L) = − 1 w0 3 x 6 L 1 w0 L2 6 (b) V M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max max = = 1 w0 L at B 2 1 w0 L2 at B 6 COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 32. (a) FBD Beam: ΣFx = 0: ΣM B = 0: Bx = 0 aP + 2aC − 3.5aP = 0 C = 1.25P ΣFy = 0: − P + By + 1.25P − P = 0 By = 0.75P Along AB: ΣFy = 0: ΣM J = 0: −P − V = 0 M + xP = 0 V = −P M = − Px Along BC: ΣFy = 0: ΣM K = 0: − P + 0.75P − V = 0 V = − 0.25P M + xP − ( x − a )( 0.75P ) = 0 M ( 3a ) = −1.5Pa M = − 0.75Pa − 0.25Px Along CD: ΣFy = 0: ΣM L = 0: V −P=0 − M − x1 P = 0 V =P M = − Px1 M (1.5a ) = −1.5Pa V (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max = P along AB and CD M max = 1.5Pa at C COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 33. (a) FBD Beam: ΣFx = 0: ΣM C = 0: Cx = 0 ( 3.6 ft )(1 kip ) − ( 3 ft )( 4 kips ) + ( 6 ft )( 2 kips ) − ( 9.6 ft ) B = 0 B = 0.375 kip ΣFy = 0: −1 kip + C y − 4 kips + 2 kips − 0.375 kip = 0 C y = 3.375 kips Along AC: ΣFy = 0: −1 kip − V = 0 V = −1 kip ΣM J = 0: M + x (1 kip ) = 0 M = − (1 kip ) x M ( 3.6 ft ) = 3.6 kip ⋅ ft Along CD: ΣFy = 0: −1 kip + 3.375 kips − V = 0 V = 2.375 kips ΣM K = 0: M + x (1 kip ) − ( x − 3.6 ft )( 3.375 kips ) = 0 M = −12.15 kip ⋅ ft + ( 2.375 kips ) x M ( 6.6 ft ) = 3.525 kip ⋅ ft continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Along EB: ΣFy = 0: V − 0.375 kips = 0 V = 0.375 kips ΣM L = 0: − M − x1 ( 0.375 kips ) = 0 M = − ( 0.375 kips ) x1 M ( 3.6 ft ) = −1.35 kip ⋅ ft Along DE: ΣFy = 0: V + 2 kips − 0.375 kips = 0 V = −1.625 kips Also M is linear (b) V max = 2.38 kips along CD M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max = 3.60 kips at C COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 34. (a) FBD Beam: ΣM B = 0: (.6 ft )( 4 kips ) + ( 5.1 ft )(8 kips ) + ( 7.8 ft )(10 kips ) − ( 9.6 ft ) Ay =0 A y = 12.625 kips ΣFy = 0: 12.625 kips − 10 kips − 8 kips − 4 kips + B = 0 B = 9.375 kips Along AC: ΣFy = 0: 12.625 kips − V = 0 V = 12.625 kips ΣM J = 0: M − x (12.625 kips ) = 0 M = (12.625 kips ) x M = 22.725 kip ⋅ ft at C Along CD: ΣFy = 0: 12.625 kips − 10 kips − V = 0 V = 2.625 kips ΣM K = 0: M + ( x − 1.8 ft )(10 kips ) − x (12.625 kips ) = 0 M = 18 kip ⋅ ft + ( 2.625 kips ) x M = 29.8125 kip ⋅ ft at D ( x = 4.5 ft ) continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Along DE: ΣFy = 0: (12.625 − 10 − 8) kips − V =0 V = −5.375 kips ΣM L = 0: M + x1 ( 8 kips ) + ( 2.7 ft + x1 )(10 kips ) − ( 4.5 ft + x1 )(12.625 kips ) = 0 M = 29.8125 kip ⋅ ft − ( 5.375 kips ) x1 M = 5.625 kip ⋅ ft at E ( x1 = 4.5 ft ) Along EB: ΣFy = 0: V + 9.375 kips = 0 ΣM N = 0: V = 9.375 kips x2 ( 9.375 kip ) − M = 0 M = ( 9.375 kips ) x2 M = 5.625 kip ⋅ ft at E From diagrams: (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. V max M max = 12.63 kips on AC = 29.8 kip ⋅ ft at D COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 35. (a) ΣM E = 0: FBD Beam: (1.1 m )( 540 N ) − ( 0.9 m ) C y + ( 0.4 m )(1350 N ) − ( 0.3 m )( 540 N ) = 0 C y = 1080 N ΣFy = 0: − 540 N + 1080 N − 1350 N −540 N + E y = 0 E y = 1350 N Along AC: ΣFy = 0: − 540 N − V = 0 V = −540 N ΣM J = 0: x ( 540 N ) + M = 0 M = − ( 540 N ) x Along CD: ΣFy = 0: ΣM K = 0: − 540 N + 1080 N − V = 0 V = 540 N M + ( 0.2 m + x1 )( 540 N ) − x1 (1080 N ) = 0 M = −108 N ⋅ m + ( 540 N ) x1 M = 162 N ⋅ m at D ( x1 = 0.5 m ) continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Along DE: ΣFy = 0: ΣM N = 0: V + 1350 N − 540 N = 0 V = −810 N M + ( x3 + 0.3 m ) ( 540 N ) − x3 (1350 N ) = 0 M = −162 N ⋅ m + ( 810 N ) x3 M = 162 N ⋅ m at D ( x3 = 0.4 ) Along EB: (b) ΣFy = 0: ΣM L = 0: V − 540 N = 0 V = 540 N M + x2 ( 540 N ) = 0 M = −540 N x2 ( x2 M = −162 N ⋅ m at E = 0.3 m ) V From diagrams M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max max = 810 N on DE = 162.0 N ⋅ m at D and E COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 36. (a) FBD Beam: a =1m ΣFx = 0: ΣFy = 0: Bx = 0 − 1.5 kN + 2 kN − 4 kN + 5 kN − By = 0 By = 1.5 kN ΣM B = 0: a 4 (1.5 kN ) − 3 ( 2 kN ) + 2 ( 4 kN ) − 1( 5 kN ) − M B = 0 M B = ( 3 kN ) a = 3 kN ⋅ m Along AC: ΣFy = 0: ΣM J = 0: Along CD: ΣFy = 0: ΣM K = 0: −1.5 kN − V = 0 V = −1.5 kN M − x (1.5 kN ) = 0 M = − (1.5 kN ) x M (1 m ) = −1.5 kN ⋅ m −1.5 kN + 2 kN − V = 0 V = 0.5 kN M + x (1.5 kN ) − ( x − 1 m )( 2 kN ) = 0 M = − 2 kN ⋅ m + ( 0.5 kN ) x M ( 2 m ) = −1 kN ⋅ m continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Along EB: ΣFy = 0: ΣM L = 0: V − 1.5 kN = 0 V = 1.5 kN − M − x1 (1.5 kN ) − 3 kN ⋅ m = 0 M = − 3 kN ⋅ m − (1.5 kN ) x1, M (1 m ) = − 4.5 kN ⋅ m Along DE: ΣFy = 0: V + 5 kN − 1.5 kN = 0 V = − 3.5 kN Also M is linear here V (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max M = 3.50 kN along DE max = 4.50 kN ⋅ m at E COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 37. (a) FBD Beam: ΣM A = 0: − (1.3 m ) (1.8 kN/m )( 2.6 m ) − (1.6 m )( 4 kN ) + ( 4 m ) B = 0 B = 3.121 kN ΣFy = 0: Ay − (1.8 kN/m )( 2.6 m ) − 4 kN + 3.121 kN = 0 A y = 5.559 kN Along AC: ΣFy = 0: 5.559 kN − (1.8 kN/m ) x − V = 0 V = 5.559 kN − (1.8 kN/m ) x ΣM J = 0: M + x (1.8 km ) x − x ( 5.559 kN ) = 0 2 M = ( 5.559 kN ) x − ( 0.9 kN/m ) x 2 Along CD: ΣFy = 0: 5.559 kN − x (1.8 kN/m ) − 4 kN − V = 0 V = (1.559 kN ) − (1.8 kN/m ) x ΣM K = 0: M + ( x − 1.6 m )( 4 kN ) + x (1.8 kN/m ) x − x ( 5.559 kN ) = 0 2 M = 6.4 kN ⋅ m + (1.559 kN ) x − ( 0.9 kN/m ) x 2 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Along DB: ΣFy = 0: V + 3.121 kN = 0 V = − 3.121 kN (b) ΣM L = 0: − M + x1 ( 3.121 kN ) = 0 M = ( 3.121 kN ) x1 V M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max max = 5.56 kN at A = 6.59 kN ⋅ m at C COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 38. (a) FBD Beam: ΣFx = 0: ΣFy = 0: Ax = 0 Ay + ( 2 m )( 24 kN/m ) − 48 kN − 8 kN = 0 A y = 8 kN ΣM A = 0: M A + (1 m )( 2 m )( 24 kN/m ) − ( 3.5 m )( 48 kN ) − ( 2 m )( 8 kN ) = 0, M A = 152 kN ⋅ m Along AC: ΣFy = 0: 8 kN + x ( 24 kN ⋅ m ) − V = 0 V = 8 kN + ( 24 kN/m ) x ΣM J = 0: M + 152 kN ⋅ m − x ( 8 kN ) − x ( 24 kN/m ) x = 0 2 M = (12 kN/m ) x 2 + ( 8 kN ) x − 152 kN ⋅ m Along DB: ΣFy = 0: V − 8 kN = 0 V = 8 kN ΣM K = 0: M + x1 ( 8 kN ) = 0, M = − ( 8 kN ) x1 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Along CD: ΣFy = 0: ΣM L = 0: V − 48 kN − 8 kN = 0, V = 56 kN M + ( x1 − 0.5 m )( 48 kN ) + x1 ( 8 kN ) = 0 M = 24 kN ⋅ m − ( 56 kN ) x1 (b) V max M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. = 56.0 kN along CD max = 152.0 kN ⋅ m at A COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 39. (a) FBD Beam: by symmetry, C y = Gy = Cx = 0, and 1 2 (12 lb/in )(10 in ) + 2 (100 lb ) + (150 lb ) 2 C y = G y = 295 lb Along AC: ΣFy = 0: − (12 lb/in.) x − V = 0 lb V = − 12 x in. ΣM J = 0: M + x (12 lb/in.) x = 0, 2 lb M = − 6 x2 in. Along CD: ΣFy = 0: − (12 lb/in.)(10 in.) + 295 lb − V = 0 V = 175 lb ΣM K = 0: M + ( x − 5 in.)(12 lb/in.)(10 in.) − ( x − 10 in.)( 295 lb ) = 0 M = − 2350 lb ⋅ in. + (175 lb ) x continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Along DE: ΣFy = 0: ΣM N = 0: − (12 lb/in.)(10 in.) + 295lb − 100 lb − V = 0, V = 75 lb M + ( x − 16 in.)(100 lb ) − ( x − 10 in.)( 295 lb ) + ( x − 5 in.)(12 lb/in.)(10 in.) = 0 M = − 750 lb ⋅ in + ( 75 lb ) x Complete diagrams using symmetry. V (b) max Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. = 175.0 lb along CD and FG M max = 900 lb ⋅ in. at E COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 40. (a) FBD Beam: ΣM D = 0: ( 6 ft )(1 kip/ft )( 6 ft ) − ( 7.5 ft )( 2 kips/ft )( 9 ft ) − (12 ft ) Fy + (15 ft )( 33 kips ) = 0 Fy = 33 kips ΣFy = 0: − (1 kip/ft )( 6 ft ) + Dy − ( 2 kips/ft )( 9 ft ) − 33 kips + 33 kips = 0 D y = 24 kips Along AC: ΣFy = 0: ΣM J = 0: − (1 kip/ft ) x − V = 0, M + V = − (1 kip/ft ) x x (1 kip ⋅ ft ) x = 0, 2 1 M = − kip/ft x 2 2 Along CD: ΣFy = 0: ΣM K = 0: − (1 kip/ft )( 6 ft ) − V = 0, V = − 6 kips M + ( x − 3 ft )(1 kip/ft )( 6 ft ) = 0 M = 18 kip ⋅ ft − ( 6 kips ) x continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Along DE: ΣFy = 0: ΣM L = 0: − 6 kips + 24 kips − V = 0, V = 18 kips ( x − 3 ft )( 6 kips ) − ( x − 9 ft )( 24 kips ) + M =0 M = −198 kip ⋅ ft + (18 kips ) x Along FB: ΣFy = 0: ΣM N = 0: V + 33 kips = 0, V = − 33 kips x1 ( 33 kips ) − M = 0, M = ( 33 kips ) x1 Along EF: ΣFy = 0: V − ( 2 kips/ft ) x2 − 33 kips + 33 kips = 0 V = ( 2 kips/ft ) x2 ΣM O = 0: M + x2 ( 2 kips/ft ) x2 − ( 3 ft ) ( 33 kips ) = 0 2 M = 99 kip ⋅ ft − (1 kip/ft ) x22 V (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max M = 33.0 kips along FB max = 99.0 kip ⋅ ft at F COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 41. (a) FBD Beam: ( 4 m )( w) − ( 2 m )(12 kN/m ) = 0 ΣFy = 0: w = 6 kN/m Along AC: − x ( 6 kN/m ) − V = 0, ΣFy = 0: V = − ( 6 kN/m ) x V = −6 kN at C ( x = 1 m ) x ( 6 kN/m )( x ) = 0 2 M = − ( 3 kN/m ) x 2 M = −3 kN ⋅ m at C ΣM J = 0: M + Along CD: ΣFy = 0: − (1 m )( 6 kN/m ) + x1 ( 6 kN/m ) − V = 0 V = ( 6 kN/m )(1 m − x1 ) , ΣM K = 0: V = 0 at x1 = 1 m x1 ( 6 kN/m ) x1 = 0 2 M = −3 kN ⋅ m − ( 6 kN ) x1 + ( 3 kN/m ) x12 M + ( 0.5 m + x1 )( 6 kN/m )(1 m ) − M = −6 kN ⋅ m at center Finish by symmetry. (b) From diagrams: V ( x1 = 1 m ) max M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. = 6.00 kN at C and D max = 6.00 kN at center COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 42. (a) FBD Beam: ΣFy = 0: (12 m ) w − ( 6 m )( 3 kN/m ) = 0 w = 1.5 kN/m Along AC: x (1.5 kN/m ) − V = 0, ΣFy = 0: V = (1.5 kN/m ) x V = 4.5 kN at C ΣM J = 0: M − x (1.5 kN/m )( x ) = 0 2 M = ( 0.75 kN/m ) x 2 , M = 6.75 N ⋅ m at C Along CD: x (1.5 kN/m ) − ( x − 3 m )( 3 kN/m ) − V = 0 ΣFy = 0: V = 9 kN − (1.5 kN/m ) x, ΣM K = 0: V = 0 at x = 6 m x x − 3m M + ( 3 kN/m )( x − 3 m ) − (1.5 kN/m ) x = 0 2 2 M = −13.5 kN ⋅ m + ( 9 kN ) x − ( 0.75 kN/m ) x 2 M = 13.5 kN ⋅ m at center ( x = 6 m) Finish by symmetry. (b) From diagrams: V M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max max = 4.50 kN at C and D = 13.50 kN ⋅ m at center COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 43. (a) FBD Beam: ΣFy = 0: (8 m ) w − 2 ( 6 kN ) − ( 4 m )( 5 kN/m ) = 0 w = 4 kN/m Along AC: ΣFy = 0: ( 4 kN/m ) x − V =0 V = ( 4 kN/m ) x ΣM J = 0: M − x ( 4 kN/m ) x = 0, 2 M = ( 2 kN/m ) x 2 Along CD: ( 4 kN/m ) x − 6 kN − V ΣFy = 0: =0 V = ( 4 kN/m ) x − 6 kN ΣM K = 0: M + ( x − 1 m )( 6 kN ) − x ( 4 kN/m ) x = 0 2 M = ( 2 kN/m ) x 2 − ( 6 kN ) x + 6 kN ⋅ m Note: V = 0 at x = 1.5 m where M = 1.5 kN/m Along DE: ΣFy = 0: ( 4 kN/m )( 2 m ) − 6 kN − (1 kN/m )( x − 2 m ) − V V = 4 kN − (1 kN/m ) x =0 x − 2 m ΣM L = 0: M + (1 kN/m )( x − 2 m ) + ( x − 1 m ) 6 kN 2 − ( x − 1 m )( 4 kN/m )( 2 m ) = 0 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System 1 M = − kN/m x 2 + ( 4 kN ) x − 4 kN ⋅ m 2 Note: V = 0 at x = 4 m, where M = 4 kN ⋅ m Complete diagrams using symmetry. (b) V M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max max = 4 kN at C and F = 4 kN ⋅ m at center COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 44. (a) FBD Beam: ΣFy = 0: w (1.5 m ) − 2 ( 3.6 kN ) = 0 w = 4.8 kN/m Along AC: ΣFy = 0: ΣM J = 0: ( 4.8 kN/m ) x − V M − = 0, V = ( 4.8 kN/m ) x x ( 4.8 kN/m ) x = 0, 2 M = ( 2.4 kN/m ) x 2 Along CD: ΣFy = 0: ( 4.8 kN/m ) x − 3.6 kN − V =0 V = ( 4.8 kN/m ) x − 3.6 kN ΣM K = 0: M + ( x − 0.3 m )( 3.6 kN ) − x ( 4.8 kN/m ) x = 0 2 M = 1.08 kN ⋅ m − ( 3.6 kN ) x + ( 2.4 kN/m ) x 2 Note: V = 0 at x = 0.75 m, where M = − 0.27 kN ⋅ m Complete diagrams using symmetry. V max M (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. = 2.16 kN at C and D max = 270 N ⋅ m at center COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 45. FBD CE: ΣFx = 0: Cy = 0 ΣFy = 0: C y − 4 kN = 0 C y = 4 kN ΣM C = 0: M C − ( 0.5 m )( 4 kN ) = 0 M C = 2 kN ⋅ m ΣFx = 0: Beam AB: ΣFy = 0: ΣM A = 0: Ax = 0 Ay − 4 kN − 2 kN − 1 kΝ = 0 M A − 2 kN ⋅ m − ( 0.5 m )( 4 kN ) − (1 m )( 2 kN ) − (1.5 m )(1 kN ) = 0, Along AC: ΣFy = 0: 7 kN − V = 0 V = 7 kN ΣM J = 0: Ay = 7 kN M + 7.5 kN ⋅ m − x ( 7 kN ) = 0 M = ( 7 kN ) x − 7.5 kN ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M A = 7.5 kN ⋅ m COSMOS: Complete Online Solutions Manual Organization System Along DB: ΣFy = 0: V − 1 kN = 0 V = 1 kN ΣM K = 0: − M + x1 (1 kN ) = 0 M = (1 kN ) x1 Along CD: ΣFy = 0: ΣM M = 0: V − 2 kN − 1 kN = 0 V = 3 kN M + ( x1 − 0.5 m )( 2 kN ) + x1 (1 kN ) = 0 M = 1 kN ⋅ m − ( 3 kN ) x1 Note: M exhibits a discontinuity at C, equal to 2 kN ⋅ m, the value of MC. From the diagrams, V max = 7.00 kN along AC M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max = 7.50 kN at A COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 46. FBD CE or DF: ΣFx = 0: Cx , Dx = 0 ΣFy = 0: C y − 750 N = 0, C y = 750 N Dy = 750 N ΣM C = 0: M C − ( 0.3 m )( 750 N ) = 0 M C = 225 N ⋅ m = M D Beam AB: ΣM A = 0: ( 0.9 m ) Dy − 2 ( 225 N ⋅ m ) − ( 0.3 m )( 750 N ) − ( 0.9 m )( 750 N ) − (1.2 m )( 540 N ) = 0 Dy = 2220 N ΣFy = 0: Ay − 2 ( 750 N ) − 540 N + 2220 N = 0 Ay = −180 N A y = 180 N ΣFy = 0: −180 N − V = 0 Along AC: V = −180 N ΣM J = 0: M + x (180 N ) = 0 M = (180 N ) x Along CD: ΣFy = 0: −180 N − 750 N − V = 0, ΣM K = 0: V = − 930 N M − 225 N ⋅ m + ( x − 0.3 m )( 750 N ) + x (180 N ) = 0 M = 450 N ⋅ m − ( 930 N ) x Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Along DB: ΣFy = 0: V − 540 N = 0 V = 540 N ΣM N = 0: M + x1 ( 540 N ) = 0 M = − ( 540 N ) x1 Note: The discontinuities in M, at C and D, equal 225 N ⋅ m, M C and M D From the diagrams V max M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. = 930 N along CD max = 387 N ⋅ m at D COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 47. FBD Angle: ΣFy = 0: T − Cy = 0 Cy = T ΣM C = 0: ( 0.3 ft ) T M C = ( 0.3 ft ) T − M C = 0, By symmetry, Dy = T , M D = ( 0.3 ft ) T ΣFy = 0: 2T − 810 lb − (100 lb/ft )( 9 ft ) = 0 T = 855 lb. (a) Beam AB: From above M C = M D = ( 0.3 ft )( 855 lb ) = 256.5 lb ⋅ ft ΣFy = 0: − x (100 lb/ft ) − V = 0 Along AC: V = − (100 lb/ft ) x ΣM J = 0: M + x (100 lb/ft ) x = 0, 2 M = − ( 50 lb/ft ) x 2 M C = 256.5 lb ⋅ ft Along CI: ΣFy = 0: − (100 lb/ft ) x + 855 lb − V = 0 V = 855 lb − (100 lb/ft ) x ΣM K = 0: x (100 lb/ft ) x 2 M − 256.5 lb ⋅ ft + − ( x − 3.6 ft )( 855 lb ) = 0 M = − ( 50 lb/ft ) x 2 + ( 855 lb ) x − 2821.5 lb ⋅ ft Complete diagrams using symmetry Note: Discontinuities in M, at C and D, equal M C and M D (b) V M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max max = 495 lb at C and D = 648 lb ⋅ ft at C and D COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 48. FBD Angle: ΣFy = 0: T − C y = 0 Cy = T ΣM C = 0: M C − ( 0.3 ft ) T = 0, M C = ( 0.3 ft ) T By symmetry, Dy = T and M D = ( 0.3 ft ) T (a) Beam AB: ΣFy = 0: 2T − (100 lb/ft )( 9 ft ) − 810 lb = 0 T = 855 lb From above, M C = M D = ( 0.3 ft )( 855 lb ) = 256.5 lb ⋅ ft ΣFy = 0: − (100 lb/ft ) x − V = 0 Along AC: V = − (100 lb/ft ) x ΣM J = 0: M + x (100 lb/ft ) x = 0 2 M C = 256.5 lb ⋅ ft Along CI: ΣFy = 0: M = ( 50 lb/ft ) x 2 855 lb − (100 lb/ft ) x − V = 0 V = 855 lb − (100 lb/ft ) x ΣM K = 0: M − 256.5 lb ⋅ ft + x (100 lb/ft ) x 2 − ( x − 2.7 ft )( 855 lb ) = 0 M = − ( 50 lb/ft ) x 2 + ( 855 lb ) x − 2052 lb ⋅ ft Complete diagrams using symmetry Note: The discontinuities in M, at C and D, equal M C and M D (b) V max M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. = 585 lb at C and D max = 783 lb ⋅ ft at I COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 49. Note: D passes through C, so FBD Whole: Dy Dx 0.35 m = 0.7 0.5 m = ΣM H = 0: ( 0.65 m )( 200 N ) − ( 0.5 m ) ( 0.7 Dx ) + ( 0.1 m ) ( Dx ) + ( 0.25 m )( 400 N ) − ( 0.15 m )( 200 N ) = 0 D x = 800 N D y = 560 N ΣFx = 0: 800 N − H x = 0 ΣFy = 0: H x = 800 N 560 N − 400 N − 2 ( 200 N ) + H y = 0 H y = 240 N Beam AB with forces at D & H replaced by forces and couples at E and G. Horizontal forces not shown to avoid clutter. ΣFy = 0: Along AE: − 200 N − V = 0 V = − 200 N ΣM J = 0: x ( 200 N ) + M = 0 M = − ( 200 N ) x Along EF: ΣFy = 0: − 200 N + 560 N − V = 0 V = 360 N ΣM K = 0: M − 80 N ⋅ m + x ( 200 N ) − ( x − 0.15 m )( 560 N ) = 0 M = ( 360 N ) x − 4 N ⋅ m Along GB: ΣFy = 0: V − 400 N = 0 V = 200 N ΣM L = 0: M + x1 ( 200 N ) = 0 M = ( 200 N ) x1 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System ΣFy = 0: V + 240 N − 200 N = 0 Along FG: V = − 40 N ( ) M − 160 N ⋅ m + x1 − 0.15 m ( 240 N ) − x1 ( 200 ) N = 0 ΣM N = 0: M = 124 N ⋅ m + ( 40 N ) x1 From diagrams, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. V max = 360 N along EF M max = 140.0 N ⋅ m at F COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 50. FBD AB + Pulley & Cord: ΣM A = 0: ( 48 in.) 5 12 D + ( 20 in.) D − (100 in.)(120 lb ) = 0 13 13 D = 325 lb so D x = 300 lb ΣFy = 0: − Ay + 125 lb − 120 lb = 0 , D y = 125 lb A y = 5 lb Neglecting the diameter of pulley G, the cord EG has slope 3/4, and tension 120 lb, E x = 96 lb (a) E y = 72 lb , Beam AB with forces at D and G replaced by forces and couples at E and F. Horizontal forces are omitted to avoid clutter. Along AE: ΣFy = 0: − 5 lb − V = 0, V = − 5 lb ΣM J = 0: x ( 5 lb ) + M = 0, M = ( − 5 lb ) x Along EF: ΣFy = 0: ΣM K = 0: − 5 lb + 197 lb − V = 0, V = 192 lb M + 6000 lb ⋅ in. + x ( 5 lb ) − ( x − 48 in.)(197 lb ) = 0 M = (192 lb ) x − 15456 lb ⋅ in. Along FB: ΣFy = 0: V − 120 lb = 0, V = 120 lb ΣM L = 0: − M − x1 (120 lb ) = 0 M = − (120 lb ) x1 (b) From diagrams, V M max Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max = 192.0 lb along EF = 6240 lb ⋅ in. = 520 lb ⋅ ft at E COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 51. ΣFy = 0: Lw − 2P = 0 w= 2P L Along AC: ΣM J = 0: M − x 2P x = 0 2 L M = P 2 x L Along CD: ΣM K = 0: M + ( x − a ) P − M = x 2P x = 0 2 L P 2 x − Px + Pa L Complete diagram using symmetry Note: M min = Pa − 1 L (center) PL at x = 2 4 Setting M max = − M min : Solving a = − P 2 PL L2 a = − Pa + or a 2 + La − =0 4 L 4 L 2 ± L, positive root a = 2 2 (a) Then, with L = 1.5 m, a = 0.31066 m (b) and, with P = 3.6 kN, M max = Pa 2 L Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 2 −1 L 2 a = 0.311 m M max = 232 N ⋅ m COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 52. ΣFy = 0: T − C y = 0 FBD Angle CE: Cy = T ΣM C = 0: M C − ( 0.3 ft ) T = 0, by symmetry D y = T M C = ( 0.3 ft ) T and M D = ( 0.3 ft ) T ΣFy = 0: 2T − 810 lb − ( 9 ft )(100 lb/ft ) = 0 Beam AB: T = 855 lb From above M C = M D = 256.5 lb ⋅ ft ΣM J = 0: M − Along AC: x (100 lb/ft ) x = 0 2 M = − ( 50 lb/ft ) x 2 Along CI: M C = 256.5 lb ⋅ ft ΣM K = 0: x (100 lb/ft ) x 2 − ( x − 4.5 ft + a )( 855 lb ) = 0 M − 256.5 lb ⋅ ft + M = − 50 x 2 + 855 ( x + a ) − 3591 lb ⋅ ft with a in ft Complete M diagram using symmetry At x = ( 4.5 − a ) ft, M min = − 50 ( 4.5 − a ) lb ⋅ ft 2 At x = 4.5 ft, M max = ( 855 a − 756 ) lb ⋅ ft Setting M max = − M min : a 2 − 26.1 a + 35.37 = 0 (a) Solving: a = 13.05 ± 11.6160, a < 4.5 so (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. giving M a = 1.434 ft max = 470 lb ⋅ ft COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 53. Replacing the 1500 N force with equivalent force and couple at D, M C = 0: (1.25 m ) P − (1.2 m )(1500 N ) − 1800 N ⋅ m + ( 2.4 m ) E y − ( 3.65 m ) 2P = 0 assume P in N: E y = (1500 + 2.5208 P ) N ΣFy = 0: C y − P − 2P − 1500 + (1500 + 2.5208 P ) = 0 C y = 0.47917 P ΣM J = 0: M + x P = 0 Along AC: M = − Px ΣM K = 0: Along CD: M + x P − ( x − 1.25 m )( 0.47917 P ) = 0 M = − 0.5208 Px − 0.5990 P at x = 2.45− (left of D), M = −1.875 P at x = 2.45+ (right of D), M = 1800 − 1.875 P ΣM E = 0: − M − (1.25 m )( 2 P ) = 0 At E: M = − 2.5 P (a) Setting M max = − M min : 1800 − 1.875 P = 2.5 P P = 411.43 P = 411 N (b) M max = 2.5 P M max = 1029 N ⋅ m M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max = 1.029 kN ⋅ m COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 54. Since there are no distributed loads, M is piecewise linear, and only pts A, C, and D need be considered. At A: ΣM A = 0: M + ( 0.75 m )( 4 kN ) + (1.75 m )(16 kN ) − (1.75 m + a )( 8 kN ) = 0 (With a in m) M = ( 8 a − 17 ) kN ⋅ m At C: ΣM C = M + (1 m )(16 kN ) − (1 m + a m )( 8 kN ) = 0 M = ( 8 a − 8 ) kN ⋅ m ΣM D = 0: M − ( a m )( 8 kN ) = 0 At D: M = 8 a kN ⋅ m (a) Apparently M max = 8 a kN ⋅ m at D, and M min = ( 8 a − 17 ) kN ⋅ m at A Setting M max = − M min : 8 a = 17 − 8 a a= 17 m 16 a = 1.063 m (b) and M max = 8 a = 17 kN ⋅ m 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M max = 8.50 kN ⋅ m COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 55. ΣM A = 0: a Dy − ( 5 ft )( 500 lb ) − (10 ft )( 500 lb ) = 0 Dy = 7500 lb ⋅ ft a Since there are no distributed loads, M is piecewise linear, so only points C and D need be considered. Assume a in ft. ΣM D = 0: At D: M + (10 − a ) ft ( 500 lb ) = 0 M D = − 500 (10 − a ) lb ⋅ ft At C: 7500 lb = 0 ΣM C = 0: M + ( 5ft )( 500 lb ) − 5 − (10 − a ) ft a 37500 M C = 5000 − lb ⋅ ft a (a) Apparently M max = M C and M min = M D (recall 5 < a < 10 ) Setting M C = − M D : 5000 − 37500 = 5000 − 500 a a 37500 = 500 a 2 a = 75 (b) M max ( ) = 500 10 − 75 lb ⋅ ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. a = 8.66 ft M max = 670 lb ⋅ ft COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 56. ΣM A = 0: aDy − ( 5 ft )( 250 lb ) − (10 ft )( 500 lb ) = 0 Dy = With a in ft, Dy = 6250 lb ⋅ ft a 6250 lb a Since there are no distributed loads, M is piecewise linear, so only points C and D need be considered. ΣM D = 0: At D: (10 − a ) ft ( 500 lb ) + M D = 0 M D = − 500 (10 − a ) lb ⋅ ft At C: ΣM C = 0: 6250 M C + ( 5 ft )( 500 lb ) − 5 − (10 − a ) ft lb = 0 a 31250 M C = 3750 − lb ⋅ ft a (a) Apparently M max is M C and M min is M D Setting M C = − M D : 3750 − ( 5 < a < 10 ) 31250 = − 500 a + 5000 a 500 a 2 − 1250 − 31250 = 0 or a 2 − 2.5 a − 62.5 = 0 a = 1.25 ± 8.004, positive root a = 9.254 ft a = 9.25 ft (b) M max = 500 (10 − a ) lb ⋅ ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M max = 373 lb ⋅ ft COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 57. ΣM J = 0: − M − M due to distributed load: x wx = 0 2 1 M = − wx 2 2 ΣM J = 0: − M + xw = 0 M due to counter weight: (a) Both applied: M = wx M = Wx − And here M = w 2 x 2 dM W = W − wx = 0 at x = dx w W2 > 0 so M max ; M min must be at x = L 2w So M min = WL − 1 2 wL . For minimum M 2 set M max = −M min , so max W2 1 = −WL + wL2 or W 2 + 2wLW − w2 L2 = 0 2w 2 W = −wL ± 2w2 L2 (need +) W = (b) w may be removed M max ( W2 = = 2w ( ) 2 − 1 wL = 0.414wL ) 2 −1 2 2 wL2 M = Wx, M max = WL at A Without w, M = Wx − With w (see part a) M min = WL − For minimum M max , set M max ( no w ) = −M min ( with w ) WL = − WL + M max = 0.858wL2 w 2 x , 2 M max = W2 W at x = 2w w 1 2 wL at x = L 2 1 2 1 wL → W = wL → 2 4 With Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M max = 1 2 wL 4 W = 1 wL 4 COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 58. (a) FBD Beam: ΣM C = 0: ΣFy = 0: LAy − M 0 = 0 − Ay + C = 0 Ay = M0 L C= M0 L M0 dV = w = 0 . at A, and remains constant L dx Moment Diag: M starts at zero at A and decreases linearly M M M dM = V = − 0 to − 0 at B, where M jumps by M 0 to + 0 . 2 2 dx L M M continues to decrease with slope − 0 to zero at C. L Shear Diag: V = − (b) From diagrams: V max = M0 everywhere L M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max = M0 at B 2 COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 59. (a) and (b) By symmetry Ay = By ΣFy = 0: 2 Ay − 2 P = 0 Ay = P By = P Shear Diag: V is piecewise constant with discontinuities equal to P at A, B, C and D in the direction of the loads. Moment Diag: M is piecewise linear with slope equal to + P on AB, 0 on BC, –P on CD. M B = Pa V max = P along AB and CD M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max = Pa along BC COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 60. (a) and (b) Shear Diag: dV = − w starting at 0 at A, and Since w is linear, V is quadratic dx 1 decreasing to − w0 L at B. 2 Moment Diag: dm = V to M is zero at A and decreases cubically dx 1 1 1 2 − w0 L L = − w0 L at B. 3 2 6 V M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max max = = 1 w0 L at B 2 1 w0 L2 at B 6 COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 61. (a) and (b) ΣM B = 0: aP + 2aC y − 3.5aP = 0 C y = 1.25P ΣFy = 0: By − 2 P + 1.25P = 0 By = 0.75P Shear Diag: V is piecewise constant, equal to –P from A to B, jumping up 0.75P, at B, to − 0.25P, and jumping up 1.25 P, at C, to + P. Moment Diag: dM M is zero at A, decreasing linearly = V = − P to − Pa at B, and dx dM further, = V = − 0.25P to − Pa − ( 0.25P )( 2a ) = −1.5Pa at C. M dx dM then increases linearly = V = P to −1.5Pa + P (1.5a ) = 0 at D, dx as it must. V max = P along AB and CD M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max = 1.5Pa at C COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 62. (a) and (b) ΣM B = 0: ( 0.6 ft )( 4 kips ) + ( 5.1 ft )(8 kips ) + ( 7.8 ft )(10 kips ) − ( 9.6 ft ) Ay =0 A y = 12.625 kips Shear Diag: dV V is piecewise constant, = 0 with discontinuities at each dx concentrated force. (equal to force) V = 12.63 kips max Moment Diag: dM = V throughout. M is zero at A, and piecewise linear dx M C = (1.8 ft )(12.625 kips ) = 22.725 kip ⋅ ft M D = 22.725 kip ⋅ ft + ( 2.7 ft )( 2.625 kips ) = 29.8125 kip ⋅ ft M E = 29.8125 kip ⋅ ft − ( 4.5 ft )( 5.375 kips ) = 5.625 kip ⋅ ft M B = 5.625 kip ⋅ ft − ( 0.6 ft )( 9.375 kips ) = 0 M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max = 29.8 kip ⋅ ft COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 63. (a) and (b) FBD Beam: ΣM E = 0: (1.1 m )( 0.54 kN ) − ( 0.9 m ) C y + ( 0.4 m )(1.35 kN ) − ( 0.3 m )( 0.54 kN ) = 0 C y = 1.08 kN ΣFy = 0: − 0.54 kN + 1.08 kN − 1.35 kN + E − 0.54 kN = 0 E = 1.35 kN Shear Diag: dV V is piecewise constant, = 0 everywhere with discontinuities at dx each concentrated force. (equal to the force) V max = 810 N Moment Diag: M is piecewise linear starting with M A = 0 M C = 0 − 0.2 m ( 0.54 kN ) = 0.108 kN ⋅ m M D = 0.108 kN ⋅ m + ( 0.5 m )( 0.54 kN ) = 0.162 kN ⋅ m M E = 0.162 kN ⋅ m − ( 0.4 m )( 0.81 kN ) = − 0.162 kN ⋅ m M B = 0.162 kN ⋅ m + ( 0.3 m )( 0.54 kN ) = 0 M max Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. = 0.162 kN ⋅ m = 162.0 N ⋅ m COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 64. (1.5 m ) E y − 1 m ( 360 N/m )(1 m ) − (1.3 m )( 600 N ) 2 ΣM A = 0: − ( 2 m )( 420 N ) = 0 ΣFy = 0: (a) E y = 1200 N Ay + 1200 N − ( 360 N/m )(1 m ) − 600 N − 420 N = 0 A y = 180.0 N Shear Diag: V jumps to Ay = 180 N at A, then decreases linearly dV = − w = − 360 N/m to 180 N − ( 360 N/m )(1 m ) = −180 N at C. dx From C, V is piecewise constant ( w = 0 ) with jumps of − 600 N at D, + 1200 N at E, − 420 N at B. Moment Diag: M starts at zero at A with slope dM = V = 180 N/m, decreasing to zero dx 1 (180 N )( 0.5 m ) = 45 N ⋅ m. M is zero again 2 at C, decreasing to − (180 N )( 0.3 m ) = − 54 N ⋅ m at D. M then at x = 0.5 m . There M = decreases by ( 780 N )( 0.2 m ) = 156 N ⋅ m to − 210 N ⋅ m at E, and increases by ( 420 N )( 0.5 m ) = 210 N ⋅ m to zero at B. (b) From the diagrams, V max M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. = 780 N along EB max = 210 N ⋅ m at E COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 65. (a) Shear Diag: dV V is zero at A with constant slope = − w = −1 kip/ft decreasing to dx − 3.6 kips at C. V then jumps 9 kips to 5.4 kips and is constant to D. Then V increases with constant slope 1.5 kips/ft for 3 ft, to 9.9 kips at B. This is also equal to By . Moment Diag: dM = V decreasing to − 3.6 kips at C, M is zero at A, with zero slope dx 1 where M = ( − 3.6 kips )( 3.6 ft ) , M C = − 6.48 kip ⋅ ft. M then increases 2 linearly with slope 5.4 kips to − 6.48 kip ⋅ ft + ( 5.4 kips )(1.8 ft ) = 3.24 kip ⋅ ft at D. Finally, M increases, with increasing slope, to 5.4 kips + 9.9 kips M B = 3.24 kip ⋅ ft + ( 3 ft ) , 2 (b) M B = 26.19 kip ⋅ ft. From the diagrams, V M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max max = 9.90 kips at B = 26.2 kip ⋅ ft at B COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 66. (a) ΣM B = 0: ( 4 m ) Ay − ( 2.7 m )(1.8 kN/m )( 2.6 m ) − ( 2.4 m )( 4 kN ) = 0 A y = 5.559 kN Shear Diag: At A, V jumps up 5.559 kN, then decreases with uniform slope of −1.8 kN/m to 2.679 kN at C. V then jumps down 4 kN to −1.321 kN, and continues with uniform slope −1.8 kN/m to − 3.121 kN at D. V is then constant to B. Note: By = 3.121 kN Moment Diag: dM = V = 5.559 kN. The slope decreases to dx 5.559 + 2.679 kN (1.6 m ) , 2.679 kN at C, where M = 2 M is zero at A, with slope M C = 6.59 kN ⋅ m. At C the slope drops to −1.321 kN and continues to 1.321 + 3.121 decrease, M D = 6.59 kN ⋅ m − kN (1 m ) = 4.37 kN ⋅ m. 2 M then decreases with uniform slope − 3.121 kN, to zero at B. From the diagrams, (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. V M max max = 5.56 kN at A = 6.59 kN ⋅ m at C COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 67. (a) ΣFy = 0: Ay + ( 24 kN/m )( 2 m ) − 48 kN − 8 kN = 0 A y = 8 kN ΣM A = 0: M A − (1 m )( 24 kN/m )( 2 m ) + ( 3.5 m )( 48 kN ) + ( 4 m )( 8 kN ) = 0 M A = −152 kN ⋅ m Shear Diag: V jumps to 8 kN at A, and increases with uniform slope dV = − w = 24 kN/m to 56 kN at C. V is constant at 56 kN to D, then dx drops by 8 kN to 8 kN at D, is then constant at 8 kN to B. Moment Diag: M starts at M A = −152 kN ⋅ m, with slope 8 kN, which increases to 56 kN 8 + 56 at C, where M = −152 kN ⋅ m + kN ( 2 m ) = − 88 kN ⋅ m. Then 2 M increases with uniform slope 56 kN to − 88 kN ⋅ m + ( 56 kN )(1.5 m ) = − 4 kN ⋅ m at D, and finally, with slope 8 kN, to zero at B. From the diagrams, (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. V M max max = 56 kN along CD = 152.0 kN ⋅ m at A COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 68. Note: Cx is omitted to avoid clutter. (a) By symmetry C y = G y ΣFy = 0: 2C y − 2 (12 lb/in.)(10 in.) − 2 (100 lb ) − 150 lb = 0 C y = 295 lb G y = 295 lb Shear Diag: dV = − w = −12 lb/in. which is uniform to dx C, where V = − (12 lb/in.)(10 in.) = −120 lb ⋅ in. V jumps 295 lb to At A, V = 0 and has slope + 175 lb at C, is constant to D where it drops 100 lb to 75 lb, is constant to E where it drops 150 lb to − 75 lb. The diagram can be completed using symmetry. Moment Diag: M is zero at A, with zero slope, which decreases linearly to −120 lb at C, 1 where M = − (120 lb )(10 in.) = − 600 lb ⋅ in. M then increases, with 2 uniform slope 175 lb, to − 600 lb ⋅ in. + (175 lb )( 6 in.) = 450 lb ⋅ in. at D. M then increases, at uniform slope 75 lb, to 450 lb + (75 lb)(6 in.) = 900 lb ⋅ in. at E. The diagram can be completed using symmetry. From the diagrams, (b) V max = 175.0 lb along CD and FG M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max = 900 lb ⋅ in. at center E COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 69. (a) (18 ft )(1 kip/ft )( 6 ft ) − (12 ft ) Dy ΣM F = 0: + ( 4.5 ft )( 2 kips/ft )( 9 ft ) + ( 3 ft )( 33 kips ) = 0 D y = 24 kips ΣFy = 0: 24 kips + Fy + 33 kips − (1 kip/ft )( 6 ft ) − ( 2 kips/ft )( 9 ft ) = 0 Fy = − 33 kips Fy = 33 kips Shear Diag: dV = −1 kip/ft is uniform to C, where V = − 6 kips . dx Then V is constant to D where it jumps up 24 kips to + 18 kips, and dV = − 2 kips/ft and V decreases by remains constant to E. From E to F, dx 18 kips to zero at F, where it drops 33 kips, is constant to B, and jumps V = 0 at A and 33 kips to zero. Moment Diag: At A, M = 0 and dM starts at zero, decreasing to − 6 kips at C, where dx 1 ( 6 kips )( 6 ft ) = −18 kip ⋅ ft. M then decreases linearly by 2 ( 6 kips )( 3 ft ) to − 36 kip ⋅ ft at D, and increases linearly by M = (18 kip )( 3 ft ) dM decreases from dx to + 18 kip ⋅ ft at E. From E to F, 1 (18 kips )( 9 ft ) to 99 kip ⋅ ft, at F. 2 M then decreases linearly to zero at B. 18 kips to zero as M increases by From the diagrams, (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. V max = 33.0 kips along FB M max = 99.0 kips at F COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 70. (a) ΣFy = 0: Ay + ( 200 N/m )( 0.8 m ) − (120 N/m )( 0.3 m ) = 0 Ay = −124 N ΣM A = 0: A y = 124 N M A − 60 N ⋅ m − ( 0.4 m )( 200 N/m )( 0.8 m ) + (1.35 m )(120 N/m )( 0.3 m ) = 0 M A = 75.4 N ⋅ m Shear Diag: dV = 200 N/m from A to C and V increases by dx ( 200 N/m )( 0.8 m ) = 160 N to + 36 N at C. It remains at 36 N to D, V drops to 124 N at A. then decreases linearly to zero at B. Note V = 0 where x 124 N = , 0.8 m 160 N or x = 0.62 m. Moment Diag: dM = −124 N. The slope increases to zero dx 1 at x = 0.62 m, where M = 75.4 N ⋅ m − (124 N )( 0.62 m ) 2 = 36.96 N ⋅ m. The slope then increases as M increases by 1 ( 36 N )( 0.18 m ) = 3.24 N ⋅ m to 40.2 N ⋅ m at C, where it drops 2 60 N ⋅ m to −19.8 N ⋅ m. M increases linearly by M jumps to 75.4 at A where ( 36 N )( 0.4 m ) = 14.4 N ⋅ m quadratically by to − 5.4 N ⋅ m, and finally M increases 1 dM is ( 36 N )( 0.3 m ) = 5.4 N ⋅ m to zero at B where 2 dx also zero. From the diagrams, V max M (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max = 124.0 N at A = 75.4 N at A COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 71. (a) − ( 3 m )( 9 kN ) − 27 kN ⋅ m − ( 9 m )(12 kN ) + (12 m ) F ΣM A = 0: + (16.5 m )( 3 kN ) + 22.5 kN ⋅ m = 0 F = 7.5 kN ΣFy = 0: Ay − 9 kN − 12 kN + 7.5 kN + 3 kN = 0 A y = 10.5 kN Shear Diag: V is piecewise constant, with jumps at A, C, E, F, and B, equal to the forces there. Moment Diag: M is piecewise linear with jumps at D and B equal to the couples there. M C = (10.5 kN )( 3 m ) = 31.5 kN ⋅ m M D − = 31.5 kN ⋅ m + (1.5 kN )( 3 m ) = 36.0 kN ⋅ m M D+ = 36 kN ⋅ m + 27 kN ⋅ m = 63 kN ⋅ m M E = 63 kN ⋅ m + (1.5 kN )( 3 m ) = 67.5 kN ⋅ m M F = 67.5 kN ⋅ m − (10.5 kN )( 3 m ) = 36 kN ⋅ m M B − = 36 kN ⋅ m − ( 3 kN )( 4.5 m ) = 22.5 kN ⋅ m Finally M drops 22.5 kN ⋅ m to zero at B (b) From the diagrams, V max = 10.50 kN along AC and EF M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max = 67.5 kN ⋅ m at E COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 72. (a) ( 3 m ) By − ( 2.1 m )( 2.5 kN/m )( 4.2 m ) = 0 ΣM A = 0: B y = 7.35 kN ΣFy = 0: Ay − ( 2.5 kN/m )( 4.2 m ) + 7.35 kN = 0 A y = 3.15 kN Shear Diag: dV = − 2.5 kN/m throughout, and jumps at A and B equal to dx the forces there. V has slope VB − = 3.15 kN − ( 2.5 kN/m )( 3 m ) = − 4.35 VB + = − 4.35 kN + 7.35 kN = 3 kN VC = 3 kN − ( 2.5 kN/m )(1.2 m ) = 0 Note, V = 0 where 3.15 kN − ( 2.5 kN/m ) x = 0, x = 1.26 m. Moment Diag: dM = 3.15 kN. The slope decreases to zero at dx x = 1.26 m and to − 4.35 kN at B, jumps to 3.0 kN and decreases to 0 at C. 1 M D = ( 3.15 kN )(1.26 m ) = 1.9845 kN ⋅ m 2 1 M B = 1.9845 kN ⋅ m − ( 4.35 kN )( 3 m − 1.26 m ) = −1.80 kN ⋅ m 2 1 M C = −1.80 kN ⋅ m + ( 3 kN )(1.2 m ) = 0 2 At A, M = 0 and From the diagrams, (b) V M max max = 4.35 kN at B = 1.985 kN at D (1.26 m from A ) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 73. (a) Note: C x omitted to avoid clutter. ΣM C = 0: − ( 0.5 m )( 2 kN/m )( 2 m ) + (1.5 m )(1 kN ) − ( 3 m )( 4.5 kN/m )(1 m ) + ( 3.5 m ) By = 0 B y = 4.0 kN ΣFy = 0: C y − ( 2 kN/m )( 2 m ) + 1 kN − ( 4.5 kN/m )(1 m ) + 4.0 kN = 0 C y = 3.5 kN Shear Diag: dV = − 2 kN/m, so V decreases to −1 at C, then dm jumps 3.5 kN to + 2.5 kN, and continues to decrease, with the same slope, to − 0.5 kN at D, jumps 1 kN to + 0.5 kN from D to E. Then V decreases at rate 4.5 kN/m, to − 4.0 kN at B. Note that V = 0 where 8 ( − 4.5 kN/m )( x ) = − 4 kN, x = m, and where ( 2 kN/m )( y ) = 2.5, 9 5 y = m. 4 Moment Diag: dM At A, M and = 0, with the slope decreasing to −1 kN at C, where dx 1 M = − (1 kN )( 0.5 m ) = − 0.25 kN ⋅ m. The slope jumps to 2.5 kN 2 and decreases to zero at F and to − 0.5 kN at D. At A, V = 0 and M F = − 0.25 kN ⋅ m + 1 5 ( 2.5 kN ) m = 1.3125 kN ⋅ m 2 4 M D = 1.3125 kN ⋅ m − 1 1 ( 0.5 kN ) m = 1.25 kN ⋅ m. 2 4 From D, M increases by ( 0.5 kN )(1 m ) to 1.75 kN ⋅ m at G. M continues to increase to 1.75 kN ⋅ m + then decreases by (b) 1 1 ( 0.5 kN ) m = 1.7778 kN ⋅ m at G and 2 9 1 8 ( 4 kN ) m = 1.7778 kN ⋅ m, to zero at B. 2 9 V From the diagrams, M max max = 4.00 kN at B 4 = 1.778 kN ⋅ m at G m from B 9 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 74. (a) ΣFy = 0: Ay − ( 2 kips/ft )( 8 ft ) − 3 kips + 7 kips = 0 A y = 12 kips M A + ( 4 ft )( 2 kips/ft )( 8 ft ) − (14 ft )( 3 kips ) ΣM A = 0: − ( 20 ft )( 7 kips ) = 0 M A = 34 kip ⋅ ft Shear Diag: V jumps to 12 kips at A, then decreases at 2 kips/ft to − 4 kips at C to D. V drops 3 kips to − 7 kips from D to B and jumps 7 kips to zero. Note: V = 0 where 12 kips − ( 2 kips/ft ) x = 0, x = 6 ft. Moment Diag: M jumps to 34 kip ⋅ ft at A and then increases with decreasing slope to 1 34 kip ⋅ ft + (12 kips )( 6 ft ) = 70 kip ⋅ ft at E, and decreases by 2 1 ( 4 kips )( 2 ft ) = 4 kip ⋅ ft, to 66 kip ⋅ ft at C. M then decreases by 2 ( 4 kips )( 6 ft ) to 42 kip ⋅ ft at D, and by ( 7 kips )( 6 ft ) to zero at B. M ΣFy = 0: max = 70 kip ⋅ ft at E Ay − ( 2 kips/ft )( 8 ft ) − 3 kips + 10 kips = 0 A y = 9 kips (b) ΣM A = 0: M A + ( 4 ft )( 2 kips/ft )( 8 ft ) + (14 ft )( 3 kips ) − ( 20 ft )(10 kips ) = 0 M A = 94 kip ⋅ ft Shear Diag: V jumps to 9 kips at A, then decreases, at 2 kips/ft , to − 7 kips at C to D, drops 3 kips to −10 kips from D to B and jumps 10 kips to 0. Note: V = 0 where 9 kips − ( 2 kips/ft ) x = 0, x = 4.5 ft. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Moment Diag: M jumps to 94 kip ⋅ ft at A and increases to 94 kip ⋅ ft + 1 ( 9 kips )( 4.5 ft ) = 114.25 kip ⋅ ft, then decreases by 2 1 ( 7 kips )( 3.5 ft ) to 102 kip ⋅ ft at C. M decreases linearly by 2 ( 7 kips )( 6 ft ) to 60 kip ⋅ ft at D, then by (10 kips )( 6 ft ) to zero at B. M max = 114.3 kip ⋅ ft at E ( 4.5 ft from A) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 75. (15 ft ) C y + ( 9 ft )( 600 lb ) − ( 4.5 ft )(800 lb/ft )( 9 ft ) = 0 ΣM A = 0: C y = 1800 lb = 1.8 kips ΣFy = 0: Ay + 1800 lb − ( 800 lb )( 9 ft ) + 600 lb = 0 A y = 4800 lb = 4.8 kips Shear Diag: V jumps to 4.8 kips at A then decreases linearly, at 0.8 kips/ft, to − 2.4 kips at B, jumps 0.6 kips to −1.8 kips, is constant to C, and jumps 1.8 kips to zero. Note: V = 0 at D, where 4.8 kips − ( 800 kip/ft ) x = 0, x = 6.0 ft. Moment Diag: M starts at zero and increases with decreasing slope to 1 ( 4.8 kips )( 6 ft ) = 14.4 kip ⋅ ft at D, then decreases by 2 1 ( 2.4 kips )( 3 ft ) to 10.8 kip ⋅ ft at B. M then decreases with slope 2 −1.8 kips to zero at C. M max = 14.40 kips at D (6 ft from A) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 76. (a) ΣM A = 0: ( 6 m ) By − (1 m )( 20 kN/m )( 2 m ) − 24 kN ⋅ m − ( 5 m )( 20 kN/m )( 2 m ) = 0 B y = 44 kN ΣFy = 0: Ay − 2 ( 20 kN/m )( 2 m ) + 44 kN = 0 A y = 36 kN Shear Diag: V jumps to 36 kN at A, then decreases with slope –20 kN/m to − 4 kN at C, is constant to E, then decreases with slope –20 kN/m to − 44 kN at B. Note: V = 0 at F where 36 kN − ( 20 kN/m ) x = 0, x = 1.8 m. Moment Diag: Starting at zero M increases with decreasing slope to 1 (36 kN )(1.8 m) 2 1 ( 4 kN )( 0.2 m ) to 32 kN ⋅ m at C , 2 then with slope − 4 kN to 28 kN ⋅ m at D, where it jumps to 52 kN ⋅ m, M decreases with slope − 4 kN to 48 kN ⋅ m at E, then with increasingly = 32.4 kN ⋅ m at F , decreases by (b) 4 + 44 negative slope by kN ( 2 m ) to zero at B. 2 M max = 52 kN ⋅ m ( at D ) W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 77. (a) ΣM A = 0: ( 6 m ) By − (1 m )( 20 kN/m )( 2 m ) + 24 kN ⋅ m − ( 5 m )( 20 kN/m )( 2 m ) = 0 ΣFy = 0: B y = 36 kN Ay − 2 ( 20 kN/m )( 2 m ) + 36 kN = 0 A y = 44 kN Shear Diag: V jumps to 44 kN at A, then decreases with slope − 20 kN/m to 4 kN at C, is constant to E, then decreases with slope − 20 kN/m to −36 kN at B. V = 0 at F where − 36 kN + ( 20 kN/m ) x = 0, x = 1.8 m. Moment Diag: 44 + 4 kN ( 2 m ) M starts at zero, increases with decreasing slope to 2 = 48 kN ⋅ m at C , increases with slope 4 kN to 52 kN ⋅ m at D, drops 24 kN ⋅ m to 28 kN ⋅ m then increases with slope 4 kN to 32 kN ⋅ m at E. 1 Then M increases with decreasing slope, by ( 4 kN )( 0.2 m ) to 2 32.4 kN ⋅ m at F and decreases with increasingly negative slope to zero at B. (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M max = 52.0 kN ⋅ m ( at D ) COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 78. (a) Note: The 2 kip force at E has been replaced by the equivalent force and couple at C. ΣM A = 0: − ( 6 ft )(1 kip/ft )(12 ft ) + 8 kip ⋅ ft − (12 ft )( 2 kips ) + ( 24 ft ) Dy − ( 32 ft )(1 kip ) = 0 ΣFy = 0: D y = 5 kips Ay − (1 kip/ft )(12 ft ) − 2 kips + 5 kips − 1 kip = 0 A y = 10 kips Shear Diag: From 10 kips at A, V decreases with slope −1 kip/ft to − 2 kips at C, drops 2 kips, is constant at − 4 kips to D, jumps 5 kips, and is constant at 1 kip to B. V = 0 at E, where 10 kips − (1 kip/ft ) x = 0, x = 10 ft. Moment Diag: From zero at A, M increases with decreasing slope to 1 (10 kips)(10 ft ) 2 1 ( 2 kips )( 2 ft ) to 48 kip ⋅ ft at C, drops 2 8 kip ⋅ ft to 40 kip ⋅ ft, then decreases with slope − 4 kips to − 8 kip ⋅ ft at D. Finally M increases with slope 1 kip to zero at B. = 50 kip ⋅ ft at F , decreases by (b) M max = 50 kip ⋅ ft at F (10.00 ft from A ) W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 79. (a) Note: The 2 kip force at E has been replaced by the equivalent force and couple at C. ΣM A = 0: − ( 6 ft )(1 kip/ft )(12 ft ) + (12 ft )( 2 kips ) − 8 kip ⋅ ft + ( 24 ft ) Dy − ( 32 ft )(1 kip ) = 0 ΣFy = 0: Ay − (1 kip/ft )(12 ft ) + 2 kips − Ay = Dy = 11 kips 3 11 kips − 1 kip = 0 3 22 kips 3 Shear Diag: 22 14 Starting at kips at A, V decreases with slope −1 kip/ft to − kips 3 3 8 11 kips at C, jumps 2 kips and remains constant at − kips to D, jumps 3 3 and remains constant at 1 kip to B, drops to zero. V = 0 at F, where 22 kip − (1 kip/ft ) x = 0, 3 x= 22 ft. 3 Moment Diag: Starting from zero, M increases with decreasing slope to 1 22 22 kips ft = 26.889 kip ⋅ ft at F . M then decreases by 2 3 3 1 14 14 kips ft to 16 kip ⋅ ft at C , jumps to 24 kip ⋅ ft, decreases 2 3 3 8 with slope − kips to − 8 kip ⋅ ft at D, and finally increases with slope 3 1 kip to zero at B. (b) M max = 26.9 kip ⋅ ft at F ( 7.33 ft from A) W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 80. (b) x w = w0 4 − 1 L (a) Distributed load dV = −w, and V ( 0 ) = 0, so dx Shear: V = V = x ∫0 − wdx = − ∫ x/L ∫0 wo L 1 − x/L 0 x Lwd L 2 x x x x 4 d = w L − 2 0 L L L L Notes: At x = L, V = −w0 L x x = 2 L L And V = 0 at 2 x 1 = L 2 or 1 x Also V is max where w = 0 = 4 L Vmax = 1 w0 L 8 M ( 0 ) = 0, Moment: M = x x/L ∫ 0 vdx = L∫ 0 2 M = w0 L x/L ∫0 dM =V dx x x V d L L 2 x x x − 2 d L L L 2 x x V = w0 L − 2 L L 1 x 2 2 x 3 M = w0 L − 3 L 2 L 2 M max = 1 L w0 L2 at x = 24 2 1 M min = − w0 L2 at x = L 6 M max = (c) w0 L2 L at x = 24 2 M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max = −M min = w0 L2 at B 6 COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 81. (b) 1 1 ( 2w0 ) ( 2a ) + w0a = 0 2 2 ΣFy = 0: Ay − Ay = 3 w0a 2 2 1 7 1 ( 2a ) ( 2w0 ) ( 2a ) − a ( w0 ) ( a ) = 0 3 2 3 2 ΣM A = 0: M A + 3 M A = − w0a 2 2 (a) for 0 ≤ x ≤ 2a: w= w0 x a V = 3 M = − w0a 2 + 2 ∫ x 0 ( 3 w0a − 2 ∫ x 0 ( ) w0 w xdx = 0 3a 2 − x 2 W a 2a ) w0 3a 2 − x 2 dx 2a M = ( ) ( ) w0 − 9a 3 + 9a 2 x − x3 W 6a Note: V = 0 at x = 3a, where M = 0.232 w0a 2 At x = 2a, M = 1 w0a 2 6 for 2a ≤ x ≤ 3a : 1 V = − w0a + 2 ∫ x 2a w = − 3w0 + w0 x a w0 ( 3a − x ) dx a V = M = 1 w0a + 6 ∫ x 2a ( ) w0 − 9a 2 + 6ax − x 2 dx 2a M = (c) w0 − 9a 2 + 6ax − x 2 W 2a ( ) w0 27a3 − 27a 2 x + 9ax 2 − x3 W 6a M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max = 3 w0a 2 at A ( x = 0 ) W 2 COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 82. (a) FBD Beam: ΣM B = 0: 1 w0 ( 3a ) − 5aAy = 0 2 ( 3a ) ΣFy = 0: 0.9w0a − A y = 0.9w0a 1 w0 ( 3a ) + B = 0 2 B = 0.6w0a Shear Diag: V = Ay = 0.9w0a from A to C and V = B = − 0.6w0a from B to D. x1 . If x1 is measured right to left, 3a dV x w dM = + w and = − V . So, from D, V = − 0.6w0a + ∫ 0 1 0 x1dx1, dx1 dx1 3a Then from D to C, w = w0 2 1 x1 V = w0a − 0.6 + 6 a 2 x Note: V = 0 at 1 = 3.6, x1 = a 3.6 a Moment Diag: dM M = 0 at A, increasing linearly = 0.9w0a to M C = 0.9w0a 2. dx1 dM Similarly M = 0 at B increasing linearly = 0.6w0a to dx M D = 0.6w0a 2. Between C and D 2 M = 0.6w0a + w0a ∫ x1 0 2 0.6 − 1 x1 dx1, 6 a 3 x 1 x M = w0a 2 0.6 + 0.6 1 − 1 a 18 a (b) At x1 = a 3.6, M = M max = 1.359w0a 2 x1 = 1.897a left of D Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 83. ΣM A = 0: LBy − V =− w0 L + 20 L1 w0 L = 0 54 ∫ x1 0 By = ( w0 L 20 w0 3 w x dx1 = 0 3 5x14 − L4 3 1 20L L V = or ) w0 4 5 ( L − x ) − L4 W 3 20 L Note: V = 0 at x1 = 5−1/ 4 L = 0.6687 L or x = 0.3313 L M =0+ = ∫ x1 0 ( ) w0 5x14 − L4 dx1 20L3 ( ) or M = w0 x15 − L4 x1 20L3 w0 5 L − x ) − L4 ( L − x ) W ( 3 20L M max = M at x1 = 0.6687 L, x = 0.331 L W M max = 0.0267 w0 L2 W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 84. (a) ΣM C = 0: ( 395 − 215 ) N ⋅ m + ( 0.1 m )(1000 N/m )( 0.2 m ) FBD section AC: − ( 0.2 m )VA = 0, VA = 1000 N ΣM B = 0: 395 N ⋅ m + ( 0.45 m )(1 kN/m )( 0.4 m ) − ( 0.65 m )(1 kN ) + ( 0.25 m ) P = 0 FBD whole: (b) P = 0.3 kN, P = 300 N W ΣFy = 0: 1000 N − 400 N − 300 N − Q = 0 Q = 300 N W Shear Diag: Starting at 1000 N, V decreases with slope − 1000 N/m to 600 N at D, drops 300 N and is constant to B where it drops 300 N to zero. Moment Diag: Starting at − 395 N ⋅ m, M increases with decreasing slope to −395 N ⋅ m 1000 + 600 N ( 0.4 m ) = − 75 N ⋅ m at D, then increases with slope 300 N + 2 to zero at B. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 85. (a) ΣM C = 0: ( 395 − 215) N ⋅ m − ( 0.2 m ) Ay FBD section AC: + ( 0.1 m )(1000 N/m )( 0.2 m ) = 0 A y = 1000 N ΣM B = 0: 395 N ⋅ m + ( 0.325 m )(1000 N/m )( 0.65 m ) + ( 0.25 m ) P = 0 − ( 0.65 m )(1000 N ) = 0 (b) FBD Whole: P = 175.0 N W ΣFy = 0: 1000 N − 175 N − Q − (1000 N/m )( 0.65 m ) = 0 Q = 175.0 N W Shear Diag: V starts at 1000 N, and has slope − 1000 N/m throughout, but with drops of 175 N at D and B. Moment Diag: M starts at − 395 N ⋅ m and increases with decreasing slope to − 295 N ⋅ m 1000 + 600 + N ( 0.4 m ) = − 75 N ⋅ m at D. There is a discontinuity in slope, 2 425 + 175 N ( 0.25 m ) to zero at B. and M increases by 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 86. (a) FBD AC: ΣM C = 0: 2.7 kN ⋅ m − ( 0.2 m ) Ay = 0, ΣM D = 0: ( 0.2 m ) Dy − 2.5 kN ⋅ m = 0, A y = 1.35 kN D y = 1.25 kN ΣM C = 0: − ( 2 m )(1.35 kN ) − ( 2 m )( 0.4 kN/m )( 4 m ) − ( 4 m ) Q + ( 6 m )(1.25 kN ) = 0, FBD AB: Q = 0.4 kN Q = 400 N W ΣFy = 0: 1.35 kN − P − ( 0.4 kN/m )( 4 m ) − 0.4 kN + 1.25 kN = 0 P = 0.6 kN P = 600 N W (b) FBD Whole: Shear Diag: V is constant at 1.35 kN from A to C, drops 0.6 kN, then decreases with slope –0.4 kN/m ( −1.6 kN ) to − 0.85 kN at D, drops 0.4 kN to −1.25 kN, and is constant to B. V = 0 where 0.75 kN – (0.4 kN/m)x = 0, x = 1.875 m. Moment Diag: From zero at A, M increases with slope 1.35 kN to 2.70 kN ⋅ m at C, the slope drops to 0.75 kN and then decreases to zero at E, where 1 M = 2.7 kN ⋅ m + ( 0.75 kN )(1.875 m ) = 3.403 kN ⋅ m. This curve 2 1 continues to D where M = 3.403 kN ⋅ m − ( 0.85 kN )( 2.125 m ) 2 = 2.50 kN ⋅ m, then M decreases with slope −1.25 kN to zero at B. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 87. (a) FBD AC: ΣM C = 0: 2.7 kN ⋅ m − (1.35 m ) Ay = 0, A y = 2 kN ΣM D = 0: 2.5 kN ⋅ m − ( 2 m ) By = 0, B y = 1.25 kN ΣM C = 0: ( 6.65 m )(1.25 kN ) − ( 4.65 m ) Q − ( 2.325 m )( 0.4 kN/m )( 4.65 m ) − (1.35 m )( 2 kN ) = 0 Q = 0.27699 kN FBD DB: Q = 277 N W ΣFy = 0: 2 kN − P − 0.277 kN − ( 0.4 kN/m )( 4.65 m ) + 1.25 kN = 0 P = 1.113 kN (b) FBD Whole: W Shear Diag: V is constant at 2 kN from A to C, drops 1.113 kN to 0.887 kN, then decreases with slope − 0.4 kN/m to 0.887 kN − ( 0.4 kN/m ) ( 4.65 m ) = − 0.973 kN, drops 0.277 kN to −1.25 kN and is constant to B. V = 0 where 0.887 kN − ( 0.4 kN/m ) x = 2.2175 m at E . Moment Diag: Starting from zero, M increases with slope 2 kN to 2.7 kN ⋅ m at C. The slope drops to 0.887 kN and decreases to zero at E where M = 2.7 kN 1 + ( 0.887 kN )( 2.2175 m ) = 3.68 kN ⋅ m. This curve continues to D 2 where M = 2.5 kN ⋅ m, then M decreases linearly to zero at B. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 88. FBD Cable: ΣM A = 0: ( 5 m ) Dy − ( 4 m )( 2.25 kN ) − ( 2 m )( 3 kN ) = 0 D y = 3 kN ΣFy = 0: Ay − 3 kN − 2.25 kN + 3 kN = 0 A y = 2.25 kN Point D: ΣFx = 0: − Ax + Dx = 0, Ax = Dx (1) Since Ax = Dx and Dy > Ay , TCD is Tmax ΣFy = 0: 3 kN − ΣFx = 0: − Point A: 3 TCD = 0 5 TCD = 5 kN 4 ( 5 kN ) + Dy = 0 5 From(1), dB 2.25 kN = 2m 4 kN D x = 4 kN A x = 4 kN (a ) d B = 1.125 m W (b) A x = 4.00 kN W A y = 2.25 kN W (c) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Tmax = 5.00 kN W COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 89. FBD Cable: ΣM A = 0: ( 5 m ) Dy − ( 4 m )( 2.25 kN ) − ( 2 m )( 3 kN ) = 0 D y = 3 kN ΣFy = 0: Ay − 3 kN − 2.25 kN + 3 kN = 0 A y = 2.25 kN ΣFx = 0: − Ax + Dx = 0 Point D: Since Ax = Dx , and Dy > Ay , Ax = Dx Tmax is TCD = 3.6 kN 1 + dC2 dC 1m = = 3 kN Dx 3.6 kN 1.2 dC = 1 + dC2 , 1.44 dC2 = 1 + dC2 Point A: dC = 1.50756 m 1 m Also Dx = 3 kN = 1.98997 kN = Ax dC dB 2m = 2.25 kN 1.9900 kN (a) d B = 2.26 m W (b) dC = 1.508 m W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 90. ΣM A = 0: 4aE y − 3a (1.2 kips ) − 2a ( 0.8 kips ) − a ( 0.4 kips ) = 0 FBD Cable: E y = 1.4 kips ΣFy = 0: AY − ( 0.4 + 0.8 + 1.2 kips ) + 1.4 kips = 0 A y = 1.0 kips ΣFx = 0: − Ax + Ex = 0, Since Ax = Ex and E y > Ay , FBD CDE: ΣM C = 0: Ax = Ex Tmax = TDE ( 30 ft )(1.4 kips ) − (12 ft ) Ex − (15 ft )(1.2 kips ) = 0 (a) E x = 2.00 kips W E y = 1.400 kips W (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Tmax = TDE = 2.44 kips W COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 91. FBD Cable: ΣM A = 0: 4aE y − 3a (1.2 kips ) − 2a ( 0.8 kips ) − a ( 0.4 kips ) = 0 E y = 1.4 kips ΣFy = 0: Ay − ( 0.4 + 0.8 + 1.2 kips ) + 1.4 kips = 0 A y = 1.0 kips ΣFx = 0: Point E: − Ax + Ex = 0, Since Ax = Ex , and E y > Ay , Ex = Ax = Ex Tmax = TDE ( 5 kips )2 + (1.4 kips )2 = 4.8 kips FBD CDE: ΣM C = 0: ( 30 ft )(1.4 kips ) − dC ( 4.8 kips ) − (15 ft )(1.2 kips ) = 0 dC = 5.00 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 92. (a) FBD Whole: ΣM A = 0: (1.2 m ) Ex + ( 4 m ) E y − (1 m )(1.8 kN ) − ( 2 m )( 3.6 kN ) − ( 3 m )(1.2 m ) = 0 1.2Ex + 4E y = 12.6 kN FBD CDE: ΣM C = 0: (1) ( 2 m ) E y − ( 0.6 m ) Ex − (1 m )(1.2 kN ) = 0 − 0.6Ex + 2E y = 1.2 kN Solving (1) and (2) (2) E x = 4.25 kN E y = 1.875 kN E = 4.65 kN (a) (b) From FBD whole: AB: ΣFx = 0 ΣFy = 0 − Ax + 4.25 kN = 0 23.8° A x = 4.25 kN Ay − 1.8 kN − 3.6 kN − 1.2 kN + 1.875 kN = 0 A y = 4.725 kN ΣM B = 0: d B ( 4.25 kN ) − (1 m )( 4.725 kN ) = 0 d B = 1.112 m DE: ΣM D = 0: (1 m )(1.875 kN ) − ( d D − 1.2 m )( 4.25 kN ) = 0 d D = 1.641 m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 93. FBD DE: ΣFy = 0: ΣM D = 0: FBD Whole: ΣM A = 0: E y − 1.2 kN = 0 E y = 1.2 kN (1 m )(1.2 kN ) − ( dC − 1.2 m ) Ex = 0 (1) (1.2 m ) Ex + ( 4 m )(1.2 kN ) − ( 3 m )(1.2 kN ) − ( 2 m )( 3.6 kN ) − (1 m )(1.8 kN ) = 0 E x = 6.5 kN dC = 1.385 m (a) then, from (1) ΣFx = 0: ΣFy = 0: − Ax + 6.5 kN = 0 A x = 6.5 kN Ay − 1.8 kN − 3.6 kN − 1.2 kN + 1.2 kN = 0 A y = 5.4 kN So (b) A = 8.45 kN E = 6.61 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 39.7° 10.46° COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 94. FBD Cable: Hanger forces at A and F act on the supports, so A y and Fy act on the cable. ΣM F = 0: ( 6 ft + 12 ft + 18 ft + 24 ft )( 400 lb ) − ( 30 ft ) Ay − ( 5 ft ) Ax = 0 Ax + 6 Ay = 4800 lb (1) FBD ABC: ΣM C = 0: ( 7 ft ) Ax − (12 ft ) Ay + ( 6 ft )( 400 lb ) = 0 (2) Solving (1) and (2) A x = 800 lb Ay = 2000 lb 3 ΣFx = 0: From FBD Cable: − 800 lb + Fx = 0 FBD DEF: Fx = 800 lb ΣFy = 0: 2000 lb − 4 ( 400 lb ) + Fy = 0 3 Fy = Since Ax = Fx and Fy > Ay , Tmax = TEF = (a) Tmax = 1229.27 lb, ΣM D = 0: 2800 lb 3 (800 lb ) 2 2800 lb + 3 2 Tmax = 1.229 kips (12 ft ) 2800 lb − d D ( 800 lb ) − ( 6 ft )( 400 lb ) = 0 3 (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. d D = 11.00 ft COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 95. FBD CDEF: ΣM C = 0: (18 ft ) Fy − ( 9 ft ) Fy − ( 6 ft + 12 ft )( 400 lb ) = 0 Fx − 2Fy = − 800 lb FBD Cable: ΣM A = 0: (1) ( 30 ft ) Fy − ( 5 ft ) Fx − ( 6 ft )(1 + 2 + 3 + 4 )( 400 lb ) = 0 Fx − 6Fy = − 4800 lb Solving (1) and (2), Fx = 1200 lb ΣFx = 0: Point F: ΣFy = 0: (2) , Fy = 1000 lb − Ax + 1200 lb = 0 , A x = 1200 lb Ay + 1000 lb − 4 ( 400 lb ) = 0 , A y = 600 lb Since Ax = Ay and Fy > Ay , Tmax = TEF Tmax = FBD DEF: (1 kip )2 + (1.2 kips )2 Tmax = 1.562 kips (a) ΣM D = 0: (12 ft )(1000 lb ) − d D (1200 lb ) − ( 6 ft )( 400 lb ) = 0 (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. d D = 8.00 ft COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 96. ΣM A = 0: ( 9 ft ) P − ( 6 ft )( 30 lb ) − a ( 20 lb ) = 0 FBD BC: 20a P = 20 + lb with a in ft. 9 ΣFx = 0: ΣFy = 0: − TAB x + P = 0 TAB x = P TAB y − 20 lb − 30 lb = 0 But Solving (1) and (2), TAB x a = TAB y 7 (1) so a = 4.0645 ft, TAB y = 50 lb P= 50a 7 (2) P = 29.032 lb (a) P = 29.0 lb (b) a = 4.06 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 97. FBD C: ΣM B = 0: ( 2 ft )( 25 lb ) − ( 6 ft − a )( 30 lb ) = 0 a= 13 ft 3 a = 4.33 ft FBD BC: ΣM A = 0: ( b + 2 ft )( 25 lb ) − ( 6 ft )( 30 lb ) − 13 ft ( 20 lb ) = 0 3 b= 32 ft 3 b = 10.67 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 98. ΣFx = 0: − FBD B: ΣFy = 0: 12 3 TAB + TBC + 1.32 kN = 0 13 5 5 4 TAB − TBC = 0 13 5 Solving: TAB = 2.08 kN, TBC = 1 kN By inspection of A, A = 2.08 kN (a) FBD C: ΣFx = 0: ΣFy = 0: 12 3 TCD − (1 kN ) = 0 , 13 5 22.6° TCD = 0.65 kN 4 5 (1 kN ) + ( 0.65 kN ) − w = 0 5 13 w = 1.05 kN (b) m = (c) w 1050 N = = 107.03 kg g 9.81 m/s 2 From above m = 107.0 kg TAB = 2.08 kN TBC = 1.000 kN TCD = 650 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 99. FBD C: ( ) W = mg = (150 kg ) 9.81 m/s 2 = 1471.5 N = 1.4715 kN ΣFx = 0: 12 3 TCD − TBC = 0 13 5 5 4 TCD + TBC − 1.4715 kN = 0 13 5 ΣFy = 0: Solving: TCD = 0.91093 kN = 911 N, TBC = 1.40143 kN FBD B: By inspection of D, ΣFx = 0: ΣFy = 0: P− (a) D = 911 N 22.6° 12 3 TAB + (1.40143 kN ) = 0 13 5 5 4 TAB − (1.40143 kN ) = 0, 13 5 (b) From above (c) TAB = 2.91497 kN P = 1.850 kN TAB = 2.91 kN TBC = 1.401 kN TCD = 911 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 100. FBD E: Ey Ex T = = DE 1 1 2 FBD CDE: ΣM C = 0: ( 6.5 m ) E y − ( 4.2 m ) Ex − ( 3.5 m ) wD Ex = E y = 2.3Ex = 3.5wD , ΣM B = 0: Ex = E y 35 wD 23 35 wD − ( 5.1 m ) wD − (1.6 m ) wC = 0 23 mC = 1.66304 mD FBD B: (a) ΣFx = 0: 4 − TBC + Ex = 0, 5 ΣFx = 0: 45 1 24 TAB − TBF = 0 Ex − 54 25 2 Solving: =0 (8.1 m − 3 m ) wC = 1.66304wD , ΣFy = 0: (1) TBC = mC = 56.5 kg 5 Ex 4 1 7 3 5 TAB − TBF − Ex = 0 25 5 4 2 Ex 31 = TBF , 4 25 TBF = TBF = 25 Ex 124 25 35 wD = 0.30680wD 124 23 wD = ( 34 kg )( 9.81 N/kg ) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (b) TBF = 102.3 N COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 101. FBD E: Ey Ex = 1 1 ΣM C = 0: ( 6.5 m ) E y − ( 4.2 m ) Ex − ( 3.5 m ) wD 2.3Ex = 3.5wD , FBD CDE: ΣM B = 0: Ex = E y (8.1 m − 3 m ) Ex = E y = =0 35 wD 23 35 wD − ( 5.1 m ) wD − (1.6 m ) wC = 0 23 wD = 0.60131 wC , mD = 0.60131 mC = 33.072 kg mD = 33.1 kg (a) 4 ΣFx = 0: − TBC = Ex , 5 Point B: ΣFx = 0: ΣFy = 0: Solving: TBC = 5 Ex 4 45 1 24 TAB − TBF = 0 Ex − 54 25 2 1 7 3 5 TAB − TBF + Ex = 0 25 5 4 2 31 1 TBF = Ex , 25 4 TBF = TBF = 25 Ex 124 ( 25 35 25 35 ( 33.072 kg ) 9.81 m/s2 wD = 124 23 124 23 (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ) TBF = 99.5 N COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 102. (a) FBD half wire: Since h = 1.5 m L = 30 m we can approximate the load as evenly distributed horizontally, and the length S = L. kg N W = 0.6 ( 30 m ) = 176.58 N 9.81 m kg ΣM B = 0: (15 m )(176.58 N ) − (1.5 m ) TC =0 TC = 1765.8 N Tmax = TB = TC2 + W 2 Tmax = (b) (1765.8 N )2 + (176.58 N )2 , Tmax = 177.5 kN 2 4 2 yB 2 yB S B = xB 1 + − + ... 3 xB 5 xB 2 4 2 1.5 2 1.5 = ( 30 m ) 1 + − + ... = 30.05 m 3 30 5 30 Note: the third term in the brackets is unnecessary Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. S tot = 60.1 m COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 103. Half-cable FBDs: T1x = T2 x to create zero horizontal force on tower → thus T01 = T02 FBD I: (15 m ) w ( 30 m ) − h1T0 ΣM B = 0: =0 ( 450 m ) w = 2 h1 FBD II: T0 ( 2 m ) T0 − (10 m ) w ( 20 m ) ΣM B = 0: =0 T0 = (100 m ) w ( 450 m ) w = 4.50 m = 2 h1 (a) ΣFx = 0: FBD I: T1x − T0 = 0 T1x = (100 m ) w ΣFy = 0: T1y − ( 30 m ) w = 0 T1y = ( 30 m ) w T1 = (100 m )2 + ( 30 m )2 w ( = (104.4 m )( 0.4 kg/m ) 9.81 m/s 2 ) = 409.7 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (100 m ) w COSMOS: Complete Online Solutions Manual Organization System ΣFy = 0: FBD II: T2y − ( 20 m ) w = 0 T2y = ( 20 m ) w T2 x = T1x = (100 m ) w T2 = (100 m )2 + ( 20 m )2 w = 400.17 N (b) T1 = 410 N T2 = 400 N *Since h L it is reasonable to approximate the cable weight as being distributed uniformly along the horizontal. The methods of section 7.10 are more accurate for cables sagging under their own weight. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 104. FBD half-span: (a) 2075 ft ( 23032.5 kips ) − ( 464 ft ) T0 = 0 2 ΣM B = 0: T0 = 47, 246 kips Tmax = T02 + W 2 = ( 47, 246 kips )2 + ( 23, 033 kips )2 2 2 y 2 s = x 1 + − 3 x 5 (b) = 56, 400 kips 4 y + " x 2 4 2 464 ft 2 464 ft sB = ( 2075 ft ) 1 + − + " 3 2075 ft 5 2075 ft sB = 2142 ft l = 2sB Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. l = 4284 ft COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 105. FBD half-span: W = ( 9.75 kips/ft )(1750 ft ) = 17, 062.5 kips ΣM B = 0: ( 875 ft )(17, 065 kips ) − ( 316 ft ) T0 = 0 T0 = 47, 246 kips Tmax = T02 + W 2 = ( 47, 246 kips )2 + (17, 063 kips )2 (a) Tmax = 50, 200 kips 2 4 2 y 2 y s = x 1 + − + " 3 x 5 x 2 4 2 316 ft 2 316 ft − sB = (1750 ft ) 1 + + " 3 1750 ft 5 1750 ft = 1787.3 ft (b) * To get 3-digit accuracy, only two terms are needed. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. l = 2sB = 3575 ft COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 106. FBD pipe: neglecting friction ΣM B = 0: FBD half-cord: r (Tmax − WB ) = 0, Tmax = WB = 60 lb Assuming the weight to be evenly distributed horizontally, and S=L W = ( 0.02 lb/ft )( 75 ft ) = 1.5 lb T0 = ( 60 lb )2 − (1.5 lb )2 = 59.981 lb ΣM B = ( 37.5 ft )(1.5 lb ) − h ( 59.981 lb ) = 0 (a) (b) h = 0.93780 ft, h = 11.25 in. θ B = sin −1 1.5 lb = 1.43254°, 60 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. θ B = 1.433° COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 107. (a) FBD ship: ΣFx = 0: T0 − 300 N = 0, T0 = 300 N FBD half-span:* Tmax = T02 + W 2 = (b) ΣM A = 0: hTx − L W = 0, 4 2 2 4 s = x 1 + + L 3 x ( 2.5 m ) = L 2 h= ( 300 N )2 2 = ( 54 N ) = 305 N LW 4Tx but yA = h = LW 4Tx so yA W = xA 2Tx 2 2 53.955 N 1 + − L → L = 4.9732 m 3 600 N So h = LW = 0.2236 m 4Tx *See note Prob. 7.103 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. h = 224 mm COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 108. 2 2 y 2 s = x 1 + − x 3 5 Knowing l = 2sTOT 4 y + L x 2 2 2 h 2 h = L 1 + − + L 3 L/2 5 L/2 Winter: 2 4 2 386 ft 2 386 ft L lw = ( 4260 ft ) 1 + − + = 4351.43 ft 3 2130 ft 5 2130 ft Summer: 2 4 2 394 ft 2 394 ft ls = ( 4260 ft ) 1 + − + L = 4355.18 ft 3 2130 ft 5 2130 ft ∆l = ls − lw = 3.75 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 109. FBD whole: ΣM D = 0: ( 2m ) TAx − ( 5 m )( 98.1 + 147.15) N = 0 TAx = 1103.6 N ΣFx = 0: FBD half-cable: ΣFy = 0: T0 − TAx = 0, TAy = 49.05 N = 0, ΣM A = 0: T0 = 1103.6 N TAy = 49.05 N h (1103.6 N ) − ( 2.5 m )( 49.05 N ) = 0 h = 0.11111 m h = 111.1 mm (a) (b) θ = tan −1 TAy TAx = tan −1 49.05 = 2.5449°, 1103.6 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. θ = 2.54° COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 110. FBD AB: ΣM A = 0: (1100 ft ) TBy − ( 496 ft ) TBx − ( 550 ft )W 11TBy − 4.96TBx = 5.5W =0 (1) FBD CB: ΣM C = 0: ( 550 ft ) TBy − ( 278 ft ) TBx − ( 275 ft ) 11TBy − 5.56TBx = 2.75W Solving (1) and (2) TBy = 28,798 kips Solving (1) and (2) TBx = 51, 425 kips tan θ B = Tmax = TB = TB2x + TB2y , So that (a) (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. W =0 2 (2) TB y TBx Tmax = 58,900 kips θ B = 29.2° COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 111. Cable profile: Eqn: y= w 2 x 2T0 xB − x A = 45 in. at A: 4 in. = w ( xB − 45 in.)2 2T0 (1) at B: 1 in. = w 2 xB 2T0 (2) ∴ or ( xB − 45 in.)2 xB2 =4 xB2 + 30 xB − 675 = 0 xB = ( −15 ± 30 ) in. xB = 15 in. x A = xB − 45 in. x A = − 30 in. (a) lowest point (x = 0) is 30 in. from A T0 = From (2), wxB2 1 0.18 lb 2 = (15 in.) 2 2 12 in. T0 = 1.6875 lb Tmax occurs at A where slope is maximum Tmax = T02 + ( wx A ) = 2 (1.6875 lb )2 + 0.18 lb 2 ( − 30 in.) = 1.74647 lb 12 in. (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Tmax = 1.747 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 112. ΣM A = 0: y AT0 − a wa = 0 2 ΣM B = 0: − yBT0 + yA = d = ( yB − yB ) = But ∴ or Using L = 6 m, yields wa 2 2T0 yB = ( w 2 b − a2 2T0 2 ( = w2 b 2 − a 2 ) 2 2 ( = L2 w2 4b 2 − 4 Lb + L2 T2 4 L2 + d 2 b 2 − 4 L3b + L4 − 4d 2 max w2 ( d = 0.9 m, ) Tmax = 8 kN, b = ( 2.934 ± 1.353) m, wb 2 2T0 ) 2 T0 = TB2 − ( wb ) = Tmax − ( wb ) 2 2 − ( wb ) ( 2d )2 Tmax b wb = 0 2 ) = 0 ( ) w = ( 85 kg/m ) 9.81 m/s2 = 833.85 N/m b = 4.287 m ( since b > 3 m ) (a) a = 6 m − b = 1.713 m 2 2 T0 = Tmax − ( wb ) = 7156.9 N yA wa = = 0.09979, 2T0 xA yB wb = = 0.24974 2T0 xB 2 2 2 yA 2 yB l = s A + sB = a 1 + + L + b 1 + + L 3 xA 3 xB 2 2 2 2 = (1.713 m ) 1 + ( 0.09979 ) + ( 4.287 m ) 1 + ( 0.24974 ) = 6.19 m 3 3 (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. l = 6.19 m COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 113. x wx − yT0 = 0 2 ΣM P = 0: Geometry: y = wx 2 2T0 y wx = x 2T0 so and d = yB − y A = ( w 2 b − a2 2T0 ) Also 2 2 2 yA 2 yB l = s A + sB a 1 + + b 1 + 3 a 3 b FBD Segment: l−L 2 2 2 y A w2 3 y a + b3 + B = b 6T02 3 a ( 1 4d 2 = 6 b2 − a 2 ( ) 2 (a 3 +b 3 ) ) ( 2 3 3 2d a +b = 3 b2 − a 2 2 ( ) ) Using l = 6.4 m, L = 6 m, d = 0.9 m, b = 6 m − a, and solving for a, knowing that a < 3 ft a = 2.2196 m a = 2.22 m (a) T0 = Then ( w 2 b − a2 2d ( ) ) w = ( 85 kg/m ) 9.81 m/s 2 = 833.85 N/m And with And b = 6 m − a = 3.7804 m Tmax = TB = T02 + ( wb ) = T0 = 4338 N 2 ( 4338 N )2 + (833.85 N/m )2 ( 3.7804 m )2 Tmax = 5362 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (b) Tmax = 5.36 kN COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 114. FBD Cable: ΣM B = 0: LACy + aT0 − ΣM B loads = 0 (1) (Where ΣM B loads includes all applied loads) x ΣM C = 0: xACy − h − a T0 − ΣM C left = 0 L FBD AC: (2) (Where ΣM C left includes all loads left of C) x (1) − ( 2 ): L hT0 − x ΣM B loads + ΣM C left = 0 L (3) ΣM B = 0: LABy − ΣM B loads = 0 (4) FBD Beam: ΣM C = 0: xABy − ΣM C left − M C = 0 FBD AC: x ( 4 ) − ( 5): L − (5) x ΣM B loads + ΣM C left + M C = 0 L Comparing (3) and (6) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M C = hT0 Q.E.D. (6) COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 115. FBD Beam: ΣM D = 0: (1 m )( 2.25 kN ) + ( 3 m )( 3 kN ) − ( 5 m ) ABy = 0 A By = 2.25 kN ΣFy = 0: 2.25 kN − 3 kN − 2.25 kN + DBy = 0 D By = 3 kN FBD AB: ΣM B = 0: M B − ( 2 m )( 2.25 kN ) = 0, M B = 4.5 kN ⋅ m Note, since A and D are in line horizontally, ACy = A By and DCy = D By . Also, since Dy > Ay , Tmax = TCD = 3.6 kN 2 2 T0 = TCD − DCy = Cable: ( 3.6 kN )2 − ( 3 kN )2 T0 = 3.96 kN dB = M B 4.5 kN ⋅ m = = 2.2613 m T0 3.96 kN d B = 2.26 m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 116. FBD Beam: ΣM E = 0: (1 m )(1.2 kN ) + ( 2 m )( 3.6 kN ) + ( 3 m )(1.8 kN ) − ( 4 m ) ABy = 0 A By = 3.45 kN ΣFx = 0: ABx = 0 FBD AB: ΣM B = 0: M B − (1 m )( 3.45 kN ) = 0, M B = 3.45 kN ⋅ m FBD AC: ΣM C = 0: M C + (1 m )(1.8 kN ) − ( 2 m )( 3.45 kN ) = 0 M C = 5.1 kN ⋅ m ΣM D = 0: M D + (1 m )( 3.6 kN ) + ( 2 m )(1.8 kN ) − ( 3 m )( 3.45 kN ) = 0 FBD AD: M D = 3.15 kN ⋅ m hC = dC − 0.6 m = 1.8 m − 0.6 m = 1.2 m Cable: T0 = M C 5.1 kN ⋅ m = = 4.25 kN hC 1.2 m hB = M B 3.45 kN ⋅ m = = 0.81176 m T0 4.25 kN d B = hB + 0.3 m = 1.11176 m, hD = d B = 1.112 m M D 3.15 kN ⋅ m = = 0.74118 m T0 4.25 kN d D = hD + 0.9 m = 1.64118 m, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. d D = 1.641 m COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 117. FBD Beam: ΣFx = 0: ABx = 0 By symmetry A By = FBy = 800 lb FBD AC: ΣM C = 0: M C + ( 6 ft )( 400 lb ) − (12 ft )( 800 lb ) = 0 M C = 7200 lb ⋅ ft By symmetry, M D = M C = 7200 lb ⋅ ft ∴ hC = hD Cable: hC = dC − 3 ft = 12 ft − 3 ft = 9 ft d D = hD + 2 ft = 9 ft + 2 ft = 11 ft d D = 11.00 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 118. FBD Beam: ΣFx = 0: ABx = 0 By symmetry A By = FBy = 800 lb FBD AC: ΣM C = 0: M C + ( 6 ft )( 400 lb ) − (12 ft )( 800 lb ) = 0 M C = 7200 lb ⋅ ft By symmetry, M D = M C = 7200 lb ⋅ ft ∴ Cable: hC = hD hC = dC − 3 ft = 9 ft − 3 ft = 6 ft d D = hD + 2 ft = 6 ft + 2 ft = 8 ft d D = 8.00 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 119. FBD Elemental segment: Ty ( x + ∆x ) − Ty ( x ) − w ( x ) ∆ x = 0 ΣFy = 0: Ty ( x + ∆x ) So T0 Ty But T0 dy dx So − x + ∆x ∆x In lim : ∆x → 0 dy dx x = dy dx = w( x) T0 w( x) d2y = 2 T0 dx Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. − Ty ( x ) T0 = Q.E.D. w( x) ∆x T0 COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 120. w ( x ) = w0 cos πx L From Problem 7.119 w ( x ) w0 πx d2y = = cos 2 T0 T0 L dx dy using dx dy W0 L πx = sin dx T0π L So y = But And w0 L2 πx 1 − cos using y ( 0 ) = 0 2 L T0π w L2 π L y = h = 0 2 1 − cos 2 T0π 2 T0 = Tmin Tmax = TA = TB : TBy = T0 = T0 = so Tmin = so TBy dy dx = x = L2 w0 L T0π w0 L π 2 TB = TBy + T02 = w0 L π 0 = 0 L 1+ πh 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. w0 L2 π 2h w0 L2 π 2h COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 121. Elemental Segment: dx = cosθ ds, But w0 ds cos 2 θ w0 w( x) = cos3 θ w ( x ) dx = Load on segment* so From Problem 7.119 d2y w( x) w0 = = 2 T0 dx T0 cos3 θ In general d2y d dy d dθ = ( tan θ ) = sec2 θ = 2 dx dx dx dx dx So dθ w0 w0 = = 3 2 dx T0 cosθ T0 cos θ sec θ or T0 cosθ dθ = dx = rdθ cosθ w0 Giving r = T0 = constant. So curve is circular arc w0 *For large sag, it is not appropriate to approximate ds by dx. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Q.E.D. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 122. ( ) w = ( 0.07 kg/m ) 9.81 m/s 2 = 0.6867 N/m FBD half-span: L = 10 m SCB = 12 m =6m 2 SCB = c sinh xB , c 6 m = c sinh 5m c Solving numerically, c = 4.6954 m yB = c cosh 5m xB = ( 4.6954 m ) cosh = 7.6188 m c 4.6954 m hB = yB − c = 7.6188 m − 4.6954 m = 2.9234 m (a) hB = 2.92 m TB = wyB = ( 0.6867 N/m )( 7.6188 m ) = 5.2318 N (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. TB = 5.23 N COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 123. sB = 30 ft, w= hB = 24 ft, 120 lb = 2 lb/ft 60 ft L 2 xB = yB2 = c 2 + sB2 = ( hB + c ) 2 = hB2 + 2chB + c 2 ( 30 ft ) − ( 24 ft ) sB2 − hB2 = 2hB 2 ( 24 ft ) 2 c= 2 c = 6.75 ft Then sB = c sinh xB s → xB = c sinh −1 B c c 30 ft xB = ( 6.75 ft ) sinh −1 = 14.83 ft 6.75 ft (a) L = 2 xB = 29.7 ft Tmax = TB = wyB = w ( c + hB ) = ( 2 lb/ft )( 6.75 ft + 24 ft ) = 61.5 lb (b) Tmax = 61.5 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 124. S B = 250 ft FBD half-span: w = 2.8 lb/ft hB = 125 ft yB = hB + c = 125 ft + c yB2 − sB2 = c 2 (125 ft − c )2 − ( 250 ft )2 = c 2 c = 187.5 ft sB = c sinh xB , c xB 4 = sinh −1 = 1.0986, c 3 250 ft = (187.5 ft ) sinh xB c xc = 205.99 ft (a) span L = 2 xB = 411.98 ft L = 412 ft (b) Tmax = wyB = ( 2.8 lb/ft )(125 ft + 187.5 ft ) = 875 lb Tmax = 875 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 125. FBD half-span: sB = 65 m, ( hB = 30 m ) w = ( 3.4 kg/m ) 9.81 m/s 2 = 33.35 N/m yB2 = c 2 + sB2 ( c + hB )2 = c 2 + sB2 2 c= ( 65 m ) − ( 30 m ) sB2 − hB2 = 2hB 2 ( 30 m ) 2 = 55.417 m Now sB = c sinh xB s 65 m → xB = c sinh −1 B = ( 55.417 m ) sinh −1 c c 55.417 m = 55.335 m L = 2 xB = 2 ( 55.335 m ) = 110.7 m Tmax = wyB = w ( c + hB ) = ( 33.35 N/m )( 55.417 m + 30 m ) = 2846 N Tmax = 2.85 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 126. FBD Cable: s = 30 m 30 m = 15 m so sB = 2 ( ) w = ( 0.3 kg/m ) 9.81 m/s 2 = 2.943 N/m hB = 12 m yB2 = ( c + hB ) = c 2 + s 2B 2 c= So c= Now sB = c sinh sB2 − hB2 2hB (15 m )2 − (12 m )2 2 (12 m ) = 3.375 m xB s 15 m → xB = c sinh −1 B = ( 3.375 m ) sinh −1 c c 3.375 m xB = 7.4156 m P = T0 = wc = ( 2.943 N/m )( 3.375 m ) L = 2 xB = 2 ( 7.4156 m ) (a) (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. P = 9.93 N L = 14.83 m COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 127. FBD Cable: sT = 30 m, ( ) w = ( 0.3 kg/m ) 9.81 m/s 2 = 2.943 N/m P = T0 = wc, c= c= P w 30 N = 10.1937 m 2.943 N/m yB2 = ( hB + c ) = c 2 + sB2 2 h 2 + 2ch − sB2 = 0, sB = 30 m = 15 m 2 h 2 + 2 (10.1937 m ) h − 225 m 2 = 0 h = 7.9422 m sB = c sinh (a) xA s 15 m → xB = c sinh −1 B = (10.1937 m ) sinh −1 c c 10.1937 m = 12.017 m L = 2 xB = 2 (12.017 m ) (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. L = 24.0 m h = 7.94 m COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 128. FBD half-span: xD = 3.6 w = 1.8 m 2 kg m w = 3.72 9.81 2 = 36.4932 N/m m s sD = length 3.8 m = = 1.9 m 2 2 sD = c sinh xD c 1.9 m = c sinh 1.8 m c Solving numerically, c = 3.1433 m yD2 − sD2 = c 2 yD2 = (1.9 m ) + ( 3.1433 m ) 2 2 yD = 3.6729 h = yD − c = 3.6729 m − 3.1433 m = 0.5296 m h = 0.530 m (a) h = 530 mm (b) TDx = 114.7 N N TDx = wc = 36.4932 ( 3.1433 m ) = 114.71 N m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 129. FBD half-span: sB = 90 m = 45 m 2 xB = L 60 m = = 30 m 2 2 TB = Tmax = 300 N sB = c sinh xB , c Solving numerically, yB = c cosh 45 m = c sinh 30 m c c = 18.495 m 30 m xB = (18.495 m ) cosh c 18.495 m = 48.651 m hB = yB − c = 48.651 m − 18.495 m = 30.156 m (a) Tmax = wyB h = 30.2 m 300 N = w ( 48.651 m ) w = 6.1664 N m N W = w ( length ) = 6.1664 ( 90 m ) = 554.97 N m m= W 554.97 N = = 56.57 kg g 9.81 m/s 2 (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. m = 56.6 kg COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 130. sB = 45 ft = 22.5 ft 2 xB = L = 20 ft L = 10 ft 2 sB = c sinh xB c 22.5 ft = c sinh 10 ft c Solving numerically: yB = c cosh c = 4.2023 ft xB c = ( 4.2023 ft ) cosh 10 ft = 22.889 ft 4.2023 ft hB = yB − c = 22.889 ft − 4.202 ft hB = 18.69 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 131. l = total length xB , c yB = c cosh L + c = c cosh 1 = cosh or So xB c c= L L − 2c c L = 4.933 c Solving numerically, sB = c sinh L/2 c l L = c sinh 2 2c l L 2sinh 2c = 10 ft = 0.8550 ft 4.933 2sinh 2 L = 4.933 c = ( 4.933)( 0.8550 ft ) = 4.218 ft (a) from y = c cosh x c tan θ B = L = 4.22 ft dy x = sinh dx c dy dx = sinh B L 4.933 = sinh = 5.848 2c 2 (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. θ B = 80.3° COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 132. ( ) w = ( 3 kg/m ) 9.81 m/s 2 = 29.43 N/m L = 48 m, Tmax ≤ 1800 N Tmax = wyB → yB = yB ≤ Tmax w 1800 N = 61.162 m 29.43 N/m x yB = c cosh B , c Solving numerically, 48 m 61.162 m = c cosh 2 * c c = 55.935 m h = yB − c = 61.162 m − 55.935 m h = 5.23 m *Note: There is another value of c which will satisfy this equation. It is much smaller, thus corresponding to a much larger h. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 133. Pulley B: TB = wa but TB = wyB , now So yB = c cosh a = c cosh xB =a c 3 ft c sB = c sinh also yB = a so (1) xB c 24 ft − a 3 ft = c sinh 2 c or 12 ft = c sinh = c sinh 3 ft a + c 2 (2) 3 ft c 3 ft + cosh c 2 c c = 1.13194 ft Solving numerically or 17.7167 ft a = c cosh from (1) 3 ft 3 ft = (1.13194 ft ) cosh c 1.13194 ft a = 8.05 ft or 3 ft a = (17.7167 ft ) cosh 17.7167 ft a = 17.97 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 134. FBD Cable: s A = length = 10 ft ΣFx = 0: − F + T0 = 0, y A = c + h = c cosh So 1+ xA a h = c cos h = c cosh c c c h h = cosh c c Solving numerically, s A = c sinh F = T0 h = 1.61614 c h = c sinh (1.61614 ) = 2.41748c = 10 ft c So c = 4.1365 ft, h = 6.6852 ft y A = c + h = 10.8217 ft 20 lb F = T0 = wc = ( 4.1365 ft ) = 8.2730 lb 10 ft (a) F = 8.27 lb (b) h = a = 6.69 ft (c) Tmax = 21.6 lb lb Tmax = wy A = 2 (10.8217 ft ) = 21.643 lb ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 135. FBD Cable: Pulley TA = mg = Tmax m mg = ( 40 kg ) 9.81 2 = 392.4 N s Also L = 15 m, So x A = − 15 m = − 7.5 m, 2 y A = c cosh So h=5m c cosh xB = + 7.5 m xA =c+h c − 7.5 m =c+5m c Solving numerically, sB = c sinh c = 6.3175 m 7.5 m xB = ( 6.3175 m ) sinh = 9.390 m c 6.3175 m cable length = 2sB = 18.78 m (a) Tmax = wyB = w ( c + h ) = w ( 6.3175 m + 5 m ) w= (b) 392.4 N = 34.672 N/m 11.3175 m mass/length = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. w 34.672 N/m kg = = 3.53 g 9.81 N/kg m COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 136. yD = c cosh xD c h + c = c cosh a c 10.8 ft 12 ft = c cosh − 1 c Solving numerically, c = 6.2136 ft Then yB = ( 6.2136 ft ) cosh 10.8 ft = 18.2136 ft 6.2136 ft F = Tmax = wyB = (1.5 lb/ft )(18.2136 ft ) F = 27.3 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 137. yD = c cosh xD c c + h = c cosh a c a h = c cosh − 1 c 18 ft 12 ft = c cosh − 1 c Solving numerically c = 15.162 ft yB = h + c = 12 ft + 15.162 ft = 27.162 ft F = TD = wyD = (1.5 lb/ft )( 27.162 ft ) = 40.74 lb F = 40.7 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 138. ( ) w = 4 kg/m 9.81 m/s 2 = 39.24 N/m P = T0 = wc, c= P 800 N = w 39.24 N/m c = 20.387 m y = c cosh x c dy x = sinh dx c tan θ = − dy dx = − sinh −a −a a = sinh c c a = c sinh −1 ( tan θ ) = ( 20.387 m ) sinh −1 ( tan 60° ) a = 26.849 m y A = c cosh a 26.849 m = ( 20.387 m ) cosh = 40.774 m c 20.387 m b = y A − c = 40.774 m − 20.387 m = 20.387 m So s = c sinh (a) B is 26.8 m right and 20.4 m down from A a 26.849 m = ( 20.387 m ) sinh = 35.31 m c 20.387 m (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. s = 35.3 m COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 139. ( ) w = ( 4 kg/m ) 9.81 m/s 2 = 39.24 N/m P = T0 = wc c= P 600 N = w 39.24 N/m c = 15.2905 m x y = c cosh , c At A: So tan θ = − dy dx dy x = sinh dx c = − sinh −a −a a = sinh c c a = c sinh −1 ( tan θ ) = (15.2905 m ) sinh −1 ( tan 60° ) = 20.137 m yB = h + c = c cosh a c a h = c cosh − 1 c 20.137 m = (15.2905 m ) cosh − 1 15.2905 m = 15.291 m So s = c sinh (a) B is 20.1 m right and 15.29 m down from A a 20.137 m = (15.291 m ) sinh = 26.49 m c 15.291 m (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. s = 26.5 m COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 140. Cable: Since y A = c cosh xA , c yB = c cosh xB c ( xA < 0 ) and xB − x A = 8 m ( c + 0.5 m ) = c cosh xA c xB c ( c + 1.2 m ) = c cosh 1.2 m 0.5 m 8 m −1 cosh −1 1 + + cosh 1 + = c c c Solving numerically, So c = 9.9987 m 0.5 m x A = cosh −1 1 + ( 9.9987 m ) 9.9987 m = 3.15 m C is 3.15 m from house (a) Tmax = TB = wyB kg N = 2.1 (1.2 m + 9.9987 m ) 9.81 m kg = 230.7 N (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Tmax = 231 N COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 141. y A = c cosh −a = c + 6 ft c 6 ft a = c cosh −1 1 + c yB = c cosh b = c + 11.4 ft c 11.4 ft b = c cosh −1 1 + c So Solving numerically, 6 ft 11.4 ft −1 a + b = c cosh −1 1 + + cosh 1 + = 36 ft c c c = 20.446 ft 11.4 ft b = ( 20.446 ft ) cosh −1 1 + = 20.696 ft 20.446 ft (a) C is 20.7 ft left of and 11.4 ft below B 20.696 ft Tmax = wyB = ( 0.3 lb/ft )( 20.446 ft ) cosh = 9.554 lb 20.446 ft (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Tmax = 9.55 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 142. (a) tan θ = dy x = sinh dx c s = c sinh x = c tan θ, Q.E.D. c ( cosh x = sinh ( tan θ + 1) = c sec θ y 2 = s2 + c2 , 2 So y2 = c2 2 And y = c secθ , Q.E.D. (b) Also 2 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 2 ) x +1 COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 143. TB = Tmax = wyB = wc cosh L 2c ξ = Let so xB L 2c L = w cosh c 2 L 2c Tmax = wL cosh ξ 2ξ dTmax wL 1 = sinh ξ − cosh ξ dξ 2ξ ξ tanh ξ − min Tmax , For Solving numerically (Tmax )min = =0 ξ ξ = 1.1997 wL cosh (1.1997 ) = 0.75444wL 2 (1.1997 ) Lmax = (a) If Tmax T = 1.3255 max 0.75444w w ( ) Tmax = 32 kN and w = ( 0.34 kg/m ) 9.81 m/s 2 = 3.3354 N/m Lmax = 1.3255 (b) 1 32.000 N = 12 717 m 3.3354 N/m Lmax = 12.72 km Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 144. ymax = c cosh Tmax = wymax , ymax = L =h+c 2c ymax = 80 lb = 40 ft 2 lb/ft c cosh Solving numerically, Tmax w 9 ft = 40 ft c c1 = 2.6388 ft c2 = 38.958 ft h = ymax − c h1 = 40 ft − 2.6388 ft h1 = 37.4 ft h2 = 40 ft − 38.958 ft h2 = 1.042 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 145. Tmax = wyB = 2wsB y B = 2sB c cosh L L = 2c sinh 2c 2c tanh L 1 = 2c 2 L 1 = tanh −1 = 0.549306 2c 2 hB y −c L = B = cosh −1 c c 2c = 0.154701 hB hB /c = L 2( L/2c) = 0.5 ( 0.154701) = 0.14081 0.549306 hB = 0.1408 L Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 146. Tmax = wyB = wc cosh (a) L 2c dTmax L L L = w cosh − sinh dc 2c 2c 2c For min Tmax , tanh L 2c = 2c L dTmax =0 dc L = 1.1997 2c yB L = cosh = 1.8102 2c c h y = B − 1 = 0.8102 c c h h 1 h 2c 0.8102 = = 0.3375 = 0.338 = L 2 c L 2 (1.1997 ) L T0 = wc, (b) L , 2c T0 = Tmax cosθ B , But So Tmax = wc cosh Tmax L y = cosh = B 2c T0 c Tmax = secθ B T0 y θ B = sec−1 B = sec−1 (1.8102 ) c = 56.46° Tmax = wyB = w θ B = 56.5° yB 2c L L = w (1.8102 ) c L 2 2 (1.1997 ) Tmax = 0.755wL Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 147. FBD AB: 4 3 ΣM A = 0: r C + r C − 2r ( 70 lb ) = 0 5 5 C = 100 lb ΣFx = 0: − Ax + 4 (100 lb ) = 0 5 A x = 80 lb ΣFy = 0: Ay + 3 (100 lb ) − 70 lb = 0 5 A y = 10 lb FBD AJ: ΣFx′ = 0: F − ( 80 lb ) sin 30° − (10 lb ) cos30° = 0 F = 48.66 lb F = 48.7 lb 60° ΣFy′ = 0: V − ( 80 lb ) cos30° + (10 lb ) sin 30° = 0 V = 64.28 lb V = 64.3 lb 30° ΣM 0 = 0: ( 8 in.)( 48.66 lb ) − (8 in.)(10 lb ) − M = 0 M = 309.28 lb ⋅ in. M = 309 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 148. FBD Whole: ΣM A = 0: ( 5.4 ft ) Bx − ( 7.8 ft )( 90 lb ) = 0 B x = 130 lb FBD BE with pulleys and cord: ΣM E = 0: ( 5.4 ft )(130 lb ) − ( 7.2 ft ) By + ( 4.8 ft )( 90 lb ) − ( 0.6 ft )( 90 lb ) = 0 B y = 150 lb ΣFx = 0: Ex − 130 lb = 0 E x = 130 lb ΣFy = 0: E y + 150 lb − 90 lb − 90 lb = 0 E y = 30 lb ΣFx′ = 0: − F − 90 lb + FBD JE and pulley: 4 3 (130 lb ) + ( 90 lb − 30 lb ) = 0 5 5 F = 50.0 lb 3 4 (130 lb ) + ( 30 lb − 90 lb ) = 0 5 5 V = −30 lb V = 30.0 lb ΣFy′ = 0: V + ΣM J = 0: − M + (1.8 ft )(130 lb ) + ( 2.4 ft )( 30 lb ) + ( 0.6 ft )( 90 lb ) − ( 3.0 ft )( 90 lb ) = 0 M = 90.0 lb ⋅ ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 149. FBD Rod: ΣFx = 0: ΣM B = 0: Ax = 0 2r π W − rAy = 0 α = 15°, weight of segment = W FBD AJ: r = r α ΣFy′ = 0: sin α = 2W π F= Ay = 2W π 30° W = 90° 3 r sin15° = 0.9886r π /12 cos 30° − W cos30° − F = 0 3 W 3 2 1 − 2 π 3 2W W ΣM 0 = M + r F − =0 + r cos15° 3 π M = 0.0557 Wr Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 150. (a) Along AC: ΣFy = 0: ΣM J = 0: − 3 kip − V = 0 V = −3 kips M + x ( 3 kips ) = 0 M = ( 3 kips ) x M = −9 kip ⋅ ft at C Along CD: ΣFy = 0: − 3 kips − 5 kips − V = 0 ΣM K = 0: V = −8 kips M + ( x − 3 ft )( 5 kips ) + x ( 3 kips ) = 0 M = +15 kip ⋅ ft − ( 8 kips ) x M = −16.2 kip ⋅ ft at D ( x = 3.9 ft ) Along DE: ΣFy = 0: − 3 kips − 5 kips + 6 kips − V = 0 V = −2 kips ΣM L = 0: M − x1 ( 6 kips ) + (.9 ft + x1 )( 5 kips ) + ( 3.9 ft + x1 )( 3 kips ) = 0 M = −16.2 kip ⋅ ft − ( 2 kips ) x1 M = −18.6 kip ⋅ ft at E ( x1 = 1.2 ft ) continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Along EB: ΣFy = 0: −3 kips − 5 kips + 6 kips − 4 kips − V = 0 ΣM N = 0: V = −6 kips M + ( 4 kips ) x2 + ( 2.1 ft + x2 )( 5 kips ) + ( 5.1 ft + x2 )( 3 kips ) − (1.2 ft + x2 )( 6 kips ) = 0 M = −18.6 kip ⋅ ft − ( 6 kips ) x2 M = −33 kip ⋅ ft at B (b) From diagrams: ( x2 = 2.4 ft ) V max M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. max = 8.00 kips on CD = 33.0 kip ⋅ ft at B COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 151. (a) By symmetry: Ay = B = 8 kN + 1 ( 4 kN/m )( 5 m ) 2 A y = B = 18 kN Along AC: ΣFy = 0: ΣM J = 0: 18 kN − V = 0 M − x (18 kN ) V = 18 kN M = (18 kN ) x M = 36 kN ⋅ m at C ( x = 2 m ) Along CD: ΣFy = 0: 18 kN − 8 kN − ( 4 kN/m ) x1 − V = 0 V = 10 kN − ( 4 kN/m ) x1 V = 0 at x1 = 2.5 m ( at center ) ΣM K = 0: M + x1 ( 4 kN/m ) x1 + (8 kN ) x1 − ( 2 m + x1 )(18 kN ) = 0 2 M = 36 kN ⋅ m + (10 kN/m ) x1 − ( 2 kN/m ) x12 M = 48.5 kN ⋅ m at x1 = 2.5 m Complete diagram by symmetry (b) From diagrams: V max M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. = 18.00 kN on AC and DB max = 48.5 kN ⋅ m at center COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 152. Ay = B = 60 kN − P By symmetry: Along AC: ΣM J = 0: M − x ( 60 kN − P ) = 0 M = ( 60 kN − P ) x M = 120 kN ⋅ m − ( 2 m ) P at x = 2 m Along CD: ΣM K = 0: M + ( x − 2 m )( 60 kN ) − x ( 60 kN − P ) = 0 M = 120 kN ⋅ m − Px M = 120 kN ⋅ m − ( 4 m ) P at x = 4 m Along DE: ΣM L = 0: M − ( x − 4 m ) P + ( x − 2 m )( 60 kN ) − x ( 60 kN − P ) = 0 M = 120 kN ⋅ m − ( 4 m ) P (const) Complete diagram by symmetry For minimum M max , set M max = −M min 120 kN ⋅ m − ( 2 m ) P = − 120 kN ⋅ m − ( 4 m ) P (a) (b) P = 40.0 kN M min = 120 kN ⋅ m − ( 4 m) P Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M max = 40.0 kN ⋅ m COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 153. FBD Beam: ΣM A = 0: ( 4 m ) B − (1 m )( 20 kN/m )( 2 m ) − M B = 10 kN + (a) (a) B = 10 kN (b) B = 13 kN ΣFy = 0: =0 M 4m Ay − ( 20 kN/m )( 2 m ) + B = 0 Ay = 40 kN − B (a) A y = 30 kN (b) A y = 27 kN Shear Diags: dV VA = Ay , then V is linear = −20 kN/m to C. dx VC = Ay − ( 20 kN/m )( 2 m ) = Ay − 40 kN (b) (a) VC = −10 kN (b) VC = −13 kN V = 0 = Ay − ( 20 kN/m ) x1 at x1 = (a) x1 = 1.5 m (b) x1 = 1.35 m Ay m 20 kN V is constant from C to B. continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Moment Diags: dM M A = applied M . Then M is parabolic decreases with V dx M is max where V = 0. M max = M + (a) M max 1 Ay x1. 2 1 ( 30 kN )(1.5 m ) = 22.5 kN ⋅ m 2 = 1.500 m from A (b) M max = 12 kN ⋅ m + 1 ( 27 kN )(1.35 m ) = 30.225 kN ⋅ m 2 M M C = M max − max = 30.2 kN, 1.350 m from A 1 VC ( 2 m − x1 ) 2 (a) M C = 20 kN ⋅ m (b) M C = 26 kN ⋅ m dM Finally, M is linear = VC to zero at B. dx Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 154. (b) (a) x Distributed load w = w0 1 − L ΣM A = 0: ΣFy = 0: 1 total = w0 L 2 L 1 w0 L − LB = 0 3 2 Ay − B= 1 wL w0 L + 0 = 0 2 6 w0 L 6 Ay = w0 L 3 Shear: VA = Ay = w0 L , 3 dV = − w → V = VA − dx Then x x ∫0 w0 1 − L dx 1 x 1 x 2 1 w0 2 w L V = 0 − w0 x + x = w0 L − + 2 L 3 3 L 2 L Note: At x = L, V = − w0 L ; 6 2 x x x 2 V = 0 at − 2 + = 0 → =1− 3 L L L 1 3 Moment: M A = 0, Then dM =V → M = dx M = w0 L2 ∫ x x / L 1 0 x/L ∫0 Vdx = L∫0 x 1 x − + 3 2 L L x x V d L L 2 x d L 1 x 1 x 2 1 x 3 M = w0 L2 − + 6 L 3 L 2 L continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System x =1− M max at L 1 2 = 0.06415w0 L 3 (a) 1 x 1 x 2 V = w0 L − + 3 L 2 L 1 x 1 x 2 1 x 3 M = w0 L2 − + 6 L 3 L 2 L (c) M max = 0.0642 w0 L2 at x = 0.423L Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 155. ΣFy = 0: wg L − (a) wg L = Define ξ = L 4w0 ∫0 L2 ( Lx − x ) dx = 0 2 4w0 1 2 1 3 2 LL − L = w0 L 3 3 L2 2 2w0 3 wg = x x 2 2 − − w0 L L 3 x dx so dξ = → net load w = 4w0 L L 1 w = 4w0 − + ξ − ξ 2 6 or V = V(0) − ξ 1 ∫ 0 4w0 L − 6 + ξ − ξ 1 6 1 2 1 3 2 dξ = 0 + 4w0 L ξ + ξ 2 − ξ 3 V = M = M0 + = (b) x 2 ξ ∫ 0 Vdx = 0 + 3 w0 L ∫ 0 2 ( 2 w0 L ξ − 3ξ 2 + 2ξ 3 3 (ξ − 3ξ 2 ) ) + 2ξ 3 dξ ( 2 1 1 1 w0 L2 ξ 2 − ξ 3 + ξ 4 = w0 L2 ξ 2 − 2ξ 3 + ξ 4 3 2 3 2 Max M occurs where V = 0 → 1 − 3ξ + 2ξ 2 = 0 → ξ = ) 1 2 1 1 1 w L2 1 2 M ξ = = w0 L2 − + = 0 2 3 48 4 8 16 M max = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. w0 L2 at center of beam 48 COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 156. (a) FBD cable: ΣM E = 0: ( 4 m )(1.2 kN ) + (8 m )( 0.8 kN ) + (12 m )(1.2 kN ) − ( 3 m ) Ax − (16 m ) Ay = 0 3 Ax + 16 Ay = 25.6 kN (1) ΣM C = 0: ( 4 m )(1.2 kN ) + (1 m ) Ax − ( 8 m ) Ay = 0 FBD ABC: Ax − 8 Ay = −4.8 kN Solving (1) and (2) Ax = 3.2 kN Ay = 1 kN So A = 3.35 kN (b) cable: (2) 17.35° ΣFx = 0: − Ax + Ex = 0 Ex = Ax = 3.2 kN ΣFy = 0: Ay − (1.2 + 0.8 + 1.2 ) kN + E y = 0 E y = 3.2 kN − Ay = ( 3.2 − 1) kN = 2.2 kN So E = 3.88 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 34.5° COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 157. FBD AC: FBD CB: ΣM A = 0: (13.5 ft ) T0 − a ( 57.5 lb/ft ) a = 0 2 ( ) T0 = 2.12963 lb/ft 2 a 2 ΣM B = 0: 60 ft − a ( 57.5 lb/ft )( 60 ft − a ) − ( 6 ft ) T0 = 0 2 ( ) 6T0 = 28.75 lb/ft 2 3600 ft 2 − (120 ft ) a + a 2 Using (1) in (2), Solving: So (a) 0.55a 2 − (120 ft ) a + 3600 ft 2 = 0 a = (108 ± 72 ) ft, a = 36 ft (180 ft out of range) C is 36 ft from A C is 6 ft below and 24 ft left of B T0 = 2.1296 lb/ft 2 ( 36 ft ) = 2760 lb 2 W1 = ( 57.5 lb/ft )( 36 ft ) = 2070 lb (b) Tmax = TA = T02 + W12 = ( 2760 lb )2 + ( 2070 lb )2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. = 3450 lb (2) COSMOS: Complete Online Solutions Manual Organization System Chapter 7, Solution 158. sB = 100 ft, w= 4 lb = 0.02 lb/ft 200 ft Tmax = 16 lb Tmax = TB = wyB yB = TB 16 lb = = 800 ft w 0.02 lb/ft c 2 = yB2 − sB2 c= But (800 ft )2 − (100 ft )2 yB = xB cosh = 793.73 ft xB y → xB = c cosh −1 B c c 800 ft = ( 793.73 ft ) cosh −1 = 99.74 ft 793.73 ft L = 2 xB = 2 ( 99.74 ft ) = 199.5 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 1. FBD Block B: Tension in cord is equal to W A = 25 lb from FBD’s of block A and pulley. ΣFy = 0: N − WB cos 30° = 0, N = WB cos 30° (a) For smallest WB , slip impends up the incline, and F = µ s N = 0.35WB cos30° ΣFx = 0: F − 25 lb + WB sin 30° = 0 ( 0.35cos30° + sin 30° )WB = 25 lb WB min = 31.1 lb (b) For largest WB , slip impends down the incline, and F = − µ s N = − 0.35 WB cos30° ΣFx = 0: Fs + WB sin 30° − 25 lb = 0 ( sin 30° − 0.35cos30° )WB = 25 lb W B max = 127.0 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 2. FBD Block B: Tension in cord is equal to WA = 40 lb from FBD’s of block A and pulley. (a) ΣFy = 0: N − ( 52 lb ) cos 25° = 0, N = 47.128 lb Fmax = µ s N = 0.35 ( 47.128 lb ) = 16.495 lb ΣFx = 0: Feq − 40 lb + ( 52 lb ) sin 25° = 0 So, for equilibrium, Feq = 18.024 lb Since Feq > Fmax , the block must slip (up since F > 0) ∴ There is no equilibrium (b) With slip, F = µk N = 0.25 ( 47.128 lb ) F = 11.78 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 35° COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 3. FBD Block: Tension in cord is equal to P = 40 N, from FBD of pulley. ( ) W = (10 kg ) 9.81 m/s 2 = 98.1 N ΣF y = 0 : N − (98.1 N ) cos 20° + (40 N ) sin 20° = 0 N = 78.503 N Fmax = µ s N = ( 0.30 )( 78.503 N ) = 23.551 N For equilibrium: ΣFx = 0: ( 40 N ) cos 20° − ( 98.1 N ) sin 20° − F = 0 Feq = 4.0355 N < Fmax , F = Feq Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ∴ Equilibrium exists F = 4.04 N 20° COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 4. Tension in cord is equal to P = 62.5 N, from FBD of pulley. ( ) W = (10 kg ) 9.81 m/s 2 = 98.1 N ΣFy = 0: N − ( 98.1 N ) cos 20° + ( 62.5 N ) sin15° = 0 N = 76.008 N Fmax = µ s N = ( 0.30 )( 76.008 N ) = 22.802 N For equilibrium: ΣFx = 0: ( 62.5 N ) cos15° − ( 98.1 N ) sin 20° − F = 0 Feq = 26.818 N > Fmax so no equilibrium, and block slides up the incline Fslip = µ x N = ( 0.25 )( 76.008 N ) = 19.00 N F = 19.00 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 20° COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 5. Tension in cord is equal to P from FBD of pulley. ( ) W = (10 kg ) 9.81 m/s 2 = 98.1 N ΣFy = 0: N − ( 98.1 N ) cos 20° + P sin 25° = 0 (1) ΣFx = 0: P cos 25° − ( 98.1 N ) sin 20° + F = 0 (2) For impending slip down the incline, F = µ s N = 0.3 N and solving (1) and (2), PD = 7.56 N For impending slip up the incline, F = − µ s N = − 0.3 N and solving (1) and (2), PU = 59.2 N so, for equilibrium Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 7.56 N ≤ P ≤ 59.2 N COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 6. FBD Block: ( ) W = ( 20 kg ) 9.81 m/s 2 = 196.2 N For θ min motion will impend up the incline, so F is downward and F = µs N ΣFy = 0: ΣFx = 0: (1) + ( 2 ): N − ( 220 N ) sin θ − (196.2 N ) cos 35° = 0 F = µ s N = 0.3 ( 220 sin θ + 196.2 cos 35° ) N (1) ( 220 N ) cosθ (2) − F − (196.2 N ) sin 35° = 0 0.3 ( 220 sin θ + 196.2cosθ ) N = ( 220 cosθ ) N − (196.2sin 35° ) N or 220cosθ − 66sin θ = 160.751 Solving numerically: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. θ = 28.9° COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 7. FBD Block: For Pmin motion will impend down the incline, and the reaction force R will make the angle φ s = tan −1 µ s = tan −1 ( 0.35 ) = 19.2900° with the normal, as shown. Note, for minimum P, P must be ⊥ to R, i.e. β = φs (angle between P and x equals angle between R and normal). β = 19.29° (b) then P = (160 N ) cos ( β + 40° ) = (160 N ) cos 59.29° = 81.71 N (a) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Pmin = 81.7 N COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 8. FBD block (impending motion downward) φ s = tan −1 µ s = tan −1 ( 0.25 ) = 14.036° (a) Note: For minimum P, P⊥R So β = α = 90° − ( 30° + 14.036° ) = 45.964° and P = ( 30 lb ) sin α = ( 30 lb ) sin ( 45.964° ) = 21.567 lb P = 21.6 lb (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. β = 46.0° COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 9. FBD Block: For impending motion. φ s = tan −1 µ s = tan −1 ( 0.40 ) φ s = 21.801° Note β1,2 = θ1,2 − φ s 10 lb 15 lb = sinφs sinβ1,2 From force triangle: 15 lb 33.854° sin ( 21.801° ) = 10 lb 146.146° β1,2 = sin −1 55.655° So θ1,2 = β1,2 + φ s = 167.947° So (a) equilibrium for 0 ≤ θ ≤ 55.7° (b) equilibrium for 167.9° ≤ θ ≤ 180° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 10. FBD A with pulley: Tension in cord is T throughout from pulley FBD’s ΣFy = 0: 2T − 20 lb = 0, T = 10 lb FBD E with pulley: For θ max , motion impends to right, and φ s = tan −1 µ s = tan −1 ( 0.35 ) = 19.2900° From force triangle, 20 lb 10 lb = , sin (θ − φs ) sinφ s 2sin φ s = sin (θ − φ s ) θ = sin −1 ( 2sin19.2900° ) + 19.2900° − 60.64° θ max = 60.6° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 11. FBD top block: ΣFy = 0: N1 − 196.2 N = 0 N1 = 196.2 N (a) With cable in place, impending motion of bottom block requires impending slip between blocks, so F1 = µ s N1 = 0.4 (196.2 N ) F1 = 78.48 N FBD bottom block: ΣFy = 0: N 2 − 196.2 N − 294.3 N = 0 N 2 = 490.5 N F2 = µ s N 2 = 0.4 ( 490.5 N ) = 196.2 N ΣFx = 0: − P + 78.48 N + 196.2 N = 0 P = 275 N FBD block: (b) Without cable AB, top and bottom blocks will move together ΣFy = 0: N − 490.5 N = 0, Impending slip: ΣFx = 0: N = 490.5 N F = µ s N = 0.40 ( 490.5 N ) = 196.2 N − P + 196.2 N = 0 P = 196.2 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 12. FBD top block: Note that, since φ s = tan −1 µ s = tan −1 ( 0.40 ) = 21.8° > 15°, no motion will impend if P = 0, with or without cable AB. (a) With cable, impending motion of bottom block requires impending slip between blocks, so F1 = µ s N ΣFy′ = 0: N1 − W1 cos15° = 0, N1 = W1 cos15° = 189.515 N F1 = µ s N1 = ( 0.40 )W1 cos15° = 0.38637 W1 F1 = 75.806 N FBD bottom block: ΣFx′ = 0: T − F1 − W1 sin15° = 0 T = 75.806 N + 50.780 N = 126.586 N ( ) W2 = ( 30 kg ) 9.81 m/s 2 = 294.3 N ΣFy = 0 : N 2 − (189.515 N ) cos (15° ) − 294.3 N + ( 75.806 N ) sin15° = 0 N 2 = 457.74 N F2 = µ s N 2 = ( 0.40 )( 457.74 N ) = 183.096 N FBD block: ΣFx = 0: − P + (189.515 N ) + ( 75.806 N ) cos15° + 126.586 N + 183.096 N = 0 P = 361 N (b) Without cable, blocks remain together ΣFy = 0: N − W1 − W2 = 0 N = 196.2 N + 294.3 N = 490.5 N F = µ s N = ( 0.40 )( 490.5 N ) = 196.2 N ΣFx = 0: − P + 196.2 N = 0 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. P = 196.2 N COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 13. FBD A: Note that slip must impend at both surfaces simultaneously. N1 + T sin θ − 16 lb = 0 ΣFy = 0: N1 = 16 lb − T sin θ Impending slip: F1 = µ s N1 = ( 0.20 )(16 lb − T sin θ ) F1 = 3.2 lb − ( 0.2 ) T sin θ (1) F1 − T cosθ = 0 ΣFx = 0: (2) FBD B: ΣFy = 0: N 2 − N1 − 24 lb = 0, N 2 = N1 + 24 lb = 30 lb − T sin θ Impending slip: F2 = µ s N 2 = ( 0.20 )( 30 lb − T sin θ ) = 6 lb − 0.2 T sin θ ΣFx = 0: 10 lb − F1 − F2 = 0 10 lb = µ s ( N1 + N 2 ) = ( 0.2 ) N1 + ( N1 + 24 lb ) 10 lb = 0.4 N1 + 4.8 lb, Then Then N1 = 13 lb F1 = µ s N1 = ( 0.2 )(13 lb ) = 2.6 lb (1): T sin θ = 3.0 lb ( 2 ): T cosθ = 2.6 lb Dividing tan θ = 3 , 2.6 θ = tan −1 3 = 49.1° 2.6 θ = 49.1° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 14. FBD’s: Note: Slip must impend at both surfaces simultaneously. A: ΣFy = 0: N1 − 20 lb = 0, Impending slip: N1 = 20 lb F1 = µ s N1 = ( 0.25 )( 20 lb ) = 5 lb ΣFx = 0: − T + 5 lb = 0, T = 5 lb ΣFy′ = 0: N 2 − ( 20 lb + 40 lb ) cosθ − ( 5 lb ) sin θ = 0 N 2 = ( 60 lb ) cosθ − ( 5 lb ) sin θ B: Impending slip: ΣFx′ = 0: F2 = µ s N 2 = ( 0.25 )( 60cosθ − 5sin θ ) lb − F2 − 5 lb − ( 5 lb ) cosθ + ( 20 lb + 40 lb ) sin θ = 0 − 20cosθ + 58.75sin θ − 5 = 0 Solving numerically, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. θ = 23.4° COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 15. FBD: For impending tip the floor reaction is at C. ( ) W = ( 40 kg ) 9.81 m/s 2 = 392.4 N For impending slip φ = φs = tan −1 µ s = tan −1 ( 0.35 ) φ = 19.2900° tan φ = 0.8 m , EG EG = 0.4 m = 1.14286 m 0.35 EF = EG − 0.5 m = 0.64286 m (a) α s = tan −1 EF 0.64286 m = tan −1 = 58.109° 0.4 m 0.4 m α s = 58.1° (b) P W = sin19.29° sin128.820 P = ( 392.4 N )( 0.424 ) = 166.379 N P = 166.4 N Once slipping begins, φ will reduce to φk = tan −1 µk . Then α max will increase. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 16. First assume slip impends without tipping, so F = µ s N FBD ΣFy = 0: N + P sin 40° − W = 0, N = W − P sin 40° F = µ s N = 0.35 (W − P sin 40° ) ΣFx = 0: F − P cos 40° = 0 0.35W = P ( cos 40° + 0.35sin 40° ) Ps = 0.35317 W (1) Next assume tip impends without slipping, R acts at C. ΣM A = 0: ( 0.8 m ) P sin 40° + ( 0.5 m ) P cos 40° − ( 0.4 m )W =0 Pt = 0.4458W > Ps from (1) ( ∴ Pmax = Ps = 0.35317 ( 40 kg ) 9.81 m/s 2 ) = 138.584 N (a) Pmax = 138.6 N (b) Slip is impending Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 17. FBD Cylinder: For maximum M, motion impends at both A and B FA = µ A N A; ΣFx = 0: FB = µ B N B N A = FB = µ B N B N A − FB = 0 FA = µ A N A = µ Aµ B N B ΣFy = 0: N B + FA − W = 0 1 or NB = and FB = µ B N B = 1 + µ Aµ B W µB W 1 + µ Aµ B FA = µ Aµ B N B = µ Aµ B W 1 + µ Aµ B ΣM C = 0: M − r ( FA + FB ) = 0 (a) For µA = 0 N B (1 + µ Aµ B ) = W and M = Wr µ B 1 + µA 1 + µ Aµ B µ B = 0.36 M = 0.360Wr (b) For µ A = 0.30 and µ B = 0.36 M = 0.422Wr Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 18. FBD’s: FBD Drum: (a) ΣM D = 0: 10 ft F − 50 lb ⋅ ft = 0 12 F = 60 lb Impending slip: N = F µs = 60 lb = 150 lb 0.40 FBD arm: ΣM A = 0: ( 6 in.) C + ( 6 in.) F − (18 in.) N =0 C = − 60 lb + 3 (150 lb ) = 390 lb Ccw = 390 lb (b) Reversing the 50 lb ⋅ ft couple reverses the direction of F, but the magnitudes of F and N are not changed. Then, using the FBD arm: ΣM A = 0: ( 6 in.) C − ( 6 in.) F − (18 in.) N =0 C = 60 lb + 3 (150 lb ) = 510 lb Cccw = 510 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 19. For slipping, F = µ k N = 0.30 N FBD’s: (a) For cw rotation of drum, the friction force F is as shown. From FBD arm: ΣM A = 0: ( 6 in.)( 600 lb ) + ( 6 in.) F − (18 in.) N 600 lb + F − 3 F = =0 F =0 0.30 600 lb 9 Moment about D = (10 in.) F = 666.67 lb ⋅ in. M cw = 55.6 lb ⋅ ft (b) For ccw rotation of drum, the friction force F is reversed ΣM A = 0: ( 6 in.)( 600 lb ) − ( 6 in.) F − (18 in.) N 600 lb − F − 3 =0 F =0 0.30 F = 600 lb 11 10 600 Moment about D = ft lb = 45.45 lb ⋅ ft 12 11 M ccw = 45.5 lb ⋅ ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 20. FBD: (a) ΣM C = 0: r ( F − T ) = 0, T = F Impending slip: F = µ s N or N = ΣFx = 0: F µs = T µs F + T cos ( 25° + θ ) − W sin 25° = 0 T 1 + cos ( 25° + θ ) = W sin 25° ΣFy = 0: (1) N − W cos 25° + T sin ( 25° + θ ) = 0 1 + sin ( 25° + θ ) = W cos 25° T 0.35 Dividing (1) by (2): (2) 1 + cos ( 25° + θ ) = tan 25° 1 + sin ( 25° + θ ) 0.35 Solving numerically, 25° + θ = 42.53° θ = 17.53° (b) From (1) T (1 + cos 42.53° ) = W sin 25° T = 0.252W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 21. FBD ladder: Note: slope of ladder = L = 6.5 m, so AC = 4.5 m 12 13 = , so AC = ( 4.5 m ) = 4.875 1.875 m 5 12 4.875 m 3 = L, 6.5 m 4 and DC = BD = AD = 1 L 2 1 L 4 For impending slip: FA = µ s N A , FC = µ s NC 12 Also θ = tan −1 − 15° = 52.380° 5 FA − W sin15° + FC cosθ − NC sin θ = 0 ΣFx = 0: FA = W sin15° − µ s 10 10 W cosθ + W sin θ 39 39 = ( 0.46192 − 0.15652µ s )W ΣFy = 0: N A − W cos15° + FC sin θ + NC cosθ = 0 N A = W cos15° − µ s 10 10 W sin θ − W cosθ 39 39 = ( 0.80941 − 0.20310µ s )W But FA = µ N A : 0.46192 − 0.15652µ s = 0.80941µ s − 0.20310µ s2 µ s2 − 4.7559µ s + 2.2743 µ s = 0.539, 4.2166 µ s min = 0.539 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 22. FBD ladder: Slip impends at both A and B, FA = µ s N A , FB = µ s N B ΣFx = 0: ΣFy = 0: FA − N B = 0, N B = FA = µ s N A N A − W + FB = 0, N A + FB = W N A + µs N B = W ( ) N A 1 + µ s2 = W ΣM O = 0: ( 6 m ) N B + 5 5 m W − m N A = 0 4 2 6µ s N A + µ s2 + ( ) 5 5 N A 1 + µ s2 − N A = 0 4 2 24 µs − 1 = 0 5 µ s = − 2.4 ± 2.6 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. µ s min = 0.200 COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 23. FBD rod: (a) Geometry: BE = L cosθ 2 EF = L sin θ So or Also, or L DE = cosθ tan β 2 DF = L cosθ 2 tan φ s 1 L cosθ L cosθ tan β + sin θ = 2 2 tan φs tan β + 2 tan θ = 1 1 1 = = = 2.5 tan φ s µ s 0.4 (1) L sin θ + L sin β = L sin θ + sin β = 1 Solving Eqs. (1) and (2) numerically θ1 = 4.62° (2) β1 = 66.85° θ 2 = 48.20° β 2 = 14.75° θ = 4.62° and θ = 48.2° Therefore, (b) Now and or φ s = tan −1 µ s = tan −1 0.4 = 21.801° T W = sin φs sin ( 90 + β − φ s ) T =W sin φs sin ( 90 + β − φ s ) For Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. θ = 4.62° T = 0.526W θ = 48.2° T = 0.374W COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 24. FBD: Assume the weight of the slender rod is negligible compared to P. First consider impending slip upward at B. The friction forces will be directed as shown and FB,C = µ s N B,C ΣM B = 0: ( L sinθ ) P − a sin θ NC = P ΣFx = 0: NC = 0 L 2 sin θ a NC sin θ + FC cosθ − N B = 0 NC ( sin θ + µ s cosθ ) = N B so ΣFy = 0: NB = P L 2 sin θ ( sin θ + µ s cosθ ) a − P + NC cosθ − FC sin θ − FB = 0 P = NC cosθ − µ s NC sin θ − µ s N B so P = P L 2 L sin θ ( cosθ − µ s sin θ ) − µ s P sin 2 θ ( sin θ + µ s cosθ ) a a Using θ = 35° and µ s = 0.20, solve for (1) L = 13.63. a To consider impending slip downward at B, the friction forces will be reversed. This can be accomplished by substituting µ s = − 0.20 in L = 3.46. equation (1). Then solve for a Thus, equilibrium is maintained for Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 3.46 ≤ L ≤ 13.63 a COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 25. FBD ABC: ΣM C = 0: 0.045 m + ( 0.30 m ) sin 30° ( 400 N ) sin 30° + 0.030 m + ( 0.30 m ) cos 30° ( 400 N ) cos 30° 12 5 − ( 0.03 m ) FBD − ( 0.045 m ) FBD = 0 13 13 FBD = 3097.64 N FBD Blade: ΣFx = 0: N − 25 ( 3097.6 N ) = 0 65 N = 1191.4 F = µ s N = 0.20 (1191.4 N ) = 238.3 N ΣFy = 0: P+F− 60 ( 3097.6 N ) = 0 65 P = 2859.3 − 238.3 = 2621.0 N Force by blade Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. P = 2620 N COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 26. FBD CD: Note: The plate is a 3-force member, and for minimum µ s , slip impends at C and D, so the reactions there are at angle φ s from the normal. From the FBD, OCG = 20° + φ s and ODG = 20° − φ s Then OG = ( 0.5 in.) tan ( 20° + φs ) 1.2 in. + 0.5 in. tan ( 20° − φs ) and OG = sin70° Equating, tan ( 20° + φs ) = 3.5540 tan ( 20° − φs ) Solving numerically, φ s = 10.5652° µ s = tan φs = tan (10.5652° ) µ s = 0.1865 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 27. FBD pin A: From FBD Whole the force at A = 750 lb 4 ( FAB′ − FAB ) = 0, FAB′ = FAB 5 ΣFx = 0: 3 750 lb − 2 FAB = 0, FAB = 625 lb 5 ΣFy = 0: FBD Casting: ΣFx = 0: N D′ − N D = 0, N D′ = N D = N FD = FD′ = µ N D , or N D = Impending slip ΣFy = 0: FD µs 2FD − 750 lb = 0, FD = 375 lb ND = 375 lb µs FBD ABCD: ΣM C = 0: (12 in.) 375 lb µs 4 5 (12 in.) N − ( 6 in.) F − ( 42.75 in.) ( 625 lb ) = 0 = ( 6 in.)( 375 lb ) + ( 42.75 in.) 4 ( 625 lb ) = 0 5 µ s = 0.1900 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 28. From FBD Whole, and neglecting weight of clamp compared to 550 lb plate, P = − W Since AB is a two-force member, B is vertical and B = W . FBD BCD: ΣM C = 0: (1.85 in.)W − ( 2.3 in.) D cos 40° − ( 0.3 in.) D sin 40° = 0, D = 0.94642W FBD EG: ( 0.9 in.) NG − (1.3 in.) FG − (1.3 in.) N D cos 40° = 0 ΣM E = 0: Impending slip: FG = µ s NG Solving: ( 0.9 − 1.3µ s ) NG = 0.94250W (1) FBD Plate: By symmetry NG = NG′ , ΣFy = 0: FG = FG′ = µ s NG 2 FG − W = 0, Substitute in (1): ( 0.9 − 1.3µ s ) FG = W , 2 NG = W 2µ s W = 0.94250W 2µ s Solving, µ s = 0.283, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. µsm = 0.283 COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 29. FBD table + child: ( ) = 16 kg ( 9.81 m/s ) = 156.96 N WC = 18 kg 9.81 m/s 2 = 176.58 N WT 2 (a) Impending tipping about E , N F = FF = 0, and ΣM E = 0: ( 0.05 m )(176.58 N ) − ( 0.4 m )(156.96 N ) + ( 0.5 m ) P cosθ − ( 0.7 m ) P sin θ =0 33cosθ − 46.2sin θ = 53.955 Solving numerically θ = −36.3° and θ = −72.6° −72.6° ≤ θ ≤ −36.3° Therefore Impending tipping about F is not possible (b) For impending slip: FE = µ s N E = 0.2 N E ΣFx = 0: FE + FF − P cosθ = 0 or FF = µ s N F = 0.2 N F 0.2 ( N E + N F ) = ( 66 N ) cos θ ΣFy = 0: N E + N F − 176.58 N − 156.96 N − P sin θ = 0 N E + N F = ( 66sin θ + 333.54 ) N So Solving numerically, 330 cosθ = 66sin θ + 333.54 θ = −3.66° and θ = −18.96° Therefore, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. −18.96° ≤ θ ≤ −3.66° COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 30. Geometry of four-bar: Considering the geometry when α = 0, 1/ 2 2 2 LCD = ( 60 mm − 52 mm ) + ( 36 mm + 22 mm ) = 58.549 mm In general, 52 mm − ( 36 mm ) sin α = 60 mm − ( 58.549 mm ) sin β 36sin α + 8 so β = sin −1 58.549 (a) FBD ACE: α =0 β = 7.8533°, note that the links at E and K are prevented from pivoting downward by the small blocks FE FCD sin β − FE = 0, FCD = ΣFy = 0: sin 7.8533° ΣM A = 0: ( 60 mm ) FE cos 7.8533° − ( 32 mm ) FE − ( 212 mm ) N E = 0 sin 7.8533° Impending slip on pad N E = FE µs , so 212 435.00 − 32 − FE = 0 µs µ s = 0.526 (b) α = 30°, β = 26.364° ΣFx = 0: ΣFy = 0: − 3 FAB + FCD cos 26.364° − N E = 0 2 1 − FAB + FCD sin 26.364° − FE = 0 2 Eliminating FAB , FCD ( 0.89599 − 0.76916 ) − N E + FE = 0 Impending slip FE = µ s N E , so 0.126834 FE = (1 − µ s ) N E ( 60 mm ) FCD cos 26.364° − ( 212 mm ) N E − ( 32 mm ) µ s N E 53.759 FCD = ( 212 − 32µ s ) N E = 0 ΣM A = 0: 212 − 32µ s 53.759 = 1 − µs 0.12634 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. =0 µ s = 0.277 COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 31. FBD ABD: (15 mm ) N A − (110 mm ) FA = 0 ΣΜ D = 0: Impending slip: FA = µ SA N A So 15 − 110µ SA = 0 µ SA = 0.136364 µ SA = 0.1364 FA − Dx = 0, Dx = FA = µ SA N A ΣFx = 0: FBD Pipe: r = 60 mm ΣFy = 0: NC − N A = 0, NC = N A FBD DF: ΣM F = 0: Impending slip: So, ( 550 mm ) FC − (15 mm ) NC − ( 500 mm ) Dx = 0 FC = µ SC NC = µ SC N A 550µ SC N A − 15N A − 500µ SA N A = 0 550µ SC = 15 + 500 ( 0.136364 ) µ SC = 0.1512 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 32. FBD Plate: Assume reactions as shown, at ends of sleeves, FA = µ s N A , For impending slip FB = µ s N B P sin θ − µ s N A − µ s N B = 0 ΣFx = 0: N A + N B = 2.5 P sin θ ΣFy = 0: N A − N B − P cosθ = 0, Solving: N A = ΣM B = 0: P ( 2.5sin θ + cosθ ) , 2 N A − N B = P cosθ NB = P ( 2.5sin θ − cosθ ) (1) 2 ( 23.5 in.) P sin θ − (16 in.) N A + (1 in.) FA = 0 ( 23.5 in.) P sin θ P − 16 in. − 0.4 (1 in.) ( 2.5sin θ + cosθ ) = 0 2 4sin θ − 7.8cosθ = 0, (2) θ = 62.9° For θ > 62.9°, the panel will be self locking, ∴ motion for θ ≤ 62.9°. As θ decreases, N B will reverse direction at 2.5sin θ − cosθ = 0, (see equ. 1) or at θ = 21.8°. So for θ ≤ 21.8° ΣFx = 0 : P sin θ − µ s ( N A + N B ) = 0 N A + N B = 2.5 P sin θ ΣFy = 0: N A + N B − P cosθ = 0, ∴ 2.5sin θ = cosθ , N A + N B = P cosθ θ = 21.8° So impending motion for 21.8° ≤ θ ≤ 62.9° W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 33. FBD Plate: Assuming reactions as shown, at ends of sleeves, For impending slip FB = µ s FB P sin θ − µ s ( N A + N B ) = 0 ΣFx = 0: ΣFy = 0: FA = µ s N A , N A + N B = 2.5 P sin θ (1) N A − N B = P cosθ (2) N A − N B − P cosθ = 0, NA = Solving: P ( 2.5sin θ + cosθ ) , 2 NB = P ( 2.5sin θ − cosθ ) 2 Note that, for θ < 21.8°, N B becomes negative, so we must change equ. 2 to N A + N B = P cosθ , ( 2′ ) but equ. (1) does not change. Solving (1) and ( 2′ ) gives P cosθ = 2.5P sin θ , or θ = 21.8°, so the lower limit for impending slip is θ = 21.8°. For θ ≥ 21.8°, the forces are as shown, and ΣM B = 0: ( 23.5 in.) P sin θ + xP cosθ + (1 in.) FA − (16 in.) N A = 0 P + x P cosθ + 0.4 (1 in.) − (16 in.) ( 2.5sin θ + cosθ ) = 0 2 x 4sin θ − ( 7.8 in.) − x cosθ = 0, tan θ = 1.950 − 4 in. ( 23.5 in.) P sin θ or (a) For x = 4 in., tan θ = 1.950, θ = 43.5°. For θ > 43.5° self locking ∴ impending motion for 21.8° ≤ θ ≤ 43.5° W (b) As x increases from 4 in., the upper bound for θ decreases, becoming 21.8° ( tan θ = 0.4000 ) when x = ( 4 in.)(1.950 − 0.400 ) = 6.2 in. Thus xmax = 6.20 in. W at which θ must equal 21.8°. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 34. FBD Collar: Impending motion down: a −a cosθ Stretch of spring x = AB − a = a 1 − a = (1.5 kN/m )( 0.5 m ) − 1 Fs = kx = k cos cos θ θ 1 = ( 0.75 kN ) − 1 cos θ N − Fs cosθ = 0 ΣFx = 0: N = Fs cosθ = ( 0.75 kN )(1 − cosθ ) Impending motion up: Impending slip: F = µ s N = ( 0.4 )( 0.75 kN )(1 − cosθ ) = ( 0.3 kN )(1 − cosθ ) + down, – up ΣFy = 0: Fs sin θ ± F − W = 0 ( 0.75 kN )( tan θ or − sin θ ) ± ( 0.3 kN )(1 − cosθ ) − W = 0 W = ( 0.3 kN ) [ 2.5 ( tan θ − sin θ ) ± (1 − cosθ )] with θ = 30°: Wup = 0.01782 kN Wdown = 0.0982 kN ( OK ) ( OK ) Equilibrium if 17.82 N ≤ W ≤ 98.2 N W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 35. Geometry: 1 m − ( 0.5 m ) cos α tan θ = ( 0.5 m ) sin α tan θ ( 2 − cos α ) = sin α θ = 30° → α = 60° then LAB = (1 m ) cos 30° = FBD B: 3 m 2 1 kN 3 m − m Fs = k ( LAB − L0 ) = 1.5 m 2 2 Fs = 0.75 ( ) 3 − 1 kN = 549.04 N ΣFx = 0: F + W sin 60° − 549.04 N = 0 F = 549.04 N − ΣFy = 0: W 2 N − W cos 60° = 0, N = 3 W 2 For impending slip upward, F is as shown and F = µ s N , so 549.04 N − W 3 W, = 0.40 2 2 Wmin = 648.61 N For impending slip downward, F is reversed, or F = − µ s N , so 549.04 N − m= W ( 9.81 m/s ) 2 W 3 W, = − 0.40 2 2 so Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Wmax = 3575 N 66.1 kg ≤ m ≤ 364 kg W COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 36. FBD Collar: Note: BC is a two-force member, and for M max , slip will impend to the right. ΣFy = 0: Impending slip: ΣFx = 0: FBC cosθ − N = 0, N = FBC cosθ F = µ s N = µ s FBC cosθ FBC sin θ − F − P = 0 FBC ( sin θ − µ s cosθ ) = P FBD AB: ΣM A = 0: M − ( 2l ) FAB cosθ = 0 M = 2l cosθ P sin θ − µ s cosθ M max = 2 Pl W tan θ − µ s For µ s = tan θ , M max = ∞ self locking W For µ s > tan θ , M max < 0 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 37. Geometry: FBD AB: θ = cos −1 L L L + − 2 4 2 = 60° L 2 For min a L slip will impend to right and reactions will be at φ s = tan −1 µ s = tan −1 ( 0.35 ) = 19.2900° from normal. Note: AB is a three-force member CD = a tan ( 60 + φs ) = ( L − a ) tan ( 60° − φ s ) a tan ( 79.29° ) = ( L − a ) tan ( 40.71° ) 6.1449 = L −1 a a = 0.13996 L min Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. a = 0.1400 W L COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 38. FBD A: Note: Rod is a two force member. For impending slip the reactions are at angle φ s = tan −1 µ s = tan −1 ( 0.40 ) = 21.801° FBD B: Consider first impending slip to right 9 lb FAB = = 3.8572 lb tan 66.801 ΣFy = 0: N B − ( 3.8522 lb ) sin 30° − ( 6 lb ) cos 30° = 0 N B = 7.1223 lb, FB = µ s N B = 0.40 ( 7.1223 lb ) FB = 2.8489 lb ΣFx = 0: − 2.8489 lb + ( 3.8572 lb ) cos 30° − ( 6 lb ) sin 30° − P = 0 Pmin = − 2.508 lb FBD A: Next consider impending slip to left FAB = ( 9 lb ) tan 66.801° = 21.000 lb FBD B: ΣFy = 0: N B − ( 21 lb ) sin 30° − ( 6 lb ) cos 30° = 0, N B = 15.6959 lb FB = µ s N B = 0.4 (15.6959 lb ) = 6.2784 lb ΣFx = 0: 6.2784 lb + ( 21 lb ) cos 30° − ( 6 lb ) sin 30° − P = 0 Pmax = 21.465 lb equilibrium for − 2.51 lb ≤ P ≤ 21.5 lb W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 39. FBD AB: ΣM A = 0: 8 in 2 + 4 in 2 ( N ) − M A = 0 N = (12 lb ⋅ ft )(12 in./ft ) 8.9443 in. = 16.100 lb F = µ s N = 0.3 (16.100 lb ) = 4.83 lb Impending motion: Note: For max MC, need F in direction shown; see FBD BC. FBD BC + collar: ΣM C = 0: or MC = M C − (17 in.) 1 2 2 N − ( 8 in.) N − (13 in.) F =0 5 5 5 17 in. 16 in. 26 in. (16.100 lb ) + (16.100 lb ) + ( 4.830 lb ) = 293.77 lb ⋅ in. 5 5 5 ( MC )max Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. = 24.5 lb ⋅ ft COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 40. FBD yoke: ΣFx = 0: P − N = 0, N = P = 8 lb F = µ s N = 125 ( 8 lb ) For impending slip, F = 2 lb For M max , F on yoke is down as shown FBD wheel and slider: For M min , F on yoke is up. (a) For M max the 2 lb force is up as shown. ΣM B = 0: M B − ( 3 in.) sin 65° ( 8 lb ) − ( 3 in.) cos 65° ( 2 lb ) = 0 M B max = 24.3 lb ⋅ in. W (b) For M min the 2 lb force is reversed, and ΣM B = 0: M B − ( 3in .) sin 65° ( 8 lb ) + ( 3 in.) cos 65° ( 2 lb ) = 0 M B min = 19.22 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. W COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 41. FBD Rod: ΣM A = 0: ( 20 in.) N1 − (12.5 in.)(12 lb ) = 0 N1 = 7.5 lb. FBD Cylinder: ΣFy = 0: N 2 − 7.5 lb − 36 lb = 0, N 2 = 43.5 lb since µ1 = µ2 and N1 < N 2 , slip will impend at top of cylinder first, so F1 = µ s N1 . F1 = 0.35 ( 7.5 lb ) = 2.625 lb ΣM D = 0: ( 4.25 in.) P − (12.5 in.)( 2.625 lb ) = 0, P = 7.7206 lb Pmax = 7.72 lb W To check slip analysis above, ΣFy = 0: N 2 − 36 lb − 7.5 lb = 0 N 2 = 43.5 lb F2max = µ s N 2 = 0.35 ( 43.5 lb ) = 15.225 lb ΣFx = 0: P − F1 − F2 = 0, 7.72 lb − 2.625 lb − F2 = 0 F2 = 5.095 lb < Fmax , Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. OK COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 42. FBD pulley: Note that φSA = tan −1 µ SA = tan −1 ( 0.5 ) = 26.565° < 30°, Cable is needed to keep A from sliding downward. ΣFy = 0: 2T − WB = 0, T = WB , 2 WB = 2T (1) FBD block A: (a) For minimum WB , there will be impending slip of block A downward, and FA = µ SA N A as shown. ΣFy′ = 0: N A − WA cos 30° = 0, N A = WA cos 30° = 23.544 N cos 30° = 20.390 N ( ) WA = ( 2.4 kg ) 9.81 m/s 2 = 23.544 N FA = ( 0.50 )( 20.390 N ) = 10.195 N FBD block C: ΣFx′ = 0: T − WA sin 30° + FA = 0 T = ( 23.544 N ) sin 30° − 10.195 N = 1.577 N From (1) WB = 2T = 3.154 N, mB = 3.154 N ( 9.81 m/s 2 ) = 0.322 kg, mB min = 322 g ΣFy = 0: NC − WC = 0, NC = 58.86 N FC max = µ SC NC = 0.30 ( 58.86 N ) = 17.658 N Since T = 1.577 N < FC max , block B doesn’t slip and above answer for mB min is correct. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System (b) For mB max assume impending slip of block C to left, FC = Fmax ΣFx = 0: − T + FC = 0, From (1) WB = 2T = 35.316 N, T = FC = FC max = 17.658 N mB = WB 35.316 N = = 3.6 kg g 9.81 m/s 2 From FBD block A, ΣFx = 0: T − WA sin 30° + FA = 0, FA = WA sin 30° − T FA = ( 23.544 N ) sin 30° − 17.658 N = − 5.886, Since FA < FA max , A does not slip Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. FAmax = 10.195 N M B max = 3.6 kg COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 43. FBD A: For impending motion A must start up and C down the incline. Since the normal force between A and B is less than that between B and C, and the friction coefficients are the same, Fmax will be reached first between A and B, and B and C will stay together. ΣFy = 0: Impending slip: ΣFx = 0: N1 − ( 4 lb ) cos 30° = 0, F1 = µ s N1 = 2 3µ s lb T − ( 4 lb ) sin 30° − 2 3µ s lb = 0 ( FBD B and C: N1 = 2 3 lb ) T = 2 1 + 3µ s lb ΣFy = 0: N 2 − 2 3 lb − ( 3 lb + 8 lb ) cos 30° = 0 N2 = Impending slip: ΣFx = 0: (1) 15 3 lb 2 15 3µ s lb 2 15 3 µs lb − ( 3 + 8) lbsin 30° = 0 T + 2 3 + 2 F2 = µ s N 2 = 11 19 3µ s lb T = − 2 2 FBD B: Equating (1) and (2): ( (2) ) 4 1 + 3µ s lb = 11 − 19 3µ s 23 3 µ s = 7, µ s min = 0.1757 W To check slip reasoning above: ΣFy = 0: N3 − 2 3 lb − ( 3 lb ) cos 30° = 0, F3max = µ s N3 = ΣFx = 0: N3 = 7 3 lb 2 7 3µ s 2 − ( 3 lb ) sin 30° + 2 3µ s lb − F3 = 0 F3 = 2 3 ( 0.1757 ) lb − 3 lb = − 0.891 lb 2 F3 < F3max , OK Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 44. FBD rod: 3 in. N B − ( 4.5 in.) cosθ W = 0 cosθ ΣM A = 0: or N B = (1.5cos 2 θ )W Impending motion: FB = µ s N B = (1.5µ s cos 2 θ )W = ( 0.3cos 2 θ )W ΣFx = 0: N A − N B sin θ + FB cosθ = 0 N A = (1.5cos 2 θ )W ( sin θ − 0.2 cosθ ) or Impending motion: FA = µ s N A = ( 0.3cos 2 θ )W ( sin θ − 0.2 cosθ ) ΣFy = 0: FA + N B cosθ + FB sinθ − W = 0 ( FA = W 1 − 1.5cos3 θ − 0.3cos 2 θ sin θ or ) Equating FA’s 0.3cos 2 θ ( sin θ − 0.2cosθ ) = 1 − 1.5cos3 θ − 0.3cos 2 θ sinθ 0.6cos 2 θ sin θ + 1.44cos3 θ = 1 Solving numerically Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. θ = 35.8° W COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 45. FBD pin A: ΣFx = 0: ΣFy = 0: Solving: 12 3 FAB − FAC = 0 13 5 5 4 FAB + FAC − P = 0 13 5 FAB = 13 P, 21 FAC = 20 P 21 FBD B: ΣFx = 0: NB − 12 13 ⋅ P = 0, 13 21 NB = For Pmin slip of B impends down, so FB = µ s N B = ΣFy = 0: FBD C: 11 12 5 13 ⋅ P− ⋅ P − 18 lb = 0, 20 21 13 21 12 P 21 11 NB 20 Pmin = 236.25 lb (For P < 236.25 lb, A will slip down) ΣFy = 0: NC − 80 lb − 4 20 16 ⋅ P = 0, NC = 80 lb + P 5 21 21 For Pmax slip of C impends to right, FC = µ s NC FC = or ΣFx = 0: 11 16 44 P = 44 lb + P 80 lb + 20 21 105 3 20 ⋅ P − FC = 0, 5 21 12 44 P = 44 lb + P 21 105 Pmax = 288.75 lb ∴ equilibrium 236 ≤ P ≤ 289 W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 46. φ s = tan −1 µ s = tan −1 ( 0.4 ) = 21.801°, slip impends at wedge/block wedge/wedge and block/incline FBD Block: R2 530 lb = sin 41.801° sin 46.398° R2 = 487.84 lb FBD Wedge: P 487.84 lb = sin 51.602° sin 60.199° P = 441 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 47. φ s = tan −1 µ s = tan −1 ( 0.40 ) = 21.801°, and slip impends at wedge/lower block, wedge/wedge, and upper block/incline interfaces. FBD Upper block and wedge: R2 530 lb = sin 41.801° sin 38.398° R2 = 568.76 lb FBD Lower wedge: P 568.76 lb = sin 51.602° sin 68.199° P = 480 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 48. ( ) WD = (18 kg ) 9.81 m/s 2 = 176.58 N Fs = kx = ( 3.5 kN/m )( 0.1 m ) = 0.35 kN = 350 N φ s = tan −1 µ s = tan −1 ( 0.25 ) = 14.0362° FBD Lever: ΣM C = 0: ( 0.3 m )( 350 N ) − ( 0.4 m )(176.58 N ) − ( 0.525 m ) RA cos 4.0362° + ( 0.05 m ) RA sin 4.0362° = 0 RA = 66.070 N ΣFx = 0: ΣFy = 0: ( 66.07 N ) sin 4.0362° + Cx = 0, Cx = − 4.65 N ( 66.07 N ) cos 4.0362° − 350 N − 176.58 N = 0 FBD Wedge: P 66.070 N = sin18.072° sin 75.964° P = 21.1 lb (a) (b) P = 21.1 lb C x = 4.65 N C y = 461 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 49. ( ) WD = (18 kg ) 9.81 m/s 2 = 176.58 N Fs = kx = ( 3.5 kN/m )( 0.1 m ) = 0.35 kN = 350 N φ s = tan −1 µ s = tan −1 ( 0.25 ) = 14.0362° FBD Lever: ΣM C = 0: ( 0.3 m )( 350 N ) − ( 0.4 m )(176.58 N ) − ( 0.525 m ) RA cos 24.036° − ( 0.05 m ) RA sin 24.036° = 0 RA = 68.758 N ΣFx = 0: ΣFy = 0: C x − ( 68.758 N ) sin 24.036° = 0, Cx = 28.0 N C y − 350 N − 176.58 N + ( 68.758 N ) cos 24.036° = 0 C y = 464 N FBD Wedge: P 68.758 N = sin 38.072° sin 75.964° (a) (b) P = 43.7 N C x = 28.0 N C y = 464 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 50. For steel/steel contact, φ s1 = tan −1 µ s1 = tan −1 ( 0.3) = 16.6992° For steel/concrete interface, φ s2 = tan −1 µ s2 = tan −1 ( 0.6 ) = 30.964° FBD Plate CD: ΣFy = 0: N − 90 kN = 0, F = µ s1 N = 0.3 ( 90 kN ) = 27 kN Impending slip: ΣFx = 0: F = 90 kN F − Q = 0, Q = F = 27 kN FBD Top wedge assuming impending slip between wedges: ΣFy = 0: Rw = 100.74 kN Rw cos 26.699° − 90 kN = 0, ΣFx = 0: P − 27 kN − (100.74 kN ) sin 26.699° = 0 P = 72.265 kN, (a) P = 72.3 kN (b) Q = 27.0 kN To check above assumption; note that bottom wedge is a two-force member so the reaction of the floor on that wedge is Rw, at 26.699° from the vertical. This is less than φ s2 = 30.964°, so the bottom wedge doesn’t slip on the concrete. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 51. For steel/steel contact, φ s1 = tan −1 µ s1 = tan −1 ( 0.30 ) = 16.6992° For steel/concrete contact, φ s2 = tan −1 µ s2 = tan −1 ( 0.60 ) = 30.964° FBD Plate CD and top wedge: Q = 90 kN tan 26.6992° = 45.264 kN Rw = 90 kN = 100.741 kN cos 26.6992° FBD Bottom wedge: slip impends at both surfaces P 100.714 kN = sin 57.663° sin 59.036° (a) P = 99.3 kN (b) Q = 45.3 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 52. FBD Wedge: φ s = tan −1 µ s = tan −1 ( 0.4 ) = 21.801° By symmetry RB = RC ΣFy = 0: 2RC sin ( 29.801° ) − P = 0, P = 0.9940 RC FBD Block C: RC 175 lb , = sin 41.801° sin18.397 lb P = 367.3 lb (a) P = 367 lb b) Note: That increasing friction between B and the incline will mean that block B will not slip, but the above calculations will not change. (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. P = 367 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 53. FBD Block C: φ s = tan −1 µ s = tan −1 ( 0.4 ) = 21.8014° ΣFx = 0: RACx − RCFx = 0 ΣFy = 0: so RCFy − RACy − 175 lb = 0 RCFy RCFx − RACy RACx = 175 lb RACx cot ( 20° + φ ) − cot ( 32.2° ) > 0 φ < 12.2° < φ s = 21.8° so block C does not slip (or impend) FBD Block B: (a) φ B = tan −1 µ B = tan −1 ( 0.4 ) = 21.8014° RB 175 lb , = sin 41.8014° sin 46.3972° RB = 161.083 lb (b) φ B = tan −1 µ B = tan −1 ( 0.6 ) = 30.9638° RB 175 lb , = sin 50.9638° sin 37.2330° RB = 224.65 lb FBD Wedge: P RB = , sin 59.6028° sin 52.1986° (a) RB = 161.083 lb, (b) RB = 224.65 lb, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. P = 1.09163 RB P = 175.8 lb P = 245 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 54. Since vertical forces are equal and µ s ground > µ s wood, assume no impending motion of board. Then there will be impending slip at all wood/wood contacts, φ s = tan −1 µ s = tan −1 ( 0.35 ) = 19.2900° FBD Top wedge: R1 = 8 kN = 8.4758 kN cos19.29° R1 P = sin 52.710° cos 56.580° P = 8.892 kN To check assumption, consider FBD wedges + board: F1 = µ1 8 kN = 0.35 ( 8 kN ) = 2.8 kN ΣFy = 0: NG − 8 kN = 0, NG = 8 kN FG max = µG NG = ( 0.6 )( 8 kN ) = 4.8 kN ΣFx = 0: FG − F1 = 0, FG = F1 = 2.8 kN FG < FG max , OK ∴ P = 8.89 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 55. Assume no impending motion of board on ground. Then there will be impending slip at all wood/wood interfaces. FBD Top wedge: Wedge is a two-force member so R 2 = − R1 and θ = 2φs = 2 tan −1 µ s = 2 tan −1 ( 0.35 ) θ = 38.6° To check assumption, consider FBD wedges + board: F1 = µ1 8 kN = 0.35 ( 8 kN ) = 2.8 kN ΣFy = 0: NG − 8 kN = 0, NG = 8 kN FG max = µG NG = ( 0.6 )( 8 kN ) = 4.8 kN ΣFx = 0: FG − F1 = 0, FG = F1 = 2.8 kN FG < FG max , OK ∴ P = 8.89 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 56. FBD Cylinder: Slip impends at B φ SC = tan −1 ( 0.35 ) = 19.2900° ΣM A = 0: r RC cos (12° + 19.29° ) − 4r W =0 3π RC = 0.49665, W = 124.163 lb FBD Wedge: φ SF = tan −1 µ SF = tan −1 ( 0.50 ) = 26.565° P 124.163 lb = sin 58.855° sin 63.435° P = 117.5 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 57. FBD tip of screwdriver: φs = tan −1 µ s = tan −1 ( 0.12 ) = 6.8428° by symmetry R1 = R2 ΣFy = 0: 2R1 sin ( 6.8428° + 8° ) − 3.5 N = 0 R1 = R2 = 6.8315 N If P is removed quickly, the vertical components of R1 and R2 vanish, leaving the horizontal components H1 = H 2 = ( 6.8315 N ) cos14.8428° = 6.6035 N Side forces = 6.60 N This is only instantaneous, since 8° > φ s , so the screwdriver will be forced out. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 58. As the plates are moved, the angle θ will decrease. (a) φ s = tan −1 µ s = tan −1 0.2 = 11.31°. As θ decreases, the minimum angle at the contact approaches 12.5° > φs = 11.31°, so the wedge will slide up and out from the slot. (b) φ s = tan −1 µ s = tan −1 0.3 = 16.70°. As θ decreases, the angle at one contact reaches 16.7°. (At this time the angle at the other contact is 25° − 16.7° = 8.3° < φ s ) The wedge binds in the slot. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 59. FBD Wedge: φ s = tan −1 µ s = tan −1 ( 0.35 ) = 19.2900° by symmetry R1 = R2 ΣFy = 0: 2 R1 sin 22.29° − 60 lb = 0 R2 = 79.094 lb When P is removed, the vertical component of R1 and R2 will vanish, leaving the horizontal components H1 = H 2 = ( 79.094 lb ) cos 22.29° = 73.184 lb Final forces H1 = H 2 = 73.2 lb Since these are at 3° ( < φs ) from the normal, the wedge is self-locking and will remain in place. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 60. FBD Cylinder: ( ) W = ( 80 kg ) 9.81 m/s 2 = 784.8 N ΣM G = 0: FA − FB = 0, ΣM D = 0: dN B − dN A + rW = 0, so N A > NB, FA = FB (1) N A = NB + W 3 (2) FA max > FB max ∴ slip impends first at B. FB = µ s N B = 0.25 N B ΣM A = 0: ( r cos 30° ) N B − ( r sin 30° )W − r (1 + sin 30° )( 0.25 N B ) = 0 r = note d = tan 30 N B = 1.01828W = 799.15 N 3r FB = 0.25 N B = 199.786 N From (2) above, N A = 799.15 N + 784.8 N = 1252.25 N 3 From (1), FA = FB = 199.786 N ΣFy = 0: FBD Wedge: NC − (1252.25 N ) cos10° + 199.786 N sin10° = 0 NC = 1198.53 N Impending slip FC = µ s NC = 0.25 (1198.53 N ) = 299.63 N ΣFx = 0: P − 299.63 N − (199.786 N ) cos10° − (1252.25 N ) sin10° = 0 P = 714 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 20.0° COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 61. FBD Cylinder: ( ) W = ( 80 kg ) 9.81 m/s 2 = 784.8 N For impending slip at B, ΣM A = 0: FB = µ sB N B = 0.30 N B ( r cos 30° ) N B − r (1 + sin 30° )( 0.30 N B ) − r sin 30°W = 0 N B = 1.20185W = 943.21 N FB = 0.30 N B = 0.36055W ΣM G = 0: ΣFx = 0: r ( FA − FB ) = 0, FA = FB = 0.36055W N A sin 30° + FA cos30° − N B = 0 NA = − ( 0.36055W ) cos30° + 1.20185W sin 30° N A = 1.77920W For minimum µ A , slip impends at A, so µ A min = FA 0.36055W = = 0.2026 N A 1.77920W µ A min = 0.203 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 62. FBD plank + wedge: (8 ft ) N B − (1.5 ft )( 48 lb/ft )( 3 ft ) ΣM A = 0: − ( 2 ft ) 1 ( 48 lb/ft )( 3 ft ) 2 5 1 − 3 + ft ( 96 lb/ft )( 5 ft ) = 0 3 2 N B = 185 lb ΣFy = 0: 48 + 96 NW + 185 lb − lb/ft ( 3ft ) 2 + 1 ( 96 lb/ft )( 5 ft ) = 0 2 NW = 271 lb Since NW > N B , and all µ s are equal, assume slip impends at B and between wedge and floor, and not at A. Then FW = µ s NW = 0.45 ( 271 lb ) = 121.95 lb FB = µ s N B = 0.45 (185 lb ) = 83.25 lb ΣFx = 0: P − 121.95 lb − 83.25 lb = 0, P = 205.20 lb Check Wedge for assumption 271 lb − RA cosθ = 0 ΣFy = 0: ΣFx = 0: so tan θ = 205.2 lb − 121.95 lb − RA sin θ = 0 83.25 = 0.3072 < µ s + tan 9° 271 so no slip here ∴ (a) (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. P = 205 lb impending slip at B COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 63. FBD plank + wedge: ΣM A = 0: (8 ft ) N B − (1.5 ft )( 48 lb/ft )( 3 ft ) 1 ( 48 lb/ft )( 3 ft ) 2 5 − 3 + ft ( 96 lb/ft )( 5 ft ) = 0 3 − ( 2 ft ) NW = 185 lb ΣFy = 0: 48 + 96 N A + 185 lb − lb/ft ( 3ft ) 2 1 − ( 96 lb/ft )( 5 ft ) = 0 2 N A = 271 lb Since N A > NW , and all µ s are equal, assume impending slip at top and bottom of wedge and not at A. Then FW = µ s NW = 0.45 (185 N ) FW = 83.25 lb FBD Wedge: φ s = tan −1 µ s = tan −1 ( 0.45 ) = 24.228° ΣFy = 0: 185 lb − RB cos ( 24.228° + 9° ) = 0 RB = 221.16 lb ΣFx = 0: ( 221.16 lb ) sin 33.228° + 83.25 lb − P = 0 P = 204.44 lb Check assumption using plank/wedge FBD ΣFx = 0: FA + FW − P = 0, FA = 204.44 lb − 83.25 lb = 121.19 lb FA max = µ s N A = 0.45 ( 271 lb ) = 121.95 lb FA < FA max , OK ∴ (a) (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. P = 204 lb no impending slip at A COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 64. ( ) ( ) WA = (10 kg ) 9.81 m/s 2 = 98.1 N, WB = ( 50 kg ) 9.81 m/s 2 = 490.5 N Slip must impend at all surfaces simultaneously, F = µ s N FBD I: A + B ΣFy = 0: N B − 150 N − 98.1 N − 490.5 N = 0, impending slip: FBD II: A N B = 738.6 N FB = µ s N B = ( 738.6 N ) µ s N A = ( 738.6 N ) µ s ΣFx = 0: N A − FB = 0, ΣFy′ = 0: FAB + ( 738.6µ s ) N sin 20° − (150 N + 98.1 N ) cos 20° = 0 FAB = 233.14 − ( 252.62 ) µ s N ΣFx′ = 0: ( 738.6µ s ) N cos 20° − (150 N + 98.1 N ) sin 20° − N AB = 0 N AB = 84.855 + ( 694.06 ) µ s N µs = FAB 233.14 − 252.62µ s = N AB 84.855 + 694.06µ s µ s2 = 0.48623µ s − 0.33591 = 0 µ s = − 0.24312 ± 0.62850 Positive root Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. µ s = 0.385 COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 65. ( ) ( ) WA = (10 kg ) 9.81 m/s 2 = 98.1 N, WB = ( 50 kg ) 9.81 m/s 2 = 490.5 N Slip impends at all surfaces simultaneously FBD I: A + B ΣFx = 0: ΣFy = 0: N A − FB = 0, N A = FB = µ s N B (1) FA − (150 N + 98.1 N + 490.5 N ) + N B = 0 µ s N A + N B = 738.6 N Solving (1) and (2) N B = FBD II: B ΣFx′ = 0: FB = 738.6 µ s N 1 + µ s2 N AB + ( 490.5 N ) cos 70° − N B cos 70° − FB sin 70° = 0 N AB = ΣFy′ = 0: 738.6 N , 1 + µ s2 (2) 738.6 N ( cos 70° + µ s sin 70° ) − ( 490.5 N ) cos 70° (1) 1 + µ s2 −FAB − ( 490.5 N ) sin 70° + N B sin 70° − FB cos 70° = 0 FAB = 738.6 N ( sin 70° − µs cos 70° ) − ( 490.5 N ) sin 70° = 0 1 + µ s2 Setting FAB = µ s N AB , µ s3 − 6.8847µ s2 − 2.0116µ s + 1.38970 = 0 Solving numerically, µ s = − 0.586, 0.332, 7.14 Physically meaningful solution: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. µ s = 0.332 COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 66. FBD jack handle: See Section 8.6 ΣM C = 0: aP − rQ = 0 or P = r Q a FBD block on incline: (a) Raising load Q = W tan (θ + φ s ) P= r W tan (θ + φs ) a continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System PROBLEM 8.66 CONTINUED (b) Lowering load if screw is self-locking ( i.e.: if φs > θ ) Q = W tan (φs − θ ) P= (c) r W tan (φs − θ ) a Holding load is screw is not self-locking ( i.e: if φs < θ ) Q = W tan (θ − φs ) P= Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. r W tan (θ − φ s ) a COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 67. FBD large gear: ΣM C = 0: (12 in.)W − 7.2 kip ⋅ in. = 0, W = 0.600 kips = 600 lb Block on incline: θ = tan −1 0.375 in. = 2.2785° 2π (1.5 in.) φ s = tan −1 µ s = tan −1 0.12 = 6.8428° Q = W tan (θ + φ s ) = ( 600 lb ) tan 9.1213° = 96.333 lb FBD worm gear: r = 1.5 in. ΣM B = 0: (1.5 in.)( 96.333 lb ) − M =0 M = 144.5 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 68. FBD large gear: ΣM C = 0: (12 in.)W − 7.2 kip ⋅ in. = 0 W = 0.600 kips = 600 lb Block on incline: θ = tan −1 0.375 in. = 2.2785° 2π (1.5 in.) φ s = tan −1 µ s = tan −1 0.12 = 6.8428° Q = W tan (φ s − θ ) = ( 600 lb ) tan 4.5643° = 47.898 lb FBD worm gear: r = 1.5 in. ΣM B = 0: M − (1.5 in.)( 47.898 lb ) = 0 M = 71.8 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 69. Block/incline analysis: θ = tan −1 0.125 in. = 2.4238° 2.9531 in. φ s = tan −1 ( 0.35 ) = 19.2900° Q = 47250 tan ( 21.714° ) = 18.816 lb Couple = d 0.94 in. (18.516 lb ) = 8844 lb ⋅ in. Q= 2 2 Couple = 7.37 lb ⋅ ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 70. FBD joint D: FAD = FCD By symmetry: ΣFy = 0: 2FAD sin 25° − 4 kN = 0 FAD = FCD = 4.7324 kN FBD joint A: FAE = FAD By symmetry: ΣFx = 0: FAC − 2 ( 4.7324 kN ) cos 25° = 0 FAC = 8.5780 kN Block and incline A: θ = tan −1 2 mm = 4.8518° π ( 7.5 mm ) φ s = tan −1 µ s = tan −1 0.15 = 8.5308° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System PROBLEM 8.70 CONTINUED Q = ( 8.578 kN ) tan (13.3826° ) = 2.0408 kN Couple at A: M A = rQ 7.5 = mm ( 2.0408 kN ) 2 = 7.653 N ⋅ m By symmetry: Couple at C: M C = 7.653 N ⋅ m Total couple M = 2 ( 7.653 N ⋅ m ) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M = 15.31 N ⋅ m COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 71. FBD joint D: By symmetry: FAD = FCD ΣFy = 0: 2FAD sin 25° − 4 kN = 0 FAD = FCD = 4.7324 kN FBD joint A: By symmetry: FAE = FAD ΣFx = 0: FAC − 2 ( 4.7324 kN ) cos 25° = 0 FAC = 8.5780 kN Block and incline at A: Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System PROBLEM 8.71 CONTINUED θ = tan −1 2 mm = 4.8518° π ( 7.5 mm ) φ s = tan −1 µ s = tan −1 0.15 φ s = 8.5308° φ s − θ = 3.679° Q = ( 8.5780 kN ) tan 3.679° Q = 0.55156 kN Couple at A: M A = Qr 7.5 mm = ( 0.55156 kN ) 2 = 2.0683 N ⋅ m By symmetry: Couple at C : M C = 2.0683 N ⋅ m Total couple M = 2 ( 2.0683 N ⋅ m ) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M = 4.14 N ⋅ m COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 72. FBD lower jaw: By symmetry B = 540 N ΣFy = 0: − 540 N + A − 540 N = 0, A = 1080 N (a) since A > B when finished, adjust A first when there will be no force Block/incline at B: (b) θ = tan −1 4 mm = 6.0566° 12π mm φ s = tan −1 µ s = tan −1 ( 0.35) = 19.2900° Q = ( 540 N ) tan 25.3466° = 255.80 N Couple = rQ = ( 6 mm )( 255.80 N ) = 1535 N ⋅ mm M = 1.535 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 73. FBD lower jaw: By symmetry B = 540 N ΣFy = 0: − 540 N + A − 540 N = 0, A = 1080 N since A > B, A should be adjusted first when no force is required. If instead, B is adjusted first, Block/incline at A: θ = tan −1 4 mm = 6.0566° 12π mm φ s = tan −1 µ s = tan −1 ( 0.35) = 19.2900° Q = (1080 N ) tan 25.3466° = 511.59 N Couple = rQ = ( 6 mm )( 511.59 N ) = 3069.5 N ⋅ mm M = 3.07 N ⋅ m Note that this is twice that required if A is adjusted first. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 74. Block/incline: θ = tan −1 0.25 in. = 2.4302° 1.875π in. φ s = tan −1 µ s = tan −1 ( 0.10 ) = 5.7106° Q = (1000 lb ) tan ( 8.1408° ) = 143.048 lb Couple = rQ = ( 0.9375 in.)(143.048 lb ) = 134.108 lb ⋅ in. M = 134.1 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 75. FBD Bucket: ( ) 0.30 ) = 0.05172 m rf = r sin φ s = r sin tan −1 µ s ( = ( 0.18 m ) sin tan −1 ΣM A = 0: (1.6 m + 0.05172 m ) T − ( 0.05172 m )W =0 T = 0.031314W kN = 0.031314 ( 50 Mg ) 9.81 Mg = 15.360 kN T = 15.36 kN ! NOTE FOR PROBLEMS 8.75–8.89 ( ) Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 76. FBD Windlass: ( rf = rb sin φs = rb sin tan −1 µ s ( ) ) = (1.5 in.) sin tan −1 0.5 = 0.67082 in. ΣM A = 0: ( 8 − 0.67082 ) in. P − ( 5 + 0.67082 ) in. 160 lb = 0 P = 123.797 lb P = 123.8 lb NOTE FOR PROBLEMS 8.75–8.89 ( ) Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 77. FBD Windlass: ( rf = r sin φs = r sin tan −1 µ s ( ) ) = (1.5 in.) sin tan −1 0.5 = 0.67082 in. ΣM A = 0: ( 8 + 0.67082 ) in. P − ( 5 + 0.67082 ) in. (160 lb ) = 0 P = 104.6 lb NOTE FOR PROBLEMS 8.75–8.89 ( ) Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 78. FBD Windlass: ( rf = r sin φs = r sin tan −1 µ s ( ) ) = (1.5 in.) sin tan −1 0.50 = 0.67082 in. ΣM A = 0: ( 8 + 0.67082 ) in. P − ( 5 − 0.67082 ) in. (160 lb ) = 0 P = 79.9 lb NOTE FOR PROBLEMS 8.75–8.89 ( ) Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 79. FBD Windlass: ( rf = r sin φs = r sin tan −1 µ s ( ) ) = (1.5 in.) sin tan −1 0.50 = 0.67082 in. ΣM A = 0: ( 8 − 0.67082 ) in. P − ( 5 − 0.67082 ) in. (160 lb ) = 0 P = 94.5 lb NOTE FOR PROBLEMS 8.75–8.89 ( ) Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 80. (a) FBD lever (Impending CW rotation): ΣM C = 0: ( 0.2 m + rf ) ( 75 N ) − ( 0.12 m − rf ) (130 N ) = 0 rf = 0.0029268 m = 2.9268 mm sin φs = rf rs * −1 rf −1 2.9268 mm µ s = tan φs = tan sin = tan sin 18 mm rs = 0.34389 µ s = 0.344 (b) FBD lever (Impending CCW rotation): ( 0.20 m − 0.0029268 m )( 75 N ) ΣM D = 0: − ( 0.12 m + 0.0029268 m ) P = 0 P = 120.2 N NOTE FOR PROBLEMS 8.75–8.89 ( ) Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 81. Pulley FBD’s: rp = 30 mm Left: ( rf = raxle sin φk = raxle sin tan −1 µ k ) * ( = ( 5 mm ) sin tan −1 0.2 ) = 0.98058 mm Left: ΣM C = 0: Right: ( rp − rf ) ( 600 lb ) − 2rpTAB = 0 TAB = or 30 mm − 0.98058 mm ( 600 N ) = 290.19 N 2 ( 30 mm ) TAB = 290 N ΣFy = 0: 290.19 N − 600 N + TCD = 0 TCD = 309.81 N or TCD = 310 N Right: ( rp + rf ) TCD − ( rp − rf ) TEF ΣM G = 0: or TEF = =0 30 mm + 0.98058 mm ( 309.81 N ) = 330.75 N 30 mm − 0.98058 mm TEF = 331 N NOTE FOR PROBLEMS 8.75–8.89 ( ) Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 82. Pulley FBDs: Left: rp = 30 mm ( rf = raxle sin φk = raxle sin tan −1 µ k ) * ( = ( 5 mm ) sin tan −1 0.2 ) = 0.98058 mm ( rp + rf ) ( 600 N ) − 2rpTAB = 0 ΣM C = 0: 30 mm + 0.98058 mm ( 600 N ) = 309.81 N 2 ( 30 mm ) TAB = or TAB = 310 N ΣFy = 0: Right: TAB − 600 N + TCD = 0 TCD = 600 N − 309.81 N = 290.19 N or TCD = 290 N ( rp − rf ) TCD − ( rp + rf ) TEF ΣM H = 0: TEF = or =0 30 mm − 0.98058 mm ( 290.19 N ) 30 mm + 0.98058 mm TEF = 272 N NOTE FOR PROBLEMS 8.75–8.89 ( ) Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 83. FBD link AB: Note: That AB is a two-force member. For impending motion, the pin forces are tangent to the friction circles. r θ = sin −1 f 25 in. where ( rf = rp sin φs = rp sin tan −1 µ s ) * ( ) = (1.5 in.) sin tan −1 0.2 = 0.29417 in. Then θ = sin −1 0.29417 in. = 1.3485° 12.5 in. (b) Rvert = R cosθ θ = 1.349° Rhoriz = R sin θ Rhoriz = Rvert tan θ = ( 50 kips ) tan1.3485° = 1.177 kips (a) Rhoriz = 1.177 kips NOTE FOR PROBLEMS 8.75–8.89 ( ) Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 84. FBD gate: ( ) ( ) W1 = 66 kg 9.81 m/s 2 = 647.46 N W2 = 24 kg 9.81 m/s 2 = 235.44 N ( rf = rs sin φs = rs sin tan −1 µ s ( ) ) = ( 0.012 m ) sin tan −1 0.2 = 0.0023534 m ΣM C = 0: ( 0.6 m − rf )W1 + ( 0.15 m − rf ) P − (1.8 m + rf )W2 = 0 P= (1.80235 m )( 235.44 N ) − ( 0.59765 m )( 647.46 N ) ( 0.14765 m ) = 253.2 N P = 253 N ! NOTE FOR PROBLEMS 8.75–8.89 ( ) Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 85. It is convenient to replace the ( 66 kg ) g and ( 24 kg ) g weights with a single combined weight of ( 90 kg ) ( 9.81 m/s2 ) = 882.9 N, located at a distance x = right of B. ( rf = rs sin φs = rs sin tan −1 µ s ) * (1.8 m )( 24 kg ) − ( 0.6 m )( 66 kg ) 90 kg ( = ( 0.012 m ) sin tan −1 0.2 = 0.04 m to the ) = 0.0023534 m FBD pulley + gate: α = tan −1 β = sin −1 rf OB = sin −1 0.04 m = 14.931° 0.15 m OB = 0.0023534 m = 0.8686° 0.15524 m 0.15 = 0.15524 m cos α then θ = α + β = 15.800° P = W tan θ = 249.8 N P = 250 N ! NOTE FOR PROBLEMS 8.75–8.89 ( ) Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 86. FBD gate: ( ) = 24 kg ( 9.81 m/s ) = 235.44 N W1 = 66 kg 9.81 m/s 2 = 647.46 N W2 2 ( rf = rs sin φs = rs sin tan −1 µ s ( ) * ) = ( 0.012 m ) sin tan −1 0.2 = 0.0023534 m ΣM C = 0: ( 0.6 m + rf )W1 + ( 0.15 m + rf ) P − (1.8 m − rf )W2 = 0 P= (1.79765 m )( 235.44 N ) − ( 0.60235 m )( 647.46 N ) 0.15235 m = 218.19 N P = 218 N ! NOTE FOR PROBLEMS 8.75–8.89 ( ) Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 87. It is convenient to replace the ( 66 kg ) g and ( 24 kg ) g weights with a single weight of ( 90 kg )( 9.81 N/kg ) = 882.9 N, (1.8 m )( 24 kg ) − ( 0.15 m )( 66 kg ) located at a distance x = 90 kg = 0.04 m to the right of B. FBD pulley + gate: ( rf = rs sin φs = rs sin tan −1 µ s ) * ( = ( 0.012 m ) sin tan −1 0.2 ) rf = 0.0023534 m α = tan −1 β = sin −1 rf OB = sin −1 0.04 m = 14.931° 0.15 m OB = 0.0023534 m = 0.8686° 0.15524 m 0.15 m = 0.15524 m cos α then θ = α − β = 14.062° P = W tan θ = 221.1 N P = 221 N ! NOTE FOR PROBLEMS 8.75–8.89 ( ) Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 88. FBD Each wheel: ( rf = raxle sin φ = raxle sin tan −1 µ ΣFx = 0: P − R sin θ = 0 4 R cosθ − ΣFy = 0: ) W =0 4 ∴ tan θ = sin θ = but P W rf rw P = W tanθ or = raxle sin tan −1 µ rw ( ) (a) For impending motion, use µ s = 0.12 sin θ = 0.5 in. sin tan −1 0.12 5 in. ( ) θ = 0.68267° P = W tan θ = ( 500 lb ) tan ( 0.68267° ) P = 5.96 lb (b) For constant speed, use µ k = 0.08 sin θ = 1 sin tan − 1 0.08 10 ( ) θ = 0.45691° P = ( 500 lb ) tan ( 0.45691° ) P = 3.99 lb NOTE FOR PROBLEMS 8.75–8.89 ( ) Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 89. FBD Each wheel: For equilibrium (constant speed) the two forces R and W must be equal 2 and opposite, tangent to the friction circle, so rf sin θ = where θ = tan −1 ( slope ) rw ( ) sin tan −1 0.03 = rw = (12.5 mm ) ( rB sin tan −1 µ k ( sin ( tan rw ) ) = 49.666 mm 0.03) sin tan −1 0.12 −1 d w = 99.3 mm NOTE FOR PROBLEMS 8.75–8.89 ( ) Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 90. FBD (8 in.) Q − M ΣM O = 0: = 0, Q= M 8 in. but, from equ. 8.9, M = 2 2 7 in. µk WR = ( 0.60 )(10.1 lb ) 3 3 2 = 14.14 lb so, Q= 14.14 , 8 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Q = 1.768 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 91. 2 R3 − R13 1 D23 − D13 µ s P 22 µ = P s 3 3 R2 − R12 D22 − D12 Eqn. 8.8 gives M = so 1 M = ( 0.15 )( 80 kg ) 9.81 m/s 2 3 ( ( 0.030 m )3 − ( 0.024 m )3 ) ( 0.030 m )2 − ( 0.024 m )2 M = 1.596 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 92. Let the normal force on ∆A be ∆N , and ∆N k = r ∆A ∆F = µ∆N , ∆M = r ∆F As in the text The total normal force 2π R k P = lim Σ∆N = ∫ 0 ∫ 0 rdr dθ ∆A → 0 r ( R ) P = 2π ∫ 0 kdr = 2π kR The total couple or P 2π R k 2π R M worn = lim Σ∆M = ∫ 0 ∫ 0 r µ rdr dθ ∆A → 0 r R M worn = 2πµ k ∫ 0 rdr = 2πµ k R2 P R2 = 2πµ 2 2π R 2 or M worn = 1 µ PR 2 Now M new = 2 µ PR 3 Thus k = M worn = M new Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. [Eq. (8.9)] 1 2 2 3 µ PR 3 = = 75% µ PR 4 COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 93. Let normal force on ∆A be ∆N , and ∆N k = ∆A r ∆F = µ∆N , ∆M = r ∆F As in the text The total normal force P is 2π R k P = lim Σ∆N = ∫ 0 ∫ R 2 rdr dθ 1 r ∆A → 0 P = 2π ∫R 2 kdr = 2π k ( R2 − R1 ) R k = or 1 P 2π ( R2 − R1 ) k 2π R M worn = lim Σ∆M = ∫ 0 ∫R 2 r µ rdr dθ ∆A → 0 r 1 The total couple is R2 R1 M worn = 2πµ k ∫ ( rdr ) = πµ k ( R22 − R12 )= 2π ( R2 − R1 ) M worn = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ( πµ P R22 − R12 ) 1 µ P ( R2 + R1 ) 2 COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 94. Let normal force on ∆A be ∆N , and ∆A = r ∆s∆φ ∆N = k ∆A so ∆N = k, ∆A ∆s = ∆r sin θ where φ is the azimuthal angle around the symmetry axis of rotation ∆Fy = ∆N sin θ = kr ∆r ∆φ P = lim Σ∆Fy Total vertical force ∆A → 0 2π P = ∫0 ( (∫ R2 krdr R1 P = π k R22 − R12 Friction force ) ) dφ = 2π k ∫ R2 rdr R1 or k = Total couple M = 2π ( − R12 ) ∆F = µ∆N = µ k ∆A ∆M = r ∆F = r µ kr Moment π P R22 ∆r ∆φ sin θ 2π R µ k M = lim Σ∆M = ∫ 0 ∫R 2 r 2dr dφ ∆A → 0 1 sin θ µ k R2 2 2 πµ P r dr = ∫ R1 2 sin θ 3 sin θ π R2 − R32 ( ) M = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (R 3 2 − R33 ) 2 µ P R23 − R13 3 sin θ R22 − R12 COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 95. If normal force per unit area (pressure) of the center is PO , then as a function r of r, P = PO 1 − R r 2π R ΣFN = W = ∫ PdA = ∫ 0 ∫ 0 PO 1 − rdrdθ R 2 R3 R2 2π R W = PO ∫ 0 d P − = θ 2 π O 3R 6 2 so PO = 3W π R2 For slipping, dF = µk ( PdA) r 2π R Moment = ∫ rdF = µk PO ∫ 0 ∫ 0 r 1 − rdrdθ R 3 R4 R3 2π R d P = µ k PO ∫ 0 − = θ 2 πµ k O 4 R 12 3 so M = 2πµ k ΣM O = 0: 3W R3 1 = µ k WR π R 2 12 2 (8 in.) Q − M =0 1 7 in. 0.6 )(10.1 lb ) ( M 2 2 Q= = 8 in. (8 in.) Q = 1.326 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 96. FBD pipe: θ = sin −1 0.025 in. + 0.0625 in. = 1.00257° 5 in. P = W tan θ for each pipe, so also for total P = ( 2000 lb ) tan (1.00257° ) P = 35.0 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 97. FBD disk: tan θ = slope = 0.02 b = r tan θ = ( 60 mm )( 0.02 ) b = 1.200 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 98. FBD wheel: r = 230 mm b = 1 mm θ = sin −1 b r b P = W tan θ = W tan sin −1 for each wheel, so for total r ( ) 1 P = (1000 kg ) 9.81 m/s 2 tan sin −1 230 P = 42.7 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 99. FBD wheel: ( ) rf = raxle sin φ = raxle sin tan −1 µ , rw = rf sin θ + b tan θ For small θ , sin θ tan θ , so tan θ R cosθ − ΣFy = 0: rf + b rw W =0 4 − R sin θ + ΣFx = 0: P =0 4 P W Solving: tan θ = so P = W tan θ = W (a) For impending slip, use µ s , µs or µk rf + b rw 0.5 in. −1 rf = sin tan 0.12 = 0.029786 in. 2 ( so P = ( 500 lb ) ) 0.02986 in. + 0.25 in. = 55.96 lb 2.5 in. P = 56.0 lb (b) For constant speed, use µ k , 0.5 in. −1 rf = sin tan 0.08 = 0.019936 in. 2 so P = ( 500 lb ) ( ( 0.019936 + 0.25) in. 2.5 in. ) = 53.99 lb P = 54.0 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 100. FBD wheel: For equilibrium (constant speed), R and W are equal and opposite 2 and tangent to the friction circle as shown ( ) ( rf = raxle sin tan −1 µk = (12.5 mm ) sin tan −1 0.12 ) rf = 1.48932 mm From diagram, rw = For small θ , sin θ tan θ = slope rw = rf sin θ + b tan θ tan θ , so rw rf + b tan θ 1.48932 mm + 1.75 mm = 107.977 mm 0.03 d w = 216 mm Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 101. β = 4π rad Two full turns of rope → (a) µ s β = ln µs = T2 T1 or µs = 1 β ln T2 T1 1 20 000 N = 0.329066 ln 4π 320 N µ s = 0.329 (b) β = = 1 µs ln T2 T1 1 80 000 N ln 0.329066 320 N = 16.799 rad β = 2.67 turns Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 102. FBD A: ( ) WA = (10 kg ) 9.81 m/s 2 = 98.1 N ΣFx = 0: TA − WA sin 30° = 0, TA = WA 2 FBD B: ΣFx′ = 0: WB sin 30° − TB = 0, TB = WB 2 (a) Motion of B impends up incline and mB = 8 kg TA = eµs β , TB µs = = 1 β 1 β ln ln TA 1 W = ln A TB β WB mA 3 10 kg = ln π 8 kg mB From hint, β is not dependent on shape of support µ s = 0.21309 µ s = 0.213 (b) For maximum mB , motion of B impend down incline TB = eµs β , TA TB = TAe 0.21309 π 3 = 1.250TA ∴ WB = 1.25WA and mB = 1.25 mA = 1.25 (10 kg ) mB max = 12.50 kg Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 103. FBD A: ΣFx = 0: TA − WA sin 30° = 0, TA = WA 2 FBD B: ΣFx′ = 0: WB sin 30° − TB = 0, TB = WB 2 For mB min , motion of B impends up incline π And But 0.50 TA = e 3 = 1.68809 TB m A WA T = = A = 1.68809 mB WB TB so mB min = 5.9238 kg From hint, β is not dependent on shape of C For mB max , motion of B impends down incline π so 0.50 mB W T µ = B = B = e s β = e 3 = 1.68809 mA WA TA so mB max = 16.881 kg For equilibrium Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 5.92 kg ≤ mB ≤ 16.88 kg COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 104. β = 1.5 turns = 3π rad For impending motion of W up P = We µs β = (1177.2 N ) e( 0.15 )3π = 4839.7 N For impending motion of W down − 0.15 3π P = We− µs β = (1177.2 N ) e ( ) = 286.3 N For equilibrium 286 N ≤ P ≤ 4.84 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 105. Horizontal pipe: Contact angles β H = Vertical pipe π Contact angle βV = π 2 µ sH = 0.25 µ sV = 0.2 For P to impend downward, ( ) ( ) µ π µ π µ π µ π P = e sH 2 Q = e sH 2 e µsV π R = e sH 2 e µsV π e sH 2 (100 lb ) π µ +µ Pmax = e ( sH sV ) (100 lb ) = (100 lb ) e0.45π = 411.12 lb For 100 lb to impend downward, the ratios are reversed, so 100 lb = Pe0.45π , Pmin = 24.324 lb So, for equilibrium, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 24.3 lb ≤ P ≤ 411 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 106. Horizontal pipe Vertical pipe π Contact angles β H = Contact angle βV = π 2 µ sH = 0.30 µ sV = ? For Pmin , the 100 lb force impends downward, and µ 100 lb = e sH π 2 R = e µ sH π 2 ( eµ sV π )Q = e µ s π π2 ( eµ sV π ) e µ sH π2 P π 0.30 + µ sV ) 100 lb = e ( ( 20 lb ) , so eπ ( 0.30 + µsV ) = 5 (a) For Pmax the force P impends downward, and the ratios are reversed, so Pmax = 5 (100 lb ) = 500 lb (b) π ( 0.30 + µ sV ) = ln 5 µ sV = 1 π ln 5 − 0.30 = 0.21230 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. µ sV = 0.212 COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 107. FBD motor and mount: Impending belt slip: cw rotation T2 = T1e µs β = T1e0.40π = 3.5136 T1 ΣM D = 0: (12 in.)(175 lb ) − ( 7 in.) T2 − (13 in.) T1 = 0 2100 lb = ( 7 in.)( 3.5136 ) + 13 in. T1 T1 = 55.858 lb, T2 = 3.5136 T1 = 196.263 lb FBD drum at B: ΣM B = 0: M B − ( 3 in.)(196.263 lb − 55.858 lb ) = 0 M B = 421 lb ⋅ in. r = 3 in. (Compare to 857 lb ⋅ in. using V-belt, Problem 8.130) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 108. FBD motor and mount: Impending belt slip: ccw rotation T1 = T2e µs β = T2e0.40π = 3.5136 T2 ΣM D = 0: (12 in.)(175 lb ) − (13 in.) T1 − ( 7 in.) T2 =0 2100 lb = (13 in.)( 3.5136 ) + 7 in. T2 = 0 T2 = 39.866 lb, T1 = 3.5136 T2 = 140.072 lb FBD drum at B: ΣM B = 0: ( 3 in.)(140.072 lb − 39.866 lb ) − M B =0 M B = 301 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 109. FBD lower portion of belt: ΣFy = 0: 48 N − N D = 0, N D = 48 N Slip on both platen and wood FD = µkD N D = 0.10 ( 48 N ) = 4.8 N FE = µkE N E = ( 48 N ) µ kE FBD Drum A (assume free to rotate) ΣFx = 0: TA − TB − 4.8 N − µ kE ( 48 N ) = 0 TB = TA + 4.8 N + µ kE ( 48 N ) (1) ΣM A = 0: rA (TA − TT ) = 0, (2) ΣM B = 0: M B + r (TT − TB ) = 0 TT = TA FBD Drive drum B TB = TT + 2.4 N ⋅ m = TT + 96 N 0.025 N Impending slip on drum, TB = TT e µs β = TT e0.35π so TT + 96 N = TT e0.35π , TT = 47.932 N TB = 143.932 N From (2) above, TA = TT , so (a) Tmin lower = 47.9 N From (1) above, 143.932 N = 47.932 N + 4.8 N + µkE ( 48 N ) So (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. µ kE = 1.900 COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 110. FBD Flywheel: ( 0.225 m )(TB − TA ) − 12.60 N ⋅ m = 0 ΣM C = 0: TB − TA = 56 N, TB = TA + 56 N Also, since the belt doesn’t change length, the additional stretch in spring B equals the decrease in stretch of spring A. Thus the increase in TB equals the decrease in TA. Thus TB + TA = ( 70 N + ∆T ) + ( 70 N − ∆T ) = 140 N (TA + 56 N ) + TA = 140 N, TA = 42 N TB = 42 N + 56 N = 98 N (a) TA = 42.0 N TB = 98.0 N For slip TB = TAe µk β , or µ k = µk = 1 π ln 1 β ln TB TA 98 = 0.2697 42 (b) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. µ k = 0.230 COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 111. FBD Flywheel: Slip of belt: TB = TA e µk β = TA e0.20π Also, since the belt doesn’t change length, the increase in stretch of spring B equals the decrease in stretch of spring A. Therefore the increase in TB equals the decrease in TA , and the sum is unchanged, so TA + TB = 80 N + 80 N = 160 N ( ) ∴ TA 1 + e0.20π = 160 N, so TA = 55.663 N TB = 104.337 N (a) TA = 55.7 N TB = 104.3 N ΣM C = 0: ( 0.225 m )(TB − TA ) − M C = 0 M C = ( 0.225 m )(104.337 N − 55.663 N ) (b) M C = 10.95 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 112. FBD Lever: ΣM E = 0: ( 60 mm )( 240 N ) − ( 40 mm ) FBD cos 30° = 0 FBD = 415.69 N FBD Drum: Belt slip: T2 = T1 e µk β = ( 415.69 N ) e 0.25( 5.5851) = 1679.44 N ΣM C = 0: r (T2 − T1 ) − M = 0 ( 0.08 m )(1679.44 N − 415.69 N ) − M =0 M = 101.1 N ⋅ m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 113. FBD Drum: (a) With M E = 125 lb ⋅ ft ΣM E = 0: ( 7 in.) (TA − TC ) − (125 lb ⋅ ft ) = 0 TA − TC = 214.29 lb Belt slip: TA = TC e µk β = TC e ( ) 0.30 76π = 3.0028 TC so 2.0028 TC = 214.9 lb, TC = 106.995 lb TA = 321.28 lb FBD Lever: ΣM B = 0: P= (15 in.) P + ( 2 in.) TC − ( 7.5 in.) TA = 0 (1) ( 7.5 in.)( 321.28 lb ) − ( 2 in.)(106.995 lb ) 17 in. P = 129.2 lb (b) With M E = 125 lb ⋅ ft , the drum analysis will be reversed, and will yield TA = 106.995 lb, TC = 321.28 lb Eqn. (1) will remain the same, so P= ( 7.5 in.)(106.995 lb ) − ( 2 in.)( 321.28 lb ) 17 in. P = 9.41 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 114. FBD Lever: If brake is self-locking, no force P is required ( 2 in.) TC − ( 7.5 in.) TA = 0 ΣM B = 0: TC = 3.75 TA For impending slip on drum: TC = TA e µs β ∴ e µs β = 3.75, or µ s = With β = 1 β ln 3.75 7π , 6 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. µ s = 0.361 COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 115. FBD Lever: ΣM B = 0: ( 40 mm ) TC − (100 mm ) TA = 0, TC = 2.5 TA FBD Drum: (a) For impending slip ccw: TC = Tmax = 4.5 kN so TA = TC = 1.8 kN 2.5 M D + ( 0.16 m )(1.8 kN − 4.5 kN ) = 0 ΣM D = 0: M D = 0.432 kN ⋅ m M D = 432 N ⋅ m (b) For impending slip ccw, TC = TA e µs β or µ s = 1 β ln TC 3 ln 2.5 = 0.21875 = TA 4π µ s = 0.219 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 116. (a) For minimum mC with blocks at rest, impending slip of A is down/left. Note: φs = tan −1 µ s = tan −1 0.30 = 16.7° < 30°, so mC min > 0 FBD A: ( ) WA = ( 6 kg ) 9.81 m/s 2 = 58.86 N ΣFy = 0: N A − WA cos 30° = 0, N A = WA cos 30° Impending slip: FA = µ s N A = 0.30WA cos 30° ΣFx = 0: TA + FA − WA sin 30° = 0, TA = WA ( sin 30° − 0.30 cos 30° ) = 14.1377 N FBD Drum: If blocks don’t move, belt slips on drum, so 0.2 0.87266 ) 14.1377 N = TA = TC e µk β = TC e ( = 1.19069 TC so TC = 11.8735 N FBD C: ΣFy′ = 0: NC − WC cos 20° = 0, NC = WC cos 20° Impending slip: FC = µ s NC = 0.30WC cos 20° ΣFx′ = 0: 0.30WC cos 20° + WC sin 20° − 11.8735 N = 0 WC = 19.0302 N, mC = WC = 1.93988 kg 9.81 m/s 2 mC = 1.940 kg continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System (b) For motion of A to impend up/right FBD A: As in part (a) N A = WA cos 30°, FA = 0.30WA cos 30° ΣFx = 0: TA − WA ( sin 30° + 0.30cos 30° ) = 0 TA = 44.722 N Also, as in part (a) TA = TC e µk β = 1.19069 TC , so TC = 44.722 N 1.19069 TC = 37.560 N FBD C: As in part (a) FC = 0.30WC cos 20° ΣFx′ = 0: WC ( sin 20° − 0.30cos 20° ) − 37.560 N = 0 WC = 624.83 N, mC = WC = 63.69 kg 9.81 m/s 2 mC = 63.7 kg (c) For uniform motion of A up and B down, and minimum mC , there will be impending slip of the rope on the drum. FBD A is same as in (b) but FA = µk N A = 0.20WA cos30° and ΣFx = 0: TA − WA ( sin 30° + 0.20cos 30° ) = 0, TA = 39.625 N Drum analysis, with impending slip, TA = TC e µs β 39.625 N = TC e 0.30( 0.87266 ) = 1.29926 TC or TC = 30.498 N FBD C is same as in (b), but FC = µ k NC = 0.20WC cos 20° and ΣFx′ = 0: WC ( sin 20° − 0.20 cos 20° ) − TC = 0 WC = 30.498 N = 197.933 N, 0.154082 mC = 197.934 N 9.81 m/s 2 mC = 20.2 kg Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 117. Geometry and force rotation: Let EBC = α = cos −1 50 mm = 60° = 100 mm s DBE , FAE , GAE Then contact angles are β B = 360° − 120° = 240° = upper cylinder, and β A = 30° = π 6 4π rad for cord on 3 rad for each cord contact on lower cylinder. Let the force in section FC = TF Let the force in section DG = TG With A fixed and the cord moving, TG = We µk β A = We ( ) 0.25 π6 = 1.13985W For maximum W, slip impends on drum B, so TB = TF e µs β B or TF = TG e− µs β B TF = 1.13985We ( ) −0.30 43π = 0.32441W For slip at F W1 = TF e µk β A = 0.32441We ( ) 0.25 π6 = 0.36978W so W = 2.7043W1 and m = 2.7043 in. = 2.7043 ( 75 kg ) m = 203 kg Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 118. Geometry and force notation: Note: θ = sin −1 βC = β D = π 2 π r = 30° = rad, so contact angles are: 2r 6 + π 6 = 2π , 3 βE = π (a) For all pulleys locked, slip impends at all contacts If WA impends downward, T1 = (16 lb ) e µs β E , T2 = T1e µs β D , WA = T2e µ s βC 0.20( 73π ) µ β +β +β so WA = (16 lb ) e s ( C D E ) = (16 lb ) e = 69.315 lb If WA impends upward all ratios are inverted, so WA = (16 lb ) e ( ) −0.20 73π = 3.6933 lb For equilibrium, 3.69 lb ≤ WA ≤ 69.3 lb W (b) If pulley D is free to rotate, T1 = T2 while the other ratios remain as in (a) 0.20( 53π ) µ β +β For WA impending down WA = (16 lb ) e s ( C E ) = (16 lb ) e WA = 45.594 lb For WA impending upward, WA = (16 lb ) e ( ) −0.2 53π = 5.6147 lb For equilibrium Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 5.61 lb ≤ WA ≤ 45.6 lb W COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 119. Geometry and force notation: θ = sin −1 r π = 30° = , so contact angles are: 2r 6 βC = β D = π 2 + π 6 = 2π , 3 βE = π (a) D and E fixed, so slip on these surfaces. For maximum N A , slip impends on pulley C WA = T2e µs βC , and T1 = T2e µk β D , (16 lb ) = T1e µk β E WA = (16 lb ) e so − µk ( β E + β D ) µ s βC e = (16 lb ) e ( )e0.20( 23π ) −0.15 53π = 11.09 lb (b) C and D fixed, so slip there. For maximum WA , slip impends on E so T1 = (16 lb ) e µs β E , T1 = T2e µk β D , T2 = WAe µk βC so WA = (16 lb ) e µs β E e − µk ( βC + β D ) = (16 lb ) e0.20π e ( ) −0.15 43π = 16 lb WA = 16.00 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 120. Geometry and force notation: θ = sin −1 5 in. π = 30° = rad, so contact angles are: 10 in. 6 βC = π − π 6 = 5π π π 2π = , βD = + , 6 2 6 3 βE = π 2 (a) All pulleys locked with impending slip at all. If WA impends upward, T1 = WAe µs βC , T2 = T1e µs β D , WA = (16 lb ) e (16 lb ) = T2e µs β E , − µ s ( βC + β D + β E ) so = (16 lb ) e ( ) −0.20 56 + 46 + 63 π WA = 4.5538 lb If WA impends downward all ratios are inverted so WA = (16 lb ) e +0.20( 2π ) = 56.217 lb 4.55 lb ≤ WA ≤ 56.2 lb For equilibrium, (b) Pulley D is free to rotate so T1 = T2 , other ratios are the same If WA impends upward, WA = (16 lb ) e − µ s ( βC + β E ) = (16 lb ) e ( ) −0.20 43π WA = 6.9229 lb If WA impends downward, ratios are inverted, WA = (16 lb ) e ( ) +0.20 43π WA = 36.979 lb For equilibrium Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 6.92 lb ≤ WA ≤ 37.0 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 121. Geometry and force notation: θ = sin −1 βC = π − 5 in. π = 30° = rad, so contact angles are: 10 in. 6 π 6 = 5π π π 2π = , βD = + , 6 2 6 3 βE = π 2 (a) D and E fixed, so slip at these surfaces, For maximum WA , slip impends on C. WA = T1e µs βC , T2 = T1e µk β D , 16 lb = T2e µk β E so WA = (16 lb ) e = (16 lb ) e − µ k ( β D + β E ) µ s βC e ( ) e0.20( 56π ) −0.15 76π = 15.5866 lb WA max = 15.59 lb (b) C and D fixed, so slip at these surfaces—impending slip on E T1 = WAe µk βC , T2 = T1e µk β D , so WA = (16 lb ) e − µk ( βC + β D ) µ s β E e T2 = (16 lb ) e µs β E = (16 lb ) e ( ) e0.20( π2 ) −0.15 32π WA = 10.8037 lb, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. WA max = 10.80 lb COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 122. FBD drum B: ΣM B = 0: ( 0.02 m )(TA − T ) − 0.30 N ⋅ m = 0 TA − T = 0.30 N ⋅ m = 15 N 0.02 m Impending slip: TA = Te µs β = Te0.40π ( ) Solving; T e0.40π − 1 = 15 N T = 5.9676 N If C is free to rotate P = T Pmin = 5.97 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 123. FBD drum B: ΣM B = 0: ( 0.02 m )(TA − T ) − 0.3 N ⋅ m = 0 TA − T = 15 N Impending slip: ( TA = Te µs β B = Te0.40π ) Solving, T e0.40π − 1 = 15 N T = 5.9676 N If C is frozen, tape must slip there, so P = Te µk βC = ( 5.9676 N ) e ( ) 0.30 π2 = 9.5599 N Pmin = 9.56 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 124. FBD pin B: T1 = T2 (a) By symmetry: 2 ΣFy = 0: B − 2 T =0 2 1 Drum: or B= 2T1 = 2T2 (1) For impending rotation : T3 > T1 = T2 > T4 , so T3 = Tmax = 5.6 kN ( −0.25 π4 + π6 Then T1 = T3e− µs β L = ( 5.6 kN ) e or T1 = 4.03706 kN = T2 and T4 = T2e− µs β R = ( 4.03706 kN ) e or T4 = 2.23998 kN ) ( ) −0.25 34π ΣM F = 0: M 0 + r (T4 − T3 + T2 − T1 ) = 0 or M 0 = ( 0.16 m )( 5.6 kN − 2.23998 kN ) = 0.5376 kN ⋅ m Lever: M 0 = 538 N ⋅ m (b) Using Equation (1) B= 2T1 = 2 ( 4.03706 kN ) = 5.70927 kN ΣM D = 0: ( 0.05 m )( 5.70927 kN ) − ( 0.25 m ) P = 0 P = 1.142 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 125. FBD pin B: T1 = T2 (a) By symmetry: 2 ΣFy = 0: B − 2 T1 = 0 2 FBD Drum: or B= (1) 2T1 For impending rotation : T4 > T2 = T1 > T3 , so T4 = Tmax = 5.6 kN ( ) −0.25 34π Then T2 = T4e− µ s β R = ( 5.6 kN ) e or T2 = 3.10719 kN = T1 and T3 = T1e− µs β L = ( 3.10719 kN ) e or T3 = 2.23999 kN ( −0.25 π4 + π6 ) ΣM F = 0: M 0 + r (T2 − T1 + T3 − T4 ) = 0 M 0 = (160 mm )( 5.6 kN − 2.23999 kN ) = 537.6 N ⋅ m FBD Lever: M 0 = 538 N ⋅ m (b) Using Equation (1) B= 2T1 = 2 ( 3.10719 kN ) B = 4.3942 kN ΣM D = 0: ( 0.05 m )( 4.3942 kN ) − ( 0.25 m ) P = 0 P = 879 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 126. FBD wrench: Note: EC = ( 0.2 m ) , sin 65° EA = EC − 0.03 m θ = 65° so β = 295° = 5.1487 rad ΣM E = 0: 0.20 m 0.20 m − 0.03 m F − cos 65° − 0.03 m T = 0 sin 65° sin 65° T = 3.01408F ΣFx = 0: N sin 65° + F cos 65° − T = 0 Impending slip: N = sin 65° , so F = + cos 65° = T µs µs F or sin 65° µs + cos 65° = 3.01408 µ s = 0.3497 Must still check slip of belt on pipe FBD small portion of belt at A: ΣFn = 0: N1 − N 2 = 0 Impending slip, both sides: F1 = µ s N1, so F2 = µ s N 2 F1 = F2 = F ΣFt = 0: 2 F − TA = 0, TA = 2F Impending slip of belt on pipe: T = TAe µs β or µ s = 1 β ln T 1 3.01408 = = 0.0797 ln 2F 5.1487 2 Above controls, so for self-locking, need Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. µ s = 0.350 COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 127. FBD wrench Note: EC = ( 0.20 m ) , sin 75° EA = EC − 0.03 m θ = 75° so β = 285° = 4.9742 rad ΣM E = 0: 0.20 m 0.20 m − 0.03 m F − cos 75° − 0.03 m T = 0 sin 75° sin 75° T = 7.5056 F ΣFx = 0: N sin 75° + F cos 75° − T = 0 Impending slip: N = sin 75° , so F = + cos 75° = T = 7.5056 F µs µs F sin 75° µs + cos 75° = 7.5056 µ s = 0.1333 Must still check impending slip of belt on pipe FBD small portion of belt at A ΣFn = 0: N1 − N 2 = 0 Impending slip F1 = µ s N1, F2 = µ s N 2 F1 = F2 = F so ΣFt = 0: 2 F − TA = 0, TA = 2 F Impending slip of belt on pipe T = TAe µ s β or µ s = 1 β ln T 1 7.5056 = = 0.2659 ln 2F 4.9742 2 This controls, so for self locking, Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. µ s min = 0.267 COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 128. ΣFn = 0: ∆θ ∆N − T + (T + ∆T ) sin =0 2 ∆N = ( 2T + ∆T ) sin or ΣFt = 0: ∆θ (T + ∆T ) − T cos − ∆F = 0 2 or ∆F = ∆T cos Impending slipping: ∆F = µ s ∆N So In limit as So and ∆T cos ∆θ 2 ∆θ 2 ∆θ ∆θ sin ∆θ = µ s 2T sin + µ s ∆T 2 2 2 ∆θ → 0: dT = µ sTdθ , or dT = µ s dθ T dT T2 β ∫ T1 T = ∫ 0 µ s dθ ; ln T2 = µs β T1 or T2 = T1e µs β Note: Nothing above depends on the shape of the surface, except it is assumed to be a smooth curve. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 129. Small belt section: Side view: ΣFy = 0: ΣFx = 0: 2 ∆N α ∆θ sin − T + (T + ∆T ) sin =0 2 2 2 ∆θ (T + ∆T ) − T cos − ∆F = 0 2 ∆F = µ s ∆N ⇒ ∆T cos Impending slipping: In limit as ∆θ → 0: End view: dT = µ sTdθ α sin So dT µs = dθ α T sin 2 or 2 dT ∆θ 2T + ∆T ∆θ = µs sin α 2 2 sin 2 µ T2 β s ∫ T1 T = α ∫ 0 dθ sin 2 or or ln T2 µβ = s α T1 sin 2 T2 = T1e µ s β /sin α2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 130. FBD motor and mount: Impending belt slip, cw rotation µs β T2 = T1e sin α2 ( 0.40π ) T2 = T1e sin18° = 58.356T1 ΣM D = 0: (12 in.)(175 lb ) − (13 in.) T1 − ( 7 in.) T2 =0 2100 lb = 13 in. + ( 7 in.)( 58.356 ) T1 T1 = 4.9823 lb, T2 = 58.356T1 = 290.75 lb FBD drum at B: ΣM B = 0: M B + ( 3 in.)( 4.9823 lb − 290.75 lb ) = 0 M B = 857 lb ⋅ in. (Compare to 421 lb ⋅ in. using flat belt, Problem 8.107) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 131. Geometry: θ = sin −1 2 in. = 7.1808° = 0.12533 rad 16 in. β A = π − 2θ = 2.8909 rad Since β B > β A , impending slip on A will control the maximum couple transmitted FBD A: ΣM A = 0: 60 lb ⋅ in. + ( 2 in.)(T1 − T2 ) = 0 T2 − T1 = 30 lb µs β Impending slip: T2 = T1e sin α2 ( 0.35)( 2.8909 ) so T1 e sin18° − 1 = 30 lb T1 = 1.17995 lb T2 = 31.180 lb FBD B: ΣFx = 0: P − ( 31.180 lb + 1.17995 lb ) cos 7.1808° = 0 P = 32.1 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 132. FBD block: ΣFn = 0: N − (1000 N ) cos 30° − ( 200 N ) sin 30° = 0 N = 966.03 N Assume equilibrium: ΣFt = 0: F + ( 200 N ) cos 30° − (1000 N ) sin 30° = 0 F = 326.8 N = Feq. But Fmax = µ s N = ( 0.3) 966 N = 290 N Feq. > Fmax and impossible ⇒ Block moves F = µk N = ( 0.2 )( 966.03 N ) Block slides down Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. F = 193.2 N COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 133. FBD block (impending motion to the right) φ s = tan −1 µ s = tan −1 ( 0.25 ) = 14.036° P W = sin φs sin (θ − φ s ) sin (θ − φs ) = (a) W sin φs P W = mg ( ) ( 30 kg ) 9.81 m/s 2 m = 30 kg: θ − φ s = sin −1 sin14.036° 120 N = 36.499° ∴ θ = 36.499° + 14.036° (b) m = 40 kg: θ − φs = sin or θ = 50.5° ( ( 40 kg ) 9.81 m/s 2 −1 120 N ) sin14.036° = 52.474° ∴ θ = 52.474° + 14.036° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or θ = 66.5° COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 134. FBDs Top block: (a) Note: With the cable, motion must impend at both contact surfaces. ΣFy = 0: N1 − 40 lb = 0 F1 = µ s N1 = 0.4 ( 40 lb ) = 16 lb Impending slip: ΣFx = 0: Bottom block: ΣFy = 0: T − F1 = 0 T − 16 lb = 0 N 2 − 40 lb − 60 lb = 0 Impending slip: T = 16 lb N 2 = 100 lb F2 = µ s N 2 = 0.4 (100 lb ) = 40 lb ΣFx = 0: FBD blocks: N1 = 40 lb − P + 16 lb + 16 lb + 40 lb = 0 P = 72.0 lb (b) Without the cable, both blocks will stay together and motion will impend only at the floor. ΣFy = 0: Impending slip: ΣFx = 0: N − 40 lb − 60 lb = 0 N = 100 lb F = µ s N = 0.4 (100 lb ) = 40 lb 40 lb − P = 0 P = 40.0 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 135. FBD ladder: Motion impends at both A and B, so FA = µ s N A ΣM A = 0: NB = or a W =0 2 lN B − ΣFx = 0: FA + ΣFy = 0: 2.5W 13 5 12 FB − NB = 0 13 13 NA − l = 19.5 ft a 7.5 ft W = W 2l 39 ft 2.5 W 13 µs N A + a = 7.5 ft NB = or FB = µ s N B = µ s Then a 5 = l 13 FB = µ s N B and 12.5 (13) µ sW − 30 (13)2 W =0 ( 30 − 12.5µs ) W (13) NA − W + 2 2 µs 12 5 FB + NB = 0 13 13 30 − 12.5µ s W + 30µ s + 12.5 =W 2 µs (13) b 12 = l 13 or µ s2 − 5.6333µ s + 1 = 0 µ s = 2.8167 ± 2.6332 or µ s = 0.1835 and µ s = 5.45 The larger value is very unlikely unless the surface is treated with some “non-skid” material. In any event, the smallest value for equilibrium is µ s = 0.1835 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 136. FBD window: ( ) T = ( 2 kg ) 9.81 m/s 2 = 19.62 N = ΣFx = 0: N A − ND = 0 FA = µ s N A Impending motion: ΣM D = 0: ( W = ( 4 kg ) 9.81 m/s NA = ) = 39.24 N ΣFy = 0: N A = ND FD = µ s N D ( 0.36 m )W − ( 0.54 m ) N A − ( 0.72 m ) FA W = 2 W 2 =0 3 N A + 2µ s N A 2 2W 3 + 4µ s FA − W + T + FD = 0 FA + FD = W − T = Now Then W 2 FA + FD = µ s ( N A + N D ) = 2µ s N A W 2W = 2µ s 2 3 + 4µ s or Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. µ s = 0.750 W COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 137. FBD Collar: Stretch of spring x = AB − a = a −a cosθ a 1 − a = (1.5 kN/m )( 0.5 m ) − 1 Fs = k θ θ cos cos 1 = ( 0.75 kN ) − 1 = ( 750 N )( sec θ − 1) θ cos Fs cosθ − W + N = 0 ΣFy = 0: W = N + ( 750 N ) (1 − cosθ ) or Impending slip: F = µ s N (F must be +, but N may be positive or negative) Fs sin θ − F = 0 ΣFx = 0: or F = Fs sin θ = ( 750 N )( tan θ − sin θ ) (a) θ = 20°: F = ( 750 N )( tan 20° − sin 20° ) = 16.4626 N Impending motion: (Note: for N = F µs 16.4626 N = 41.156 N 0.4 = N < 41.156 N, motion will occur, equilibrium for N > 41.156) W = N + ( 750 N )(1 − cos 20° ) = N + 45.231 N But So equilibrium for W ≤ 4.07 N and W ≥ 86.4 N W (b) θ = 30°: F = ( 750 N )( tan 30° − sin 30° ) = 58.013 N Impending motion: N = F µs = 58.013 = 145.032 N 0.4 W = N + ( 750 N )(1 − cos 30° ) = N ± 145.03 N = −44.55 N ( impossible ) , 245.51 N Equilibrium for W ≥ 246 N W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 138. FBD pin C: FAB = P sin10° = 0.173648P FBC = P cos10° = 0.98481P ΣFy = 0: FBD block A: N A − W − FAB sin 30° = 0 N A = W + 0.173648P sin 30° = W + 0.086824P or ΣFx = 0: FA − FAB cos 30° = 0 FA = 0.173648P cos30° = 0.150384P or FA = µ s N A For impending motion at A: NA = Then FA µs : W + 0.086824 P = 0.150384 P 0.3 P = 2.413W or ΣFy = 0: N B − W − FBC cos 30° = 0 N B = W + 0.98481P cos30° = W + 0.85287 P FBD block B: ΣFx = 0: FBC sin 30° − FB = 0 FB = 0.98481P sin 30° = 0.4924 P FB = µ s N B For impending motion at B: Then or NB = FB µs : W + 0.85287 P = 0.4924P 0.3 P = 1.268W Thus, maximum P for equilibrium Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Pmax = 1.268W W COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 139. φs = tan −1 µ s = tan −1 0.25 = 14.036° FBD block A: R2 750 lb = sin104.036° sin16.928° R2 = 2499.0 lb FBD wedge B: P 2499.0 = sin 73.072° sin 75.964° P = 2464 lb P = 2.46 kips Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 140. Block on incline: θ = tan −1 0.1 in. = 3.0368° 2π ( 0.3 in.) φs = tan −1 µ s = tan −1 0.12 = 6.8428° Q = ( 500 lb ) tan 9.8796° = 87.08 lb Couple on each side M = rQ = ( 0.3 in.)( 87.08 lb ) = 26.12 lb ⋅ in. Couple to turn = 2M = 52.2 lb ⋅ in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 141. FBD pulley: ΣFy = 0: R − 103.005 N − 49.05 N − 98.1 N = 0 R = 250.155 N ΣM O = 0: ( 0.12 m )(103.005 N − 98.1 N ) − rf ( 250.155 N ) = 0 rf = 0.0023529 m = 2.3529 mm φ s = sin −1 µ s = tan φs = tan sin −1 rf rs rf −1 2.3529 mm = tan sin rs 30 mm µ s = 0.0787 W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 142. FBD wheel: ΣM E = 0: M E = ( 7.5 in.)(T2 − T1 ) or FBD lever: ΣM C = 0: Impending slipping: So ( 4 in.)(T1 + T2 ) − (16 in.)( 25 lb ) = 0 T1 + T2 = 100 lb or or − M E + ( 7.5 in.)(T2 − T1 ) = 0 T2 = T1e µs β T2 = T1e ( ) 0.25 32π = 3.2482T1 T1 (1 + 3.2482 ) = 100 lb T1 = 23.539 lb and M E = ( 7.5 in.)( 3.2482 − 1)( 23.539 lb ) = 396.9 lb ⋅ in. M E = 397 lb ⋅ in. W Changing the direction of rotation will change the direction of M E and will switch the magnitudes of T1 and T2 . The magnitude of the couple applied will not change. W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 8, Solution 143. FBD block: ΣFn = 0: NC − ( 200 lb ) cos 30° = 0; N = 100 3 lb ΣFt = 0: TC − ( 200 lb ) sin 30° ∓ FC = 0 TC = 100 lb ± FC FBD Drum: (1) where the upper signs apply when FC acts (a) For impending motion of block , FC , and ( ) FC = µ s NC = 0.35 100 3 lb = 35 3 lb ( ) TC = 100 − 35 3 lb So, from Equation (1): TC = WAe µk β But belt slips on drum, so −0.25( WA = 100 − 35 3 lb e ( ) 2π 3 ) WA = 23.3 lb W and FC = µ s NC = 35 3 lb (b) For impending motion of block , FC From Equation (1): Belt still slips, so ( ) TC = 100 + 35 3 lb −0.25( WA = TC e− µk β = 100 + 35 3 lb e ( ) 2π 3 ) WA = 95.1 lb W continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System PROBLEM 8.143 CONTINUED (c) For steady motion of block , FC , and FC = µk NC = 25 3 lb ( ) T = 100 + 25 3 lb. Then, from Equation (1): Also, belt is not slipping on drum, so −0.35( WA = TC e− µ s β = 100 + 25 3 lb e ( ) 2π 3 ) WA = 68.8 lb W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 1. First note: Have y= b2 − b1 x + b1 a I y = ∫ x 2dA b2 − b1 x + b1 a a x 2d ydx 0 0 =∫ ∫ a b − b1 = ∫ 0 x2 2 x + b1 dx a a 1 b − b1 4 1 3 = 2 x + b1x 3 4 a 0 = 1 3 a ( b1 + 3b2 ) 12 Iy = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 1 3 a ( b1 + 3b2 ) 12 COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 2. At 5 x = a, y = b : ∴ y = b a 5 2 5 b = ka 2 x2 or dI y = 1 3 x dy 3 = Then Iy = x= or a b b 5 a2 2 2 5 y5 1 a3 65 y dy 3 b 65 1 a3 b 65 ∫ y dy 3 b 65 0 1 5 a3 115 = y 3 11 b 65 = k = b 0 5 a3 115 b 33 b 65 or I y = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 5 3 a b 33 COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 3. At x = 0: First note: At x = a : a = k ( 2b − b ) k = ∴ x= Have 2 c = −b or or 0 = k (b + c) 2 a b2 a 2 y − b) 2( b I y = ∫ x 2dA =∫ a 2 y − b) 2b b 2 ( 0 0 ∫ x 2dxdy 3 = 1 2b a 2 y − b ) dy ∫ 0 2( 3 b 2b 1 a3 1 7 = × ( y − b) 6 3b 7 b = 1 3 ab 21 Iy = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 1 3 a b 21 COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 4. y = kx 2 + c Have b = k ( 0) + c x = 0, y = b : At c=b or At x = 2a, y = 0: or k =− y =− Then = Then I y = ∫ x 2dA, 2a I y = ∫ a x 2dA = 2 0 = k ( 2a ) + b b 4a 2 b 2 x +b 4a 2 b 4a 2 − x 2 4a 2 ( dA = ydx = ) ( ) b 4a 2 − x 2 dx 4a 2 ( ) b 2a 2 2 2 ∫ x 4a − x dx 4a 2 a 2a b 2 x3 x5 = − 4a 3 5 a 4a 2 = b b 8a3 − a3 − 32a5 − a5 2 3 20a = 7a3b 31a3b − 3 20 ( ) ( ) Iy = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 47 3 a b 60 COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 5. First note: Have y = b2 − b1 x + b1 a I x = ∫ y 2dA = b2 − b1 x + b1 a a 0 0 ∫ ∫ y 2d ydx 3 1 a b − b1 = ∫0 2 x + b1 dx 3 a 4 1 1 a b2 − b1 = × x + b1 3 4 b2 − b1 a a 0 = 1 a b24 − b14 12 b2 − b1 = 1 a ( b2 + b1 )( b2 − b1 ) b22 + b12 12 b2 − b1 = 1 a ( b1 + b2 ) b12 + b22 12 ( ) ( ( ) ) Ix = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 1 a ( b1 + b2 ) b12 + b22 12 ( ) COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 6. SOLUTION 5 At x = a, y = b : b = ka 2 or k = ∴y = b 5 a2 b a 5 x2 5 2 I x = ∫ y 2dA = b a 2 y 5 dy b 2 ∫0 y a dA = xdy 2 5 5 175 = 2 × y b 5 17 b 0 17 5a b 5 = 17 b 52 or I x = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 5 3 ab 17 COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 7. At x = 0: 0 = k ( b + c ) First note: or 2 c = −b At x = a : a = k ( 2b − b ) Have or k = a b2 ∴ x= a 2 y − b) 2( b 2 I x = ∫ y 2dA =∫ a 2 y − b) 2b b 2 ( 0 b ∫ y 2dxdy = a 2b 2 2 y ( y − b ) dy 2 ∫b b = a 2b 4 y − 2by 3 + b 2 y 2 dy 2 ∫b b = a 1 5 1 4 1 2 3 y − by + b y 2 3 b2 5 b = a 1 1 1 2 1 2 3 5 4 3 1 5 1 4 ( 2b ) − ( 2b ) + b ( 2b ) − b − b b + b b 2 3 5 2 3 b 2 5 ( ) 2b ( ) ( ) 8 1 1 1 32 = ab3 −8+ − + − 3 5 2 3 5 = 31 3 ab 30 Ix = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 31 3 ab 30 COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 8. Have y = kx 2 + c At x = 0, y = b: b = k (0) + c or c=b At x = 2a, y = 0: 0 = k (2a) 2 + b or k =− Then y = Now dI x = = b 4a 2 b 4a 2 − x 2 4a 2 ( ) 1 3 y dx 3 3 1 b3 4a 2 − x 2 dx 6 3 64a ( ) continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Then I x = ∫ dI x = 3 1 b3 2 a 4a 2 − x 2 dx 6 ∫a 3 64a = b3 2a 64a 6 − 48a 4 x 2 + 12a 2 x 4 − x 6 dx 6 ∫a 192a ( ) ( ) 2a b3 12 2 5 x 7 6 4 3 64 a x 16 a x a x − = − + 5 7 a 192a 6 = b3 64a 7( 2 − 1) − 16a 7 ( 8 − 1) 192a 6 + = 12 7 1 a ( 32 − 1) − (128 − 1) 5 7 ab3 372 127 3 − 64 − 112 + = 0.043006ab 192 5 7 I x = 0.0430ab3 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 9. x2 y2 + =1 a 2 b2 x = a 1− y2 b2 dA = xdy dI x = y 2dA = y 2 xdy b b I x = ∫ dI x = ∫ − b xy 2dy = a ∫ − b y 2 1 − Set: y = b sin θ y2 dy b2 dy = b cosθ dθ π I x = a ∫ 2π b 2 sin 2 θ 1 − sin 2 θ b cosθ dθ − 2 π π − − = ab3 ∫ 2π sin 2 θ cos 2 θ dθ = ab3 ∫ 2π 2 2 1 2 sin 2θ dθ 4 π π 1 1 1 1 2 = ab3 ∫ 2π (1 − cos 4θ ) dθ = ab3 θ − sin 4θ − 2 4 8 4 −π 2 = 2 1 3 π π π 3 ab − − = ab 8 2 2 8 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Ix = 1 π ab3 8 COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 10. At 2a = kb3 x = 2a, y = b: or k = 2a b3 Then x= 2a 3 y b3 or y = Now dI x = b ( 2a ) 1 1 3 x3 1 3 1 b3 y dx = xdx 3 3 2a 2a Then 1 b3 2 a 1 b3 1 2 I x = ∫ dI x = xdx x = ∫ 3 2a a 6 a 2 a = b3 4a 2 − a 2 12a ( ) Ix = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 1 3 ab 4 COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 11. −a At x = a : b = k 1 − e a First note: or Have k = b 1 − e−1 I x = ∫ y 2dA b a 1− e 0 0 =∫ ∫ −x 1− e a −1 3 y 2dydx 3 = −x 1 b a 1 − e a dx −1 ∫ 0 31 − e = −x −2 x −3 x 1 b a 1 − 3e a + 3e a − e a dx −1 ∫ 0 31 − e 3 3 a −x 1 b a −2 x a −3x x − 3( − a ) e a + 3 − e a − − e a = −1 31 − e 2 3 0 3 1 b 1 1 = a + 3ae−1 − 1.5ae−2 + ae −3 − 3a − 1.5a + a −1 3 1 − e 3 3 = 1 ab3 3 1 − e −1 ( ) 3 11 1.91723 − 6 = 0.1107ab3 I x = 0.1107ab3 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 12. x2 y2 + =1 a 2 b2 y = b 1− x2 a2 dA = 2 ydx dI y = x 2dA = 2 x 2 ydx a a I y = ∫ dI y = ∫ 0 2 x 2 ydx = 2b ∫ 0 x 2 1 − x = a sin θ Set: x2 dx a2 dx = a cosθ dθ π I y = 2b∫ 02 a 2 sin 2 θ 1 − sin 2 θ a cosθ dθ 3 π 2 2 3 π = 2a b∫ sin θ cos θ dθ = 2a b∫ 02 2 0 π 1 2 sin 2θ dθ 4 π 1 1 1 1 2 = a3b∫ 02 (1 − cos 4θ ) dθ = a3b θ − sin 4θ 2 2 4 4 0 = 1 3 π π a b − 0 = a3b 4 2 8 Iy = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 1 3 πa b 8 COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 13. At x = 2a, y = b : 2a = kb3 2a 3 y b3 Then x= or y = Now I y = ∫ x 2dA Then I y = ∫ a x2 b ( 2a ) = = = 1 b ( 2a ) 1 3 x 3 dx 7 b ( 2a ) x3 dA = ydx 2a = 1 1 3 1 3 b 1 ( 2a ) 3 2a ∫ a x 3 dx 3 103 x 10 3b 10 ( 2a ) 1 3 2a a 2a 103 − a 103 ( ) 10 3ba3 103 2 − 1 3 1 10 ( 2 ) 3 = 2.1619a3b or I y = 2.16a3b Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 14. First note: or Have −a At x = a : b = k 1 − e a k = b 1 − e−1 I y = ∫ x 2dA b a 1− e 0 0 −x 1− e a −1 2 x d ydx = ∫ ∫ = ∫ 0 x 1 − e−1 1 − e a dx a 2 b −x a −x 2 b 1 3 e a 1 2 1 x x 2 x 2 = − − − − + 3 1 − e−1 3 a 1 a − a 0 = 2 b 1 3 a 3 −1 a 3 + a a e 2 + 2 + 2 − a × 2 −1 a 1 − e 3 a = a3b 1 + 5e −1 − 2 −1 1− e 3 ( ) = 0.273a3b I y = 0.273 a3b Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 15. k1 = or Then y1 = and x1 = b 4 x a4 a b 1 4 b = k2a 4 b a4 k2 = b y2 = 1 4 b 1 a4 1 x4 a a x2 = 4 y 4 b 1 y4 A = ∫ ( y2 − y1 ) dx = b∫ Now 1 b = k1a 4 x = a, y = b: At x 14 a 0 a 1 4 − x 4 dx a4 a 4 x 54 1 x5 = 3 ab = b − 5 5 a 14 5 a 4 0 I x = ∫ y 2dA Then dA = ( x1 − x2 ) dy a 1 a b I x = ∫ 0 y 2 1 y 4 − 4 y 4 dy 4 b b b 4 y 134 1 y 7 = a − 7 b4 13 b 14 0 1 4 = ab3 − 13 7 or I x = Now kx = Ix = A 15 3 ab 91 = 3 ab 5 15 3 ab 91 25 2 b = 0.52414b 91 or k x = 0.524b Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 16. First note: At x = a : 2b = k a or Straight line: Now: k= 2b a y1 = b x a ∴ y2 = 2b a x b a 2b 12 A = 2∫ 0 x − x dx a a a 4 x 23 1 2 = 2b − x 3 a 2a 0 = Have 5 ab 3 I x = ∫ y 2dA 1 2b 2 x a a 0 bx a = 2∫ ∫ = y 2dydx 2 a 8b3 32 b3 3 x − 3 x dx ∫ 3 0 a 23 a a 2b3 2 8 5 1 = × 3 x 2 − 3 x 4 3 5 a2 4a 0 Ix = And kx = = 59 3 ab 30 Ix A 59 3 ab 30 5 ab 3 = b 1.18 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. k x = 1.086 b COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 17. At x = a, y = b: k1 = or Then Now y1 = 1 b = k1a 4 b = k2a 4 b a4 b b 4 x a4 k2 = y2 = and A = ∫ ( y2 − y1 ) dx = b∫ 1 a4 x 14 a 0 a 1 4 − b a 1 4 1 x4 x 4 dx a4 a 4 x 54 1 x5 = 3 ab = b − 1 4 5 5 a4 5 a 0 dA = ( y2 − y1 ) dx Now I y = ∫ x 2dA Then b 1 b a I y = ∫ 0 x 2 1 x 4 − 4 x 4 dx 4 a a = b∫ x 94 a 0 a 1 4 − x 6 dx a4 a 4 x 134 1 x 7 = b − 7 a4 13 a 14 0 1 4 = b a3 − a3 7 13 or I y = Now ky = Iy A = 15 3 ab 91 = 3 ab 5 15 3 a b 91 25 a = 0.52414a 91 or k y = 0.524a Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 18. First note: At x = a : 2b = k a or Straight line: Now: k= 2b a y1 = b x a ∴ y2 = 2b a x b a 2b 12 A = 2∫ 0 x − x dx a a a 4 x 23 1 2 = 2b − x 3 a 2a 0 = Have 5 ab 3 I y = ∫ x 2dA 1 2b 2 x a a b 0 x a = 2∫ ∫ x 2dydx 2b 12 b a x − x dx = 2∫ 0 x 2 a a 7 2 x2 1 x 4 = 2b 2 × − 7 a 4 a = a 0 9 3 ab 14 Iy = 9 3 a b 14 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System And ky = = =a Iy A 9 3 ab 14 5 ab 3 27 70 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. k y = 0.621 a COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 19. First note: At x = 0: b = c cos ( 0 ) c=b or At x = 2a : b = b sin k ( 2a ) 2ka = or k= Then π 2 π 4a π π 2a A = ∫ a b sin x − b cos x dx 4a 4a 2a π 4a π 4a = b − cos x− sin x 4a π 4a a π =− = Have 4ab 1 1 + (1) − π 2 2 4ab π ( ) 2 −1 I x = ∫ y 2dA π 2 a b sin 4a x = ∫a ∫ b cos = π 4a x y 2dydx 1 2a 3 3 π 3 3 π ∫ b sin 4a x − b cos 4a x dx 3 a 2a b3 4a π 1 4a π 4a π 1 4a 3 π x+ cos3 x − sin x− sin x = − cos 3 π 4a 3π 4a π 4a 3π 4a a = 4ab3 −1 + 3π 3 3 1 1 1 1 1 1 1 − − + − + 3 2 3 2 3 2 2 = 4ab3 5 2 2− 3π 6 3 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Ix = 2 ab3 5 2 − 4 9π ( ) = 0.217 ab3 And kx = = I x = 0.217 ab3 Ix A 2 ab3 5 2 − 4 9π 4 ab 2 − 1 π ( ( ) ) = 0.642b Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. k x = 0.642 b COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 20. At x = 0: b = c cos ( 0 ) First note: c=b or At x = 2a : b = b sin k ( 2a ) 2ka = or k= π 2 π 4a π π 2a A = ∫ a b sin x − b cos x dx 4a 4a Then 2a π 4a π 4a = b − cos x− sin x 4a π 4a a π =− = Have 4ab 1 1 + (1) − π 2 2 4ab π ( ) 2 −1 I y = ∫ x 2dA π 2 a b sin 4a x 2 x dydx a b cos π x 4a = ∫ ∫ = 2a 2 ∫ a x b sin 4a x − b cos 4a x dx π π continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System 2 π 2 π x π 2x = b + − sin x cos x cos x 2 3 π 4a 4a 4a π π 4a 4a 4a 2a 2 2x π 2 π x π cos x sin x sin x − − + 3 π 2 π 4a 4a 4a π 4a 4a 4a a 2a 64a3b π π π π π π 2 2 Iy = sin x cos x x sin x cos x 2 x − + + − 4a 2a 4a 4a π 3 4a 16a 2 a = 64a3b π 2 1 1 π 2 1 π 1 2 2 + − − + − ( )( ) ( ) 4 2 16 π 3 2 I y = 1.482a3b = 1.48228a3b And ky = = Iy A 1.48228a3b 4ab 2 −1 π ( ) = 1.676a Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. k y = 1.676a COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 21. dI x = (a) Ix = 1 3 a dx 3 1 3 a a3 2 a ∫ − a dx = ( 2a ) = a 4 3 3 3 dI y = x 2dA = x 2adx I y = a∫ a 2 x dx −a JO = I x + I y = JO = kO2 A a x3 2 = a = a4 3 −a 3 2 4 2 4 a + a 3 3 4 4 a JO 2 k = = 3 2 = a2 A 3 2a 2 JO = 4 4 a 3 kO = a 2 3 (b) dI x = Ix = 1 3 a dx 12 a 3 2a a 3 2a 1 4 dx = [ x] = 6 a ∫ 12 0 12 0 dI y = x 2dA = x 2 ( adx ) I y = a∫ 2a 2 x dx 0 JO = I x + I y = J O = kO2 A 2a x3 8 = a = a4 3 3 0 1 4 8 4 17 4 a + a = a 6 3 6 17 4 a J 17 2 kO2 = O = 6 2 = a A 12 2a Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. JO = 17 4 a 6 kO = a 17 12 COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 22. Have: A = ( 2a )( 3b ) − 1 ( 2a )( b ) 2 = 5ab Have: JP = Ix + I y Where: I x = ∫ y 2dA a 2b b − x a = 2∫ 0 ∫ = y 2dydx 3 2 a 3 b − − 2 b x ∫ ( ) a dx 3 0 2 x4 = b3 8x + 3 3 4a = And a 0 11 3 ab 2 I y = ∫ x 2dA a 2b 2 b x dydx − x a = 2∫ 0 ∫ a b = 2∫ 0 x 2 2b − − x dx a a 1 4 2 = 2b x3 + x 4a 0 3 = 11 3 ab 6 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Then: Also: JP = kP = = 11 3 11 3 ab + a b 2 6 JP = 11 ab a 2 + 3b 2 6 kP = 11 2 a + 3b 2 30 ( ) JP A 11 ab a 2 + 3b 2 6 5ab ( ) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ( ) COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 23. y1 : x = a, At y = 2b: 2b = ma or m= 2b a Then y1 = 2b x a y2 : x = 0, y = b: b = k ( 0 ) + c or At x = a, y = 2b: 2b = ka 2 + b At k = or y2 = Then Now c=b b a2 b 2 b x + b = 2 x2 + a2 a2 a ( ) 2b a b A = ∫ ( y2 − y1 ) dx = ∫ 0 2 x 2 + a 2 − x dx a a ( ) a b 1 b = 2 x3 + a 2 x − x 2 a 0 a 3 = Now 1 b 1 3 b a + a3 − a 2 = ab 2 3 a 3 a a I y = ∫ x 2dA = ∫ 0 x 2 ( y2 − y1 ) dx = 2b x dx a 2 2 2 ∫ 0 x a2 ( x + a ) − a b a b 1 1 2b x 4 = 2 x5 + a 2 x3 − 3 a 5 a 4 0 = b a5 1 5 2b a 4 1 3 + a − = ab 2 3 a 4 30 a 5 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System And 1 1 I x = ∫ dI x = ∫ y23 − y13 dx 3 3 = 1 a b3 2 x + a2 ∫ 0 6 3 a = 1 b3 a 1 6 x + 3x 4a 2 + 3x 2a 4 + a 6 − 8x3 dx ∫ 3 a3 0 a3 ( ) 3 − 8b3 3 x dx a3 ( ) a 1 b3 1 x 7 3 2 5 3 4 3 8 4 6 Ix = a x a x a x + + + − 3 3 4x 3 a a 7 5 3 0 = Finally 1 b3 1 a 7 3 7 26 3 + a + a 7 + a 7 − 2a 4 = ab 3 3 3 a a 7 5 105 26 3 1 3 ab + ab 105 30 JP = Ix + I y = or J P = And kP = JP = A ab 7a 2 + 52b 2 210 ( ab 7a 2 + 52b 2 210 1 ab 3 or k P = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ( ) ) 7a 2 + 52b 2 70 COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 24. x = r 2 − y2 First note: JP = Ix + I y r I x = ∫ y 2dA = 2∫ r ∫ 0 r 2 − y2 2 y 2dxdy r = 2∫ r y 2 r 2 − y 2 dy 2 Let Then Thus y = r sin θ dy = r cosθ dθ ; y = r: θ = π 2 ; y= r : 2 θ = π 6 π I x = 2∫ π2 r 2 sin 2 θ ( r cosθ )( r cosθ dθ ) 6 Now sin 2θ = 2sin θ cosθ Ix = thus 1 2 sin 2θ 4 1 4 π2 2 r ∫ π sin 2θ dθ 2 6 1 θ sin 4θ = r4 − 2 2 8 π 2 π 6 = 1 4π π 1 3 + × r − 2 4 12 8 2 = 3 r4 π + 4 3 8 r I y = ∫ x 2dA = 2∫ r ∫0 r 2 − y2 2 = sin 2 θ cos 2 θ = x 2dxdy 3 2 r 2 2 ∫ r r − y 2 dy 3 2 ( ) continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Let Then Now Thus y = r sin θ Iy = 2 π2 3 3 ∫ π r cos θ 3 6 ( ) ( r cosθ dθ ) ( ) cos 4 θ = cos 2 θ 1 − sin 2 θ = cos 2 θ − Iy = 1 2 sin 2θ 4 2 4 π2 2 1 r ∫ π cos θ − sin 2 2θ dθ 3 4 6 π 2 θ sin 2θ 1 θ sin 4θ 2 = r 4 + − − 3 2 4 4 2 8 π 6 Then = 1 4 π 1 π π 1 3 1 π 1 1 3 r − × − + × − × + × × 3 2 4 2 6 2 2 4 6 4 4 2 = r4 π 3 3 − 4 3 8 JP = = r4 π 3 r4 π 3 3 + + − 43 8 4 3 8 r4 8π − 3 3 48 ( ) J P = 0.415r 4 Now r A = 2∫ r xdy 2 r = ∫ r r 2 − y 2 dy 2 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Let y = r sin θ π A = 2∫π2 ( r cosθ )( r cosθ dθ ) 6 π 2 θ sin 2θ 2 = 2r + 4 π 2 6 π π 1 3 = r 2 − − × 2 2 6 2 = Have kP = = r2 4π − 3 3 12 ( ) JP A r4 8π − 3 3 48 r2 4π − 3 3 12 ( ( ) ) k P = 0.822 r Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 25. J O ≡ I 0 = ∫ r 2dA (a) Have dA = Where Then R 3π J O = ∫R 2 r 2 1 2 3π rdr 2 r dr R = 3π 4 2 3π 4 r = R2 − R14 8 8 R1 ( ) JO = I x = 3 ( I x )1 so that ( )1 + ( I y )2 + ( I y )3 = 3 ( I y )1 Iy = Iy ( I x )1 = ( I y )1 Symmetry implies Ix = I y Then Then ) ( I x )1 = ( I x )2 = ( I x )3 By inspection Now ( I x = ( I x )1 + ( I x )2 + ( I x )3 (b) Now Similarly, 3π 4 R2 − R14 8 JO = I x + I y Ix = I y = JO 3π 4 = R2 − R14 2 16 ( ) or I x = I y = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 3π 4 R2 − R14 16 ( ) COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 26. R ( ( 3π 3π 2 rdr = R2 − R12 2 4 ( ) ( ) Then R2 = Rm + kO2 = t t 2 )( ( 1 ( R1 + R2 ) 2 Rm = For ) ) 3π 4 R2 − R14 R22 + R12 R22 − R12 J 1 2 2 O 8 kO = = = = R2 + R12 2 2 3π 2 A 2 2 R − R 2 2 1 R2 − R1 4 Now And ( A = ∫ dA = ∫R 2 1 And Then 3π 4 R2 − R14 8 JO = (a) From Problem 9.25 R1 = Rm − and 2 kO2 ( t 2 2 1 = Rm2 + t 2 4 Rm2 kO Or (b) Have ) t = R2 − R1 and 1 t t Rm + + Rm − 2 2 2 R1, R2 ) ) R − kO % error = m × 100% = kO 1− 1+ = Rm2 + Rm − Rm2 + 1 t 4 Rm 1 t 1+ 4 Rm 2 Rm 1 2 t 4 × 100% 1 2 t 4 2 × 100% continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Then t = 1: % error = Rm 1− 1+ 1+ 1 4 1 4 × 100% or % error = −10.56% t 1 = : % error = Rm 4 1− 1+ 11 44 11 1+ 4 4 2 × 100% 2 or % error = −0.772% 1 t = : % error = Rm 16 1 1 1− 1+ 4 16 1+ 1 1 4 16 2 2 × 100% or % error = −0.0488% Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 27. π Have: a cos 2θ A = 2∫ 04 ∫ 0 rdrdθ π = ∫ 04 a 2 cos 2 2θ dθ π 2 θ sin 4θ 4 =a + 8 0 2 = Have: π 8 a2 J O = ∫ r 2dA π a cos 2θ = 2∫ 04 ∫ 0 r 2 ( rdrdθ ) π 1 = ∫ 04 a 4 cos 4 2θ dθ 2 Now: ( cos 4 2θ = cos 2 2θ 1 − sin 2 2θ = cos 2 2θ − ) 1 2 sin 4θ 4 π Then: 1 1 J O = a 4 ∫ 04 cos 2 2θ − sin 2 4θ dθ 2 4 1 θ sin 4θ 1 θ sin 8θ = a 4 + − − 2 2 8 4 2 16 = π 4 0 1 4π 1 π a − × 4 4 4 4 JO = 3π 4 a 64 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System And: kO = = JO A 3π 4 a 64 π 8 a2 kO = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. a 6 4 COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 28. y = By observation b y 2h x= or b dA = xdy = 2h Now dI x = y 2dA = Then I x = ∫ dI x = 2∫ 0 h b 3 y dy 2h 1 3 bh 4 = 0 y = From above Now h y dy b 3 y dy 2h And b y4 = h 4 h x b 2 2h x b 2h dA = ( h − y ) dx = h − x dx b = h ( b − 2 x ) dx b And dI y = x 2dA = x 2 Then I y = ∫ dI y = 2∫ 02 b h ( b − 2 x ) dx b h 2 x ( b − 2 x ) dx b b h 1 1 2 = 2 bx3 − x 4 b 3 2 0 3 4 h b b 1b 1 3 bh =2 − = b 3 2 2 2 48 continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Now JO = I x + I y = 1 3 1 3 bh + bh 4 48 or J O = And bh 12h 2 + b 2 J 1 2 48 O kO = 12h 2 + b 2 = = 1 A 24 bh 2 ( ) ( bh 12h 2 + b 2 48 ( ) ) or kO = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 12h 2 + b 2 24 COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 29. First the circular area is divided into an increasing number of identical circular sectors. The sectors can be approximated by isosceles triangles. For a large number of sectors the approximate dimensions of one of the isosceles triangles are as shown. For an isosceles triangle (see Problem 9.28) JO = b = r ∆θ Then with = dJ O sector dθ and ) h=r 1 4 r ∆θ 12 + ∆θ 2 48 ( ) ∆ J O sector 2 1 4 = lim = lim r 12 + ( ∆θ ) ∆θ → 0 ∆θ ∆θ → 0 48 = Then ( 1 ( r ∆θ )( r ) 12r 2 + ( r ∆θ )2 48 ( ∆ J O )sector Now bh 12h 2 + b 2 48 1 4 r 4 ( J O )circle = ∫ dJ O sector = 1 1 2π 2π 4 4 ∫ 0 4 r dθ = 4 r [θ ]0 or ( J O )circle = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. π 2 r4 COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Solution 30. From the solution to sample Problem 9.2, the centroidal polar moment of inertia of a circular area is ( J C )cir = π 2 r4 The area of the circle is