248 6.8 CHAP. 6 Laplace Transforms Laplace Transform: General Formulas Formula # F(s) 5 l{ f (t)} 5 Name, Comments Sec. ` e2stf (t) dt Definition of Transform 0 6.1 f (t) 5 l21{F(s)} Inverse Transform l{af (t) 1 bg(t)} 5 al{ f (t)} 1 bl{g(t)} Linearity 6.1 s-Shifting (First Shifting Theorem) 6.1 l{eatf (t)} 5 F(s 2 a) l21{F(s 2 a)} 5 eatf (t) l( f r ) 5 sl( f ) 2 f (0) l( f s ) 5 s 2l( f ) 2 sf (0) 2 f r (0) l( f n (n) ) 5 s l( f ) 2 s Differentiation of Function (n21) f (0) 2 Á 6.2 Á 2 f (n21)(0) le t # f (t) dtf 5 1s l( f ) Integration of Function 0 t ( f * g)(t) 5 # f (t)g(t 2 t) dt 0 t 5 # f (t 2 t)g(t) dt Convolution 6.5 t-Shifting (Second Shifting Theorem) 6.3 0 l( f * g) 5 l( f )l(g) l{ f (t 2 a) u(t 2 a)} 5 e2asF(s) ˛ 21 l {e2asF (s)} 5 f (t 2 a) u(t 2 a) l{tf (t)} 5 2F r (s) le f (t) l( f ) 5 t f 5 # Differentiation of Transform 6.6 ` s ) d| s F( | Integration of Transform s 1 1 2 e2ps p #e 0 2st f (t) dt f Periodic with Period p 6.4 Project 16 SEC. 6.9 Table of Laplace Transforms 6.9 249 Table of Laplace Transforms For more extensive tables, see Ref. [A9] in Appendix 1. F (s) 5 l{ f (t)} f (t) ˛ 1 2 3 4 5 6 7 8 9 1>s 1>s 2 1>s n 1> 1s 1>s 3>2 1>s a (n 5 1, 2, Á ) (a . 0) 1 s2a 1 n (s 2 a) 1 k teat (n 5 1, 2, Á ) 1 t n21eat (n 2 1)! (k . 0) 1 k21 at t e G(k) (s 2 a) 11 12 13 14 15 16 17 18 1 (s 2 a)(s 2 b) s (s 2 a)(s 2 b) 1 2 t 6.1 eat (s 2 a)2 1 10 1 t t n21>(n 2 1)! 1> 1pt 21t> p t a21>G(a) Sec. (a Þ b) (a Þ b) t 6.1 1 (eat 2 ebt) a2b 1 (aeat 2 bebt) a2b 1 sin vt v 2 s 1v s cos vt s 2 1 v2 1 1 sinh at a s2 2 a2 s cosh at s2 2 a2 1 2 2 2 2 (s 2 a) 1 v s2a t 6.1 1 at e sinh vt v eat cos vt (s 2 a) 1 v 19 20 1 1 s(s 2 1 v2) v2 1 1 s 2(s 2 1 v2) v3 (1 2 cos vt) x 6.2 (vt 2 sin vt) (continued ) 250 CHAP. 6 Laplace Transforms Table of Laplace Transforms (continued ) F (s) 5 l{ f (t)} f (t) ˛ 1 21 22 23 24 1 2 (sin vt 2 vt cos vt) 2v3 t sin vt 2v 2 2 (s 1 v ) s (s 2 1 v2) 2 s2 2 2 2 2 2 2 2 (a 2 Þ b 2) (s 1 a )(s 1 b ) 1 26 27 28 29 30 31 34 35 36 37 4k 3 1 s 4 1 4k 4 1 2k 2 1 s4 2 k 4 s 2k 3 1 s4 2 k 4 2k 2 s 1 4k s 1s 2 a 2 1s 2 b 1 1s 1 a 1s 1 b 1 (sin kt cos kt 2 cos kt sinh kt) sin kt sinh kt (sinh kt 2 sin kt) (cosh kt 2 cos kt) 1 2 2pt 3 1pt 3>2 (s 2 2 a 2)k (ebt 2 eat) e2(a1b)t>2I0 a 1 s (s 2 a) 1 (cos at 2 cos bt) a2b tb 2 I 5.5 J 5.4 J0(at) 2s 1 a 2 2 eat(1 1 2at) k21>2 (k . 0) 1p t a b G(k) 2a Ik21>2(at) I 5.5 e2as>s e2as u(t 2 a) d(t 2 a) 6.3 6.4 1 2k>s e s 1 2k>s e 1s J0(2 1kt) J 5.4 1 38 s 39 b 2 a2 4 32 33 1 2 1 4 t 6.6 1 (sin vt 1 vt cos vt) 2v (s 1 v ) s 25 Sec. 3>2 1 1pt 1 ek>s e2k1s 1pk (k . 0) cos 2 1kt sinh 2 1kt k 2 2pt 2 3 e2k >4t (continued )