Subido por JOAQUIN GARCIA

236384957-Beer-Dinamica-8e-Presentaciones-c11

Anuncio
Eighth Edition
CHAPTER
11
VECTOR MECHANICS FOR ENGINEERS:
DYNAMICS
Ferdinand P. Beer
E. Russell Johnston, Jr.
Cinemática de partícula
Lecture Notes:
J. Walt Oler
Texas Tech University
© 2007 The McGraw-Hill Companies, Inc. All rights
Eight
h
Vector Mechanics for Engineers: Dynamics
Contenidos
Introducción
Movimiento rectilineo: Posición,
Velocidad & Acceleración
Determinación del Movimiento de
una Particula
Sample Problema 11.2
Sample Problema 11.3
Movimiento rectilineo uniforme
Movimiento rectilíneo
uniformemente acelerado
Movimiento de Several Particulas:
Movimiento relativo
Sample Problem 11.4
Movimiento de Several Particulas:
Movimiento dependiente
Sample Problem 11.5
Graphical Solution of Rectilinear-Motion
Problems
Other Graphical Methods
Movimiento curvilineo : Posición,
Velocida & Aceleración
Derivada de Vector Función
Componentes rectangular de Velocidad y
Aceleración
Movimiento Relativo de una Frame en
Traslación
Componentes tangencial y Normal
Componentes radial y Transversal
Sample Problem 11.10
Sample Problem 11.12
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 2
Eight
h
Vector Mechanics for Engineers: Dynamics
Introduction
• Dinámica incluye:
- Cinemática: Estudio de la geometría del movimiento. Cinemática es
usada para relacionar desplazamiento, velocidad, aceleración, y tiempo
sin tener en cuenta la causa del movimiento.
- Cinética: estudio de la relación existente entre la acción de la fuerza
actuando en un cuerpo, la masa, y el movimiento del cuerpo. La cinética
es usada para predecir el movimiento causada por fuerza dad o la
determinación de la fuerza requerida para producir un movimiento dado.
• Movimiento rectilíneo : posición, velocidad, y aceleración de a partícula a
través de una línea recta.
• Movimiento curvilíneo : Es la posición, velocidad, y aceleración de una
partícula a lo largo de una línea curva en dos o tres dimensiones.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 3
Eight
h
Vector Mechanics for Engineers: Dynamics
Movimiento rectilíneo : Posición, Velocidad & Acceleration
• La partícula que se mueve a lo largo de una
línea recta esta en movimiento rectilíneo.
• La coordenada de Posición de una partícula
esta definida por la distancia positiva o
negativa de un origen fijo de la línea.
• El movimiento de una partícula se conoce si
se conoce la coordenada de una partícula con
muchos valores de tiempo t. El movimiento
de una partícula se puede expresar con la
siguiente función.
O en la forma de un gráfico x vs. t.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 4
Eight
h
Vector Mechanics for Engineers: Dynamics
Rectilinear Motion: Position, Velocity & Acceleration
• Considere la partícula que ocupa una
posición P en un tiempo t y P’ como t+Δt,
Velocidad promedio
Velocidad instantánea
• La velocidad instantánea puede ser positiva
o negativa. La magnitud de la velocidad
esta referida como rapidez de la partícula.
• De la definición de una derivada,
e.g.,
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 5
Eight
h
Vector Mechanics for Engineers: Dynamics
Rectilinear Motion: Position, Velocity & Acceleration
• Considere una partícula con velocidad v con
un tiempo t y v’ como t+Δt,
Aceleración instantanea
• Instantaneous acceleration may be:
- positive: increasing positive velocity
or decreasing negative velocity
- negative: decreasing positive velocity
or increasing negative velocity.
• From the definition of a derivative,
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 6
Eight
h
Vector Mechanics for Engineers: Dynamics
Rectilinear Motion: Position, Velocity & Acceleration
• Consider particle with motion given by
• at t = 0, x = 0, v = 0, a = 12 m/s2
• at t = 2 s, x = 16 m, v = vmax = 12 m/s, a = 0
• at t = 4 s, x = xmax = 32 m, v = 0, a = -12 m/s2
• at t = 6 s, x = 0, v = -36 m/s, a = 24 m/s2
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 7
Eight
h
Vector Mechanics for Engineers: Dynamics
Determination of the Motion of a Particle
• Recall, motion of a particle is known if position is known for all time t.
• Typically, conditions of motion are specified by the type of acceleration
experienced by the particle. Determination of velocity and position requires
two successive integrations.
• Three classes of motion may be defined for:
- acceleration given as a function of time, a = f(t)
- acceleration given as a function of position, a = f(x)
- acceleration given as a function of velocity, a = f(v)
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 8
Eight
h
Vector Mechanics for Engineers: Dynamics
Determination of the Motion of a Particle
• Acceleration given as a function of time, a = f(t):
• Acceleration given as a function of position, a = f(x):
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 9
Eight
h
Vector Mechanics for Engineers: Dynamics
Determination of the Motion of a Particle
• Acceleration given as a function of velocity, a = f(v):
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 10
Eight
h
Vector Mechanics for Engineers: Dynamics
Sample Problem 11.2
SOLUTION:
• Integrate twice to find v(t) and y(t).
• Solve for t at which velocity equals
zero (time for maximum elevation)
and evaluate corresponding altitude.
Ball tossed with 10 m/s vertical velocity
from window 20 m above ground.
• Solve for t at which altitude equals
zero (time for ground impact) and
evaluate corresponding velocity.
Determine:
• velocity and elevation above ground at
time t,
• highest elevation reached by ball and
corresponding time, and
• time when ball will hit the ground and
corresponding velocity.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 11
Eight
h
Vector Mechanics for Engineers: Dynamics
Sample Problem 11.2
SOLUTION:
• Integrate twice to find v(t) and y(t).
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 12
Eight
h
Vector Mechanics for Engineers: Dynamics
Sample Problem 11.2
• Solve for t at which velocity equals zero and evaluate
corresponding altitude.
• Solve for t at which altitude equals zero and evaluate
corresponding velocity.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 13
Eight
h
Vector Mechanics for Engineers: Dynamics
Sample Problem 11.2
• Solve for t at which altitude equals zero and
evaluate corresponding velocity.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 14
Eight
h
Vector Mechanics for Engineers: Dynamics
Sample Problem 11.3
SOLUTION:
• Integrate a = dv/dt = -kv to find v(t).
• Integrate v(t) = dx/dt to find x(t).
Brake mechanism used to reduce gun
recoil consists of piston attached to barrel
moving in fixed cylinder filled with oil.
As barrel recoils with initial velocity v0,
piston moves and oil is forced through
orifices in piston, causing piston and
cylinder to decelerate at rate proportional
to their velocity.
• Integrate a = v dv/dx = -kv to find
v(x).
Determine v(t), x(t), and v(x).
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 15
Eight
h
Vector Mechanics for Engineers: Dynamics
Sample Problem 11.3
SOLUTION:
• Integrate a = dv/dt = -kv to find v(t).
• Integrate v(t) = dx/dt to find x(t).
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 16
Eight
h
Vector Mechanics for Engineers: Dynamics
Sample Problem 11.3
• Integrate a = v dv/dx = -kv to find v(x).
• Alternatively,
with
and
then
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 17
Eight
h
Vector Mechanics for Engineers: Dynamics
Movimiento uniforme Rectilíneo
Para movimiento uniforme rectilíneo de una partícula, la aceleración
es cero y la velocidad es constante.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 18
Eight
h
Vector Mechanics for Engineers: Dynamics
Movimiento rectilíneo uniformemente acelerado
Para movimiento rectilíneo uniformemente acelerado de una partícula, la
aceleración de la partícula es constante.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 19
Eight
h
Vector Mechanics for Engineers: Dynamics
Movimiento de un sistema de partícula. Movimiento relativo.
• Para partículas moviéndose a lo largo de una
misma línea, time should be recorded from the
same starting instant and displacements should
be measured from the same origin in the same
direction.
relative position of B
with respect to A
relative velocity of B
with respect to A
relative acceleration of B
with respect to A
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 20
Eight
h
Vector Mechanics for Engineers: Dynamics
Sample Problem 11.4
SOLUTION:
• Substitute initial position and velocity
and constant acceleration of ball into
general equations for uniformly
accelerated rectilinear motion.
• Substitute initial position and constant
velocity of elevator into equation for
uniform rectilinear motion.
Ball thrown vertically from 12 m level
in elevator shaft with initial velocity of
18 m/s. At same instant, open-platform
elevator passes 5 m level moving
upward at 2 m/s.
Determine (a) when and where ball hits
elevator and (b) relative velocity of ball
and elevator at contact.
© 2007 The McGraw-Hill Companies, Inc. All rights
• Write equation for relative position of
ball with respect to elevator and solve
for zero relative position, i.e., impact.
• Substitute impact time into equation
for position of elevator and relative
velocity of ball with respect to
elevator.
11 - 21
Eight
h
Vector Mechanics for Engineers: Dynamics
Sample Problem 11.4
SOLUTION:
• Substitute initial position and velocity and constant
acceleration of ball into general equations for
uniformly accelerated rectilinear motion.
• Substitute initial position and constant velocity of
elevator into equation for uniform rectilinear motion.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 22
Eight
h
Vector Mechanics for Engineers: Dynamics
Sample Problem 11.4
• Write equation for relative position of ball with respect to
elevator and solve for zero relative position, i.e., impact.
• Substitute impact time into equations for position of elevator
and relative velocity of ball with respect to elevator.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 23
Eight
h
Vector Mechanics for Engineers: Dynamics
Motion of Several Particles: Dependent Motion
• Position of a particle may depend on position of one
or more other particles.
• Position of block B depends on position of block A.
Since rope is of constant length, it follows that sum of
lengths of segments must be constant.
constant (one degree of freedom)
• Positions of three blocks are dependent.
constant (two degrees of freedom)
• For linearly related positions, similar relations hold
between velocities and accelerations.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 24
Eight
h
Vector Mechanics for Engineers: Dynamics
Sample Problem 11.5
SOLUTION:
• Define origin at upper horizontal surface
with positive displacement downward.
• Collar A has uniformly accelerated
rectilinear motion. Solve for acceleration
and time t to reach L.
• Pulley D has uniform rectilinear motion.
Calculate change of position at time t.
Pulley D is attached to a collar which
is pulled down at 3 in./s. At t = 0,
• Block B motion is dependent on motions
collar A starts moving down from K
of collar A and pulley D. Write motion
with constant acceleration and zero
initial velocity. Knowing that velocity relationship and solve for change of block
B position at time t.
of collar A is 12 in./s as it passes L,
determine the change in elevation,
• Differentiate motion relation twice to
velocity, and acceleration of block B
develop equations for velocity and
when block A is at L.
acceleration of block B.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 25
Eight
h
Vector Mechanics for Engineers: Dynamics
Sample Problem 11.5
SOLUTION:
• Define origin at upper horizontal surface with
positive displacement downward.
• Collar A has uniformly accelerated rectilinear
motion. Solve for acceleration and time t to reach L.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 26
Eight
h
Vector Mechanics for Engineers: Dynamics
Sample Problem 11.5
• Pulley D has uniform rectilinear motion. Calculate
change of position at time t.
• Block B motion is dependent on motions of collar
A and pulley D. Write motion relationship and
solve for change of block B position at time t.
Total length of cable remains constant,
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 27
Eight
h
Vector Mechanics for Engineers: Dynamics
Sample Problem 11.5
• Differentiate motion relation twice to develop
equations for velocity and acceleration of block B.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 28
Eight
h
Vector Mechanics for Engineers: Dynamics
Graphical Solution of Rectilinear-Motion Problems
• Given the x-t curve, the v-t curve is equal to
the x-t curve slope.
• Given the v-t curve, the a-t curve is equal to
the v-t curve slope.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 29
Eight
h
Vector Mechanics for Engineers: Dynamics
Graphical Solution of Rectilinear-Motion Problems
• Given the a-t curve, the change in velocity between t1 and t2 is
equal to the area under the a-t curve between t1 and t2.
• Given the v-t curve, the change in position between t1 and t2 is
equal to the area under the v-t curve between t1 and t2.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 30
Eight
h
Vector Mechanics for Engineers: Dynamics
Other Graphical Methods
• Moment-area method to determine particle position at
time t directly from the a-t curve:
using dv = a dt ,
first moment of area under a-t curve
with respect to t = t1 line.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 31
Eight
h
Vector Mechanics for Engineers: Dynamics
Other Graphical Methods
• Method to determine particle acceleration
from v-x curve:
subnormal to v-x curve
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 32
Eight
h
Vector Mechanics for Engineers: Dynamics
Curvilinear Motion: Position, Velocity & Acceleration
• Particle moving along a curve other than a straight line
is in curvilinear motion.
• Position vector of a particle at time t is defined by a
vector between origin O of a fixed reference frame and
the position occupied by particle.
• Consider particle which occupies position P defined
by at time t and P’ defined by
at t + Δt,
instantaneous velocity (vector)
instantaneous speed (scalar)
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 33
Eight
h
Vector Mechanics for Engineers: Dynamics
Curvilinear Motion: Position, Velocity & Acceleration
• Consider velocity of particle at time t and velocity
at t + Δt,
instantaneous acceleration (vector)
• In general, acceleration vector is not tangent to
particle path and velocity vector.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 34
Eight
h
Vector Mechanics for Engineers: Dynamics
Derivatives of Vector Functions
• Let
be a vector function of scalar variable u,
• Derivative of vector sum,
• Derivative of product of scalar and vector functions,
• Derivative of scalar product and vector product,
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 35
Eight
h
Vector Mechanics for Engineers: Dynamics
Rectangular Components of Velocity & Acceleration
• When position vector of particle P is given by its
rectangular components,
• Velocity vector,
• Acceleration vector,
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 36
Eight
h
Vector Mechanics for Engineers: Dynamics
Rectangular Components of Velocity & Acceleration
• Rectangular components particularly effective
when component accelerations can be integrated
independently, e.g., motion of a projectile,
with initial conditions,
Integrating twice yields
• Motion in horizontal direction is uniform.
• Motion in vertical direction is uniformly accelerated.
• Motion of projectile could be replaced by two
independent rectilinear motions.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 37
Eight
h
Vector Mechanics for Engineers: Dynamics
Motion Relative to a Frame in Translation
• Designate one frame as the fixed frame of reference.
All other frames not rigidly attached to the fixed
reference frame are moving frames of reference.
• Position vectors for particles A and B with respect to
the fixed frame of reference Oxyz are
• Vector joining A and B defines the position of B with
respect to the moving frame Ax’y’z’ and
• Differentiating twice,
velocity of B relative to A.
acceleration of B relative
to A.
• Absolute motion of B can be obtained by combining
motion of A with relative motion of B with respect to
moving reference frame attached to A.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 38
Eight
h
Vector Mechanics for Engineers: Dynamics
Componente normal y tangencial
• El vector velocidad de una partícula es tangente
a la trayectoria de la partícula. En general, no
para el vector aceleración. El cual el vector
aceleración se expresa en términos de
componentes tangencial y normal.
•
son vectores unitarios tangencial de la
partícula en la trayectoria de P y P’. Donde en
el dibujo con respecto al mismo origen,
Y
© 2007 The McGraw-Hill Companies, Inc. All rights
es el ángulo entre ambos.
11 - 39
Eight
h
Vector Mechanics for Engineers: Dynamics
Componente normal y tangencial
• Con el vector velocidad expresado como
La aceleración de la particula puede ser escrita como
pero
Sustituyendo después
• La componente tangencial de la aceleración
refleja cambio de rapidez y la componente
normal refleja cambio de dirección.
• La componente tangencial puede ser posistivo o
negativo. La componente normal siempre se dirige
hacia el centro de curvatura de la trayectoria.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 40
Eight
h
Vector Mechanics for Engineers: Dynamics
Componentes normal y tangencial
• Las relaciones de las aceleraciones normal y
tangencial también se aplican a partículas que se
mueven a través del espacio.
• En el plano contiene vectores unitarios tangencial
y normal llamados planos osculador.
• El plano osculador se fundamenta en
• La aceleración no tiene componente a lo largo
de la binormal.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 41
Eight
h
Vector Mechanics for Engineers: Dynamics
Componente radial y transversal
• Cuando la posición de la partícula esta dada en
coordenadas polares, es conveniente expresar
velocidad y aceleración en componentes paralelas
y perpendiculares a OP.
• El vector velocidad de la partícula es
• Similarmente, el vector aceleración de la partícula es
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 42
Eight
h
Vector Mechanics for Engineers: Dynamics
Radial and Transverse Components
• When particle position is given in cylindrical
coordinates, it is convenient to express the
velocity and acceleration vectors using the unit
vectors
• Position vector,
• Velocity vector,
• Acceleration vector,
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 43
Eight
h
Vector Mechanics for Engineers: Dynamics
Sample Problem 11.10
SOLUTION:
• Calculate tangential and normal
components of acceleration.
• Determine acceleration magnitude and
direction with respect to tangent to
curve.
A motorist is traveling on curved
section of highway at 60 mph. The
motorist applies brakes causing a
constant deceleration rate.
Knowing that after 8 s the speed has
been reduced to 45 mph, determine
the acceleration of the automobile
immediately after the brakes are
applied.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 44
Eight
h
Vector Mechanics for Engineers: Dynamics
Sample Problem 11.10
SOLUTION:
• Calculate tangential and normal components of
acceleration.
• Determine acceleration magnitude and direction
with respect to tangent to curve.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 45
Eight
h
Vector Mechanics for Engineers: Dynamics
Sample Problem 11.12
SOLUTION:
• Evaluate time t for θ = 30o.
• Evaluate radial and angular positions,
and first and second derivatives at
time t.
Rotation of the arm about O is defined
by θ = 0.15t2 where θ is in radians and t
in seconds. Collar B slides along the
arm such that r = 0.9 - 0.12t2 where r is
in meters.
• Calculate velocity and acceleration in
cylindrical coordinates.
• Evaluate acceleration with respect to
arm.
After the arm has rotated through 30o,
determine (a) the total velocity of the
collar, (b) the total acceleration of the
collar, and (c) the relative acceleration
of the collar with respect to the arm.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 46
Eight
h
Vector Mechanics for Engineers: Dynamics
Sample Problem 11.12
SOLUTION:
• Evaluate time t for θ = 30o.
• Evaluate radial and angular positions, and first
and second derivatives at time t.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 47
Eight
h
Vector Mechanics for Engineers: Dynamics
Sample Problem 11.12
• Calculate velocity and acceleration.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 48
Eight
h
Vector Mechanics for Engineers: Dynamics
Sample Problem 11.12
• Evaluate acceleration with respect to arm.
Motion of collar with respect to arm is rectilinear
and defined by coordinate r.
© 2007 The McGraw-Hill Companies, Inc. All rights
11 - 49
Descargar