Subido por jeanpaulbs5801

GRÁFICAS DE CONTROL

Anuncio
Estadística y Control de Calidad
Unidad IV
4.1 GRAFICA DE CONTROL Y CONCEPTOS ESTADISTICOS
Un proceso de control es aquel cuyo comportamiento con respecto a variaciones es
estable en el tiempo.
Las graficas de control se utilizan en la industria como técnica de diagnósticos para
supervisar procesos de producción e identificar inestabilidad y circunstancias anormales.
Una gráfica de control es una comparación gráfica de los datos de desempeño de
proceso con los “límites de control estadístico” calculados, dibujados como rectas limitantes
sobre la gráfica. Los datos de desempeño de proceso por lo general consisten en grupos de
mediciones que vienen de la secuencia normal de producción y preservan el orden de los
datos.
Las graficas de control constituyen un mecanismo para detectar situaciones donde las
causas asignables pueden estar afectando de manera adversa la calidad de un producto.
Cuando una grafica indica una situación fuera de control, se puede iniciar una investigación
para identificar causas y tomar medidas correctivas.
Nos
permiten
determinar
cuándo
deben
emprenderse
acciones
proceso que ha sido afectado por una causa especial. Nos dicen
para
ajustar
un
cuando dejar que un
proceso trabaje por sí mismo, y no malinterpretar las variaciones debidas a causas comunes.
Las
causas
especiales
se
deben
contrarrestar
con
acciones
correctivas.
Las
causas
comunes son el centro de atención de las actividades permanentes para mejorar el proceso.
Las variaciones del proceso se pueden rastrear por dos tipos de cusas
1)
Común o (aleatoria), que es inherente al proceso
2)
Especial (o atribuible), que causa una variación excesiva.
El objetivo de una gráfica control no es lograr un estado de control estadístico como un
fin, sino reducir la variación.
Un elemento básico de las gráficas de control es que las muestras del proceso de interés
se han seleccionado a lo largo de una secuencia de puntos en el tiempo. Dependiendo de la
etapa del proceso bajo investigación, se seleccionara la estadística mas adecuada.
Además de los puntos trazados la grafica tiene una línea central y dos limites de control.
Estadística y Control de Calidad
Si
Unidad IV
todos los puntos de la grafica se encuentran entre los dos limites de control se
considera que el proceso esta controlado. Una señal fuera de control aparece cuando un
punto trazado cae fuera de los límites, lo cual se atribuye a
alguna causa asignable y
entonces comienza la búsqueda de tales causas.
Establecer una gráfica de control requiere los siguientes pasos:
1) Elegir la característica que debe graficarse.
2) Elegir el tipo de gráfica de control
3) Decidir la línea central que deben usarse y la base para calcular los límites. La línea
central puede ser el promedio de los datos históricos o puede ser el promedio deseado.
4) Seleccionar el subgrupo racional. Cada punto en una gráfica de control representa un
subgrupo que consiste en varias unidades de producto.
5) Proporcionar un sistema de recolección de datos si la gráfica de control ha de servir como
una herramienta cotidiana en la planta.
6)
Calcular
los
límites
de
control
y
proporcionar
instrucciones
específicas
sobre
la
interpretación de los resultados y las acciones que debe tomar cada persona en producción.
7) Graficar los datos e interpretar los resultados.
Limite de control superior
Valores observados
de X
Línea central
Limite de control inferior
Número de subgrupos (muestra)
Ejemplo de gráfica de control generalizada para promedios
Estadística y Control de Calidad
Unidad IV
Para finalizar este tema en el siguiente diagrama se muestra la clasificación de las
graficas de control para atributos y variables:
Estadística y Control de Calidad
Unidad IV
4.2 GRAFICOS DEL CONTROL PARA ATRIBUTOS
Muchas características de la calidad no pueden representarse convenientemente con
valores numéricos. En tales casos, cada artículo inspeccionado por lo general se clasifica
como conforme o disconforme respecto de las especificaciones para esas características de
la calidad. A las características de la calidad de este tipo se les llama
atributos.
El término atributos se utiliza en literatura sobre control de calidad para describir dos
situaciones:
1. Cada pieza producida es defectuosa o no defectuosa (cumple las especificaciones o no).
2. Una sola pieza puede tener uno o mas defectos y el numero de estos es determinado.
En el primer caso, una grafica de control esta basada en la distribución binomial; en el
último, la distribución de Poisson es la base para la grafica.
Se presentan dos cartas de control de atributos:
1.
Gráfica de control para la fracción disconforme o gráfica
2.
Gráfica de control de disconformidades o gráfica
Grafica
ejemplo
p.­
p
c
Se clasifica la unidad de observación en una de dos categorías alternas, por
pasa
o
no
; Se
especificaciones
pasa,
cumple
puede
con
rastrear
la
las
especificaciones
producción
de
y
no
unidades
cumple
con
defectuosas
en
las
la
muestra de observación.
Grafica
C.-
Cuando una observación consiste en la cantidad de defectos por unidad de
observación, se rastrean la cantidad de los defectos.
Grafica p para fracción de defectos.
Cuando un proceso esta en control,
la probabilidad de que
cualquier
pieza sea
defectuosa es p (p es la proporción a largo plazo de piezas defectuosas para un proceso en
control) y que diferentes piezas son independientes entre si, con respecto a sus condiciones.
Estadística y Control de Calidad
Unidad IV
Considérese una muestra de
numero de defectuosas y
pˆ
n
piezas obtenida en un tiempo en particular, y sea X el
n
= X/ . como X tiene una distribución binomial, E(X) =
np
y V(X)
np (1-p), por lo cual
=
(pˆ) = p V(pˆ) = _p (1-p)_
n
Del mismo modo, si np
E
normal. En el caso de que
p
≥10 y
n(1-p)
≥ 10,
pˆ
tiene aproximadamente una distribución
conocida (o una grafica basada en un valor fijo), los limites de
control son
_________
LCL =
p-3√
p (1-p)
n
_
_________
UCL =
p+3√
Si cada muestra esta formada por
n
esima muestra es xi/ , entonces
Por lo general, el valor de
de
n
pˆ , pˆ , pˆ
1
p
i
piezas, el numero de piezas defectuosas de la -
3,
2
p (1-p)_
n
_
. . . se trazan en la grafica de control.
puede estimarse de los datos. Supóngase que se dispone
k muestras de lo que se piensa es un proceso de control, y sea
k
pˆi
i=1____
= ∑
k
La estimación se utiliza en lugar de
La grafica
p
, en los limites de control antes citados.
para la fracción de piezas defectuosas tiene su línea central en la altura
y limites de control
_________
LCL =
p (1n
- 3√ _
)
_________
UCL =
p (1-
+ 3√ _
)_
n
si LCL es negativo, es sustituido por 0.
Ejemplo:
Se selecciona una muestra de 100 tazas de una figura especial de loza, durante cada
uno de 25 días sucesivos, y cada una se examina para ver si tiene defectos. Los números
resultantes de tazas no aceptables y sus correspondientes proporciones muestrales son los
siguientes:
Estadística y Control de Calidad
Unidad IV
día ( )
i
XI
p^I
1
7
0,07
2
4
0,04
3
3
0,03
4
6
0,06
5
4
0,04
6
9
0,09
7
6
0,06
8
7
0,07
9
5
0,05
10
3
0,03
11
7
0,07
12
8
0,08
13
4
0,04
14
6
0,06
15
2
0,02
16
9
0,09
17
7
0,07
18
6
0,06
19
7
0,07
20
11
0,11
21
6
0,06
22
7
0,07
23
4
0,04
24
8
0,08
25
6
0,06
Supóngase que el proceso estuvo en control durante este periodo, establezca límites de
control y construya una grafica
p. se tiene que ∑ pˆi = 1.52, dando:
= 1.52/25=.068 y
__________________
.
LCL = 0 0608 - 3√ (0.0608) (0.9392)/100 = 0.0608 - 0.0717 = -0.0109
__________________
UCL = 0.0608 + 3√ (0.0608) (0.9392)/100 = 0.0608 + 0.0717 = 0.1325
Por lo tanto el LCL se iguala a 0. la grafica de control muestra que todos los puntos están
dentro de los limites de control. Esto es congruente con la suposición de un proceso en
control.
Estadística y Control de Calidad
Unidad IV
p^i
0,1325
0,1125
0,0925
0,0725
0,0525
0,0325
0,0125
-0,0075
0
5
10
15
20
25
30
Grafica p
Grafica c para el numero de defectos
Ahora se considerara las situaciones en las cuales la observación en cada punto en el tiempo
es el número de defectos en una unidad. La unidad puede estar formada por una sola pieza
o un grupo de piezas. Se supone que el tamaño del grupo es el mismo en cada punto del
tiempo.
La grafica de control para el numero de piezas defectuosas esta basada en la distribución de
probabilidad
de
Poisson.
Si
Y
es
una
variable
aleatoria
de
Poisson con
parámetro
θ,
entonces
__
E(Y) = θ
σY = √ θ
Del mismo modo Y tiene aproximadamente una distribución normal cuando θ es grande
(θ≥10
será
suficiente
para
la
mayoría
de
los
casos).
Si
Y1,
Y2,
…,
Yn
son
variables
independientes de Poissson con parámetros
θ1, θ2,…
si θn. θ1=… = θn = θ (la distribución del numero de defectos por pieza es la misma
para cada pieza), entonces el parámetro de Poisson es ‫=ג‬
nθ.
Numero de defectos en una unidad
__
LCL = ‫ ג‬- 3√‫ג‬
__
UCL = ‫ ג‬+ 3 √‫ג‬
Con xi igual al numero total de defectos en la i-esima unidad (i= 1, 2, 3, …), se trazan puntos
con alturas x1, x2, x3, … en la grafica.
Estadística y Control de Calidad
Unidad IV
Por lo general, el valor de ‫ ג‬debe estimarse de los datos. Como E(Xi) = ‫ג‬, es natural utilizar la
estimación ‫ = ^ג‬x testada (con base en x1, x2, xk).
La grafica c para el numero de defectos en una unidad tiene su línea central a una altura
y
___
LCL =
– 3 √
UCL =
+ 3 √
___
Si LCL es negativo, se sustituye por 0.
Ejemplo.
Una empresa fabrica paneles metálicos, a veces aparecen fallas en el acabado de estos
paneles, por lo cual la compañía desea establecer una grafica de control para encontrar el
número de fallas. Los números de fallas de cada uno de 24 paneles a los que se les hizo el
muestreo a intervalos regulares de tiempo son los siguientes:
7
10 9
13 9
Con Σxi = 2.35 y ‫= ^ג‬
12 13 6
21 10 6
8
13 7
3
5
12 7
11 8
10
11 14 10
= 235/24 = 9.79
Los límites de control son
__________
LCL = 9.79 – 3 √ 9.79 = 0.40
___________
UCL = 9.79 + 3√ 9.79 = 19.18
El
punto correspondiente al
decimoquinto panel
se encuentra arriba del
UCL, tras una
investigación se encontró que la pasta empleada en ese panel tenia una viscosidad baja, al
eliminar esta observación del conjunto de datos resulta
limites de control
__________
LCL = 9.30 – 3 √ 9.30 = 0.15
___________
UCL = 9.30 + 3√ 9.30 = 18.45
= 214/23 = 9.30 y los nuevos
Estadística y Control de Calidad
Unidad IV
25
20
15
10
5
0
0
5
10
15
Grafica c
20
25
30
Estadística y Control de Calidad
Unidad IV
4.3 GRÁFICAS X y R
Las cartas de control
X y R se usan ampliamente para monitorear la media y la variabilidad.
El control del promedio del proceso, o nivel de calidad medio, suele hacerse con la gráfica de
control para medias, o gráfica
X . La variabilidad de proceso puede monitorizar con una
gráfica de control para el rango, llamada gráfica R. Generalmente, se llevan gráficas X y R
separadas para cada característica de la calidad de interés.
Las gráficas X y R se encuentran entre las técnicas estadísticas de monitoreo y control de
procesos en línea más importantes y útiles.
Los pasos para crear las gráficas se irán detallando paso a
paso con un ejemplo
de
contenido de plomo en agua.
Creando una gráfica R en Excel
Toma de muestras
Periódicamente se toma una pequeña muestra (por ejemplo, de cinco unidades) del proceso,
y se calculará el promedio (X) y el rango (R) de cada una. Debe recolectarse un total de al
menos 50 medias individuales (esto es, diez muestras de cinco cada una) antes de calcular
los límites de control. Éstos se establecen a +3o para los promedios y rangos muestrales.
Los valores de X y R se grafican por separado contra sus límites a +3o.
Por ejemplo:
Se ha obtenido una gráfica del contenido de plomo en partes por billón de 5 muestras de
agua registradas diariamente por un periodo de 5 días, que se muestra a continuación:
Muestras de agua
Día
1
2
3
4
1
13
8
2
5
5
8
2
0
6
1
9
15
3
4
2
4
3
4
4
3
15
8
3
5
5
5
10
5
4
0
6
9
5
13
7
7
7
0
4
4
3
9
8
9
3
0
6
0
9
14
0
0
5
3
10
3
9
5
0
2
11
5
8
0
7
8
12
3
2
2
7
4
13
5
11
14
8
3
14
13
5
5
12
7
15
7
0
1
0
6
16
12
7
10
4
13
17
9
4
4
8
9
18
6
1
1
3
13
Estadística y Control de Calidad
Unidad IV
19
7
0
5
7
2
20
10
0
10
12
7
21
3
7
5
10
12
22
3
0
10
5
4
23
3
3
0
6
9
24
0
2
3
6
7
25
2
3
5
4
10
26
3
1
4
2
4
27
2
4
5
13
4
28
0
16
7
2
11
29
3
5
9
8
6
30
9
7
10
13
0
Estos datos servirán para el desarrollo de las gráficas X y R. Éstos deberán ser introducidos
en una hoja de Excel como se muestra en el cuadro.
Cálculo del rango R de las muestras
A continuación, deberán calcularse los rangos promedios de las muestras. El rango es la
diferencia del valor mayor de la muestra menos el valor menor de la muestra, esto es, de
manera muy abstracta, R = M – m, donde M es el mayor y m es el menor.
Aplicando
este
conocimiento a
nuestro
ejemplo, se calculan los valores de los rangos
muestrales de la siguiente forma:
Muestras de agua
Día
1
2
3
4
5
Ri
1
13
8
2
5
8
11
M=13 y m=2: entonces 13 – 2 =11
2
0
6
1
9
15
15
M=15 y m=0: entonces 15 – 0 =15
3
4
2
4
3
4
2
4
3
15
8
3
5
12
M=15 y m=3: entonces 15 – 3 =12
5
5
10
5
4
0
10
M=10 y m=0: entonces 10 – 0 =10
M= 4
y m=2: entonces
4 –2 = 2
Y así sucesivamente con todos los valores de la gráfica.
Cálculo de la R promedio (Línea Central)
Enseguida, se calculará el valor de R , que es el promedio de los rangos muestrales. Esto se
obtiene sumando las Ri obtenidas en todas las muestras y dividiéndolo entre el número de
observaciones realizadas.
En el ejemplo se tiene que n = 30 porque cada uno de los 30 días se hizo 1 muestra; la suma
de los rangos deberá dividirse, entonces, entre 30. Esto puede calcularse con la función de
Excel PROMEDIO seleccionando la columna de datos correspondiente a Ri. Se recomienda
crear un apartado en el diseño de la hoja de Excel que se esté utilizando donde se guarden
estos valores, ya que se necesitarán para cálculos posteriores.
Hasta ahora, la tabla debe estar como sigue:
Estadística y Control de Calidad
Unidad IV
Muestras de agua
Día
1
2
3
4
5
Ri
1
13
8
2
5
8
11
2
0
6
1
9
15
15
3
4
2
4
3
4
2
4
3
15
8
3
5
12
Central
5
5
10
5
4
0
10
central
6
9
5
13
7
7
8
7
0
4
4
3
9
9
8
9
3
0
6
0
9
9
14
0
0
5
3
14
10
3
9
5
0
2
9
11
5
8
0
7
8
8
12
3
2
2
7
4
5
13
5
11
14
8
3
11
14
13
5
5
12
7
8
15
7
0
1
0
6
7
16
12
7
10
4
13
9
17
9
4
4
8
9
5
18
6
1
1
3
13
12
19
7
0
5
7
2
7
20
10
0
10
12
7
12
21
3
7
5
10
12
9
22
3
0
10
5
4
10
23
3
3
0
6
9
9
24
0
2
3
6
7
7
25
2
3
5
4
10
8
26
3
1
4
2
4
3
27
2
4
5
13
4
11
28
0
16
7
2
11
16
29
3
5
9
8
6
6
30
9
7
10
13
0
13
El valor de R = 9.167, que es valor del Límite
para
la
de
Gráfica
nuestras
R,
y
es
la
línea
observaciones
individuales.
* Añádase este valor
al
listado
de valores
importantes.
Cálculo de Límites Superior e Inferior de los Rangos Muestrales
Como ya se ha explicado, los límites superior e inferior nos ayudan a deducir si nuestro
gráfico se encuentra dentro o fuera de control. Por esto es necesario ubicar su lugar en el
histograma ( que se hará posteriormente) con ayuda de las siguientes fórmulas abreviadas:
Limite de control superior =
Limite de Control Inferior =
D R
DR
4
3
Donde D3 y D4 son constantes aplicadas en nuestro ejemplo, y que se encuentran en la
siguiente tabla:
Estadística y Control de Calidad
Unidad IV
Número de
Factor para la
observaciones en
una muestra
estimación de R:
A2
D3
D4
d2=R/s
2
1.880
0
3.268
1.128
3
1.023
0
2.574
1.693
4
0.729
0
2.282
2.059
5
0.577
0
2.114
2.326
6
0.483
0
2.004
2.534
7
0.419
0.076
1.924
2.704
8
0.373
0.136
1.864
2.847
9
0.337
0.184
1.816
2.97
10
0.308
0.223
1.777
3.078
11
0.285
0.256
1.744
3.173
12
0.266
0.284
1.717
3.258
13
0.249
0.308
1.692
3.336
14
0.235
0.329
1.671
3.407
15
0.223
0.348
1.652
3.472
La selección de las constantes D dependerán del número de observaciones en nuestra
muestra; como nuestro ejemplo consta de 5 observaciones, D3=0 y D4=2.114.
Así, se sustituye el valor seleccionado en la fórmula y se obtiene que
Limite de control superior =
D R
4
Limite de control superior = (2.114) ( 9.167) = 19.38*
Limite de Control Inferior =
DR
3
Limite de control superior = (0)(9.167) = 0*
* Estos valores se usarán en la elaboración del gráfico. Agregue una columna del mismo
número de filas de muestras (en este caso, 30) por cada valor obtenido, es decir, 1 columna
de 30 filas con el valor 19.38 (en cada una de las filas) y otra columna de 30 filas con el valor
0. Esto es para crear una línea indicativa de los límites en la creación del gráfico. Si lo desea,
haga lo mismo con el valor del límite central de R.
Crear el Gráfico R
En Excel, con ningún valor seleccionado y
las columnas ya creadas, siga los siguientes
pasos:
1)
Dé clic en el Asistente para Gráficos, elija el tipo de gráfico de líneas y Siguiente>.
2)
Dé clic en la pestaña “Serie” y elimine todas las gráficas hechas por Excel, si las hay,
dando clic en Quitar.
3)
Dé clic en Agregar
4)
Como ‘Rótulos de los ejes de categorías (X)’, dé clic en el icono y proponga los
valores de los días del 1 al 30. Dé ENTER. Éstos son los valores x.
5)
Como ‘Valores’ proponga todos los valores de Ri de la tabla y dé ENTER. Éstos son
los valores y.
6)
Para los límites dé clic en Agregar, dé los mismos valores de X pero como Y proponga
a los valores obtenidos como Límite Superior, en este caso, la columna con el valor
19.38.
Estadística y Control de Calidad
Unidad IV
7)
Repita la operación pero con el valor de Límite Inferior =0 y dé clic en Siguiente>.
8)
Cambie las opciones del gráfico como lo desee y dé clic en Finalizar.
9)
Se ha creado el gráfico R de las muestras. Si lo desea, cambie el formato del tipo de
Gráfico de los límites dando clic derecho sobre ellos y eligiendo la opción ‘Tipo de
gráfico’.
Gráfico R
25
20
15
10
5
0
0
5
10
15
20
25
30
Creando una gráfica X en Excel
En base a la primera tabla de datos, se realizará ahora un gráfico X, que es muy parecida a
la anterior; la diferencia radica en que en lugar de tomar R como valores de Y, se toma el
valor del promedio de X.
Cálculo de los promedios X de las muestras (Línea Central)
En la tabla de datos se agrega una columna y se realiza el cálculo de los promedios, que es
la suma de los elementos de la primera muestra
X = (m1 +
m2
+ ... +
mn)/
n. En Excel puede
m entre el número de elementos, esto es,
utilizarse la fórmula (=PROMEDIO(m1:mn)),
adecuado a cada ejercicio en particular.
Aplicándolo al ejemplo, se tiene que el
valor de n=5 porque son 5 muestras en total,
obteniendo los valores de X :
Muestras de agua
Día
1
2
3
4
5
Xi
1
13
8
2
5
8
7.2
= (13+8+2+5+8)/5 = 7.2
2
0
6
1
9
15
6.2
= (0+6+1+9+15)/5 = 6.2
3
4
2
4
3
4
3.4
= (4+2+4+3+4)/5
4
3
15
8
3
5
6.8
= (3+15+8+3+5)/5 = 6.8
5
5
10
5
4
0
4.8
= (5+10+5+4+0)/5 = 4.8
6
9
5
13
7
7
8.2
= (9+5+13+7+7)/5 = 8.2
Y así sucesivamente con todos los demás datos de la tabla.
=
3.4
Estadística y Control de Calidad
Unidad IV
Cálculo del promedio de promedios (
)
Como su nombre lo indica, el promedio de promedios
se calcula sacando el promedio de
los resultados obtenidos de X .
El valor de
será posteriormente utilizado en las fórmulas de cálculo de los límites superior e
inferior de la gráfica, así que es importante conservar en la mente dicho valor.
Por esto se recomienda que una vez calculado, se enmarque o copie este valor en la misma
hoja de Excel pero en un espacio especial para facilitar la resolución de dichas fórmulas.
Ya calculados todos los promedios X
en la tabla, se calcula el valor de
con la fórmula de
Excel PROMEDIO, seleccionando la columna obtenida de valores X . Hasta ahora, se tiene la
siguiente tabla:
Muestras de agua
Día
1
2
3
4
5
Xi
1
13
8
2
5
8
7.2
2
0
6
1
9
15
6.2
3
4
2
4
3
4
3.4
El valor de
4
3
15
8
3
5
6.8
del Límite Central para la Gráfica X.
5
5
10
5
4
0
4.8
*
6
9
5
13
7
7
8.2
valores importantes.
7
0
4
4
3
9
4
8
9
3
0
6
0
3.6
9
14
0
0
5
3
4.4
10
3
9
5
0
2
3.8
11
5
8
0
7
8
5.6
12
3
2
2
7
4
3.6
13
5
11
14
8
3
8.2
14
13
5
5
12
7
8.4
15
7
0
1
0
6
2.8
16
12
7
10
4
13
9.2
17
9
4
4
8
9
6.8
18
6
1
1
3
13
4.8
19
7
0
5
7
2
4.2
20
10
0
10
12
7
7.8
21
3
7
5
10
12
7.4
22
3
0
10
5
4
4.4
23
3
3
0
6
9
4.2
24
0
2
3
6
7
3.6
25
2
3
5
4
10
4.8
26
3
1
4
2
4
2.8
27
2
4
5
13
4
5.6
28
0
16
7
2
11
7.2
29
3
5
9
8
6
6.2
30
9
7
10
13
0
7.8
Añádase
es de 5.59, que es el valor
este
valor
al
listado
de
Estadística y Control de Calidad
Unidad IV
Cálculo de Límites Superior e Inferior de X
Los límites se calculan con las siguientes fórmulas abreviadas:
Límite de control superior =
Límite de control inferior =
Donde
X+AR
2
X-AR
2
X = Gran promedio = promedio de los promedios muestrales
R
= Promedio de los rangos muestrales
A2 = Constante
El valor de la constante puede consultarse en la tabla previamente dada, en el punto “Cálculo
de Límites Superior e Inferior de los Rangos Muestrales”, que es igual a 0.577 para nuestro
ejemplo de 5 observaciones. Como los valores de X y R han sido calculados a lo largo de
este ejemplo, sólo se sustituyen en las fórmulas de la siguiente forma:
Límite de Control superior =
X+AR
2
Límite de Control superior = (5.59) + (0.577)(9.17) = 10.88*
Límite de control inferior =
X-AR
2
Límite de control inferior = (5.59) - (0.577 (9.17) = 0.30*
* De la forma anterior, estos valores se usarán en la elaboración del gráfico. Agregue una
columna del mismo número de filas de muestras (en este caso, 30) por cada valor obtenido,
es decir, 1 columna de 30 filas con el valor 10.88(en cada una de las filas) y otra columna de
30 filas con el valor 0.30. Esto es para crear una línea indicativa de los límites en la creación
del gráfico. Si lo desea, haga lo mismo con el valor del límite central de X.
Crear el gráfico X
Como ya se ha dicho, la diferencia de los gráficos es en la selección de los valores de Y.
Realice la gráfica como se indica en ‘Crear el gráfico R’, pero cambie los valores de Y por los
valores de X promedio de las muestras. De igual forma agregue series que permitan apreciar
los límites superior e inferior de la gráfica.
El resultado será el histograma siguiente.
Estadística y Control de Calidad
Unidad IV
Gráfico X
12
10
8
6
4
2
0
0
5
10
15
20
25
30
Interpretación de las Gráficas
Se colocan las gráficas para X y R una encima de la otra de manera que el promedio y el
rango para cualquier subgrupo se encuentren en la misma línea vertical. Observe si alguna
de ellas o ambas indican una falta de control para ese subgrupo.
Las X fuera de los límites de control son seña de un cambio general que afecta a todas las
piezas posteriores al primer subgrupo fuera de los límites. El registro que se guarda durante
la recolección de datos, la operación del proceso y la experiencia del trabajador deben
estudiarse para descubrir la variable que pudo haber causado que saliera de los límites de
control. Las causas comunes son un cambio en el material, el personal, la preparación de la
máquina, el desgaste de las herramientas, la temperatura o la vibración.
Las R fuera de los límites de control indican que la uniformidad de proceso ha cambiado. Las
causas comunes son un cambio en el personal, un aumento en la variabilidad del material o
desgaste excesivo en la maquinaria del proceso.
Una sola R fuera de control puede ser causada por un cambio en el proceso ocurrido
mientras se tomaba la muestra del subgrupo.
Se buscan patrones poco usuales o no aleatorios. Nelson (1984, 1985) proporciona ocho
pruebas para detectar esos patrones en las graficas de control usando límites de control a
3σ :
Prueba 1. Un punto fuera de la zona A.
Prueba 2. Nueve puntos seguidos en la zona C.
Prueba 3. Seis puntos seguidos con aumento o disminución estables.
Prueba 4.Catorce puntos seguidos alternando arriba y abajo.
Prueba 5. Dos de cada tres puntos seguidos en la zona A o más allá.
Prueba 6. Cuatro de cada cinco puntos seguidos en la zona B o más allá.
Prueba 7. Quince puntos seguidos en la zona C (arriba y debajo de la recta central).
Prueba 8. Ocho puntos seguidos a ambos lados de la recta central.
Estadística y Control de Calidad
Unidad IV
4.4 ANALISIS DE LA CAPACIDAD DEL PROCESO
La capacidad del proceso es la forma en que se compara la variabilidad inherente de un
proceso con las especificaciones o requerimientos del producto.
Las técnicas estadísticas pueden ser útiles en el
actividades de desarrollo
previas a la
ciclo
de un producto, incluyendo las
manufacturas, para
cuantificar la
variabilidad del
proceso, para analizar esta variabilidad respecto de los requerimientos o especificaciones del
producto y para ayudar al personal de desarrollo y manufactura a eliminar o reducir en gran
medida esta variabilidad. A esta actividad general se le llama análisis de capacidad del
proceso.
Evidentemente, la variabilidad del proceso es una medida de la uniformidad de la salida. Hay
2 formas de conceptualizar esta variabilidad:
1.
La variabilidad natural o inherente en un tiempo especificado; es decir, la variabilidad
“instantánea”.
2.
La variabilidad con el tiempo
El análisis de capacidad del proceso se define como el estudio de ingeniería para estimar la
capacidad del
condición
de
proceso.
una
La estimación
distribución
de
de
la
capacidad
probabilidad
que
del
tenga
dispersión (desviación estándar) especificados. De manera
proceso puede estar
una
forma,
centro
en la
(media)
y
alternativa, la capacidad del
proceso puede expresarse como un porcentaje fuera de las especificaciones. Sin embargo,
las especificaciones son necesarias para realizar el análisis de capacidad del proceso.
El
análisis
de
capacidad
del
proceso
es
una
parte
vital
de
un
programa
integral
de
mejoramiento de calidad. Entre los usos principales de los datos de un análisis de capacidad
del proceso se encuentran los siguientes:
1.
Predecir el grado de variabilidad que exhibirán los procesos. Esta información de
capacidad
proporcionará
información
importante
para
establecer
límites
de
especificación realistas.
2.
Seleccionar, entre procesos que compiten, el proceso más adecuado para que las
tolerancias se cumplan.
3.
Planear
la
interrelación
entre
procesos
secuenciales.
La
cuantificación
de
las
capacidades respectivas del proceso con frecuencia señala el camino para encontrar
una solución.
4.
Proporcionar una base cuantitativa para establecer un programa de verificación de
control periódico del proceso y reajustes.
5.
Asignar máquinas a los tipos de trabajos para los cuales son más adecuadas.
6.
Probar las teorías de las causas de defectos durante los programas de mejoramiento
de calidad.
7.
Servir como base para la especificación de los requerimientos de calidad para las
máquinas compradas.
Por tanto, el análisis de capacidad de proceso es una técnica que tiene aplicación en muchos
segmentos del ciclo del producto, incluyendo el diseño de producto y procesos, la fuente de
proveedores, la planeación de la producción o la manufactura, y la propia manufactura.
Estadística y Control de Calidad
Unidad IV
La fórmula para la capacidad del proceso que más se usa es:
Capacidad del proceso = +3 (un total de 6 σ )
Donde σ = la desviación estándar del proceso cuando se encuentra en estado de control
estadístico, es decir si la influencia de fuerzas externas o cambios repentinos.
Si
el
proceso está
centrado
en
la
especificación
nominal
y
sigue
probabilidad normal, 99.73% de la producción caerá a menos de 3 σ
una
distribución
de
de la especificación
nominal. Sólo el 0.27% de la salida del proceso quedará fuera de los límites de tolerancia
natural. Es necesario recordar dos puntos:
1.
El valor 0.27% fuera de las tolerancias naturales suena pequeño, pero corresponde a
2700 partes de millón disconformes.
2.
Si la distribución de salida del proceso no es normal, entonces el porcentaje de la
salida quedará fuera de +3 σ puede diferir considerablemente de 0.27%.
Una
razón
importante
para
cuantificar
la
capacidad
del
proceso
es
poder
calcular
la
capacidad del proceso de mantener las tolerancias del producto. Para procesos que se
encuentran un estado de control estadístico, una comparación de la variación entre 6 σ y los
límites de tolerancia permite un cálculo rápido de porcentaje de unidades defectuosas,
mediante la teoría estadística.
Quienes planean intentan seleccionar procesos que tengan 6 σ de la habilidad del proceso
dentro de la amplitud de tolerancia. Una medida de esta relación es la tasa de capacidad:
Cp = Tasa de capacidad =
Rango de especifica ción
Capacidad del proceso
=
LES - LEI
6s
Donde LES= Límite de especificación superior
LEI = Límite de especificación inferior
Un proceso que cumple bien con los límites de especificación (rango de especificación =
+3 σ ) tiene un Cp de 1.0. Lo crítico de muchas aplicaciones y la realidad de que el promedio
del proceso no permanecerá en el punto medio del rango de especificación sugiere que Cp
debe ser al menos 1.33.
Estadística y Control de Calidad
Unidad IV
Tabla de los Índices del estudio de la capacidad del proceso:
ICP
Decisión
Más que adecuado, incluso puede exigirse
más en términos de su capacidad. Posee
1.33<ICP<2.22
capacidad de diseño.
1<ICP<1.33
Adecuado para lo que fue diseñado. Requiere
control estrecho si se acerca al valor de 1.
No es adecuado para cumplir con el diseño
inicial.
0.67<ICP<1
Requiere monitoreo constante.
No es adecuado para cumplir con el diseño
ICP<0.67
inicial.
El índice de capacidad cpk
La capacidad del proceso, según se mide con Cp, se refiere a la variación en un proceso
alrededor del valor promedio.
Así, el índice Cp mide la capacidad
potencial,
suponiendo que el promedio del proceso es
igual al punto medio de los límites de especificación y que el proceso está operando bajo
control estadístico; como con frecuencia el promedio no se encuentra en el punto medio, es
útil tener un índice de habilidad que refleje ambas variaciones y la localización del promedio
del proceso. Tal índice es Cpk.
El índice Cpk refleja la proximidad de la media actual del proceso al límite de especificación
superior (LES) o bien, al límite de especificación inferior (LEI). Cpk se estima mediante:
ˆ
C pk
é X - LEI LES - X ù
= minê
,
ú
3s
ë 3s
û
Si el promedio actual es igual al punto medio del rango de especificación, entonces Cpk = Cp.
Entre más alto sea el valor de Cpk, más baja será la cantidad de producto que esté fuera de
los límites de especificación.
Los siguientes son dos tipos de estudios de capacidad del proceso:
1.
Estudio del potencial del proceso. En este estudio se obtiene una estimación de lo que
puede
hacer
un
proceso
bajo
ciertas
condiciones,
es
decir,
la
variabilidad
en
condiciones definidas a corto plazo para un proceso en estado de control estadístico.
El índice Cp estima la capacidad del proceso.
2.
Estudio del desempeño del proceso.
En este estudio, una estimación de la habilidad
del proceso proporciona un panorama de lo que el proceso está haciendo durante un
periodo largo. También se supone un estado de control estadístico. El índice Cpk
estima la capacidad.
Estadística y Control de Calidad
Unidad IV
4.5 GRÁFICAS DE CONTROL PARA NO CONFORMIDADES
Un artículo disconforme es una unidad del producto que no satisface una o más de las
especificaciones para ese producto. Cada punto específico en el que no se satisface una
especificación resulta en un defecto o disconformidad. Sin embargo dependiendo de su
naturaleza y gravedad, es muy posible que una unidad contenga varias disconformidades y
no
se
clasifique
como
disconforme.
Hay
muchas
situaciones
prácticas
en
las
que
es
preferible trabajar directamente con el número de defectos o disconformidades en ves de
usar la fracción disconforme.
Es posible desarrollar cartas de control para el número total de disconformidades en una
unidad o bien para el número promedio de disconformidades por unidad.
Para la revisión de los productos hay que describir dos situaciones:
1. Cada pieza producida es defectuosa o no defectuosa (cumple las especificaciones o no).
2. En sola pieza puede tener uno o mas defectos y el numero de estos es determinado.
Hay dos diagramas de control de atributos para las no conformidades:
La
primera
(la
gráfica
p)
se
refiere
a
la
fracción
defectiva
por
no
cumplir
con
las
especificaciones.
La segunda (la gráfica
Gráficos
np) se refiere al control del número de artículos no conformes.
np
Fundamentos teóricos
BASADOS: en el número de elementos en una muestra o subgrupo que son juzgados como
disconformes en base a una definición operacional.
SE LLAMAN ASÍ PORQUE: El número de elementos disconformes en una muestra se
suponen como la proporción de elementos disconformes,
muestra,
n, así que son
llamados gráficos
np.
Calculando los límites de control para gráficos
Se deberá estimar la probabilidad,
p, conforme al tamaño de la
np
p, de que el proceso produzca un elemento disconforme.
al menos de 20 a 25 muestras o
Para obtener una buena estimación, se necesita evaluar
subgrupos y contar el número de elementos disconformes en cada uno.
­
La mejor estimación para p será p , la media proporcional de elementos disconformes.
Las fórmulas para calcular los límites de control, la media proporcional y la línea central del
gráfico son las siguientes:
Estadística y Control de Calidad
Unidad IV
-
* p = Numero total de elementos disconformes en todos los grupos
Número total de elementos en todos los grupos
* Línea central =
np­ , donde n = el tamaño del subgrupo común
_________
* UCL =
np- + 3√ np- (1 – p-)
___________
* LCL =
- - 3√
np
np- (1 – p-)
A continuación, se verá un ejemplo para comprender con más detalle el funcionamiento de
las fórmulas y el desarrollo de los histogramas
Creando un gráfico
np.
np
Para realizar un gráfico de este tipo, se siguen principalmente 4 pasos básicos:
1)
Captura de datos en Excel
2)
Cálculo de la proporción disconforme
3)
Sustitución en las fórmulas
4)
Creación del gráfico en Excel
Los datos se capturan primeramente en Excel, creando las columnas necesarias. Es
importante aclarar que los gráficos
np se utilizan cuando el tamaño de las muestras es el
mismo cada vez que se toman; de ahí que el tamaño de la muestra, n, es constante.
Para aplicar estos conocimientos se utilizará el siguiente ejemplo.
Una manufacturera de esponjas de gasa toma una muestra de 600 esponjas diariamente, las
inspecciona y registra el número de esponjas defectuosas. En total hay 9 muestras de
esponjas, representados en la siguiente tabla:
NUMERO DE ESPONJAS DE GASA DISCONFORMES EN 32
MUESTRAS DE TAMAÑO n =32
Día
Proporción
Elementos
n
disconformes
disconforme
-
p = (x/n)
1
21
600
0.035
=21/600
2
22
600
0.037
=22/600
3
20
600
0.036
=20/600
4
21
600
0.035
.
5
23
600
0.038
6
39
600
0.065
7
18
600
0.030
8
24
600
0.040
9
20
600
0.033
.
.
.
.
y así
sucesivamente.
La proporción disconforme es el resultado de la división de los elementos disconformes entre
el tamaño de la muestra, en este caso, 600.
Estadística y Control de Calidad
Unidad IV
A continuación, se sustituyen los valores en las fórmulas para calcular los valores de los
límites. Así, se tiene que
-
p = Numero total de elementos disconformes en todos los grupos
Número total de elementos en todos los grupos
-
p =
208
(suma de la columna ‘Elementos disconformes’)
9(600) ( suma de los elementos muestreados)
-
p = 0.0385
Línea central =
np­ , donde n = el tamaño del subgrupo común
Línea central = (600)(0.0385) = 23.1*
_________
UCL =
np- + 3√ np- (1 – p-)
UCL = 23.1 + 3√ 23.1 (1 – 0.0385) = 37.8*
=
___________
LCL =
np- - 3√ np- (1 – p-)
LCL = 23.1 - 3√ 23.1 (1 – 0.0385) = 8.96 *
* Estos valores se usarán en la creación del gráfico
np. Para realizar el histograma, siga los
pasos del subtema “4.3 GRÁFICAS X Y R”, en la sección ‘Crear el gráfico R’. Los pasos son
básicamente los mismos, sólo basta sustituir el valor de los elementos disconformes en lugar
de los valores de R como eje x, y los valores de los límites nuevos.
La gráfica resultante es
Gráfico np para esponjas de gasas n=600
50
lartseum atneuC
40
30
20
10
0
1
2
3
4
5
6
Número muestral
7
8
9
Estadística y Control de Calidad
Unidad IV
Gráficos p
Fundamentos teóricos
BASADOS: En la distribución binomial y requiere que se cumplan las tres primeras
np. Al contrario del np, los gráficos p pueden ser usados para
tamaños de muestra iguales o diferentes.
SE LLAMAN ASÍ PORQUE: Emplean la proporción de elementos disconformes en las
muestras en lugar de el número de disconformidades.
suposiciones del gráfico
Calculando los límites de control para gráficos
p
Las finalidades principales de conocer los límites de control de la gráfica
-
p, son:
Poner a la atención de la dirección cualesquiera cambios en el grado promedio de
calidad.
-
Descubrir los puntos altos fuera de control que requieren actuar
-
Descubrir los puntos bajos fuera de control que indiquen normas menos estrictas para
inspección o causas erráticas de mejoramiento de calidad
Las fórmulas que nos permiten encontrar los valores de los límites cuando el tamaño de la
muestra es igual son:
_________
*LCL =
p-3√
p (1-p)
n
_
_________
*UCL =
p +3√
p (1-p)_
n
_
_________
*Sp
=
√
p (1-p)
n
_
(conocido como Error estándar de la proporción)
Cuando el tamaño de la muestra es diferente, la
n se encuentra con la fórmula
n- = Número total de elementos en consideración
Número total de subgrupos
A continuación se aplicarán estas fórmulas en el desarrollo del gráfico
Creando un gráfico
p.
p
En base al ejemplo anterior de las muestras de gasas, se creará un nuevo gráfico siguiendo
los pasos para un gráfico
p.
Para este tipo de gráfico de disconformidad, la diferencia radica que en lugar de tomar el
número de elementos disconformes como Y, se utiliza la proporción disconforme de la tabla
en cada observación.
Los límites se obtienen con las fórmulas correspondientes, obteniendo
LCL = -0.015
UCL = 0.062
Sp = 0.0078
Estadística y Control de Calidad
Unidad IV
De este modo, la gráfica obtenida es
Gráfico p para esponjas de gasas n=600
0.08
nóicroporP
0.06
0.04
0.02
0
1
2
3
4
5
6
7
8
9
Muestras
Hay algunos casos en los que el tamaño de las muestras es distinto cada vez. En esos casos
se utiliza la fórmula de
n
-
(mencionada anteriormente) para sacar un promedio del tamaño
muestral, y posteriormente se hace la sustitución en las fórmulas.
Estadística y Control de Calidad
Unidad IV
4.6 PROCEDIMIENTOS ESPECIALES PARA EL CONTROL DE PROCESOS
Algunos temas especiales relativos a los gráficos
Gráficos De Control Con Tamaño De Subgrupo Variable
Siempre que sea posible es conveniente tener un tamaño de subgrupo constante. Si
esto no puede hacerse, los límites en los gráficos
Una vez que se ha estimado
´,
s
`XyR
deben ser variables.
estos límites para diversos tamaños de muestra pueden
obtenerse utilizando los factores y fórmulas. En donde los datos utilizados para estimar
´
s
incluyen subgrupos de diversos tamaños.
Gráficos R O Gráficos
s Donde Los Gráficos `X No Son Apropiados
En algunos casos los subgrupos
pueden ser comparables en su dispersión aunque no
sean comparables en sus medias. Si se analizan muestras que tienen contenido químico
algo
diferente,
los
promedios
de
los
subgrupos
no
son comparables.
Sin
embargo,
la
dispersión de los subgrupos refleja la capacidad de un analista y un procedimiento analítico
para reproducir resultados por medio de varias determinaciones similares. El
control de R o
gráfico de
s proporciona una base para juzgar si esta dispersión parece estar influida por
un sistema de causas constantes.
Gráficos
`X
Y
s Con Subgrupos Grandes
Algunas veces sucede que se dispone de datos sobre medias y desviaciones estándar de
alguna variable medida, procedentes de diferentes fuentes. Puede ser conveniente aplicar
una prueba de homogeneidad a estas cifras para ver si hay una clara evidencia
de que las_
diferentes fuentes representan diferentes sistemas de causas. Los gráficos de control de X y
s constituyen un procedimiento simple
de prueba para este propósito
Límites De Precaución En Los Gráficos De Control
Algunos autores sobre control estadístico de calidad son partidarios del uso de dos
`X. Los límites externos, llamados algunas veces límites
conjuntos
de límites en los gráficos
de acción
son los límites convencionales casi siempre en 3-sigma o –si se utilizan límites de
probabilidad
precaución
0.002—en
3.09-sigma.
Los
límites
internos
se
recomienda
límites de
y se encuentran casi siempre en 2-sigma o –si se utilizan límites de probabilidad
0.05 – en 1.96-sigma
Problemas Que Acarrea Una Mala Interpretación De La Relación Entre Los Límites Del
Gráfico De Control Y Los Límites De La Especificación
Siempre que se introduce un gráfico de control de
aparece
una
fuente
de
confusión.
Cuando
las
`X
en operaciones de producción,
especificaciones
se
aplican
a
valores
individuales, los límites de la especificación tienden a confundirse con los límites del gráfico
de control. Esta confusión existe en muchas mentes del personal de taller, inspectores, e
incluso ingenieros directores, lo cual conduce a una diversidad de problemas.
Representación De Los Totales Del Subgrupo
Un sistema utilizado en muchas plantas consiste en representar en el gráfico de control la
suma de
n
observaciones de cada subgrupo en lugar de su media. Si se representan los
Estadística y Control de Calidad
Unidad IV
totales, los valores que aparecen en el gráfico no son comparables con los límites de
especificación; de ahí que, en este punto, la probabilidad de confusión queda muy reducida.
Este tipo de gráfico no es si no un gráfico
`X
convencional, con la escala aumentada n
veces. Los valores de los límites y de la línea central,
son los valores_ del gráfico
multiplicados por n. Cualquier conclusión que se saque del gráfico
`X
X, puede hacerse
también a partir de los gráficos de los totales.
Algunos procedimientos especiales relacionados.
Gráficos Para Las Mediciones Individuales
Cuando el personal del taller no entiende los gráficos de medias una forma de evitar
interpretaciones
erróneas
individuales. En estos
consiste
en
no
representar
las
medias,
sino
las
mediciones
se dibujan correctamente los límites de la especificación que debe
aplicarse a las mediciones individuales.
Este tipo_ de gráfico puede ser mejor que nada, pero es mucho menos satisfactorio que
un gráfico
X convencional, basado en un tamaño de subgrupo de 4 o 5. En general este tipo
de
es inferior a
gráfico
los
gráficos de
control
convencionales porque
no
ofrecen
una
panorámica clara de los cambios que tienen lugar en el proceso, ni siquiera una prueba
rápida de la existencia de causas atribuibles de variación.
Combinación Del
Gráfico De Mediciones Individuales Y El Gráfico De Medianas
Si se desean representar las mediciones individuales, se sugiere que se construya un
gráfico que refleje
también la tendencia central de los subgrupos. Un gráfico así podría ser
independiente. O bien, el gráfico de control
de la tendencia central podría superponerse al
gráfico de mediciones individuales.
El esquema más conveniente para esta superposición de gráficos, consiste en combinar
un gráfico de mediciones individuales con un gráfico de medianas.
La conveniencia de este
último es mayor cuando el subgrupo contenga un número de mediciones impar : 3,5 o 7.
En cualquier de estos gráficos combinados, los valores individuales pueden examinarse
con respecto a los límites de tolerancia respetados en el gráfico; lo mismo pude hacerse con
las medianas en relación a sus límites de control.
Gráficos
De
Control
De
Medianas
Entre
Subgrupos,
Empleando
Medianas
De
Datos
Estadísticos De Conjuntos De Subgrupos
Enoch B. Ferrell, de Bell Telephone Laboratories ha propuesto el empleo del centro de la
amplitud como medida de la tendencia central de cada subgrupo. Asimismo, ha propuesto
que la estimación de la tendencia central
de una población se base en la mediana de los
centros de las amplitudes de un conjunto de subgrupos y que la estimación de la dispersión
de la población se base en la mediana de las amplitudes del mismo conjunto de subgrupos.
Una ventaja que representa el empleo de la mediana como medida de la tendencia
central
de un subgrupo es que puede encontrarse
rápidamente sin
ninguna operación aritmética para subgrupos de tamaño impar, 3, 5, etc.
tener
que
efectuar
Estadística y Control de Calidad
Unidad IV
Prueba general de homogeneidad
El Gráfico De Control Como Prueba De Homogeneidad
Es imposible hacer demasiado énfasis sobre la importancia de mantener un registro del
orden de producción siempre que se lleven a cabo medidas de cualquier calidad de producto
manufacturado. Lo ideal es planear las medidas teniendo esto en mente. Prácticamente no
puede ser posible. Esto es cierto cuado un comprador desea aplicar el análisis de gráficos de
control
Aquí
al embarque de un producto respecto al cual no conoce el orden de producción.
los
gráficos
de
control
son
simplemente
una
prueba
homogeneidad puede haberse obtenido por un sistema
de
homogeneidad.
Esta
de causas constantes durante la
producción.
El análisis con gráficos de control puede también aplicarse a los datos
que ya se tienen
disponibles y que no se obtuvieron teniendo en mente el gráfico de control, siempre que haya
alguna base racional para establecer los subgrupos. Aquí los gráficos de control también son
una prueba general de homogeneidad.
Límites de probabilidad para gráficos de control para variables
Límites De Probabilidad En Los Gráficos
Si se supone que los valores
población,
siguen
una
X
,
`X
cuando todas
distribución
normal,
las muestras se toman de la misma
puede
encontrarse
el
múltiplo
de
s
X
correspondiente a unas probabilidades estipuladas, cuando la población es normal , los
valores de
`X están normalmente distribuidos y cuando proceden de poblaciones que no son
normales, se distribuyen según una forma aproximadamente normal, para un tamaño de
muestra igual o mayor que 4.
Límites De Probabilidad En Los Gráficos R Y
La distribución de los valores de
`X
simétrica. Por tanto, en un gráfico
`X,
sigma,
línea
son
equidistantes
distribuciones de R y de
de
s
la
s
que es normal o aproximadamente normal, es
los límites de probabilidad, al igual que los límites 3central
del
gráfico.
Por
el
contrario,
como
las
no son simétricas, aunque la población sea normal hay que
disponer de factores independientes para los límites de control superior e interior, para que
las probabilidades de las desviaciones extremas sean iguales.
Diferentes Puntos De Vista En La Descripción De Los Límites En Los Gráficos De Control
Por Variables
Para describir los límites de los gráficos de control de
`X,
R y
s se utilizan dos puntos de
vista.
Uno de ellos, es que la fijación de los límites debe basarse en el valor numérico de una
probabilidad,
que
debería
ser
aquella
que,
sin
que
se
produzca
ningún
cambio
en
la
Estadística y Control de Calidad
Unidad IV
población, un punto cayera dentro de los límites de control. Los partidarios de esta teoría,
normalmente han adoptado como
=
valor de esta probabilidad en los gráficos
Esto ha conducido a unos límites de X , de
±3.09s
X
`X,
0.998.
.
La segunda postura considera que, aún cuando la probabilidad asociada a los límites se
pudiera
conocer
exactamente, este valor solo es de interés en casos accidentales. Lo
importante es que exista u criterio definido para el establecimiento de los límites y que dicho
criterio constituya una guía adecuada para las acciones que deberán basarse en los gráficos
de control.
Aspectos Especiales De Los Límites De Probabilidad En Los Gráficos De Control De R Y De
s
Aunque en los gráficos
`X
, los límites de probabilidad son, al igual que los límites 3-
sigma, equidistantes respecto a la línea central , en los gráficos R no lo son.
Un punto en el que los defensores de los límites de probabilidad
han puesto mayor énfasis
es que, para los tamaños de subgrupo usuales de 5 elementos o menos, el límite inferior 3sigma en estos gráficos es cero. Por lo contrario para un tamaño de subgrupo de tres o
mayor, le corresponderá un límite de control inferior mayor que cero.
Estadística y Control de Calidad
Unidad IV
V. GRÀFICOS DE CONTROL PARA MEDIAS MÒVILES
El Uso De Los Límites De Control Para Medias Móviles
La media móvil es particularmente apropiada en los procesos químicos de fabricación
continua cuando se aplican
a características de calidad de materias primas y productos en
procesos. El efecto nivelador de la media móvil con frecuencia tiene un efecto sobre las cifras
que es similar al efecto que sobre el producto tendría una mezcla que se llevara a cabo en el
resto del proceso de producción.
En la introducción de las técnicas de Shewhart en las fábricas químicas, puede ser
deseable no perturbar la costumbre de representar medias móviles y agregar gráficos para
amplitudes móviles. Sin embargo, es apropiado aplicar límites de control para utilizar estos
gráficos de medias móviles
y agregar gráficos
para amplitudes móviles. El cálculo de estos
`X
límites y la interpretación de estos gráficos son similares a los gráficos convencionales de
y R, pero difiere en ciertos aspectos.
Combinación De Un Gráfico De Mediciones Individuales Y Un Gráfico De Amplitud
Móvil
En algunos procesos, es normal tener solo algunas mediciones aisladas y más o menos
espaciadas en el tiempo.
Bajo tales circunstancias, tal vez se quiera representar los valores
`X
en lugar de
suavizar las fluctuaciones de un día a otro, mediante la representación de medias móviles.
Aunque en un caso así, la
`X
móvil no se emplea, es preciso utilizar en cambio, la amplitud
móvil como medida de la dispersión del proceso. El “A.S.T.M. Manual on Quality Control of
Materials”
recomienda un tamaño de subgrupo de dos para el gráfico de amplitud móvil en
relación a uno para valores individuales.
VI.
Gráfico
Gráfico
`X
`x con una tendencia lineal
Para Medias De Universo Que Presentan Una Tendencia Con Una Desviación
Estándar Constante
En ciertas operaciones de maquinado, las herramientas se desgastan en una forma
uniforme alo largo de su periodo de uso. Este desgaste puede ser uno de los factores que
influyen
en
el
valor
medio
de
cierta
dimensión
del
producto
fabricado
y
puede
ser
responsable de una tendencia en este promedio.
La línea central y los límites de control para el gráfico
pendientes y no horizontales. La pendiente de la línea central
`X
, en este caso, deben ser
o la media del universo, y
s’,
estimada a partir de R, se determinan de las mediciones mismas. Una vez que se conocen,
es posible determinar el ajuste inicial y la longitud de la corrida que juntas darán el periodo
máximo entre los ajustes de maquinaria consistentes con las tolerancias especificadas.
Estadística y Control de Calidad
Unidad IV
VII. Inspección volante mediante el gráfico
Adaptación Especial Del Gráfico
p
P Para Una Inspección Volante
Para mantener el mismo nivel de sensibilidad con respecto a los cambios que tienen lugar
en el proceso, el gráfico de control de la fabricación rechazada necesita un tamaño de
muestra sustancialmente mayor que el gráfico
`X.
Si el gráfico
p
ha de ser un instrumento
efectivo en el control de un proceso en el que se tiene que mantener un elevado nivel de
calidad, en la determinación del tamaño de la muestra existen dos aspectos que requieren
una adaptación especial de dicho gráfico. Primero hay que esperar que en la muestra
aparezcan varios elementos rechazados.
Segundo, cuanto mayor sea el tamaño de la muestra, tanto más probable es que, durante
la extracción de la misma, se produzca un cambio. El resultado sería una mayor probabilidad
de que los cambios que tuvieran lugar entre la toma de dos muestras no se detectaran.
En casos en que sea necesario hacer uso de la inspección por atributos, e interese
detectar pequeños cambios en el proceso, las circunstancias pueden requerir el empleo de
muestras pequeñas. Aquí, la única manera en que un gráfico
utilizarse
de
manera
provechosa
es
crear
un
nivel
de
p
mal
o un gráfico con
calidad
aplicación de normas de aceptación, que sean mucho más rigurosas
falso,
np
pueden
mediante
la
que las impuestas por
las especificaciones. Esto es, puede establecerse una definición especialmente severa de un
“defectuoso”, que solo se emplee para efectos de control de proceso a través del gráfico de
control. De esta forma, un tamaño de muestra pequeño no es obstáculo para el uso de un
gráfico de control basado en una inspección por atributos.
VII. Combinación del control del proceso y la aceptación del producto
Límite De Rechazo Para Valores Medios En Los Gráficos
`X
Uno de los posibles métodos de representación de la relación entre los valores
`X
y los
límites de especificación que se aplican a los elementos individuales, es el empleo de límites
de rechazo
s’
para los valores medios. Suponiendo que
prácticamente
todo el producto
valores extremos
de
`X’
es conocida
caerá dentro de los límites
`X’ ± 3s’,
y constante, y que
es fácil calcular los
que permitirán que prácticamente todo el producto caiga dentro de
los límite de la especificación. Los límites de rechazo para los valore medios son unos límites
del gráfico de control que resultarían apropiados si
`X’
estuviera presente en cada uno de
estos valores calculados.
Límites De Control Modificados
Una etapa más avanzada en el empleo de los límites de rechazo y de los límites de
control en los gráficos
`X,
la constituye la sustitución de los límites de control por los límites
de rechazo. En este caso, los límites de rechazo reciben el nombre de límites de control
modificados. Su principal aplicación es en el control de dimensiones. La puesta en práctica
de estos límites solo resulta interesante cuando el campo de variación del proceso (estimado
s) es considerablemente menor que la diferencia entre los dos límite de la
muchas veces en 6
especificación (S-I).
S = Límite superior de la especificación
I = Límite inferior de la especificación
Estadística y Control de Calidad
Unidad IV
4.7 GRÁFICAS DE CONTROL PARA SUMA ACUMULATIVA
La gráfica de suma acumulada es una gráfica cronológica de la suma acumulada de las
desviaciones de una muestra estadística que se alejan de un valor de referencia. La gráfica
CUSUM incorpora directamente toda la información contenida en la secuencia de los valores
muestrales graficando las sumas acumuladas de las desviaciones que presentan los valores
muestrales respecto al valor objetivo. Por ejemplo, suponer que se colectan muestras de
tamaña
n>1,
y que
xj
j-ésima
es el promedio de la
m
muestra. Entonces, si
es el objetivo
0
para la media del proceso, la gráfica de control de suma acumulada se construye graficando
la cantidad:
i
Ci
= å (x j - μ0 )
j=1
Contra
la
muestra
i.
A
Ci
se
le
llama
la
suma
acumulada
hasta
i-ésima
la
muestra,
incluyéndola.
Se observa que si el proceso se mantiene bajo control en el valor objetivo
m
0
, la suma
acumulada definida en la ecuación anterior es una fluctuación aleatoria con media cero. Sin
m
embargo, si la media experimenta un corrimiento ascendente a un valor
1
>
m
0
, por ejemplo,
Ci.
entonces se desarrollará una alineación ascendente o positiva en la suma acumulada
Recíprocamente, si la media experimenta un corrimiento descendente a un valor
entonces se desarrollará una desalineación descendente o negativa en
Ci.
m
1
<
m
0
,
Por lo tanto, si se
desarrolla una tendencia en los puntos graficados, sea ascendente o descendente, ésta
deberá considerarse como evidencia de que la media del proceso se ha corrido y deberá
realizarse la búsqueda de alguna causa.
La gráfica CUSUM no es una gráfica de control, ya que carece de los límites de control
estadístico. Hay dos formas de representar CUSUMS, La CUSUM tabular (o algorítmica) y en
la forma máscara V de la CUSUM.
Estas gráficas de control se diseñaron
para identificar cambios pequeños, pero sostenidos,
en el nivel de un proceso, con mucha mayor rapidez que las gráficas
que
da una alerta temprana
administrativo
`X
normales. Debido a
de cambios de procesos, es consistente con el principio
de hacerlo bien la primera vez, y no permitir la producción
de artículos con
defecto.
La
gráfica
de
acumuladas
suma
acumulada
de las desviaciones
abarca
todos
los
datos
anteriores,
al
graficar
sumas
de los valores de la muestra respecto a un valor meta; es
decir:
St =
å(`x - `x
Donde
i
0
`x
)
es el promedio del i-esimo subgrupo,
`x
es el valor normal, o de referencia, y
St
la suma acumulada cuando se efectúa la i-ésima observación. Nótese que cuando n=1 ,
`x
i
es el valor de la I-ésima observación.
0
i
Estadística y Control de Calidad
Unidad IV
La gráfica de suma acumulada tiene un aspecto muy distinto al de las gráficas
normales. En lugar de
un eje central
y límites horizontales de
`X
y
R
control, se forma una
“mascarilla” que consiste en un puntero de lugar y dos límites de control angulados.
La mascarilla se coloca en la gráfica de tal manera
graficado. La distancia d y el ángulo
Si no hay
que la punta, P, quede en el último punto
q son los parámetros de diseño
de la mascarilla.
puntos anteriores fuera de los límites de control, se supone que el proceso está
bajo control. Si, por ejemplo, hay un desplazamiento en el promedio del proceso
valor de referencia, cada nuevo valor que se añade a la suma acumulada
aumente y ocasionará
sobre el
hará que St
una tendencia hacia arriba, en la gráfica. Finalmente, un punto puede
quedar fuera del límite superior
de control, lo cual indica
que el proceso se ha salido de
control. Si el promedio se desplaza hacia abajo, sucede lo contrario.
Estadística y Control de Calidad
Unidad IV
Ejemplo de Grafica CUSUM
X
Prepare una grafica CUSUM bilateral para
Numero
Promedio
del
X
subgrupo
1
X
Recorrido
-
X
0
para los datos de la siguiente tabla
å (X - X )
0
R
199.2
11
-1.3
-1.3
2
198
14
-2.5
-3.8
3
198.6
10
-1.9
-5.7
4
201
18
0.5
-5.2
5
197.6
11
-2.9
-8.1
6
198.8
7
-1.7
-9.8
7
196.6
2
-3.9
-13.7
8
201.6
10
1.1
-12.6
9
199.8
12
-0.7
-13.3
10
200.6
17
0.1
-13.2
11
198.8
9
-1.7
-14.9
12
198.4
10
-2.1
-17
13
202.6
9
2.1
-14.9
14
200.2
7
-0.3
-15.2
15
197.8
16
-2.7
-17.9
16
199
9
-1.5
-19.4
17
202.4
8
1.9
-17.5
18
198.8
16
-1.7
-19.2
19
197.8
6
-2.7
-21.9
20
198.8
8
-1.7
-23.6
21
199.2
14
-1.3
-24.9
22
204.2
7
3.7
-21.2
23
200.2
20
-0.3
-21.5
24
199.6
13
-0.9
-22.4
25
201.2
13
0.7
-21.7
S
277
Suponga que las especificaciones para este articulo son 190.5 y 210.5 utilice el valor nominal
X
de 200.5 como
0
normal y un grado de riesgo de 0.027 correspondiente a limites 3- Sigmas
en una grafica de control de Shewhart. La magnitud del desplazamiento, D, que se debería
de tratar casi con certidumbre es de 7.8 ms. Utilice un factor de escala y =5
Estadística y Control de Calidad
Unidad IV
RESPUESTAS
Formulas
æ s ö
ç
÷
n
ç
÷
d = E (a )
ç D ÷
ç
÷
è
ø
2
tan
Datos
a = 0.0027
E (a ) = 13.215
X = 200.5
0
D = 7.8
y=5
d = 2.326( porquen = 5)
2
n=5
Procedimiento
R=
277
= 11.08
25
s
n
=
R
d
n
2
=
11.08
)(
(
2.326
5
)=
2.13
2
æ 2.13 ö
d = 13.215ç
÷ = 0.985unidades
è 7.8 ø
tan
q=
7.8
( )( )
2
5
=
7.8
10
= tan -
1
(
)=
0.78
°
37 57
'
q=
D
2y
Estadística y Control de Calidad
Unidad IV
E(a) = factor que es función de la probabilidad aceptable de error Tipo I para los
diversos valores de a que se dan a continuación. E(0.0027) corresponde a la probabilidad del
error Tipo I (a) relacionada con los límites 3-sigmas normales de Shewhart.
En donde
1/2
a
(prueba
0.00135
0.005
0.01
0.025
0.05
0.0027
0.01
0.02
0.05
0.1
13.215
10.597
9.21
7.378
5.991
unilateral)
a (prueba
bilateral)
E(a)
d =
2
R
d =
3
s
sR
s
c =
2
Tabla C Factores para estimar
sR
s
s RMS
s
a partir de
a partir de
c =
4
R, s
ó
s RMS
y
R
Número de
observaciones
en subgrupo
Factor
d
2
Factor
d
3
Factor
c
2
Factor
c
4
n
2
1.128
0.8525
0.5642
0.7979
3
1.693
0.8884
0.7236
0.8862
4
2.059
0.8798
0.7979
0.9213
5
2.326
0.8641
0.8407
0.94
6
2.534
0.848
0.8686
0.9515
7
2.704
0.8332
0.8882
0.9594
8
2.847
0.8198
0.9027
0.965
9
2.97
0.8078
0.9139
0.9693
10
3.078
0.7971
0.9227
0.9727
11
3.173
0.7873
0.93
0.9754
12
3.258
0.7785
0.9359
0.9776
13
3.336
0.7704
0.941
0.9794
14
3.407
0.763
0.9453
0.981
15
3.472
0.7562
0.949
0.9823
16
3.532
0.7499
0.9523
0.9835
17
3.588
0.7441
0.9551
0.9845
18
3.64
0.7386
0.9576
0.9854
19
3.689
0.7335
0.9599
0.9862
20
3.735
0.7287
0.9619
0.9869
21
3.778
0.7242
0.9638
0.9876
22
3.819
0.7199
0.9655
0.9882
s
s
Estadística y Control de Calidad
Unidad IV
23
3.858
0.7159
0.967
0.9887
24
3.895
0.7121
0.9684
0.9892
25
3.931
0.7084
0.9696
0.9896
30
4.086
0.6926
0.9748
0.9914
35
4.213
0.6799
0.9784
0.9927
40
4.322
0.6692
0.9811
0.9936
45
4.415
0.6601
0.9832
0.9943
50
4.498
0.6521
0.9849
0.9949
55
4.572
0.6452
0.9863
0.9954
60
4.639
0.6389
0.9874
0.9958
65
4.699
0.6337
0.9884
0.9961
70
4.755
0.6283
0.9892
0.9964
75
4.806
0.6236
0.99
0.9966
80
4.854
0.6194
0.9906
0.9968
85
4.898
0.6154
0.9912
0.997
90
4.939
0.6118
0.9916
0.9972
95
4.978
0.6084
0.9921
0.9973
100
5.015
0.6052
0.9925
0.9975
Descargar