SIGUENOS EN: LIBROS UNIVERISTARIOS Y SOLUCIONARIOS DE MUCHOS DE ESTOS LIBROS GRATIS EN DESCARGA DIRECTA VISITANOS PARA DESARGALOS GRATIS. CHAPTER TWO 2.1 (a) (b) (c) 2.2 (a) (b) (c) 3 wk 7d 24 h 3600 s 1000 ms 1 wk 1 d 1 h 1 s 38.1 ft / s 0.0006214 mi 3600 s 3.2808 554 m 4 1d ft h 1 1000 g m 1 h 0.0006214 mi 3600 s 1 kg 35.3145 ft 3 5.37 × 10 3 kJ 1 min 1000 J min 60 s 1 m 4 = 3.85 × 10 4 cm 4 / min⋅ g = 340 m / s 1 m3 921 kg 2.20462 lb m m3 = 25.98 mi / h ⇒ 26.0 mi / h 1 kg 10 8 cm 4 1h d ⋅ kg 24 h 60 min 760 mi 1 h = 1.8144 × 10 9 ms = 57.5 lb m / ft 3 1.34 × 10 -3 hp 1 kJ 1 J/s = 119.93 hp ⇒ 120 hp 2.3 Assume that a golf ball occupies the space equivalent to a 2 in × 2 in × 2 in cube. For a classroom with dimensions 40 ft × 40 ft × 15 ft : 40 × 40 × 15 ft 3 (12)3 in 3 1 ball n balls = = 5.18 × 10 6 ≈ 5 million balls ft 3 2 3 in 3 The estimate could vary by an order of magnitude or more, depending on the assumptions made. 2.4 4.3 light yr 365 d 24 h 1 yr 1 d 3600 s 1.86 × 10 5 mi 1 h 1 s 3.2808 ft 0.0006214 mi 1 step = 7 × 1016 steps 2 ft 2.5 Distance from the earth to the moon = 238857 miles 238857 mi 1 m 1 report 0.0006214 mi 0.001 m = 4 × 10 11 reports 2.6 19 km 1000 m 0.0006214 mi 1000 L = 44.7 mi / gal 1 L 1 km 1 m 264.17 gal Calculate the total cost to travel x miles. Total Cost Total Cost American European = $14,500 + = $21,700 + $1.25 1 gal gal 28 mi $1.25 1 gal gal 44.7 mi x (mi) = 14,500 + 0.04464 x x (mi) = 21,700 + 0.02796x Equate the two costs ⇒ x = 4.3 × 10 5 miles 2-1 http://librosysolucionarios.net 2.7 106 cm 3 220.83 imp. gal 5320 imp. gal 14 h 365 d plane ⋅ h 1 d 1 yr 0.965 g 1 cm 3 1 kg 1 tonne 1000 g 1000 kg tonne kerosene plane ⋅ yr 9 4.02 ×10 tonne crude oil 1 tonne kerosene plane ⋅ yr 5 yr 7 tonne crude oil 1.188 ×10 tonne kerosene = 1.188 ×105 = 4834 planes ⇒ 5000 planes 2.8 (a) (b) (c) 2.9 2.10 2.11 32.1714 ft / s2 25.0 lb m 1 lb f 32.1714 lb m ⋅ ft / s 2 25 N 1 kg ⋅ m / s2 1 9.8066 m / s 2 10 ton 1N 1 lb m 5 × 10 50 × 15 × 2 m 3 -4 980.66 cm / s2 35.3145 ft 3 85.3 lb m 3 3 1 m 1 ft 1 m3 kg 2.20462 lb m 11.5 kg 1 dyne 1 g ⋅ cm / s2 2.20462 lb m 1 500 lbm = 2.55 kg ⇒ 2.6 kg 1000 g ton = 25.0 lb f 32.174 ft 1 s ≈ 5 × 10 2 2 = 9 × 10 9 dynes 1 lb f 32.174 lb m / ft ⋅ s FG 1IJ FG 1 IJ ≈ 25 m H 2K H 10K 2 = 4.5 × 10 6 lb f 3 (a) mdisplaced fluid = mcylinder ⇒ ρ f V f = ρ cVc ⇒ ρ f hπr 2 = ρ c Hπr 2 ρfh (30 cm − 14.1 cm)(100 . g / cm 3 ) ρc = = = 0.53 g / cm 3 H 30 cm ρ H (30 cm )( 0.53 g / cm 3 ) (b) ρ f = c = = 1.71 g / cm 3 h (30 cm - 20.7 cm) 2-2 http://librosysolucionarios.net ρc H ρf h 2.12 Vs = πR 2 H πR 2 H πr 2 h R r R ; Vf = − ; = ⇒r= h 3 3 3 H h H FG IJ = πR FG H − h IJ H K 3H HK πR F h I πR H H− =ρ G J 3 H 3 H K 2 πR 2 H πh Rh ⇒ Vf = − 3 3 H ρ f V f = ρ s Vs ⇒ ρ f H ⇒ ρ f = ρs H− 2.13 h3 2 r 2 2 3 H 2 ρs s 2 = ρs h 3 H3 H 3 − h3 1− H2 R 1 = ρs FG h IJ H HK 3 Say h( m ) = depth of liquid y y= 1 dA y=y=1––1+h h x ⇒ A(m 2 ) h 1m x = 1– y 2 y= –1 dA z 1− y 2 dA = dy ⋅ dx = 2 1 − y 2 dy − 1− y d i=2 ⇒Am 2 E 2 z −1+ h 1 − y 2 dy −1 Table of integrals or trigonometric substitution d i A m 2 = y 1 − y 2 + sin−1 y b g W N = h −1 −1 b g b g = h −1 1− h −1 4 m × A( m 2 ) 0.879 g 10 6 cm 2 cm 3 1m E Substitute for A L W bN g = 3.45 × 10 Mbh − 1g 1 − bh − 1g N 4 3 2 b g + sin −1 h − 1 + 1 kg 9.81 N 3 kg { 10 g = 3.45 × 10 4 A g g0 2 π 2 b g π2 OPQ + sin −1 h − 1 + 2.14 1 lb f = 1 slug ⋅ ft / s2 = 32 .174 lb m ⋅ ft / s2 ⇒ 1 slug = 32.174 lb m 1 1 poundal = 1 lb m ⋅ ft / s2 = lb f 32.174 2-3 http://librosysolucionarios.net ρf 2.14(cont’d) (a) (i) On the earth: 175 lb m M= W= 175 lb m (ii) On the moon 175 lb m M= W= 175 lb m 1 slug = 5.44 slugs 32.174 lbm 32.174 ft 1 poundal 3 2 2 = 5.63 × 10 poundals s 1 lb m ⋅ ft / s 1 slug = 5.44 slugs 32.174 lb m 32.174 ft 1 poundal = 938 poundals 2 6 s 1 lb m ⋅ ft / s2 (b ) F = ma ⇒ a = F / m = 1 lb m ⋅ ft / s 2 1 poundal 355 poundals 25.0 slugs 1 slug 32.174 lb m 1m 3.2808 ft = 0.135 m / s2 2.15 (a) F = ma ⇒ 1 fern = (1 bung)(32.174 ft / s 2 ) ⇒ FG 1IJ = 5.3623 bung ⋅ ft / s H 6K 2 1 fern 5.3623 bung ⋅ ft / s2 3 bung 32.174 ft 1 fern = 3 fern 2 6 s 5.3623 bung ⋅ ft / s2 On the earth: W = (3)(32.174 ) / 5.3623 = 18 fern (b) On the moon: W = 2.16 (a) ≈ (3)(9 ) = 27 ≈ (d) ≈ 50 × 10 3 − 1 × 10 3 ≈ 49 × 10 3 ≈ 5 × 10 4 ( 2.7)(8.632 ) = 23 (c) ≈ 2 + 125 = 127 2.365 + 125.2 = 127 .5 2.17 R ≈ 4.0 ×10−4 ≈ 1× 10−5 40 (3.600 ×10−4 ) / 4 5 = 8.0 × 10−6 (b) 4.753 × 10 4 − 9 × 10 2 = 5 × 10 4 (7 × 10−1 )(3 × 105 )(6)(5 ×104 ) ≈ 42 ×10 2 ≈ 4 ×103 (Any digit in range 2-6 is acceptable) 6 (3)(5 × 10 ) Rexact = 3812.5 ⇒ 3810 ⇒ 3.81 ×103 2-4 http://librosysolucionarios.net 2.18 (a) A: R = 731 . − 72.4 = 0.7 o C 72.4 + 731 . + 72.6 + 72.8 + 73.0 = 72.8 o C 5 X= ( 72.4 − 72.8) 2 + ( 731 . − 72.8) 2 + (72.6 − 72.8 ) 2 + (72.8 − 72.8 ) 2 + (73.0 − 72 .8) 2 5 −1 o = 0.3 C s= B: R = 1031 . − 97.3 = 58 . oC X= 97.3 + 1014 . + 98.7 + 1031 . + 100.4 = 100.2 o C 5 s= (97.3 − 1002 . ) 2 + (1014 . − 1002 . ) 2 + (98.7 − 1002 . ) 2 + (1031 . − 100.2) 2 + (100.4 − 100.2)2 5 −1 = 2.3o C (b) Thermocouple B exhibits a higher degree of scatter and is also more accurate. 2.19 (a) 12 X = ∑ C min= 12 Xi i =1 = 735 . s= 12 = X − 2 s = 73.5 − 2 (1.2) = 711 . ∑ ( X − 73.5) i =1 12 − 1 2 = 12 . C max= = X + 2 s = 735 . + 2(12 . ) = 75.9 (b) Joanne is more likely to be the statistician, because she wants to make the control limits stricter. (c) Inadequate cleaning between batches, impurities in raw materials, variations in reactor temperature (failure of reactor control system), problems with the color measurement system, operator carelessness 2-5 http://librosysolucionarios.net 2.20 (a),(b) (a) Run 1 2 X 134 131 Mean(X) 131.9 Stdev(X) 2.2 Min 127.5 Max 136.4 (b) Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 X 128 131 133 130 133 129 133 135 137 133 136 138 135 139 Min 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 3 129 4 5 6 7 8 9 10 11 12 13 14 15 133 135 131 134 130 131 136 129 130 133 130 133 Mean 131.9 131.9 131.9 131.9 131.9 131.9 131.9 131.9 131.9 131.9 131.9 131.9 131.9 131.9 Max 136.4 136.4 136.4 136.4 136.4 136.4 136.4 136.4 136.4 136.4 136.4 136.4 136.4 136.4 140 138 136 134 132 130 128 126 0 5 10 15 (c) Beginning with Run 11, the process has been near or well over the upper quality assurance limit. An overhaul would have been reasonable after Run 12. 2.21 (a) Q' = 2.36 × 10 −4 kg ⋅ m 2 h 2.22 N Pr = N Pr ≈ Cp µ k 1 h 2 3600 s kg m −4 (2 × 10 )(2 )(9 ) ≈ 12 × 10 ( −4− 3) ≈ 12 . × 10 −6 lb ⋅ ft 2 / s 3 × 10 3 = 1.48 × 10 −6 lb ⋅ ft 2 / s = 0.00000148 lb ⋅ ft 2 / s (b) Q' approximate ≈ Q' exact 2.10462 lb 3.2808 2 ft 2 = 0.583 J / g ⋅ o C 1936 lb m 1 h 3.2808 ft 1000 g o 0.286 W / m ⋅ C ft ⋅ h 3600 s m 2.20462 lbm (6 × 10 −1 )(2 × 10 3 )(3 × 10 3 ) 3 × 10 3 ≈ ≈ 15 . × 10 3 . The calculator solution is 1.63 × 10 3 (3 × 10 −1 )(4 × 10 3 )(2 ) 2 2.23 Duρ 0.48 ft 1 m 2.067 in 1 m = −3 µ s 3.2808 ft 0.43 × 10 kg / m ⋅ s 39.37 in Re ≈ (5 × 10 −1 )(2 )(8 × 10 − 1 )(10 6 ) 5 × 101−( −3) ≈ ≈ 2 × 10 4 ⇒ the flow is turbulent (3)(4 × 10)(10 3 )(4 × 10 −4 ) 3 2-6 http://librosysolucionarios.net 0.805 g cm 3 1 kg 10 6 cm 3 1000 g 1 m3 Re = 2.24 (a) kgdp y D FG µ IJ FG d uρ IJ H ρD K H µ K 1/3 = 2.00 + 0.600 1/2 p L 1.00 × 10 N ⋅ s / m = 2.00 + 0.600M . kg / m )(100 . × 10 m N (100 −5 −5 3 = 44.426 ⇒ OP LM (0.00500 m)(10.0 m / s)(100 . kg / m ) O PQ / s) Q N (100 . × 10 N ⋅ s / m ) 1/ 3 2 k g (0.00500 m)(0.100) 1.00 × 10 −5 m 2 / s 3 −5 2 1/2 2 = 44.426 ⇒ k g = 0.888 m / s (b) The diameter of the particles is not uniform, the conditions of the system used to model the equation may differ significantly from the conditions in the reactor (out of the range of empirical data), all of the other variables are subject to measurement or estimation error. (c) dp (m) y D (m2/s) µ (N-s/m 2) ρ (kg/m 3) u (m/s) kg 0.005 0.1 1.00E-05 1.00E-05 1 10 0.889 0.010 0.1 1.00E-05 1.00E-05 1 10 0.620 0.005 0.1 2.00E-05 1.00E-05 1 10 1.427 0.005 0.1 1.00E-05 2.00E-05 1 10 0.796 0.005 0.1 1.00E-05 1.00E-05 1 20 1.240 2.25 (a) 200 crystals / min ⋅ mm; 10 crystals / min ⋅ mm 2 (b) r = 200 crystals 0.050 in 25.4 mm min ⋅ mm in = 238 crysta ls / min ⇒ b g (c) D mm = bg D ′ in 10 crystals − (25.4) 2 mm 2 min ⋅ mm2 238 crystals 1 min min 0.050 2 in 2 = 4.0 crystals / s 60 s FG H in 2 IJ K crystals 60 s 25.4 mm crystals = r′ = 60r ′ = 25.4 D ′ ; r min s 1 min 1 in b g b ⇒ 60r ′ = 200 25.4 D ′ − 10 25.4 D ′ g 2 b g ⇒ r ′ = 84 .7 D ′ − 108 D ′ 2 2.26 (a) 70.5 lb m / ft 3 ; 8.27 × 10 -7 in 2 / lb f −7 2 9 × 10 6 N 14.696 lb f /in 2 (b) ρ = (70.5 lb / f t 3) exp 8.27 × 10 in m lbf m 2 1.01325 × 10 5 N/m 2 70.57 lb m 35.3145 ft 3 1 m 3 1000 g = = 1.13 g /cm 3 3 3 6 3 ft m 10 cm 2.20462 lb m FG lb IJ = ρ ′ g H ft K cm F lb IJ = P ' N PG H in K m (c) ρ m 3 f 2 3 1 lb m 28,317 cm 3 453.593 g 1 ft 3 0.2248 lb f 12 2 d ⇒ 62.43 ρ ′ = 70.5 exp 8.27 × 10 m2 2 1N 39.37 in −7 = 62.43ρ ′ 2 = 1.45 × 10 −4 P' . × 10 P 'i ⇒ ρ ′ = 113 . expd1.20 × 10 id145 −4 −10 P' = 9.00 × 10 6 N / m 2 ⇒ ρ ' = 113 . exp[(1.20 × 10 −10 )(9.00 × 10 6 )] = 113 . g / cm 3 2-7 http://librosysolucionarios.net P' i cm = 16.39V ' ; t bsg = 3600t ′b hr g d i V ' din i 28,317 1728 in ⇒ 16.39V ' = expb3600t ′g ⇒ V ' = 0.06102 expb3600t ′ g 2.27 (a) V cm 3 = 3 3 3 (b) The t in the exponent has a coefficient of s-1 . 2.28 (a) 3.00 mol / L, 2.00 min -1 (b) t = 0 ⇒ C = 3.00 exp[(-2.00)(0)] = 3.00 mol / L t = 1 ⇒ C = 3.00 exp[(-2.00)(1)] = 0.406 mol / L 0.406 − 3.00 For t=0.6 min: Cint = ( 0.6 − 0) + 3.00 = 1.4 mol / L 1− 0 Cexact = 3.00 exp[(-2.00)(0.6)] = 0.9 mol / L For C=0.10 mol/L: t int = t exact 1− 0 (0.10 − 3.00) + 0 = 112 . min 0.406 − 3 1 C 1 0.10 =ln = - ln = 1.70 min 2.00 3.00 2 3.00 (c) 3.5 C exact vs. t 3 C (mol/L) 2.5 2 (t=0.6, C=1.4) 1.5 1 (t=1.12, C=0.10) 0.5 0 0 1 2 t (min) p* = 2.29 (a) (b) c 1 902 * 903 2 60 − 20 (185 − 166.2) + 20 = 42 mm Hg 1998 . − 1662 . MAIN PROGRAM FOR PROBLEM 2.29 IMPLICIT REAL*4(A–H, 0–Z) DIMENSION TD(6), PD(6) DO 1 I = 1, 6 READ (5, *) TD(I), PD(I) CONTINUE WRITE (5, 902) FORMAT (‘0’, 5X, ‘TEMPERATURE VAPOR PRESSURE’/6X, ‘ (C) (MM HG)’/) DO 2 I = 0, 115, 5 T = 100 + I CALL VAP (T, P, TD, PD) WRITE (6, 903) T, P FORMAT (10X, F5.1, 10X, F5.1) CONTINUE END 2-8 http://librosysolucionarios.net 2.29 (cont’d) SUBROUTINE VAP (T, P, TD, PD) DIMENSION TD(6), PD(6) I=1 1 IF (TD(I).LE.T.AND.T.LT.TD(I + 1)) GO TO 2 I=I+1 IF (I.EQ.6) STOP GO TO 1 2 P = PD(I) + (T – TD(I))/(TD(I + 1) – TD(I)) * (PD(I + 1) – PD(I)) RETURN END DATA OUTPUT 98.5 1.0 TEMPERATURE VAPOR PRESSURE 131.8 5.0 (C) (MM HG) 100.0 1.2 M M 215.5 100.0 105.0 1.8 M M 215.0 98.7 2.30 (b) ln y = ln a + bx ⇒ y = ae bx b = (ln y 2 − ln y 1 ) / ( x 2 − x 1 ) = (ln 2 − ln 1) / (1 − 2 ) = −0.693 ln a = ln y − bx = ln 2 + 0.63(1) ⇒ a = 4.00 ⇒ y = 4.00e −0.693 x (c) ln y = ln a + b ln x ⇒ y = ax b b = (ln y 2 − ln y 1 ) / (ln x 2 − ln x 1 ) = (ln 2 − ln 1) / (ln 1 − ln 2) = −1 ln a = ln y − b ln x = ln 2 − ( −1) ln(1) ⇒ a = 2 ⇒ y = 2 / x (d) ln( xy ) = ln a + b ( y / x ) ⇒ xy = ae by / x ⇒ y = ( a / x )e by / x [can' t get y = f ( x )] b = [ln( xy ) 2 − ln( xy )1 ] / [( y / x ) 2 − ( y / x ) 1 ] = (ln 807.0 − ln 40.2 ) / (2.0 − 1.0) = 3 ln a = ln( xy ) − b( y / x ) = ln 807.0 − 3 ln(2.0) ⇒ a = 2 ⇒ xy = 2e 3 y / x ⇒ y = (2 / x )e 3y / x (e) ln( y 2 / x ) = ln a + b ln( x − 2) ⇒ y 2 / x = a ( x − 2) b ⇒ y = [ax ( x − 2 ) b ]1/2 b = [ln( y 2 / x ) 2 − ln( y 2 / x )1 ] / [ln( x − 2 ) 2 − ln( x − 2 )1 ] = (ln 807.0 − ln 40.2 ) / (ln 2.0 − ln 1.0) = 4.33 ln a = ln( y 2 / x ) − b ( x − 2 ) = ln 807 .0 − 4.33 ln(2.0) ⇒ a = 40.2 ⇒ y 2 / x = 40.2 ( x − 2) 4.33 ⇒ y = 6.34 x 1/2 ( x − 2 ) 2.165 2.31 (b) Plot y 2 vs. x 3 on rectangular axes. Slope = m, Intcpt = − n (c) 1 1 a 1 = + x ⇒ Plot vs. ln( y − 3) b b ln( y − 3) (d) 1 1 = a ( x − 3) 3 ⇒ Plot vs. ( x − 3) 3 [rect. axes] , slope = a , intercept = 0 2 2 ( y + 1) ( y + 1) x [rect. axes], slope = OR 2-9 http://librosysolucionarios.net a 1 , intercept = b b 2.31 (cont’d) 2 ln( y + 1) = − ln a − 3 ln( x − 3) Plot ln( y + 1) vs. ln( x − 3) [rect.] or (y + 1) vs. (x - 3) [log] 3 ln a ⇒ slope = − , intercept = − 2 2 (e) ln y = a x + b Plot ln y vs. x [rect.] or y vs. x [semilog ], slope = a, intercept = b (f) log10 ( xy ) = a ( x 2 + y 2 ) + b Plot log10 ( xy ) vs. ( x 2 + y 2 ) [rect.] ⇒ slope = a, intercept = b (g) 1 b x x = ax + ⇒ = ax 2 + b ⇒ Plot vs. x 2 [rect.], slope = a , intercept = b y x y y OR 1 b 1 b 1 1 = ax + ⇒ = a + 2 ⇒ Plot vs. 2 [rect.] , slope = b, intercept = a y x xy x xy x 2.32 (a) A plot of y vs. R is a line through ( R = 5 , y = 0.011 ) and ( R = 80 , y = 0.169 ). 0.18 0.16 0.14 y 0.12 0.1 0.08 0.06 0.04 0.02 0 0 20 40 60 80 100 R y=aR +b U| V| W 0.169 − 0.011 = 2.11 × 10 −3 80 − 5 ⇒ y = 2 .11 × 10 −3 R + 4.50 × 10 −4 −3 −4 b = 0.011 − 2.11 × 10 5 = 4.50 × 10 a= d d ib g ib g (b) R = 43 ⇒ y = 2.11 × 10 −3 43 + 4.50 × 10 −4 = 0.092 kg H 2O kg b1200 kg hgb0.092 kg H O kgg = 110 kg H O h 2 2 2-10 http://librosysolucionarios.net 2.33 (a) ln T = ln a + b ln φ ⇒ T = aφ b b = (ln T2 − ln T1 ) / (ln φ 2 − ln φ 1) = (ln 120 − ln 210) / (ln 40 − ln 25) = −119 . ln a = ln T − b ln φ = ln 210 − (−119 . ) ln(25) ⇒ a = 9677 .6 ⇒ T = 9677.6φ −1.19 b (b) T = 9677.6φ −1.19 ⇒ φ = 9677.6 / T b g T = 85 o C ⇒ φ = 9677.6 / 85 0.8403 b g T = 290 C ⇒ φ = b9677.6 / 290g T = 175 o C ⇒ φ = 9677.6 / 175 o g 0.8403 = 53.5 L / s 0.8403 0.8403 = 29.1 L / s = 19.0 L / s (c) The estimate for T=175°C is probably closest to the real value, because the value of temperature is in the range of the data originally taken to fit the line. The value of T=290°C is probably the least likely to be correct, because it is farthest away from the date range. 2-11 http://librosysolucionarios.net ln ((C A-CAe )/(CA0-C Ae)) 2.34 (a) Yes, because when ln[(CA − C Ae ) / (C A0 − CAe )] is plotted vs. t in rectangular coordinates, the plot is a straight line. 0 50 100 150 200 0 -0.5 -1 -1.5 -2 t (min) Slope = -0.0093 ⇒ k = 9.3 × 10 -3 min −1 (b) ln[(CA − C Ae ) / (C A0 − C Ae )] = −kt ⇒ C A = (C A 0 − CAe )e − kt + CAe −3 CA = (0.1823 − 0.0495)e− (9.3×1 0 )(120) + 0.0495 =9.300 ×10-2 g/L 9.300 ×10-2 g 30.5 gal 28.317 L C =m/ V ⇒ m=CV = = 10.7 g L 7.4805 gal 2.35 (a) ft 3 and h-2 , respectively (b) ln(V) vs. t2 in rectangular coordinates, slope=2 and intercept= ln(3.53 × 10 −2 ) ; or V(logarithmic axis) vs. t2 in semilog coordinates, slope=2, intercept= 3.53 × 10−2 (c) V ( m 3 ) = 100 . × 10 −3 exp(15 . × 10− 7 t 2 ) 2.36 PV k = C ⇒ P = C / V k ⇒ ln P = ln C − k ln V 8.5 lnP 8 7.5 7 6.5 6 2.5 3 lnP = -1.573(lnV ) + 12.736 3.5 4 lnV k = − slope = −( −1573 . ) = 1573 . (dimensionless) Intercept = ln C = 12.736 ⇒ C = e 12.736 = 3.40 × 10 5 mm Hg ⋅ cm 4.719 G − GL 1 G −G G −G = ⇒ 0 = K L Cm ⇒ ln 0 = ln K L + mln C m G0 − G K L C G − GL G − GL ln(G 0 -G)/(G-G L )= 2.4835lnC - 10.045 3 ln(G 0-G)/(G-G L) 2.37 (a) 2 1 0 -1 3.5 4 4.5 5 5.5 lnC 2- 12 http://librosysolucionarios.net 2.37 (cont’d) m = slope = 2.483 (dimensionless) Intercept = ln KL = −10.045 ⇒ K L = 4.340 × 10 −5 ppm-2.483 G − 180 . × 10 −3 = 4.340 × 10 −5 (475) 2.483 ⇒ G = 1806 . × 10 −3 3.00 × 10 −3 − G C=475 ppm is well beyond the range of the data. (b) C = 475 ⇒ 2.38 (a) For runs 2, 3 and 4: Z = aV& b p c ⇒ ln Z = ln a + b ln V& + c ln p ln(3.5) = ln a + b ln(1.02 ) + c ln(9.1) ln(2.58) = ln a + b ln(102 . ) + c ln(11.2 ) ln(3.72 ) = ln a + b ln(175 . ) + c ln(11.2 ) b = 0.68 ⇒ c = −1.46 a = 86.7 volts ⋅ kPa 1.46 / (L / s) 0.678 & . Slope=b, Intercept= ln a + c ln p (b) When P is constant (runs 1 to 4), plot ln Z vs. lnV 2 lnZ 1.5 1 0.5 0 -1 -0.5 0 0.5 1 1.5 lnV lnZ = 0.5199lnV + 1.0035 b = slope = 0.52 Intercept = lna + c ln P = 1.0035 & When V is constant (runs 5 to 7), plot lnZ vs. lnP. Slope=c, Intercept= ln a + c ln V& 2 lnZ 1.5 1 0.5 0 1.5 1.7 1.9 2.1 2.3 lnP lnZ = -0.9972lnP + 3.4551 c = slope = −0.997 ⇒ 1.0 Intercept = lna + b ln V& = 3.4551 Z Plot Z vs V& b P c . Slope=a (no intercept) 7 6 5 4 3 2 1 0.05 0.1 0.15 b b c Z = 31.096V P VP 0.2 c a = slope = 311 . volt ⋅ kPa / (L / s) .52 The results in part (b) are more reliable, because more data were used to obtain them. 2- 13 http://librosysolucionarios.net 2.39 (a) sxy = sxx = n 1 n ∑x y 1 n ∑x i i = [( 0.4 )(0.3) + (2.1)(1.9) + (3.1)(3.2 )] / 3 = 4.677 i =1 n 2 i = (0.32 + 1.9 2 + 3.2 2 ) / 3 = 4 .647 i =1 1 n 1 xi = (0.3 + 1.9 + 3.2 ) / 3 = 1.8; s y = n i =1 n sxy − sx sy 4.677 − (1.8)(1.867) a= = = 0.936 2 4.647 − (18 . )2 sxx − sx ∑ sx = n ∑y i = (0.4 + 2.1 + 3.1) / 3 = 1.867 i =1 b g b= sxx s y − sxy sx b g sxx − sx 2 (4.647 )(1867 . ) − (4.677 )(18 .) = 0182 . 2 4.647 − (18 .) = y = 0.936x + 0.182 (b) a = sxy sxx = 4.677 = 10065 . ⇒ y = 1.0065 x 4.647 4 y 3 y = 0.936x + 0.182 2 y = 1.0065x 1 0 0 1 2 3 4 x 2.40 (a) 1/C vs. t. Slope= b, intercept=a a = Intercept = 0.082 L / g 3 2.5 2 1.5 1 0.5 0 2 1.5 C 1/C (b) b = slope = 0.477 L / g ⋅ h; 1 0.5 0 0 1 1/C = 0.4771t + 0.0823 2 3 4 5 6 t 1 C 2 C-fitted 3 4 5 t (c) C = 1 / ( a + bt ) ⇒ 1 / [0.082 + 0.477 (0)] = 12.2 g / L t = (1 / C − a ) / b = (1 / 0.01 − 0.082 ) / 0.477 = 209.5 h (d) t=0 and C=0.01 are out of the range of the experimental data. (e) The concentration of the hazardous substance could be enough to cause damage to the biotic resources in the river; the treatment requires an extremely large period of time; some of the hazardous substances might remain in the tank instead of being converted; the decomposition products might not be harmless. 2- 14 http://librosysolucionarios.net 2.41 (a) and (c) y 10 1 0.1 1 10 100 x (b) y = ax b ⇒ ln y = ln a + b ln x; Slope = b, Intercept = ln a ln y = 0.1684ln x + 1.1258 2 ln y 1.5 1 0.5 b = slope = 0168 . 0 -1 0 1 2 ln x 3 4 5 Intercept = ln a = 11258 . ⇒ a = 3.08 2.42 (a) ln(1-Cp /CA0 ) vs. t in rectangular coordinates. Slope=-k, intercept=0 (b) 600 0 800 ln(1-Cp/Cao) 400 ln(1-Cp/Cao) 0 200 0 -1 -2 -3 -4 ln(1-Cp/Cao) = -0.0062t 100 400 500 t Lab 1 600 400 600 -4 -6 ln(1-Cp/Cao) = -0.0111t t Lab 2 k = 0.0111 s-1 800 0 0 ln(1-Cp/Cao) ln(1-Cp/Cao) 200 300 -2 k = 0.0062 s-1 0 200 0 -2 -4 200 400 600 800 0 -2 -4 -6 ln(1-Cp/Cao)= -0.0064t -6 ln(1-Cp/Cao) = -0.0063t Lab 3 t k = 0.0063 s-1 t Lab 4 k = 0.0064 s-1 (c) Disregarding the value of k that is very different from the other three, k is estimated with the average of the calculated k’s. k = 0.0063 s-1 (d) Errors in measurement of concentration, poor temperature control, errors in time measurements, delays in taking the samples, impure reactants, impurities acting as catalysts, inadequate mixing, poor sample handling, clerical errors in the reports, dirty reactor. 2- 15 http://librosysolucionarios.net 2.43 y i = ax i ⇒ φ (a ) = n ∑ d i2 = i =1 n ⇒a = i i =1 i 2 ⇒ dφ = 0= da ∑b n g 2 yi − axi xi ⇒ i =1 n ∑ i =1 yi xi − a n ∑x 2 i i =1 n ∑y x /∑x 2 i i i i =1 2.44 ∑ b y − ax g n i =1 DIMENSION X(100), Y(100) READ (5, 1) N C N = NUMBER OF DATA POINTS 1FORMAT (I10) READ (5, 2) (X(J), Y(J), J = 1, N 2FORMAT (8F 10.2) SX = 0.0 SY = 0.0 SXX = 0.0 SXY = 0.0 DO 100J = 1, N SX = SX + X(J) SY = SY + Y(J) SXX = SXX + X(J) ** 2 100SXY = SXY + X(J) * Y(J) AN = N SX = SX/AN SY = SY/AN SXX = SXX/AN SXY = SXY/AN CALCULATE SLOPE AND INTERCEPT A = (SXY - SX * SY)/(SXX - SX ** 2) B = SY - A * SX WRITE (6, 3) 3FORMAT (1H1, 20X 'PROBLEM 2-39'/) WRITE (6, 4) A, B 4FORMAT (1H0, 'SLOPEb -- bAb =', F6.3, 3X 'INTERCEPTb -- b8b =', F7.3/) C CALCULATE FITTED VALUES OF Y, AND SUM OF SQUARES OF RESIDUALS SSQ = 0.0 DO 200J = 1, N YC = A * X(J) + B RES = Y(J) - YC WRITE (6, 5) X(J), Y(J), YC, RES 5FORMAT (3X 'Xb =', F5.2, 5X /Yb =', F7.2, 5X 'Y(FITTED)b =', F7.2, 5X * 'RESIDUALb =', F6.3) 200SSQ = SSQ + RES ** 2 WRITE (6, 6) SSQ 6FORMAT (IH0, 'SUM OF SQUARES OF RESIDUALSb =', E10.3) STOP END $DATA 5 1.0 2.35 1.5 5.53 2.0 8.92 2.5 12.15 3.0 15.38 SOLUTION: a = 6.536, b = −4 .206 2- 16 http://librosysolucionarios.net =0 2.45 (a) E(cal/mol), D0 (cm2 /s) (b) ln D vs. 1/T, Slope=-E/R, intercept=ln D0 . (c) Intercept = ln D0 = -3.0151 ⇒ D0 = 0.05 cm 2 / s . 3.0E-03 2.9E-03 2.8E-03 2.7E-03 2.6E-03 2.5E-03 2.4E-03 2.3E-03 2.2E-03 2.1E-03 2.0E-03 Slope = − E / R = -3666 K ⇒ E = (3666 K)(1.987 cal / mol ⋅ K) = 7284 cal / mol -10.0 ln D -11.0 -12.0 -13.0 -14.0 ln D = -3666(1/T) - 3.0151 1/T (d) Spreadsheet T 347 374.2 396.2 420.7 447.7 471.2 D 1.34E-06 2.50E-06 4.55E-06 8.52E-06 1.41E-05 2.00E-05 1/T 2.88E-03 2.67E-03 2.52E-03 2.38E-03 2.23E-03 2.12E-03 Sx Sy Syx Sxx -E/R ln D0 lnD (1/T)*(lnD) -13.5 -0.03897 -12.9 -0.03447 -12.3 -0.03105 -11.7 -0.02775 -11.2 -0.02495 -10.8 -0.02296 2.47E-03 -12.1 -3.00E-02 6.16E-06 -3666 -3.0151 D0 7284 E 0.05 2- 17 http://librosysolucionarios.net (1/T)**2 8.31E-06 7.14E-06 6.37E-06 5.65E-06 4.99E-06 4.50E-06 CHAPTER THREE 3.1 16 × 6 × 2 m 3 1000 kg (a) m = m3 (b) m& = b gb gb gd i ≈ 2 × 10 5 2 103 ≈ 2 × 105 kg 8 oz 1 qt 10 6 cm3 1g 4 × 106 ≈ ≈ 1 × 10 2 g / s 3 3 2 s 32 oz 1056.68 qt cm 3 × 10 10 b gd i (c) Weight of a boxer ≈ 220 lb m 12 × 220 lb m 1 stone Wmax ≥ ≈ 220 stones 14 lb m (d) dictionary V= ≈ πD L 314 . 4.5 ft = 4 4 2 2 d 2 800 miles 5880 ft 7.4805 gal 1 barrel 1 mile 1 ft 3 42 gal i d i 3 × 4 × 5 × 8 × 10 2 × 5 × 10 3 × 7 4 × 4 × 10 (e) (i) V ≈ 6 ft × 1 ft × 0.5 ft 28,317 cm 3 (ii) V ≈ 1 ft 3 ≈ 1 × 10 7 barrels ≈ 3 × 3 × 10 4 ≈ 1 × 105 cm 3 1 ft 3 28,317 cm 3 62.4 lb m 1 ft 3 150 lb m 150 × 3 × 104 ≈ 1 × 105 cm 3 60 ≈ (f) SG ≈ 105 . 3.2 995 kg (a) (i) m (ii) 3 0.028317 m 3 1 lb m 0.45359 kg 1 ft 995 kg / m 3 62.43 lb m / ft 3 1000 kg / m 3 3 = 62.12 lb m / ft 3 = 62.12 lb m / ft 3 (b) ρ = ρ H2 O × SG = 62.43 lb m / ft 3 × 5.7 = 360 lb m / ft 3 3.3 (a) (b) (c) 50 L 0.70 × 10 3 kg 1 m3 m3 10 3 L m 3 1000 L 1 min 1150 kg min 10 gal = 35 kg 0.7 × 1000 kg 1 ft 3 2 min 7.481 gal 1 m3 0.70 × 62.43 lb m 1 ft 3 60 s = 27 L s ≅ 29 lb m / min 3- 1 http://librosysolucionarios.net 3.3 (cont’d) (d) Assuming that 1 cm 3 kerosene was mixed with Vg (cm 3 ) gasoline d i d i 1dcm kerosene i ⇒ 0.82 dg kerosene i d0.70V + 0.82idg blendi = 0.78 ⇒ V SG = V + 1dcm blend i Vg cm 3gasoline ⇒ 0.70Vg g gasoline 3 g 3 g g Volumetric ratio = 3.4 In France: In U.S.: 3.5 50.0 kg = 0.82 − 0.78 3 = 0.5 0 cm 0.78 − 0.70 Vgasoline 0.50 cm 3 = = 0.50 cm 3 gasoline / cm3 kerosene Vkerosene 1 cm3 L 5 Fr $1 = $68.42 1L 5.22 Fr 1 gal $1.20 = $22.64 0.70 × 1.0 kg 3.7854 L 1 gal 0.7 × 1.0 kg 50.0 kg L V&B ( ft 3 / h ), m& B ( lb m / h ) V& ( ft 3 / h ), SG = 0.850 V& H ( ft 3 / h ), m& H ( lb m / h ) 700 lb m / h 700 lb m ft 3 (a) V& = = 13.19 ft 3 / h h 0.850 × 62.43 lb m 3 & V ft 0.879 × 62.43 lb m & B kg / h m& B = B = 54.88 V 3 h ft m& H = V&H 0.659 × 62.43 = 4114 . V&H kg / h d i bg d hb b g b g g V&B + V&H = 1319 . ft 3 / h m& B + m& H = 54.88V&B + 4114 . V&H = 700 lb m ⇒ V&B = 114 . ft 3 / h ⇒ m& B = 628 lb m / h benzene & H = 71.6 lb m / h hexane V&H = 1.74 ft 3 / h ⇒ m (b) – No buildup of mass in unit. – ρ B and ρ H at inlet stream condit ions are equal to their tabulated values (which are o strictly valid at 20 C and 1 atm.) – Volumes of benzene and hexane are additive. – Densitometer gives correct reading. 3- 2 http://librosysolucionarios.net 3.6 (a) V = 195.5 kg H 2SO 4 1 kg solution L 0.35kg H 2SO 4 1.2563 × 1.000 kg = 445 L (b) L 18255 . × 1.00 kg 195.5 kg H 2SO 4 0.65 kg H 2O + 0.35 kg H 2SO 4 470 − 445 % error = × 100% = 5.6% 445 V ideal = 3.7 195.5 kg H 2SO 4 b gE b L = 470 L 1.000 kg g Buoyant force up = Weight of block down Mass of oil displaced + Mass of water displaced = Mass of block b g ρ oil 0.542 V + ρ H 2O b1 − 0.542gV = ρ V c From Table B.1: ρ c = 2.26 g / cm3 , ρ w = 100 . g / cm 3 ⇒ ρ oil = 3.325 g / cm3 moil = ρ oil × V = 3.325 g / cm3 × 35.3 cm 3 = 117.4 g moil + flask = 117.4 g + 124.8 g = 242 g 3.8 b g b g Buoyant force up = Weight of block down ⇒ Wdisplaced liquid = Wblock ⇒ ( ρVg ) disp. Liq = ( ρVg ) block b g b g Expt. 1: ρ w 15 . A g = ρB 2 A g ⇒ ρ B = ρ w × ρ w =1.00 g/cm 3 bg 15 . 2 b g ρ B = 0.75 g / cm 3 ⇒ SG B = 0.75 b g b g Expt. 2: ρ soln A g = ρ B 2 A g ⇒ ρ soln = 2 ρ B = 15 . g / cm3 ⇒ SG = 15 . soln 3.9 Let ρ w = density of water. Note: ρ A > ρ w (object sinks) d Volume displaced: Vd 1 = Abhsi = Ab h p1 − hb1 hs 1 WA + WB Archimedes ⇒ h ρ1 hb 1 h p1 − hb1 = d WA + WB p w gAb i (2) b ig d Volume of pond water: Vw = Ap h p1 − Vd1 ⇒ Vw = Ap h p1 − Ab h p1 − hb1 subst. ( 2 ) for b p1 − hb 1 W A + WB V W + WB ⇒ hp1 = w + A ρw g Ap ρ w gAp (3) Vw (W A + WB ) 1 1 + − Ap ρ wg Ap Ab (4) Vw = Ap h p1 − subst. ( 3for ) hp1 in (2, )solve for hb1 hb1 = (1) ρ wVd 1g = WA + WB 123 weight of displaced water Subst. (1) for Vd 1 , solve for h p1 − hb1 Before object is jettisoned i 3- 3 http://librosysolucionarios.net i 3.9 (cont’d) hs 2 WB WA Let V A = volume of jettisoned object = d hρ 2 h b2 Volume displaced by boat: Vd 2 = Ab h p2 − hb 2 E , solve for dh Subst. for Vd 2 p2 − hb 2 (7) Volume of pond water: Vw = Ap h p2 − Vd 2 − VA ⇒ h p2 = h p 21 subst. ( 8 ) ⇒ for h p 2 in (7, )solve for hb 2 i i WB ρ w gAb solve for (5) Archimedes ⇒ ρ WVd 2 g = WB After object is jettisoned h p 2 − hb2 = WA ρ Ag (5), (6 ) & ( 7 ) Vw = Ap h p 2 − Vw WB WA + + Ap ρw gAp ρ A gAp hb2 = WB W − A ρwg ρ A g (8) Vw WB WA WB + + − Ap ρ w gAp ρ A gAp ρ w gAb (9) (a) Change in pond level ( 8)− (3) h p2 − hp1 = WA Ap g 1 1 W A ( ρw − ρ A ) ρ − ρ = ρ ρ gA < 0 (since ρw < ρ A ) W A w p A ⇒ the pond level falls (b) Change in boat level >0 >0 } 644744 8 5) ( 9)− (4 ) W 1 ( A 1 1 V ρ p A h p 2 − hp1 = − + − 1 > 0 = A 1 + A Ap g ρ A Ap ρW A p ρW A b Ap ρW Ab ⇒ the boat rises 3.10 (a) ρ bulk = 2.93 kg CaCO 3 0.70 L CaCO3 L CaCO3 (b) Wbag = ρ bulkVg = L total = 2.05 kg / L 2.05 kg 50 L 9.807 m / s2 1N = 1.00 × 10 3 N L 1 kg ⋅ m / s2 Neglected the weight of the bag itself and of the air in the filled bag. (c) The limestone would fall short of filling three bags, because – the powder would pack tighter than the original particles. – you could never recover 100% of what you fed to the mill. 3- 4 http://librosysolucionarios.net (6) 3.11 (a) Wb = mb g = 122.5 kg 9.807 m / s2 1N 1 kg ⋅ m / s2 = 1202 N Wb − WI (1202 N - 44.0 N) 1 kg ⋅ m / s2 = = 119 L ρwg 0.996 kg / L × 9.807 m / s2 1N m 122 .5 kg ρb = b = = 1.03 kg / L Vb 119 L Vb = m f + mnf = mb (b) xf = mf mb (1) ⇒ m f = mb x f (2) d (1),( 2) ⇒ mnf = mb 1 − x f mf V f + Vnf = Vb ⇒ b 2g ,b 3g ⇒ mb (c) x f = Fx GH ρ + f b ρ nf 1 / ρ b − 1 / ρ nf 1 / ρ f − 1 / ρ nf ρf I =m JK ρ 1− xf f + i mnf ρ nf (3) = ⇒ xf b mb ρb F1 GH ρ − f 1 ρ nf I= 1 − 1 JK ρ ρ b ⇒ xf = nf 1 / ρ b − 1 / ρ nf 1 / ρ f − 1 / ρ nf 1 / 1.03 − 1 / 1.1 = 0.31 1 / 0.9 − 1 / 1.1 = (d) V f + Vnf + Vlungs + Vother = Vb mf ρf + mnf ρ nf m =m x f b f mnf = mb (1 − x f ) ⇒ xf mb ρb + Vlungs + Vother = mb Fx GH ρ f f − 1− x f ρ nf lungs + Vother ) = mb F1− 1I GH ρ ρ JK b nf F 1 − 1 I = 1 − 1 − V +V GH ρ ρ JK ρ ρ m F 1 − 1 I − F V + V I F 1 1 I F 12. + 0.1I GH ρ ρ JK GH m JK GH 1.03 − 11. JK − GH 122.5 JK = = = 0.25 F1− 1I FG 1 − 1 IJ GH ρ ρ JK H 0.9 11. K lungs f nf b nf b nf other b lungs ⇒ xf I + (V JK other b f nf 3- 5 http://librosysolucionarios.net Conc. (g Ile/100 g H2O) 3.12 (a) 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 0.987 y = 545.5x - 539.03 R2 = 0.9992 0.989 0.991 0.993 0.995 0.997 Density (g/cm3) From the plot above, r = 5455 . ρ − 539.03 (b) For ρ = 0.9940 g / cm 3 , m& Ile = 150 L 0.994 g h 3 cm r = 3.197 g Ile / 100g H 2O 1000 cm 3 3.197 g Ile L 1 kg 103.197 g sol 1000 g = 4.6 kg Ile / h (c) The density of H2 O increases as T decreases, therefore the density was higher than it should have been to use the calibration formula. The valve of r and hence the Ile mass flow rate calculated in part (b) would be too high. 3.13 (a) Mass Flow Rate (kg/min) 1.20 1.00 y = 0.0743x + 0.1523 R2 = 0.9989 0.80 0.60 0.40 0.20 0.00 0.0 2.0 4.0 6.0 8.0 10.0 12.0 Rotameter Reading b g & = 0.0743 5.3 + 0.1523 = 0.55 kg / min From the plot, R = 5.3 ⇒ m 3- 6 http://librosysolucionarios.net 3.13 (cont’d) (b) Rotameter Collection Collected Reading Time Volume (min) (cm3) 2 1 297 2 1 301 4 1 454 4 1 448 6 0.5 300 6 0.5 298 8 0.5 371 8 0.5 377 10 0.5 440 10 0.5 453 Mass Flow Rate (kg/min) 0.297 0.301 0.454 0.448 0.600 0.596 0.742 0.754 0.880 0.906 b Difference Duplicate (Di) Mean Di 0.004 0.006 0.004 0.0104 0.012 0.026 g 1 0.004 + 0.006 + 0.004 + 0.012 + 0.026 = 0.0104 kg / min 5 95% confidence limits: ( 0.610 ± 174 . Di ) kg / min = 0.610 ± 0.018 kg / min Di = There is roughly a 95% probability that the true flow rate is between 0.592 kg / min and 0.628 kg / min . 3.14 (a) (b) (c) (d) (e) (f) (g) (h) 15.0 kmol C6 H 6 15.0 kmol C6 H 6 15,000 mol C 6H 6 78.114 kg C 6H 6 = 117 . × 10 3 kg C6 H 6 kmol C6 H 6 1000 mol = 15 . × 10 4 mol C6 H 6 kmol lb - mole 453.6 mol 15,000 mol C6 H 6 = 33.07 lb - mole C 6H 6 6 mol C 1 mol C 6H 6 15,000 mol C 6H 6 6 mol H 1 mol C6 H6 90,000 mol C 12.011 g C mol C 90,000 mol H 1.008 g H mol H 15,000 mol C 6H 6 = 90,000 mol C = 90,000 mol H = 1.08 × 10 6 g C = 9.07 × 10 4 g H 6.022 × 10 23 mol = 9.03 × 1027 molecules of C6 H 6 3- 7 http://librosysolucionarios.net 3.15 (a) m& = (b) n& = 175 m3 1000 L 0.866 kg 3 h m 2526 kg min L 1000 mol 1 min 92.13 kg 60 s 1h 60 min = 2526 kg / min = 457 mol / s (c) Assumed density (SG) at T, P of stream is the same as the density at 20o C and 1 atm 3.16 (a) 200.0 kg mix 0150 . kg CH 3OH kg mix (b) m& mix = 3.17 M= 100.0 lb - mole MA h 0.25 mol N 2 m& N 2 = 3000 kg h kmol CH3OH 1000 mol 32.04 kg CH3OH 74.08 lb m MA 1 kmol 1 lb m mix 1 lb - mole MA 0.850 lb m MA 28.02 g N 2 + 0.75 mol H 2 mol N 2 kmol 0.25 kmol N 2 8.52 kg kmol feed = 936 mol CH3OH = 8715 lb m / h 2.02 g H2 = 8.52 g mol mol H 2 28.02 kg N 2 = 2470 kg N 2 h kmol N 2 3.18 M suspension = 565 g − 65 g = 500 g , M CaCO3 = 215 g − 65 g = 150 g (a) V& = 455 mL min , m& = 500 g min (b) ρ = m& / V& = 500 g / 455 mL = 110 . g mL (c) 150 g CaCO3 / 500 g suspension = 0.300 g CaCO 3 g suspension 3.19 Assume 100 mol mix. mC 2 H5 OH = 10.0 mol C2 H5OH 46.07 g C 2 H5OH = 461 g C2 H5OH mol C 2H 5OH 75.0 mol C4 H8 O2 88.1 g C 4 H8O2 mC 4 H8 O2 = = 6608 g C 4 H8O2 mol C 4 H8O2 15.0 mol CH 3COOH 60.05 g CH 3COOH mCH 3COOH = = 901 g CH 3COOH mol CH3COOH 461 g x C 2 H5OH = = 0.0578 g C 2 H 5OH / g mix 461 g + 6608 g + 901 g 6608 g x C4 H8 O2 = = 0.8291 g C4 H 8O 2 / g mix 461 g + 6608 g + 901 g 901 g x CH 3COOH = = 0.113 g CH3COOH / g mix 461 g + 6608 g + 901 g 461 g + 6608 g + 901 g MW = = 79.7 g / mol 100 mol 25 kmol EA 100 kmol mix 79.7 kg mix m= = 2660 kg mix 75 kmol EA 1 kmol mix 3- 8 http://librosysolucionarios.net 3.20 (a) Unit Crystallizer Filter Dryer Function Form solid gypsum particles from a solution Separate particles from solution Remove water from filter cake 0.35 kg CaSO 4 ⋅ 2 H 2 O = 0. 35 kg CaSO 4 ⋅ 2 H 2 O L slurry (b) m gypsum = 1 L slurry L CaSO4 ⋅ 2H2 O = 0151 . L CaSO 4 ⋅2 H2O 2.32 kg CaSO4 ⋅ 2 H2O 0.35 kg gypsum 136.15 kg CaSO 4 CaSO 4 in gypsum: m = = 0.277 kg CaSO 4 172.18 kg gypsum 1 − 0151 . L sol 1.05 kg 0.209 kg CaSO 4 CaSO 4 in soln.: m = = 0.00186 kg CaSO4 L 100.209 kg sol Vgypsum = 0.35 kg CaSO4 ⋅ 2H2 O b (c) m = 0.35 kg gypsum g 0.05 kg sol 0.209 g CaSO 4 = 384 . × 10 -5 kg CaSO4 0.95 kg gypsum 100.209 g sol 0.277 g + 3.84 × 10 -5 g % recovery = × 100% = 99.3% 0.277 g + 0.00186 g 3.21 CSA: FB: 45.8 L 0.90 kg min L 55.2 L 0.75 kg min L kmol U| |V || W kmol 0.5496 mol CSA 75 kg min ⇒ = 12 . kmol kmol 0.4600 mol FB = 0.4600 90 kg min = 0.5496 She was wrong. The mixer would come to a grinding halt and the motor would overheat. 3.22 (a) 150 mol EtOH 46.07 g EtOH = 6910 g EtOH mol EtOH 6910 g EtO H 0.600 g H 2 O = 10365 g H 2 O 0.400 g Et OH 6910 g EtOH L 10365 g H 2 O L V= + = 19.123 L ⇒ 19.1 L 789 g EtOH 1000 g H 2 O (6910 +10365) g L SG = = 0903 . 191 . L 1000 g (b) V ′ = (6910 + 10365) g mix % error = L = 18.472 L ⇒ 18.5 L 935.18 g (19.123 − 18.472 ) L × 100% = 3.5% 18.472 L 3-9 http://librosysolucionarios.net 3.23 0.09 mol CH 4 16.04 g 0.91 mol Air 29.0 g Air + = 27 .83 g mol mol mol 700 kg kmol 0.090 kmol CH 4 = 2.264 kmol CH 4 h h 27.83 kg 1.00 kmol mix 2.264 kmol CH 4 0.91 kmol air = 22.89 kmol air h h 0.09 kmol CH 4 M = 5% CH 4 ⇒ 2.264 kmol CH 4 0.95 kmol air h 0.05 kmol CH 4 b = 43.01 kmol air h g Dilution air required: 43.01 - 22.89 kmol air 1000 mol = 20200 mol air h h 1 kmol Product gas: 700 kg + 20.20 kmol Air 29 kg Air = 1286 kg h h h kmol Air 43.01 kmol Air 0.21 kmol O2 32.00 kg O2 h kg O2 = 0.225 h 1.00 kmol Air 1 kmol O2 1286 kg total kg 3.24 xi = mi m M , ρi = i , ρ = M Vi V m m 1 A: ∑ x i ρ i = ∑ i i = M Vi M B: xi ∑ Not helpful. mi Vi 1 V 1 = Vi = = Correct. ∑ mi M M ρ i xi 0.60 0.25 0.15 = + + = 1.091 ⇒ ρ = 0.917 g / cm 3 ρ i 0.791 1.049 1.595 ∑ρ 1 = ρ mi2 ∑ Vi ≠ ρ = ∑M 3.25 (a) Basis: 100 mol N 2 ⇒ 20 mol CH 4 R|20 × 80 = 64 mol CO 25 ⇒S |T 20 × 40 = 32 mol CO 25 2 N total = 100 + 20 + 64 + 32 = 216 mol 32 64 = 0.15 mol CO / mol , x CO 2 = = 0.30 mol CO 2 / mol 216 216 20 100 = = 0 .09 mol CH 4 / mol , x N 2 = = 0.46 mol N 2 / mol 216 216 xC O = xC H 4 (b) M = ∑ yi M i = 015 . × 28 + 0.30 × 44 + 0.09 × 16 + 0.46 × 28 = 32 g / mol 3-10 http://librosysolucionarios.net 3.26 (a) Samples Species MW k 1 CH4 C2H6 C3H8 C4H10 16.04 30.07 44.09 58.12 0.150 0.287 0.467 0.583 Peak Area 3.6 2.8 2.4 1.7 Mole Fraction 0.156 0.233 0.324 0.287 Mass Fraction 0.062 0.173 0.353 0.412 moles mass 0.540 0.804 1.121 0.991 8.662 24.164 49.416 57.603 2 CH4 C2H6 C3H8 C4H10 16.04 30.07 44.09 58.12 0.150 0.287 0.467 0.583 7.8 2.4 5.6 0.4 0.249 0.146 0.556 0.050 0.111 0.123 0.685 0.081 1.170 0.689 2.615 0.233 18.767 20.712 115.304 13.554 3 CH4 C2H6 C3H8 C4H10 16.04 30.07 44.09 58.12 0.150 0.287 0.467 0.583 3.4 4.5 2.6 0.8 0.146 0.371 0.349 0.134 0.064 0.304 0.419 0.212 0.510 1.292 1.214 0.466 8.180 38.835 53.534 27.107 4 CH4 C2H6 C3H8 C4H10 16.04 30.07 44.09 58.12 0.150 0.287 0.467 0.583 4.8 2.5 1.3 0.2 0.333 0.332 0.281 0.054 0.173 0.324 0.401 0.102 0.720 0.718 0.607 0.117 11.549 21.575 26.767 6.777 5 CH4 C2H6 C3H8 C4H10 16.04 30.07 44.09 58.12 0.150 0.287 0.467 0.583 6.4 7.9 4.8 2.3 0.141 0.333 0.329 0.197 0.059 0.262 0.380 0.299 0.960 2.267 2.242 1.341 15.398 68.178 98.832 77.933 (b) REAL A(10), MW(10), K(10), MOL(10), MASS(10), MOLT, MASST INTEGER N, ND, ID, J READ (5, *) N CN-NUMBER OF SPECIES READ (5, *) (MW(J), K(J), J = 1, N) READ (5, *) ND DO 20 ID = 1, ND READ (5, *)(A(J), J = 1, N) MOLT = 0. 0 MASST = 0. 0 DO 10 J = 1, N MOL(J) = MASS(J) = MOL(J) * MW(J) MOLT = MOLT + MOL(J) MASST = MASST + MASS(J) 10 CONTINUE DO 15 J = 1, N MOL(J) = MOL(J)/MOLT MASS(J) = MASS(J)/MASST 15 CONTINUE WRITE (6, 1) ID, (J, MOL(J), MASS (J), J = 1, N) 20 CONTINUE 1 FORMAT (' SAMPLE: `, I3, /, 3-11 http://librosysolucionarios.net 3.26 (cont’d) ∗ ' SPECIES MOLE FR. MASS FR.', /, ∗ 10(3X, I3, 2(5X, F5.3), /), /) END $DATA ∗ 4 16. 04 0. 150 30 . 07 0. 287 44 . 09 0. 467 58 . 12 0. 583 5 3. 6 2. 8 2. 4 1. 7 7. 8 2. 4 5. 6 0. 4 3. 4 4. 5 2. 6 0. 8 4 .8 2. 5 1. 3 0. 2 6. 4 7. 9 4. 8 2. 3 [OUTPUT] SAMPLE : 1 SPECIES MOLE FR 1 0.156 0.062 2 0.233 0.173 3 0. 324 0. 353 0. 287 0.412 4 SAMPLE: 2 (ETC.) 3.27 (a) MASS FR (8.7 × 10 6 × 0.40) kg C 44 kg CO 2 = 128 . × 10 7 kg CO 2 ⇒ 2 .9 × 10 5 kmol CO 2 12 kg C (11 . × 10 6 × 0.26) kg C 28 kg CO = 6.67 × 10 5 kg CO ⇒ 2.38 × 10 4 kmol CO 12 kg C ( 3.8 × 10 5 × 0.10) kg C 16 kg CH 4 12 kg C = 5.07 × 10 4 kg CH 4 ⇒ 3.17 × 10 3 kmol CH 4 (1.28 × 10 + 6 .67 × 10 + 5.07 × 10 4 ) kg 1 metric ton metric tons m= = 13,500 yr 1000 kg 7 M = ∑y M i i 5 = 0.915 × 44 + 0.075 × 28 + 0.01 × 16 = 42.5 g / mol 3.28 (a) Basis: 1 liter of solution 1000 mL 1.03 g 5 g H 2 SO 4 mL 100 g mol H 2 SO 4 = 0.525 mol / L ⇒ 0.525 molar solution 98.08 g H 2 SO 4 3-12 http://librosysolucionarios.net 3.28 (cont’d) (b) t = V = V& 55 gal & 55 gal 3.7854 L min 60 s gal 87 L min 3.7854 L gal (c) u = V = 87 L 10 3 mL 1.03 g 1L mL m3 A = 144 s 0.0500 g H 2 SO 4 g 1 min min 1000 L 60 s L 45 m t= = = 88 s u 0.513 m / s (π × 0.06 2 / 4) m 2 1 lbm = 23.6 lb m H 2 SO 4 453.59 g = 0.513 m / s 3.29 (a) n&1 (mol/min) n& 2 (mol/min) 0.180 mol C6H14/mol 0.820 mol N2/mol 0.050 mol C6H14/mol 0.950 mol N2/mol 1.50 L C6H14(l)/min n& 3 (mol C6H14(l)/min) n& 3 = 150 . L 0.659 kg 1000 mol min L 86.17 kg = 1147 . mol / min UV W R| S|T Hexane balance: 0.180n&1 = 0050 . n&2 + 1147 . (mol C6 H14 / min) solve n&1 = 838 . mol / min ⇒ & n2 = 72.3 mol / min Nitrogen balance: 0.820n&1 = 0950 . n&2 (mol N2 / min) (b) Hexane recovery = 30 mL 3.30 n&3 1147 . × 100% = × 100% = 76% n&1 0180 . 838 . b g 1 L 0.030 mol 172 g = 0155 . g Nauseum 103 mL lL 1 mol 3-13 http://librosysolucionarios.net ln(CA) 3.31 (a) kt is dimensionless ⇒ k (min-1 ) (b) A semilog plot of CA vs. t is a straight line ⇒ ln CA = ln CAO − kt 1 0 -1 -2 -3 -4 -5 y = -0.4137x + 0.2512 R2 = 0.9996 0.0 5.0 t (min) 10.0 k = 0.414 min −1 ln CAO = 02512 . ⇒ CAO = 1286 . lb - moles ft 3 FG 1b - molesIJ = C ′ mol 28.317 liter H ft K liter 1 ft t ′b sg 1 min t b ming = = t ′ 60 60 s (c) C A A 3 2.26462 lb- moles = 0.06243C′A 1000 mol 3 CA = C A 0 exp( − kt ) b g 0.06243C ′A = 1334 . exp −0.419 t ′ 60 drop primes ⇒ b g b C A mol / L = 214 . exp −0.00693t g t = 200 s ⇒ C A = 5.30 mol / L 3.32 (a) (b) 2600 mm Hg 14.696 psi = 50.3 psi 760 mm Hg 275 ft H 2O 101.325 kPa = 822.0 kPa 33.9 ft H 2 O 3.00 atm 101325 . × 105 N m 2 12 m2 (c) = 30.4 N cm 2 2 2 1 atm 100 cm (d) 280 cm Hg 10 mm 101325 . × 10 6 dynes cm 2 1002 cm 2 (e) 1 atm − 1 cm 760 mm Hg 2 1 m 20 cm Hg 10 mm 1 atm = 0.737 atm 1 cm 760 mm Hg 3-14 http://librosysolucionarios.net 2 = 3.733 × 1010 dynes m2 3.32 (cont’d) (f) (g) b g b 25.0 psig 760 mm Hg gauge = 1293 mm Hg gauge 14.696 psig b25.0 + 14.696gpsi g b g 760 mm Hg = 2053 mm Hg abs 14.696 psi b g (h) 325 mm Hg − 760 mm Hg = −435 mm Hg gauge (i) Eq. (3.4-2) ⇒ h = = P ρg 35.0 lbf in 2 144 in 2 1 ft s2 32.174 lbm ⋅ ft ft3 1.595 × 62.43 lbm 2 32.174 ft lbf ⋅ s 2 100 cm 3.2808 ft = 1540 cm CCl4 0.92 × 1000 kg 9.81 m / s2 m3 ⇒ h (m) = 0.111Pg (kPa) 3.33 (a) Pg = ρgh = h (m) 1N 1 kg ⋅ m / s2 1 kPa 103 N / m 2 h Pg Pg = 68 kPa ⇒ h = 0.111 × 68 = 7.55 m FG H moil = ρV = 0.92 × 1000 IJ FG K H IJ K kg 16 2 3 × 7 . 55 × π × m = 14 . × 106 kg m3 4 (b) Pg + Patm = Ptop + ρgh b g b g 68 + 101 = 115 + 0.92 × 1000 × 9.81 / 103 h ⇒ h = 5.98 m 3.34 (a) Weight of block = Sum of weights of displaced liquids ρ h + ρ 2 h2 ( h1 + h2 ) Aρb g = h1 Aρ1 g + h2 Aρ 2 g ⇒ ρb = 1 1 h1 + h2 3-15 http://librosysolucionarios.net 3.34 (cont’d) (b) Ptop = Patm + ρ1gh0 , Pbottom = Patm + ρ1g(h0 + h1) + ρ2gh2 , Wb = ρb (h1 + h2 ) A ⇒ Fdown = ( Patm + ρ1gh0 ) A + ρb (h1 + h2 ) A , Fup = [Patm + ρ1g(h0 + h1 ) + ρ2gh2 ]A Fdown = Fup ⇒ ρb (h1 + h2 ) A = ρ1gh1 A + ρ2 gh2 A ⇒ Wblock =Wliquid displaced 3.35 b g ∆ P = Patm + ρgh − Pinside . g1000 kg b105 = 1 atm − 1 atm + m3 F= 3.36 154 N 65 cm2 2 cm = 100 . × 104 N × 9.8066 m 150 m 12 m 2 1N 2 2 2 s 100 cm 1 kg ⋅ m / s2 FG 0.22481 lb IJ = 2250 lb H 1N K f f 1.4 × 62.43 lb m 1 ft 3 2.3 × 106 gal = 2.69 × 107 lb m 3 ft 7.481 gal P = P0 + ρgh . × 62.43 lb m 32.174 ft 30 ft 1 lb f 12 ft 2 lb 14 = 14.7 f2 + in ft 3 s2 32.174 lb m ⋅ ft / s2 12 2 in2 = 32.9 psi m = ρV = — Structural flaw in the tank. — Tank strength inadequate for that much force. — Molasses corroded tank wall π × 24 2 × 3 in 3 1 ft 3 8.0 × 62.43 lb m = 392 lb m 3 3 4 12 in ft 3 392 lb m 32.174 ft / s 2 1 lb f W = mhead g = = 392 lb f 32.174 lb m ⋅ ft / s2 3.37 (a) mhead = ( 30 + 14.7 ) lb f π × 202 in 2 Fnet = Fgas − Fatm − W = 2 in 4 − 14.7 lbf in 2 π × 24 2 in 2 4 − 392 lb f = 7.00 ×10 3 lb f The head would blow off. 3-16 http://librosysolucionarios.net 3.37 (cont’d) 7.000 × 10 lbf Fnet = 392 lb m mhead 3 Initial acceleration: a = 32.174 lbm ⋅ ft/s 2 1 lbf = 576 ft/s 2 (b) Vent the reactor through a valve to the outside or a hood before removing the head. 3.38 (a) a b 2m 1m Pa = ρgh + Patm , Pb = Patm If the inside pressure on the door equaled Pa , the force on the door would be F = Adoor ( Pa − Pb ) = ρghAdoor Since the pressure at every point on the door is greater than Pa , Since the pressure at every point on the door is greater than Pa , F >ρghAdoor (b) Assume an average bathtub 5 ft long, 2.5 ft wide, and 2 ft high takes about 10 min to fill. V 5 × 25 . × 2 ft 3 & Vtub = ≈ = 2.5 ft 3 / min ⇒ V& = 5 × 2.5 = 125 . ft 3 / min t 10 min For a full room, h = 10 m (i) 1000 kg 9.81 m 1N 10 m 2 m 2 ⇒ F > 2.0 × 105 N 3 2 2 m s 1 kg ⋅ m / s The door will break before the room fills ⇒F> (ii) If the door holds, it will take 5 × 15 × 10 m 3 35.3145 ft 3 1h V t fill = room = = 31 h V& 12.5 ft 3 / min 1 m3 60 min He will not have enough time. b d i dP i 3.39 (a) Pg g tap = g 25 m H2 O 101.3 kPa = 245 kPa 10.33 m H 2O 25 + 5 m H 2O 101.3 kPa = = 294 kPa 10.33 m H 2O b junction g (b) Air in the line. (lowers average density of the water.) (c) The line could be clogged, or there could be a leak between the junction and the tap. 3-17 http://librosysolucionarios.net 3.40 Pabs = 800 mm Hg Pgauge = 25 mm Hg Patm = 800 − 25 = 775 mm Hg b g 3.41 (a) P1 + ρ A g h1 + h2 = P2 + ρ B gh1 + ρ C gh2 b g b g ⇒ P1 − P2 = ρ B − ρ A gh1 + ρ C − ρ A gh2 LMb1.0 − 0.792 g g 981 cm 30.0 cm + b137 . − 0.792 g g cm s cm N F 1 dyne I F I = 123.0 kPa 101.325 kPa × G J G H 1 g ⋅ cm / s K H 1.01325 × 10 dynes / cm JK (b) P1 = 121 kPa + 3 2 2 3.42 3 6 OP Q 981 cm 24.0 cm s2 2 (a) Say ρt (g/cm3) = density of toluene, ρm (g/cm3) = density of manometer fluid ρ t g (500 − h + R ) = ρ m gR ⇒ R = 500 − h ρm −1 ρt (i) Hg: ρ t = 0.866, ρ m = 13.6, h = 150 cm ⇒ R = 238 . cm (ii) H 2 O: ρ t = 0.866, ρ m = 1.00, h = 150 cm ⇒ R = 2260 cm Use mercury, because the water manometer would have to be too tall. (b) If the manometer were simply filled with toluene, the level in the glass tube would be at the level in the tank. Advantages of using mercury: smaller manometer; less evaporation. (c) The nitrogen blanket is used to avoid contact between toluene and atmospheric oxygen, minimizing the risk of combustion. P 3.43 Patm = ρ f g 7.23 m ⇒ ρ f = atm 7.23 g Patm Pa − Pb = ρ f − ρ w g 26 cm = − ρ w g 26 cm 7.23 m b d g ib g FGH IJ b K F756mmHg 1 m −1000 kg 9.81 m/s =G H 7.23 m 100 cm m 2 3 g Ib g JK 1N 760mmHg 1m 26 cm 2 5 2 1 kg⋅ m/s 1.01325×10 N m 100 cm ⇒ Pa − Pb = 81 . mm Hg 3-18 http://librosysolucionarios.net 3.44 (a) ∆h = 900 − hl = 75 . psi 760 mm Hg = 388 mm Hg ⇒ hl =900 − 388 =512 mm 14.696 psi (b) ∆h = 388 − 25 × 2 = 338 mm ⇒ Pg = 338 mm Hg 14.696 psi = 6.54 psig 760 mm Hg 3.45 (a) h = L sin θ b g b g (b) h = 8.7 cm sin 15° = 2.3 cm H 2 O = 23 mm H 2 O 3.46 (a) P = Patm − Poil − PHg = 765 − 365 − 9.81 m / s2 0.10 m 920 kg m3 1N 760 mm Hg 2 1 kg ⋅ m/ s 1.01325 × 105 N / m2 = 393 mm Hg (b) — Nonreactive with the vapor in the apparatus. — Lighter than and immiscible with mercury. — Low rate of evaporation (low volatility). c h c 3.47 (a) Let ρ f = manometer fluid density 110 . g cm 3 , ρ ac = acetone density 0.791 g cm 3 d i Differential manometer formula: ∆P = ρ f − ρ ac gh ∆P ( mm Hg ) = (1.10 − 0.791) g 981 cm h (mm) 3 cm s 1 cm 1 dyne 10 mm 1 g ⋅ cm/s 2 = 0.02274 h ( mm ) V& ( mL s ) 62 87 107 123 138 151 5 10 15 20 25 30 h ( mm ) ∆P ( mm Hg ) 0.114 0.227 0.341 0.455 0.568 0.682 b g (b) lnV& = n ln ∆P + ln K 6 ln(V) 5.5 y = 0.4979x + 5.2068 5 4.5 4 -2.5 -2 -1.5 -1 -0.5 0 ln( P) 3-19 http://librosysolucionarios.net 760 mm Hg 2 1.01325×106 dyne/cm2 h 3.47 (cont’d) b g . ln ∆P + 52068 . From the plot above, ln V& = 04979 ⇒n = 04979 . ≈ 05 . , ln K = 5.2068 ⇒ K = 183 b ml s bmm Hgg gb g 0 .5 b g (c) h = 23 ⇒ ∆P = 0.02274 23 = 0.523 mm Hg ⇒ V& = 183 0.523 0. 5 = 132 mL s 132 mL 0.791 g 104 g 1 mol = 104 g s = 180 . mol s s mL s 58.08 g . = 544° R / 18 . = 303 K − 273 = 30°C 3.48 (a) T = 85° F + 4597 . = 474° R − 460 = 14° F (b) T = −10°C + 273 = 263 K × 18 (c) ∆T = (d) 85° C 10 . °K 85° C 18 . °F 85° C 1.8° R = 85° K; = 153° F; = 153° R 10 . °C 1° C 1.0° C 150° R 1° F 1° R = 150° F; 150° R 1.0o K 1.8° R = 83.3° K; 150° R 1.0° C 1.8° R = 83.3° C 3.49 (a) T = 0.0940 × 1000o FB + 4.00 = 98.0o C ⇒ T = 98.0 × 1.8 + 32 = 208o F (b) ∆T (o C) = 0.0940 ∆T (o FB) = 0.94o C ⇒ ∆T (K) = 0.94 K 0.94o C 1.8o F o ∆T ( F) = = 1.69o F ⇒ ∆T (o R) = 1.69o R o 1.0 C o o (c) T1 = 15o C ⇒ 100o L ; T2 = 43 C⇒1000 L T ( o C) = aT (o L) + b o F oCI ; 43 − 15g C b a= = 0.0311G H o L JK b1000 - 100go L b = 15 − 0.0311 × 100 = 119 . oC ⇒ T ( o C) = 0.0311T ( o L) + 11.9 and T ( o L) = 32.15T ( o C) − 382.6 (d) Tbp = −88.6o C ⇒ 184.6 K ⇒ 332.3o R ⇒ -127.4o F ⇒ −9851 . o FB ⇒ −3232o L (e) ∆T = 50.0o L ⇒ 1.56o C ⇒ 16.6o FB ⇒ 156 . K ⇒ 2.8o F ⇒ 2.8o R 3-20 http://librosysolucionarios.net 3.50 bT g = 100° C bT g (a) V b mV g = aT b° Cg + b b H O 2 m AgCl = 455° C 5.27 = 100a + b a = 0.05524 mV ° C ⇒ 24.88 = 455a + b b = −0.2539 mV V mV = 0.05524T ° C − 0.2539 b g b g ⇓ T ° C = 1810 . V mV + 4.596 b g b g . mV→136 . mV ⇒1856 . ° C→2508 . °C ⇒ (b) 100 3.51 (a) ln T = ln K + n ln R n= b g b g . − 1856 . °C dT 2508 = = 326 . °C / s dt 20 s T = KR n ln 250.0 110.0 = 1184 . ln 40.0 20.0 b g . ln K = ln 1100 . −1184 . (ln 200 . ) = 1154 . ⇒ K = 3169 . ⇒T = 3169 . R1184 320 I (b) R = FG JK H 3169 . 1/ 1.184 = 49.3 (c) Extrapolation error, thermocouple reading wrong. 3.52 (a) PV = 0.08206nT b g Pbatmg = 14696 . P′ psig + 14696 . b g b g n mol = n′ lb - moles × bg d i 28317 . ft 3 , V L = V ′ ft × L 3 453.59 mol T ′( o F) − 32 , T(o K) = + 27315 . lb − moles 1.8 b P′ + 14.696g × V ′ × 28.317 = 008206 453.59 L (T ′ − 32) O . × n′ × ×M + 27315 . P 14.696 1 N 1.8 Q ⇒ b g ⇒ P ′ + 14.696 × V ′ = b g 0.08206 × 14.696 × 453.59 × n′ × T ′ + 459.7 28.317 × 18 . b b g ⇒ P′ + 14.696 V ′ = 1073 . n′ T ′ + 459.7 3-21 http://librosysolucionarios.net g 3.52 (cont’d) b500 + 14.696g × 3.5 = 0.308 lb - mole 10.73 × b85 + 459.7g (b) ntot ′ = mCO = (c) T ′ = 0308 . lb- mole 0.30 lb- mole CO 28 lbm CO = 2.6 lb m CO lb- mole lb - mole CO b3000 + 14.696g × 35. − 459.7 = 2733o F 10.73 × 0.308 b g b g 3.53 (a) T ° C = a × r ohms + b UV ⇒ W 0 = 23624 . a +b 100 = 33028 . a +b a = 10634 . ⇒ T °C = 10634 . r ohms − 25122 . b = −25122 . b g FG kmol IJ = n&′ (kmol) 1 min = n& ′ H s K min 60 s 60 P ′bmm Hgg 1 atm P′ Pbatmg = = 760 mm Hg 760 F m I m 1 min = V& ′ V&G J = V& ′ H s K min 60 s 60 b g (b) n& 3 , bg b g T K = T ′ °C + 27316 . 3 b g d b g i 0.016034P′ mm Hg V& ′ m3 min V& ′ n&′ 12.186 P ′ = ⇒ n& ′ = 60 T ′ ° C + 27316 . 760 T ′ + 27316 . 60 (c) T = 10.634 r − 251.22 r1 = 26.159 ⇒ T1 = 26.95° C ⇒ r2 = 26157 . ⇒ T2 = 26.93° C r3 = 44.789 ⇒ T3 = 2251 . °C P (mm Hg) = h + Patm = h + ( 29.76 in Hg) FG 760 mm Hg IJ = h + 755.9 H 29.92 in Hg K h1 = 232 mm ⇒ P1 = 987.9 mm Hg . mm Hg ⇒ h2 = 156 mm ⇒ P2 = 9119 h3 = 74 mm ⇒ P3 = 829.9 mm Hg 3-22 http://librosysolucionarios.net 3.53 (cont’d) b0.016034 gb987.9gb947 60g = 0.8331 kmol CH 26.95 + 27316 . b0.016034gb9119. gb195g = 9.501 kmol air min = (d) n&1 = n& 2 4 min 26.93 + 27316 . n& 3 = n&1 + n& 2 = 10.33 kmol min (e) V3 = b . g g = b10.33gb2251. + 27316 0.016034 P b0.016034gb829.9g = 387 m n&3 T2 + 27316 . 3 min 3 (f) 0.8331 kmol CH 4 16.04 kg CH 4 kg CH 4 = 13.36 min kmol min 0.21× 9.501 kmol O2 32.0 kg O2 0.79 × 9.501 kmol N2 + min kmol O2 min xC H4 = 3.54 13.36 kg CH 4 min = 0.0465 kg CH4 kg (13.36 + 274) kg / min REAL, MW, T, SLOPE, INTCPT, KO, E REAL TIME (100), CA (100), TK (100), X (100), Y(100) INTEGER IT, N, NT, J READ 5, ∗ MW, NT DO 10 IT=1, NT READ 5, ∗ TC, N TK(IT) = TC + 273.15 READ 5, ∗ (TIME (J), CA (J), J = 1 , N) DO 1 J=1, N CA J = CA J / MW b g b g b g bg bg XbJ g = TIMEbJ g YbJg = 1./CAbJg 1 CONTINUE CALL LS (X, Y, N, SLOPE, INTCPT) b g K IT = SLOPE WRITE (E, 2) TK (IT), (TIME (J), CA (J), J = 1 , N) WRITE (6, 3) K (IT) 10 CONTINUE DO 4 J=1, NT X J = 1./TK J bg bg YbJg = LOGcKbJgh 3-23 http://librosysolucionarios.net 28.0 kg N 2 kg air = 274 kmol N2 min 3.54 (cont’d) 4 CONTINUE CALL LS (X, Y, NT, SLOPE, INTCPT) KO = EXP INTCPT b 2 3 5 10 g E = −8.314 = SLOPE WRITE (6, 5) KO, E FORMAT (' TEMPERATURE (K): ', F6.2, / * ' TIME CA', /, * ' (MIN) (MOLES)', / * 100 (IX, F5.2, 3X, F7.4, /)) FORMAT (' K (L/MOL – MIN): ', F5.3, //) FORMAT (/, ' KO (L/MOL – MIN) : ', E 12.4, /, ' E (J/MOL): ', E 12.4) END SUBROUTINE LS (X, Y, N, SLOPE, INTCPT) REAL X(100), Y(100), SLOPE, INTCPT, SX, SY, SXX, SXY, AN INTEGER N, J SX=0 SY=0 SXX=0 SXY=0 DO 10 J=1,N SX = SX + X(J) SY = SY + Y(J) SXX = SXX + X(J)**2 SXY = SXY + X(J)*Y(J) CONTINUE AN = N SX = SX/AN SY = SY/AN SXX = SXX/AN SXY = SXY/AN SLOPE = (SXY – SX*SY)/(SXX – SX**2) INTCPT = SY – SLOPE*SX RETURN END $ DATA 65.0 94.0 10.0 20.0 4 6 8.1 4.3 [OUTPUT] TEMPERATURE (K): 367.15 TIME CA (MIN) (MOLS/L) 10.00 0.1246 3-24 http://librosysolucionarios.net 3.54 (cont’d) 30.0 40.0 50.0 60.0 3.0 2.2 1.8 1.5 20.00 30.00 40.00 50.00 60.00 b 0.0662 0.0462 0.0338 0.0277 0.0231 g K L / MOL ⋅ MIN : 0.707 110. 10.0 20.0 30.0 40.0 50.0 60.0 6 3.5 1.8 1.2 0.92 0.73 0.61 127. 6 M M ETC bat 94° Cg TEMPERATURE (K): 383.15 M b g K L / MOL ⋅ MIN : 1.758 M b g E bJ / MOLg: 0.6690E + 05 K0 L / MOL − MIN : 0.2329E + 10 3-25 http://librosysolucionarios.net CHAPTER FOUR 4.1 a. Continuous, Transient b. Input – Output = Accumulation No reactions ⇒ Generation = 0, Consumption = 0 6.00 c. 4.2 t= kg kg dn dn kg − 3.00 = ⇒ = 3.00 s s dt dt s 1.00 m3 1000 kg 1s = 333 s 1 m3 3.00 kg a. Continuous, Steady State b. k = 0 ⇒ CA = CA0 c. Input – Output – Consumption = 0 Steady state ⇒ Accumulation = 0 A is a reactant ⇒ Generation = 0 k = ∞ ⇒ CA = 0 FG IJ FG IJ FG IJ FG IJ H K H K H K H K FG IJ H K m3 mol m3 mol mol C A0 & & V CA 0 =V CA + kVC A ⇒ CA = 3 3 kV s m s m s 1+ V& 4.3 b m& v kg / h a. g 100 kg / h 0.850kg B / kg 0.550kg B / kg 0.150kg T / kg 0.450kg T / kg m& l kg / h b g Input – Output = 0 Steady state ⇒ Accumulation = 0 No reaction ⇒ Generation = 0, Consumption = 0 0.106kg B / kg 0.894kg T / kg (1) Total Mass Balance: 100.0 kg / h = m& v + m& l & v + 0106 &l (2) Benzene Balance: 0.550 × 100.0 kg B / h = 0.850 m . m & v = 59.7 kg h, m& l = 40.3 kg h Solve (1) & (2) simultaneously ⇒ m b. The flow chart is identical to that of (a), except that mass flow rates (kg/h) are replaced by masses (kg). The balance equations are also identical (initial input = final output). c. Possible explanations ⇒ a chemical reaction is taking place, the process is not at steady state, the feed composition is incorrect, the flow rates are not what they are supposed to be, other species are in the feed stream, measurement errors. 4- 1 http://librosysolucionarios.net 4.4 b. c. n(mol) 0 .500 mol N 2 mol 0 .500 mol CH 4 mol 100.0 g / s b g bg C H g g bg C H g g xE g C 2 H6 g xP xB d. 3 8 4 10 b g b 0.500n mol N 2 28 g N 2 1 kg = 0.014 n kg N 2 mol N 2 1000 g n& E = b 100x E g C2H 6 s b g 1 lb m lb - mole C2H 6 3600 s 453.593 g 30 lb m C2H 6 h = 26.45 x E lb - mole C2H 6 / h b g R|n& blb - mole DA sg U| . lb - moleO lb - mole DA V S| 021 . lb- moleN lb - mole DA|W T 079 n& 1 lb - mole H2 O s b n& O2 = 0.21n& 2 lb - mole O2 / s g g 2 2 2 x H2 O = x O2 = e. n ( mol) FG H n&1 lb - mole H2O &n1 + n& 2 lb - mole FG H 0.21n&2 lb - mole O 2 n&1 + n&2 lb - mole IJ K IJ K nN 2O4 = n 0.600 − y NO2 ( mol N 2O 4 ) 0.400mol NO mol yNO 2 ( mol NO 2 mol) 0.600 − yNO 2 ( mol N 2 O4 mol ) 4- 2 http://librosysolucionarios.net g 4.5 a. Basis: 1000 lbm C3H8 / h fresh feed (Could also take 1 h operation as basis flow chart would be as below except that all / h would be deleted.) b n& 6 lb m / h b g n& 7 lb m / h 1000 lb m C 3H 8 / h g 002 . lb m C3H 8 / lb m 098 . lb m C3 H 6 / lbm 097 . lb m C3H 8 / lb m Still 0.03 lb m C3 H 6 / lb m Compressor b n& b lb n& b lb n& b lb g C H / hg CH / h g H / hg b b n& 1 lb m C3H 8 / h n&1 lb m C3 H8 / h Reactor 2 m 3 m 4 m 3 6 4 2 b b n& 3 lb m CH 4 / h n& 4 lb m H 2 / h Note: the compressor and the off gas from the absorber are not mentioned explicitly in the process description, but their presence should be inferred. g g b n& 5 lbm / h g Stripper Absorber b b n& b lb n&1 lb m C3 H8 / h g g n& 2 lb m C3 H 6 / h 5 4.6 g g n& 2 lb m C3H 6 / h m oil / h g b. Overall objective : To produce C3 H6 from C3 H8 . Preheater function: Raise temperature of the reactants to raise the reaction rate. Reactor function: Convert C3 H8 to C3H6 . Absorption tower function: Separate the C3H8 and C3 H6 in the reactor effluent from the other components. Stripping tower function: Recover the C3H8 and C3H6 from the solvent. Distillation column function: Separate the C3 H5 from the C3 H8. a. 3 independent balances (one for each species) b. 7 unknowns ( m& 1 , m & 3 , m& 5 , x2 , y2 , y 4 , z4 ) – 3 balances – 2 mole fraction summations 2 unknowns must be specified c. y2 = 1 − x2 FG kg A IJ = m& + b1200gb0.70g FG kg A IJ H h K H hK F kg I F kg I Overall Balance: m& + 5300 G J = m& + 1200 + m& G J HhK H hK F kg B IJ = 1200 y + 0.60m& FG kg BIJ B Balance: 0.03m & + 5300 x G H hK H hK A Balance: 5300 x2 3 1 1 3 2 5 4 z4 = 1 − 0.70 − y 4 4- 3 http://librosysolucionarios.net 5 4.7 a. 3 independent balances (one for each species) b. Water Balance: bg b g 400 g 0.885 g H2O m& R g 0.995 g H 2O & R = 356 g min = ⇒m min g min g b gb Acetic Acid Balance: 400 0115 . g FGH g CHminOOH IJK = 0.005m& 3 R &E + 0.096m & E = 461g min ⇒m 3 FG g IJ = m& + m& FG g IJ ⇒ m& = 417 g min H minK H minK F g IJ = b0.096gb461g FG g IJ ⇒ 44 g min = 44 g min . gb 400g − b0.005gb356g G b0115 H min K H min K Overall Balance: m& C + 400 c. FG g CH OOH IJ H min K R E C d. CH3 COOH H 2O someCH 3COOH CH3COOH H 2O Extractor C4 H 9 OH C 4H 9OH CH 3COOH Distillation Column C 4 H9 OH 4.8 a. X-large: 25 broken eggs/min 35 unbroken eggs/min 120 eggs/min 0.30 broken egg/egg 0.70 unbroken egg/egg b. Large: n1 broken eggs/min n2 unbroken eggs/min b U| n = 11 V| ⇒ n = 39 W g 120 = 25 + 35 + n1 + n2 eggs min ⇒ n1 + n2 = 50 b0.30gb120g = 25 + n 2 1 c. n1 + n2 = 50 large eggs min 1 b g n1 large eggs broken/50 large eggs = 11 50 = 0.22 d. b g 22% of the large eggs (right hand) and 25 70 ⇒ 36% of the extra-large eggs (left hand) are broken. Since it does not require much strength to break an egg, the left hand is probably poorly controlled (rather than strong) relative to the right. Therefore, Fred is right-handed. 4- 4 http://librosysolucionarios.net 4.9 a. b m1 lb m strawberries 015 . lb m S / lb m 0.85 lb m W / lb m c m2 lb m S sugar g b m3 lb m W evaporated g 1.00 lb m jam h 0.667 lb m S / lb m 0.333 lb m W / lb m b. 3 unknowns ( m1 , m2 , m3 ) – 2 balances – 1 feed ratio 0 DF c. Feed ratio: m1 / m2 = 45/55 (1) S balance: 0.15m1 + m2 = 0.667 (2) Solve simultaneously ⇒ m1 = 0.49 lb m strawberries, m 2 = 0.59 lb m sugar 4.10 a. 300 gal b g m1 lb m b g 0.750 lb m C 2 H 5OH / lb m 0.250 lb m H 2O / lb m m3 lb m 0.600 lb m C 2 H 5OH / lb m 0.400 lb m H 2O / lb m b g m b lb g 4 unknowns ( m1, m2 ,V40 , m3 ) – 2 balances – 2 specific gravities 0 DF V40 gal 2 m 0.400 lb m C 2 H 5 OH / lb m 0.600 lb m H 2O / lb m b. m1 = 300gal 1 ft3 0.877 × 62.4 lb m = 2195 lb m 7.4805 gal ft 3 Overall balance: m1 + m2 = m3 C2 H5OH balance: 0.750m1 + 0.400m2 = 0.600m3 Solve (1) & (2) simultaneously ⇒ m2 = 1646 lb m, , m3 = 3841lb m V40 = 1646 lb m ft 3 7.4805gal = 207 gal 0.952 × 62.4lb m 1ft 3 4- 5 http://librosysolucionarios.net (1) (2) 4.11 a. b 3 unknowns ( n&1 , n&2 , n&3 ) – 2 balances 1 DF g n&1 mol / s 0.0403 mol C3H 8 / mol 0.9597 mol air / mol b b n&3 mol / s g 0.0205 mol C 3H 8 / mol 0.9795 mol air / mol g n&2 mol air / s 0.21 mol O2 / mol 0.79 mol N 2 / mol b. b g Propane feed rate: 0.0403n&1 = 150 ⇒ n&1 = 3722 mol / s b g Propane balance: 0.0403n&1 = 0.0205n&3 ⇒ n&3 = 7317 mol / s b g Overall balance: 3722 + n&2 = 7317 ⇒ n&2 = 3600 mol / s c. > . The dilution rate should be greater than the value calculated to ensure that ignition is not possible even if the fuel feed rate increases slightly. 4.12 a. b m & kg / h g 0.960 kg CH3OH / kg 0.040 kg H2O / kg 1000 kg / h 0.500 kg CH3OH / kg 0.500 kg H 2O / kg 2 unknowns ( m & ,x ) – 2 balances 0 DF 673 kg / h b g 1 − x bkg H O / kg g x kg CH3OH / kg 2 b. & + 673 ⇒ m & = 327 kg / h Overall balance: 1000 = m b g b g b g Methanol balance: 0.500 1000 = 0.960 327 + x 673 ⇒ x = 0.276 kg CH3OH / kg Molar flow rates of methanol and water: 673 kg 0.276 kg CH3OH 1000 g molCH3OH = 5.80 × 103 mol CH3OH / h h kg kg 32.0 g CH3OH 673 kg 0.724 kg H 2O 1000 g mol H 2O = 2.71 × 10 4 mol H 2O / h h kg kg 18 g H 2O Mole fraction of Methanol: 5.80 × 10 3 = 0176 . mol CH3OH / mol 5.80 × 103 + 2.71 × 104 c. Analyzer is wrong, flow rates are wrong, impurities in the feed, a reaction is taking place, the system is not at steady state. 4- 6 http://librosysolucionarios.net 4.13 a. Product Feed Reactor effluent Reactor 2 2 5 3 kg Purifier 2253k g R = 388 1239 k g R = 583 Waste b g mw k g R = 140 Analyzer Calibration Data 1 xp x p = 0.000145R 1.364546 0.1 0.01 100 b. 1000 R b g = 0.494 kg P / kg Product: x = 0.000145b583g = 0.861 kg P / kg Waste: x = 0.000145b140g = 0123 . kg P / kg 0.861b1239g Efficiency = × 100% = 95.8% 0.494b2253g Effluent: x p = 0.000145 388 1.3645 1.3645 p 1.3645 p c. Mass balance on purifier: 2253 = 1239 + mw ⇒ mw = 1014 kg P balance on purifier: Input: 0.494 kg P / kg 2253 kg = 1113 kg P b gb g Output: b0.861 kg P / kg gb1239 kg g + b 0123 . kg P / kg gb1014 kgg = 1192 kg P The P balance does not close . Analyzer readings are wrong; impure feed; extrapolation beyond analyzer calibration data is risky -- recalibrate; get data for R > 583; not at steady state; additional reaction occurs in purifier; normal data scatter. 4- 7 http://librosysolucionarios.net 4.14 a. b g n1 lb - mole/ h & 00100 . lb -mole H2O/ lb -mole 09900 . lb- mole DA / lb -mole b d i b g n3 lb- mole/ h & 0100 . lb -mole H2O/ lb- mole 0900 . lb- mole DA/ lb - mole g n2 lb- mole HO/ h 2 & v2 ft 3 / h & 4 unknowns ( n&1 , n&2 , n& 3 , v& ) – 2 balances – 1 density – 1 meter reading = 0 DF Assume linear relationship: v& = aR + b v& − v& 96.9 − 40.0 Slope : a = 2 1 = = 1626 . R 2 − R1 50 − 15 Intercept: b = v&a − aR1 = 40.0 − 1.626 15 = 15.61 b g c v&2 = 1.626 95 + 15.61 = 170 ft / h n& 2 = 3 h b g b 3 170 ft 62 .4 lb m lb - mol = 589 lb - moles H 2 O / h h ft 3 18.0 lb m g DA balance: 0.9900n&1 = 0.900n& 3 (1) Overall balance: n&1 + n&2 = n& 3 (2) & & Solve (1) & (2) simultaneously ⇒ n1 = 5890 lb - moles / h , n 3 = 6480 lb - moles / h b. 4.15 Bad calibration data, not at steady state, leaks, 7% value is wrong, v& − R relationship is not linear, extrapolation of analyzer correlation leads to error. a. b m& kg / s 100 kg / s g 0.900 kg E / kg 0100 . kg H 2 O / kg 0.600 kg E / kg 0.050 kg S / kg 0.350 kg H 2 O / kg b & kg / s m g b g x b kgS / kg g 1 − x − x b kg H O / kgg x E kg E / kg S E b. S 2 b g = 0100 . b kg S / kg g Overall balance: 100 = 2m & ⇒ m& = 50.0 kg / s b g b g S balance: 0.050 100 = xS 50 ⇒ xS b g b g b g 0.300b50 g kg Ein bottom stream kg Ein bottom stream = = 0.25 kg E in feed 0.600b100g kg E in feed E balance: 0.600 100 = 0.900 50 + x E 50 ⇒ x E = 0.300 kg E / kg 4- 8 http://librosysolucionarios.net 3 unknowns ( m & , xE , xS ) – 3 balances 0 DF 4.15 (cont’d) c. x = aR b ⇒ ln x = ln a + b ln R bg bg b g lnb x / x g lnb0.400 / 0100 . g b= = = 1491 . lnb R / R g lnb38 / 15g lnbag = lnb x g − b ln b R g = lnb 0100 . g − 1491 . lnb15g = −6340 . ⇒ a = 1764 . × 10 2 1 2 1 1 −3 1 x = 1764 . × 10−3 R1.491 . F x I F 0900 IJ R =G J =G H a K H 1764 . × 10 K 1 b −3 d. 1 1.491 = 655 . Device not calibrated – recalibrate. Calibration curve deviates from linearity at high mass fractions – measure against known standard. Impurities in the stream – analyze a sample. Mixture is not all liquid – check sample. Calibration data are temperature dependent – check calibration at various temperatures. System is not at steady state – take more measurements. Scatter in data – take more measurements. 4- 9 http://librosysolucionarios.net 4.16 a. b. b 4.00 mol H 2SO 4 0.098 kg H2SO 4 L of solution = 0.323 kg H2SO 4 / kg solution L of solution molH2SO 4 1.213kg solution bg 5 unknowns ( v1 , v2 , v3 , m2 , m3 ) – 2 balances – 3 specific gravities 0 DF v1 L bg m b kg g 100 kg v3 L 0.200 kg H 2 SO 4 / kg g 3 0.800 kg H 2 O / kg 0.323 kg H 2SO 4 / kg 0.677 kg H 2 O / kg SG = 1213 . SG = 1139 . bg m b kg g v2 L 2 0.600 kg H 2SO 4 / kg 0.400 kg H 2 O / k g SG = 1.498 UV ⇒ m = 44.4 kg Water balance: 0.800b100 g + 0.400 m = 0.677 m W m = 144 kg Overall mass balance: 100 + m2 = m3 2 2 v1 = 100 kg v2 = 44.4 kg 3 3 L = 87.80 L20% solution 1139 . kg L = 29.64 L 60%solution 1498 . kg v1 87.80 L 20% solution = = 2.96 v 2 29.64 L 60% solution c. 4.17 1250 kg P 44.4 kg 60% solution L = 257 L / h h 144 kg P 1.498 kg solution b g m1 kg @$18 / kg 0.25 kg P / kg 0.75 kg H2O / kg 100 . kg 017 . kg P/ kg 0.83 kg H2O / kg b g m2 kg @$10 / kg 012 . kg P / kg 0.88 kg H2O / kg Overall balance: m1 + m2 = 100 . b g Cost of blend: 0.385b$18.00g + 0.615b$10.00g = $13.08 per kg Selling price: 110 . b$13.08g = $14.39 per kg (1) Pigment balance: 0.25m1 + 0.12m2 = 0.17 1.00 (2) Solve (1) and (2) simultaneously ⇒ m1 = 0.385 kg 25% paint , m2 = 0.615kg12% paint 4- 10 http://librosysolucionarios.net 4.18 b a. gb m1 kg H 2 O 85%of enteringwater g 100 kg 0.800 kgS / kg 0.200 kg H 2O / kg b g m b kg H Og m2 kgS 3 2 b gb g Sugar balance: m = 0.800b100g = 80.0 kg S 85% drying: m1 = 0.850 0.200 100 = 17.0 kg H2O 2 Overall balance: 100 = 17 + 80 + m3 ⇒ m3 = 3 kg H 2O xw = 3 kg H2O = 0.0361 kg H 2O / kg 3 + 80 kg b g m1 17 kg H2O = = 0.205 kg H2O / kg wet sugar m2 + m3 80 + 3 kg b b. g 1000 tonswet sugar 3 tonsH 2 O = 30 tons H 2 O / day day 100 tonswet sugar 1000 tons WS 0.800 tons DS 2000 lb m $0.15 365days = $8.8 × 107 per year day ton WS ton lb m year c. b g 1 x w1 + x w 2 +...+ x w10 = 0.0504 kg H 2 O / kg 10 1 2 2 SD = x w1 − x w +...+ x w10 − x w = 0.00181 kg H 2 O / kg 9 Endpoints = 0.0504 ± 3 0.00181 xw = b g b b g g Lower limit = 0.0450, Upper limit = 0.0558 4.19 d. The evaporator is probably not working according to design specifications since x w = 0.0361 < 0.0450 . a. v1 m 3 c h m b kg H O g 1 2 SG = 1.00 d i m b kg suspension g v3 m 3 3 d i v2 m 3 SG = 1.48 5 unknowns ( v1 , v2 , v3 , m1 , m3 ) – 1 mass balance – 1 volume balance – 3 specific gravities 0 DF 400 kg galena S G = 7 .44 Total mass balance: m1 + 400 = m3 (1) 4- 11 http://librosysolucionarios.net 4.19 (cont’d) Assume volume additivity: b g m1 kg b g m3 400 kg m 3 m kg m3 + = 3 (2) 1000 kg 7440 kg 1480 kg Solve (1) and (2) simultaneously ⇒ m1 = 668 kg H 2O, m3 = 1068 kg suspension v1 = 4.20 668 kg m3 = 0.668 m 3 water fed to tank 1000 kg b. Specific gravity of coal < 1.48 < Specific gravity of slate c. The suspension begins to settle. Stir the suspension. 1.00 < Specific gravity of coal < 1.48 a. b n&1 mol / h g b n&2 mol/ h b 0.040 mol H2O / mol 0.960 mol DA / mol g x mol H 2O / mol b g g 1 − x mol DA / mol b n&3 mol H 2O adsorbed / h g 97% of H 2O in feed Adsorption rate: n& 3 = b3.54 − 3.40g kg b 5h g molH2O = 1556 . molH2O / h 0.0180 kg H2O 97% adsorbed: 156 . = 0.97 0.04n&1 ⇒ n&1 = 401 . mol/ h Total mole balance: n&1 = n& 2 + n& 3 ⇒ n&2 = 401 . − 1556 . = 38.54 mol / h Water balance: 0.040 ( 40.1) = 1.556 + x ( 38.54 ) ⇒ x = 1.2 × 10−3 ( molH 2O/mol ) 4.21 b. The calcium chloride pellets have reached their saturation limit. Eventually the mole fraction will reach that of the inlet stream, i.e. 4%. a. 300lb m / h 0.55 lb m H 2SO 4 / lb m b 0.45 lb m H 2O / lb m b & B lb m / h m & C lb m / h m g g 0.75 lb m H2SO 4 / lb m 0.25 lb m H2O / lb m 0.90 lb m H2SO 4 / lb m 0.10 lb m H2O / lb m Overall balance: 300 + m& B = m& C (1) b g H2 SO4 balance: 0.55 300 + 0.90m & B = 0.75m& C & B = 400lb m / h , m & C = 700 lb m / h Solve (1) and (2) simultaneously ⇒ m 4- 12 http://librosysolucionarios.net (2) 4.21 (cont’d) b. 500 − 150 & A = 7.78 R A − 44.4 RA − 25 ⇒ m 70 − 25 800 − 200 & B − 200 = & B = 15.0 RB − 100 m RB − 20 ⇒ m 60 − 20 ln 100 − ln 20 ln x − ln 20 = Rx − 4 ⇒ ln x = 0.2682 Rx + 1.923 ⇒ x = 6.841e0.2682 Rx 10 − 4 300 + 44.4 400 + 100 mA = 300 ⇒ RA = = 44.3, m B = 400 ⇒ RB = = 33.3, 7.78 15.0 1 55 x = 55% ⇒ Rx = ln = 7.78 0.268 6.841 b b & A − 150 = m g g b g FG H c. IJ K Overall balance: m& A + m& B = m& C b g H2 SO4 balance: 0.01xm & A + 0.90m& B = 0.75m& C = 0.75 m & A + m& B ⇒ m& B = d 0.75 − 0.01 6.841e ⇒ 15.0 RB − 100 = d ⇒ RB = 2.59 − 0.236 e 0.2682 Rx i 0.2682 Rx i b7.78 R A − 44.4 b0.75 − 0.01xgm& g A 0.15 015 . RA + 135 . e 0.2682 Rx − 813 . Check: RA = 44.3, Rx = 7.78 ⇒ RB = 2.59 − 0.236e 0.2682b7.78g 44.3 + 135 . e 0.2682b 7.78 g − 813 . = 33.3 e 4.22 a. b n& A kmol / h g 100 kg / h 0.10 kmolH2 / kmol 0.90 kmolN 2 / kmol b n& B kmol / h j b n& P kmol / h g 0.20 kmolH 2 / kmol g 0.80 kmol N 2 / kmol 0.50 kmolH2 / kmol 0.50 kmolN 2 / kmol b g b g MW = 0.20 2.016 + 0.80 28.012 = 22.813 kg / kmol 100 kg kmol = 4.38 kmol / h h 22.813 kg Overall balance: n& A + n& B = 4.38 H2 balance: 0.10 n& A + 0.50n& B = 0.20 4.38 ⇒ n& P = b g Solve (1) and (2) simultaneously ⇒ n& A = 3.29 kmol / h , n& B = 110 . kmol / h 4- 13 http://librosysolucionarios.net (1) (2) 4.22 (cont’d) b. n& P = m& P 22.813 m &P 22.813 x m & H2 balance: x An& A + xB n& B = P P 22.813 m& P xB − x P ⇒ n& A = 22.813 xB − x A Overall balance: n& A + n& B = b b c. Trial 1 2 3 4 5 6 7 8 9 10 11 12 XA 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 g g XB 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 bx 22.813 b x m& P n& B = XP 0.10 0.20 0.30 0.40 0.50 0.60 0.10 0.20 0.30 0.40 0.50 0.60 mP 100 100 100 100 100 100 250 250 250 250 250 250 P − xA B − xA g g nA 4.38 3.29 2.19 1.10 0.00 -1.10 10.96 8.22 5.48 2.74 0.00 -2.74 nB 0.00 1.10 2.19 3.29 4.38 5.48 0.00 2.74 5.48 8.22 10.96 13.70 The results of trials 6 and 12 are impossible since the flow rates are negative. You cannot blend a 10% H2 mixture with a 50% H2 mixture and obtain a 60% H2 mixture. d. 4.23 Results are the same as in part c. Venous blood 1950 . ml / min 1.75 mg urea / ml Arterialblood 200.0 ml / min 190 . mg urea / ml Dialysate b b Dialyzing fluid 1500 ml / min a. g v ml / min & c mg urea / ml Water removal rate: 200.0 − 195.0 = 5.0 ml / min b g b g g Urea removal rate: 1.90 200.0 − 1.75 1950 . = 38.8 mg urea / min b. v& = 1500 + 5.0 = 1505 ml / min c= 38.8mgurea/min = 0.0258mgurea/ml 1505ml/min 4- 14 http://librosysolucionarios.net 4.23 (cont’d) c. 2.7 − 11 . mg removed 1 min 10 3 ml 5.0 L = 206 min (3.4 h) ml 38.8 mg removed 1L b 4.24 a. g b n&1 kmol / min g b 20.0 kg CO2 / min b n& 2 kmol / min n&3 kmol / min g g 0.023 kmol CO2 / kmol 0.015kmol CO2 / kmol 20.0 kg CO2 kmol = 0.455 kmolCO2 / min min 44 .0 kg CO2 Overall balance: 0.455 + n&2 = n& 3 CO2 balance: 0.455 + 0.015 n& 2 = 0.023n&3 Solve (1) and (2) simultaneously ⇒ n&2 = 55.6 kmol / min , n&3 = 561 . kmol / min n&1 = b. u= 150 m = 8.33 m / s 18 s 1 561 . kmol m3 1 min s A = πD 2 = ⇒ D = 108 . m 4 min 0.123 kmol 60 s 8.33 m b g Spectrophotometer calibration: C = kA ====> C µg / L = 3.333 A 4.25 A = 0.9 C =3 b gb g Dye concentration: A = 018 . ⇒ C = 3333 . 018 . = 0.600 µg / L Dye injected = b 0.60 cm 3 1L 10 3 cm 3 5.0 mg 10 3 µ g 1L 1 mg = 3.0 µ g g bg ⇒ 3.0 µ g V L = 0.600 µ g / L ⇒ V = 5.0 L 4.26 a. 1000 LB / min b g V& d m / min i n& b kmol / min g y b kmol SO / kmolg 1 − y b kmol A / kmolg & 2 kg B / min m 3 1 1 1 2 1 b g y b kmol SO / kmol g 1 − y b kmol A / kmol g & bkg / min g m x b kg SO / kg g 1 − x b kg B / kg g n&3 kmol / min 3 2 3 4 4 2 4 4- 15 http://librosysolucionarios.net (1) (2) 4.26 (cont’d) – – – – – b. 8 unknowns ( n&1 , n&3 , v&1, m& 2 , m & 4 , x4 , y1 , y3 ) 3 material balances 2 analyzer readings 1 meter reading 1 gas density formula 1 specific gravity 0 DF Orifice meter calibration: A log plot of V& vs. h is a line through the points h1 = 100, V&1 = 142 and h2 = 400, V&2 = 290 . d ln V& = b ln h + ln a ⇒ V& = ah b d h = lnb290 142g = 0.515 lnb h h g lnb400 100g ln a = ln V& − b ln h = lnb142g − 0.515ln 100 = 2.58 ⇒ a = e b= i d ln V&2 V&1 2 1 1 1 2 .58 = 13.2 ⇒ V& = 13.2 h 0.515 Analyzer calibration: ln y = bR + ln a ⇒ y = ae bR b= b ln y 2 y 1 R2 − R1 ln a = ln y 1 − bR1 E a = 5.00 × 10 −4 c. U| 90 − 20 || = lnb0.00166g − 0.0600b20 g = −7.60V ⇒ y = 5.00 × 10 || |W g = lnb0.1107 0.00166g = 0.0600 n&1 = e 0.0600R b g = 207.3 m min b12.2g b150 + 14.7g 14.7 batm g = 0.460 mol / L = 0.460 kmol / m = b75 + 460g 18. b Kg E h1 = 210 mm ⇒ V&1 = 13.2 210 ρ feed gas −4 0.515 3 207.3 m 3 0.460 kmol = 95.34 kmol min min m3 b g exp b00600 . ×116 . g = 0.00100 kmol SO R1 = 82.4 ⇒ y1 = 5.00 ×10−4 exp 0.0600 × 82.4 = 0.0702 kmol SO 2 kmol R3 = 116 . ⇒ y3 = 500 . × 10 &2 = m −4 2 1000 L B 130 . kg = 1300 kg / min min LB 4- 16 http://librosysolucionarios.net kmol 3 i 4.26 (cont’d) A balance: 1 − 0.0702 95.34 = 1 − 0.00100 n3 ⇒ n3 = 88.7 kmol min b SO2 gb g b g & x balance: b0.0702gb9534 . g(64.0 kg / kmol) = b0.00100 gb88.7g(64 ) + m 4 4 & 4 (1 − x4 ) B balance: 1300 = m (1) (2) & 4 = 1723 kg / min, x4 = 0.245 kg SO2 absorbed / kg Solve (1) and (2) si multaneously ⇒ m & 4 x4 = 422 kg SO 2 / min SO2 removed = m 4.27 d. Decreasing the bubble size increases the bubble surface-to-volume ratio, which results in a higher rate of transfer of SO 2 from the gas to the liquid phase. a. V&2 m 3 / min b g y b kmolSO / kmolg 1 − y b kmol A / kmolg d i & b kg B / min g m n& 3 kmol / min 3 2 3 d i n& b kmol / min g y b kmolSO / kmolg 1 − y b kmol A / kmolg V&1 m 3 / min R3 b g x bkgSO kg g 1 − x bkg B / kg g & 4 kg / min m 1 1 2 2 4 1 2 4 P1 , T1 , R1 , h1 b. & 2, n&3, y3, R3 , m & 4 , x4 ) 14 unknowns ( n&1,V&1, y1, P1, T1, R1, h1,V&2, m – 3 material balances – 3 analyzer and orifice meter readings – 1 gas density formula (relates n&1 andV&1 ) & and V& ) – 1 specific gravity (relates m 2 2 6 DF b g b g A balance: 1 − y1 n&1 = 1 − y3 n&3 &4 x4 m SO2 balance: y1n&1 = y3n& 3 + 64 kgSO 2 / kmol & 2 = 1 − x4 m &4 B balance: m b (1) (2) g Calibration formulas: (3) −4 0.060 R1 y1 = 5.00 × 10 e (4) y 3 = 5.00 × 10 −4 e 0.060 R3 V& = 13.2 h 0.515 (5) 1 Gas density formula : n&1 = b 1 g 12.2 P1 + 14.7 / 14.7 & V1 T1 + 460 / 18 . b g b g & kg m m3 Liquid specific gravity: SG = 130 . ⇒ V&2 = 2 h 1300 kg 4- 17 http://librosysolucionarios.net (6) (7) (8) 4.27 (cont’d) c. T1 75 °F y1 P1 150 psig V1 207 m3/h h1 210 torr n1 95.26 kmol/h R1 0.07 kmol SO2 /kmol 82.4 x4 (kg SO 2/kg) y3 (kmol SO 2/kmol) V2 (m3/h) n3 (kmol/h) 0.10 0.050 0.89 93.25 0.10 0.025 1.95 90.86 0.10 0.010 2.56 89.48 0.10 0.005 2.76 89.03 0.10 0.001 2.92 88.68 0.20 0.050 0.39 93.25 0.20 0.025 0.87 90.86 0.20 0.010 1.14 89.48 0.20 0.005 1.23 89.03 0.20 0.001 1.30 88.68 Trial 1 2 3 4 5 6 7 8 9 10 m4 (kg/h) m2 (kg/h) 1283.45 1155.11 2813.72 2532.35 3694.78 3325.31 3982.57 3584.31 4210.72 3789.65 641.73 513.38 1406.86 1125.49 1847.39 1477.91 1991.28 1593.03 2105.36 1684.29 3 V 2 (m /h) V2 vs. y 3 3.50 3.00 2.50 2.00 1.50 1.00 0.50 0.00 0.000 0.020 0.040 0.060 y 3 (kmol SO 2 /kmol) x4 = 0.10 x4 = 0.20 For a given SO 2 feed rate removing more SO 2 (lower y3 ) requires a higher solvent feed rate (V&2 ). For a given SO 2 removal rate (y3 ), a higher solvent feed rate (V& ) tends to a more dilute 2 SO2 solution at the outlet (lower x4 ). d. 4.28 Answers are the same as in part c. Maximum balances: Overall - 3, Unit 1 - 2; Unit 2 - 3; Mixing point - 3 Overall mass balance ⇒ m& 3 Mass balance - Unit 1 ⇒ m& 1 A balance - Unit 1 ⇒ x1 Mass balance - mixing point ⇒ m& 2 A balance - mixing point ⇒ x 2 C balance - mixing point ⇒ y2 4- 18 http://librosysolucionarios.net 4.29 a. 100 mol / h 0.300 mol B / mol 0.250 mol T / mol 0.450 mol X / mol b n&2 mol / h b g b g Column 1 x b mol T / molg 1 − x − x bmol X / molg n& bmol / hg n&4 mol / h 0.940 mol B / mol x B 2 mol B / mol T2 B2 Column 2 0.060 molT / mol T2 3 0.020 molT / mol 0980 . molX / mol b n&5 mol / h Column 1 4 unknowns ( n& 2 , n&3, x B 2, x T 2 ) –3 balances – 1 recovery of X in bot. (96%) 0 DF b g x bmol T / molg 1 − x − x bmol X / molg T5 gb g (1) Total mole balance: 100 = n& 2 + n&3 (2) B balance: 0.300 100 = x B 2n&2 (3) & + 0.020 n& 3 T 2 n2 Column 2 97% B recovery: 0.97 xB 2n&2 = 0.940 n&4 b. (4) (5) Total mole balance: n& 2 = n&4 + n&5 (6) B balance: xB 2n&2 = 0.940 n&4 + xB5n&5 (7) T balance: xT 2 n&2 = 0.060n& 4 + xT 5n&5 (8) (1) ⇒ n& 3 = 44 .1 mol / h (2) ⇒ n& 2 = 55.9 mol / h ( 3) ⇒ x B 2 = 0.536 molB / mol ( 4) ⇒ x T 2 = 0.431 molT / mol (5) ⇒ n& 4 = 30.95 mol / h ( 6) ⇒ n& 5 = 24.96 mol / h ( 7) ⇒ x B5 = 0.036 mol B / mol (8) ⇒ x T 5 = 0.892 mol T / mol 0.940 30.95 Overall benzene recovery: × 100% = 97% 0.300 100 b Overall toluene recovery: T5 Column 2: 4 unknowns ( n& 3 , n&4 , n&5 , y x ) – 3 balances – 1 recovery of B in top (97%) 0 DF Column 1 96% X recovery: 0.96 0.450 100 = 0.98 n&3 b g T balance: 0.250b100g = x g xB 5 molB / mol B5 b g g b g 0.892b24.96g × 100 = 89% 0.250b100g 4- 19 http://librosysolucionarios.net 4.30 a. 100 kg / h 0.035 kg S / kg 0.965 kg H 2 O / kg b m & w kg H 2O / h b. b b & 3 kg / h m g 1 g b 1 − x3 kg H2 O / kg b 0100 . m& w kg H 2O / h g b b m& 4 kg / h x3 kg S / kg 4 g g b b & w kg H 2 O / h 0100 . m m& 10 (kg / h) 0.050 kg S/kg 0.950 kg H2 O/kg m& w ( kg H 2 O / h ) b g Salt balance: 0.035 100 = 0.050m& 10 & w + m& 10 Overall balance: 100 = m H2 O yield: Yw = b b g & w kg H2O recovered m 96.5 kg H2Oin freshfeed g First 4 evaporators b b g m4 kg/ h & x 4 kg S/ kg 1 − x4 kg H2 O / kg 100 kg/ h 0.035 kg S/ kg 0965 . kg H2 O / kg g b g 4 × 0100 . m b kg H O / hg & w b 2 g &4 Overall balance: 100 = 4 0100 . m& w + m b g &4 Salt balance: 0.035 100 = x4 m c. b & 10 kg / h m g 1 − x4 kg H2 O / kg Overall process 100 kg/h 0.035 kg S/kg 0.965 kg H2 O/kg g x4 kg S / kg Yw = 0 .31 x4 = 0.0398 4- 20 http://librosysolucionarios.net g g 10 g 0.050 kg S / kg 0.950 kg H2 O / kg b & w kg H 2 O / h 0.100 m g 4.31 b g a. 2 n&1 mol Condenser 0.97 mol B / mol 0.03 mol T / mol b g b g 100 mol 0.50 mol B / mol 0.50 mol T / mol Still n&1 mol n&1 mol ( 89.2% of Bin feed ) 0.97 mol B / mol 0.03 mol T / mol 0.97 mol B / mol 0.03 mol T / mol b gb y bmol B / mol g 1 − y bmol T / mol g n&4 mol 45% of feed to reboiler g B B b g z bmolB / molg 1 − z bmolT / molg n& 2 mol b g x b mol B / mol g 1 − x b mol T / molg n&3 mol Reboiler B B B B Overall process: Condenser: 3 unknowns ( n&1 , n&3 , xB ) Still: 5 unknowns ( n&1 , n&2 , n&4 , y B , zB ) – 2 balances – 2 balances – 1 relationship (89.2% recovery) 3 DF 0 DF 1 unknown ( n&1 ) – 0 balances 1 DF Reboiler: 6 unknowns ( n& 2 , n& 3 , n& 4 , x B , y B , z B ) – 2 balances – 2 relationships (2.25 ratio & 45% vapor) 3 DF Begin with overall process. b. Overall process 89.2% recovery: 0.892 0.50 100 = 0.97 n&1 b gb g Overall balance: 100 = n&1 + n& 3 b g B balance: 0.50 100 = 0.97n&1 + x B n& 3 Reboiler e j = 2.25 / b1 − x g yB / 1− yB Composition relationship: xB Percent vaporized: n& 4 = 0.45 n& 2 B Mole balance: n& 2 = n&3 + n& 4 (1) (2) (Solve (1) and (2) simultaneously.) B balance: z Bn&2 = x Bn&3 + yB n&4 4- 21 http://librosysolucionarios.net 4.31 (cont’d) c. B fraction in bottoms : xB = 0100 . mol B / mol Moles of overhead: n&1 = 46.0 mol Recovery of toluene: 4.32 Moles of bottoms : n& 3 = 54.0 mol b1 − x gn& × 100% = b1 − 0.10gb54.02g × 100% = 97% 0.50b100g 0.50b100 g B 3 a. b m3 kg H2O g Bypass Basis: 100 kg 100 kg 0.12 kg S / kg 0.88 kg H2O / kg Mixing point b g Evaporator m1 kg 0.12 kg S / kg 0.88 kg H2 O / kg b g b g m4 kg m5 kg 0.58 kg S / kg 0.42 kg H2O / kg 0.42 kg S / kg 0.58 kg H2O / kg b g m2 kg 0.12 kg S / kg 0.88 kg H2 O / kg Overall process: Evaporator: 2 unknowns ( m3 , m5 ) – 2 balances 0 DF 3 unknowns ( m1 , m3 , m4 ) – 2 balances 1 DF Bypass: Mixing point: 2 unknowns ( m1 , m2 ) – 1 independent balance 1 DF 3 unknowns ( m2 , m4 , m5 ) – 2 balances 1 DF b g Overall S balance: 0.12 100 = 0.42m5 Overall mass balance: 100 = m3 + m5 Mixing point mass balance: m4 + m2 = m5 (1) Mixing point S balance: 0.58m4 + 012 . m2 = 0.42m5 (2) Solve (1) and (2) simultaneously Bypass mass balance: 100 = m1 + m2 b. m1 = 90.05 kg , m2 = 9 .95 kg , m3 = 71.4 kg, m4 = 18.65 kg , m5 = 28.6 kg product Bypass fraction: c. m2 = 0.095 100 Over-evaporating could degrade the juice; additional evaporation could be uneconomical; a stream consisting of 90% solids could be hard to transport. 4- 22 http://librosysolucionarios.net 4.33 a. b m& 4 kg Cr / h b g b g m & 1 kg / h m& 2 kg / h 0.0515 kgCr / kg 09485 . kg W / kg 0.0515 kgCr / kg 0.9485 kg W / kg g b g x b kg Cr / kg g 1 − x bkg W / kgg & 5 kg / h m Treatment Unit b 5 5 b g x b kg Cr / kg g 1 − x b kg W / kgg m& 6 kg / h 6 6 g m& 3 kg / h 0.0515 kgCr / kg 0.9485 kg W / kg b. b &1 = 6000 kg / h ⇒ m & 2 = 4500 kg / h maximum allowed value m Bypass point mass balance: m& 3 = 6000 − 4500 = 1500 kg / h & 4 = 0.95 0.0515 4500 = 2202 95% Cr removal: m . kg Cr / h b g gb g Mass balance on treatment unit : m& 5 = 4500 − 220.2 = 4279.8 kg / h b g 0.0515 4500 − 220.2 = 0.002707 kg Cr / kg 47798 . & 6 = 1500 + 42798 Mixing point mass balance: m . = 5779.8 kg / h Cr balance on treatment unit : x 5 = Mixing point Cr balance: x 6 = c. b g b g 0.0515 1500 + 0.0002707 4279.8 = 0.0154 kg Cr / kg 5779.8 m 1 (kg/h) m 2 (kg/h) m 3 (kg/h) m 4 (kg/h) m 5 (kg/h) 1000 1000 0 48.9 951 2000 2000 0 97.9 1902 3000 3000 0 147 2853 4000 4000 0 196 3804 5000 4500 500 220 4280 6000 4500 1500 220 4280 7000 4500 2500 220 4280 8000 4500 3500 220 4280 9000 4500 4500 220 4280 10000 4500 5500 220 4280 4- 23 http://librosysolucionarios.net x5 m 6 (kg/h) 0.00271 951 0.00271 1902 0.00271 2853 0.00271 3804 0.00271 4780 0.00271 5780 0.00271 6780 0.00271 7780 0.00271 8780 0.00271 9780 x6 0.00271 0.00271 0.00271 0.00271 0.00781 0.0154 0.0207 0.0247 0.0277 0.0301 4.33 (cont’d) x 6 (kg Cr/kg) m 1 vs. x 6 0.03500 0.03000 0.02500 0.02000 0.01500 0.01000 0.00500 0.00000 0 2000 4000 6000 8000 10000 12000 m 1 (kg/h) d. 4.34 Cost of additional capacity – installation and maintenance, revenue from additional recovered Cr, anticipated wastewater productio n in coming years, capacity of waste lagoon, regulatory limits on Cr emissions. a. b 175 kg H 2 O / s 45% of water fed to evaporator b & 1 kg / s m g b b m & 4 kg K2SO 4 / s 0196 . kg K 2SO4 / kg 0.804 kg H 2 O / kg & 5 kg H2O / s m g g b b m & 6 kg K2SO 4 / s Evaporator & 7 kg H2 O / s m g g g Crystallizer Filter Filter cake b & 2 kg K2SO4 / s 10m b g RS0.400 kg K SO / kgUV T0.600 kg H O / kg W 2 Filtrate & 3 kg / s m b g m & 2 kg soln / s 4 2 g 0.400 kg K2SO 4 / kg 0.600 kg H2 O / kg Let K = K2 SO4 , W = H2 Basis: 175 kg W evaporated/s Overall process: 2 unknowns ( m& 1, m& 2 ) - 2 balances 0 DF Evaporator: 4 unknowns ( m& 4 , m& 5 , m& 6 , m& 7 ) – 2 balances – 1 percent evaporation 1 DF Mixing point: Crystallizer: &1, m &2 Strategy: Overall balances ⇒ m % evaporation ⇒ m &5 Balances around mixing point ⇒ m & 3, m &4 &7 Balances around evaporator ⇒ m& 6 , m 4 unknowns ( m&1 , m& 3, m& 4 , m& 5 ) - 2 balances 2 DF 4 unknowns ( m& 2 , m& 3 , m& 6 , m& 7 ) – 2 balances 2 DF U| verify that each |Vchosen subsystem involves | no more than two |W unknown variables 4- 24 http://librosysolucionarios.net 4.34 (cont’d) & 1 = 175 + 10m &2 + m &2 Overall mass balance: m Overall K balance: 0196 . m& 1 = 10m& 2 + 0.400m &2 &2 Production rate of crystals = 10 m U| V| W 45% evaporation: 175 kg evaporated min = 0.450m& 5 & 1 + 0.600m & 3 = m& 5 W balance around mixing point: 0.804 m & 3 = m& 4 + m& 5 Mass balance around mixing point: m& 1 + m &4 K balance around evaporator: m& 6 = m W balance around evaporator: m& 5 = 175 + m& 7 Mole fraction of K in stream entering evaporator = b. &1 = 221 kg / s Fresh feed rate: m m& 4 m &4 + m &5 bg & 2 = 416 Production rate of crystals = 10 m . kg K s s Recycle ratio: c. b g & 3 kg recycle s m 352.3 kg recycle = = 160 . & m1 kg fresh feed s 220.8 kg fresh feed b g Scale to 75% of capacity. Flow rate of stream entering evaporator = 0.75(398 kg / s) = 299 kg / s 46.3% K, 53.7% W d. Drying . Principal costs are likely to be the heating cost for the evaporator and the dryer and the cooling cost for the crystallizer. 4- 25 http://librosysolucionarios.net 4.35 a. Overall objective : Separate components of a CH 4 -CO2 mixture, recover CH4 , and discharge CO2 to the atmosphere. Absorber function: Separates CO 2 from CH4. Stripper function: Removes dissolved CO2 from CH3 OH so that the latter can be reused. b. The top streams are liquids while the bottom streams are gases. The liquids are heavier than the gases so the liquids fall through the columns and the gases rise. c. b n& 1 mol / h g b g n& b molCO / h g n& 5 mol N 2 / h 0.010 molCO 2 / mol 0.990 mol CH 4 / mol b n& 2 mol / h Absorber 100 mol / h 0.300 molCO 2 / mol 0.700 molCH 4 / mol 6 g Stripper 0005 . molCO 2 / mol 0995 . molCH3 OH / mol 2 b n& 5 mol N 2 / h g b g n& b mol CH OH / h g n& 3 mol CO 2 / h 4 Overall: Stripper: 3 3 unknowns ( n&1, n&5 , n& 6 ) – 2 balances 1 DF Absorber: 4 unknowns ( n&1, n& 2 , n&3 , n&4 ) – 3 balances 1 DF 4 unknowns ( n& 2 , n& 3 , n&4 , n& 5 ) – 2 balances – 1 percent removal (90%) 1 DF b gb g b mol CH / hg = 0.990n& Overall mole balance: 100bmol / h g = n& + n& Overall CH4 balance: 0.700 100 4 1 1 6 Percent CO2 stripped: 0.90 n&3 = n& 6 Stripper CO2 balance: n& 3 = n& 6 + 0.005 n& 2 Stripper CH3 OH balance: n& 4 = 0.995n&2 d. n&1 = 70.71 mol / h , n&2 = 651.0 mol / h , n&3 = 32.55 mol CO2 / h, n&4 = 6477 . mol CH 3OH / h , n& 6 = 29.29 mol CO 2 / h 30.0 − 0.010n&1 Fractional CO2 absorption: f CO2 = = 0.976 molCO 2 absorbed / mol fed 30.0 4- 26 http://librosysolucionarios.net 4.35 (cont’d) Total molar flow rate of liquid feed to stripper and mole fraction of CO2 : n&3 n& 3 + n&4 = 680 mol / h , x3 = = 0.0478 molCO 2 / mol n&3 + n&4 e. Scale up to 1000 kg/h (=106 g/h) of product gas: b g b g MW1 = 0.01 44 g CO2 / mol + 0.99 16 g CH 4 / mol = 16.28 g / mol bn& g = d1.0 × 10 g / hib16.28 g / molg = 6.142 × 10 mol / h . × 10 mol / h) / (70.71 mol / h) = 8.69 × 10 bn& g = b100 mol / hg (6142 6 4 1 new 4 4 feed new 4.36 mol / h f. Ta < Ts The higher temperature in the stripper will help drive off the gas. Pa > Ps The higher pressure in the absorber will help dissolve the gas in the liquid. g. The methanol must have a high solubility for CO2 , a low solubility for CH4 , and a low volatility at the stripper temperature. a. Basis: 100 kg beans fed e m kg C H 5 6 14 e m kg C H 1 6 14 j 300 kg C6H14 Ex b g x b kg S / kgg y bkg oil / kgg 1 − x − y b kg C H j Condenser m2 kg F 2 2 2 2 6 14 / kg g 13.0 kg oil 87.0 kg S b g y b kg oil / kgg 1 − y b kg C H 4 4 6 14 / kg Ev g g b g m3 kg 0.75 kg S / kg b y3 kg oil / kg b g 0.25 − y3 kg C6 H14 / kg Overall: b m6 kg oil m4 kg 4 unknowns ( m1 , m3 , m6 , y3 ) – 3 balances 1 DF Extractor: g 3 unknowns ( m2 , x2 , y2 ) – 3 balances 0 DF 2 unknowns ( m1 , m5 ) Evaporator: 4 unknowns ( m4 , m5 , m6 , y4 ) – 1 balance – 2 balances 1 DF 2 DF Filter: 7 unknowns ( m2 , m3 , m4 , x2 , y2 , y3 , y4 ) – 3 balances – 1 oil/hexane ratio 3 DF Mixing Pt: Start with extractor (0 degrees of freedom) Extractor mass balance: 300 + 87.0 + 13.0 kg = m2 4- 27 http://librosysolucionarios.net 4.36 (cont’d) Extractor S balance: 87.0 kg S = x2m2 Extractor oil balance: 13.0 kg oil = y2 m2 Filter S balance: 87.0 kg S = 0.75m3 b g Filter mass balance: m2 kg = m3 + m4 Oil / hexane ratio in filter cake: y3 0.25 − y3 = y2 1 − x2 − y2 Filter oil balance: 13.0 kg oil = y3m3 + y4 m4 b g Evaporator hexane balance: 1 − y 4 m4 = m5 Mixing pt. Hexane balance: m1 + m5 = 300 kg C 6H14 Evaporator oil balance: y4m4 = m6 b. b g m6 11.8 kg oil = = 0118 . kg oil / kg beans fed 100 100 kg beans fed m 28 kg C6H 14 Fresh hexanefeed = 1 = = 0.28 kg C 6 H14 / kg beans fed 100 100 kg beans fed m 272 kg C 6H14 recycled Recycle ratio = 5 = = 9.71 kg C6H14 recycled / kg C6H14 fed m1 28 kg C6H14 fed Yield = b b c. g g Lower heating cost for the evaporator and lower cooling cost for the condenser. 4.37 b g m lb m dirt 1 98 lb m dry shirts 3 lb m Whizzo 100 lbm 2 lbm dirt 98 lb m dry shirts b m lb m Whizzo 2 g Tub b g Filter b g m lb m 3 0.03 lb m dirt / lb m m lb m 4 0 .13 lb m dirt / lb m 0.97 lb m Whizzo / lb m 0 .87 lb m Whizzo / lb m m b g lb 5 m 0 .92 lb m dirt / lb m 0 .08 lb m Whizzo / lb m b g b g b lb Whizzo/ lb g m6 lb m 1− x lbm dirt / lb m x m m Strategy 95% dirt removal ⇒ m1 ( = 5% of the dirt entering) Overall balances: 2 allowed (we have implicitly used a clean shirt balance in labeling the chart) ⇒ m2, m5 (solves Part (a)) 4- 28 http://librosysolucionarios.net 4.37 (cont’d) b g around the filter bm , m , x g , but the tub only involves 2 bm , m g and 2 balances are Balances around the mixing point involve 3 unknowns m3 , m6 , x , as do balances 4 6 3 4 allowed for each subsystem. Balances around tub ⇒ m3, m4 Balances around mixing point ⇒ m6 , x (solves Part (b)) a. b gb g Overall dirt balance: 2.0 = 010 . + b0.92g m ⇒ m = 2.065 lb dirt Overall Whizzo balance: m = 3 + b0.08 gb2.065g blb Whizzog = 317 . lb 95% dirt removal: m1 = 0.05 2.0 = 010 . lb m dirt 5 5 2 b. m m Tub dirt balance: 2 + 0.03m3 = 010 . + 013 . m4 Tub Whizzo balance: 0.97 m3 = 3 + 0.87 m4 Solve (1) & (2) simultaneously ⇒ m3 = 20.4 lb m , m4 = 19.3 lb m Mixing pt. mass balance: 317 . + m6 = 20.4 lb m ⇒ m6 = 17.3 lb m Mixing pt. Whizzo balance: m Whizzo (1) (2) 3.17 + x (17.3) = ( 0.97 )( 20.4) ⇒ x = 0.961 lbm Whizzo/lb m ⇒ 96%Whizzo, 4% dirt 4.38 a. 2720 kg S mixer 3 Discarded C 3L kg L C 3S kg S 3300 kg S Filter 3 C 2L kg L C 2S kg S F 3L kg L F 3S kg S 620 kg L mixer 1 Filter 1 F 1L F 1S mixer 2 C 1L kg L C 1S kg S kg L kg S Filter 2 F 2L kg L F 2S kg S To holding tank b g g U| V| W mixer filter 1: 0.01 620 = F1L ⇒ F1L = 6.2 kg L balance: 620 = 6.2 + C1L ⇒ C1L = 6138 . kg L 0 . 01 6138 . + F = F mixer filter 2 : F2 L = 6.2 kg L 3L 2L balance: 6138 . + F3L = F2 L + C3L ⇒ C2 L = 613.7 kg L mixer filter 3: 0.01C2 L = F3L F3L = 61 . kg L balance: 613.7 = 6.1+ C3L ⇒ C3L = 6076 . kg L b 4- 29 http://librosysolucionarios.net 4.38 (cont’d) Solvent m f 1: balance: m f 2: balance: m f 3: balance: b g U| b g 495 + F = C + F | V⇒ 015 . b2720 + C g = C | 2720 + C = F + C |W 015 . 3300 = C1S ⇒ 3300 = 495 + F1S ⇒ 015 . 495 + F3S = C2 S 3S 2S 2S 2S 2S C1S = 495 kg S F1S = 2805 kg S C2S = 482.6 kg S F2 S = 2734.6 kg S C3S = 480.4 kg S F3S = 2722.2 kg S 3S 3S 3S Holding Tank Contents 6.2 + 6.2 = 12.4 kg leaf 2805 + 27346 . = 5540 kg solvent b. b g 5540 kg S b g Q R kg 0165 . kg E / kg Q0 kg . kg E / kg Extraction 013 0.15 kg F / kg Unit 0.835 kg W / kg b g Q b kg Fg Steam Stripper 0.855 kg W / kg QD kg D 0.026 kg F / kg 0.774 kg W / kg QB kg b g b g Q bkg D g Q b kg Fg QE kg E F 0.200 kg E / kg 0.013 kg E / kg 0.987 kg W / kg D F b Q3 kg steam 1 kg D g 620 kg leaf = 0.62 kg D = QD 1000 kg leaf Water balance around extraction unit: 0.835 5540 = 0.855QR ⇒ QR = 5410 kg Ethanol balance around extraction unit: 0.165 5540 = 013 . 5410 + QE ⇒ QE = 211 kg ethanol in extract Mass of D in Product: b g b g c. b g b g F balance around stripper 0.015 5410 = 0.026 Q0 ⇒ Q0 = 3121 kg mass of stripper overhead product b g b g E balance around stripper 0.13 5410 = 0.200 3121 + 0.013QB ⇒ QB = 6085 kg mass of stripper bottom product b g b g b W balance around stripper 0.855b5410g + Q = 0.774b 3121g + 0.987b 6085g ⇒ Q S 4.39 a. S C 2 H 2 + 2 H 2 → C2 H 6 2 mol H 2 react / mol C 2 H 2 react 0.5 kmol C 2 H 6 formed / kmol H 2 react 4- 30 http://librosysolucionarios.net g = 3796 kg steam fed to stripper 4.39 (cont’d) b. nH 2 = 1.5 < 2.0 ⇒ H2 is limiting reactant nC 2 H2 15 . molH2 fed ⇒ 1.0 mol C2 H2 fed ⇒ 0.75 molC 2H2 required (theoretical) 1.0 mol fed − 0.75 mol required % excess C2H 2 = × 100% = 333% . 0.75 mol required c. 4 × 10 6 tonnes C2 H 6 1 yr 1 day 1 h 1000 kg 1 kmol C2 H 6 2 kmolH 2 2.00 kg H 2 yr 300 days 24 h 3600 s tonne 30.0 kg C2 H 6 1 kmolC 2H 6 1 kmol H 2 = 20.6 kg H2 / s 4.40 d. The extra cost will be involved in separating the product from the excess reactant. a. 4 NH3 + 5 O 2 → 4 NO + 6 H2O 5 lb - mole O2 react = 125 . lb - mole O 2 react / lb - mole NO fo rmed 4 lb - mole NO formed b. dn i O2 = theoretical 100 kmol NH3 5 kmol O2 = 125 kmol O2 h 4 kmol NH3 d i 40% excess O 2 ⇒ n O2 c. fed b g = 1.40 125 kmol O2 = 175 kmol O2 b50.0 kg NH gb1 kmol NH / 17 kg NH g = 2.94 kmol NH . kmol O b100.0 kg O gb1 kmol O / 32 kg O g = 3125 F n I = 3125 F n I = 5 = 1.25 . = 1 . 06 < GH n JK 2.94 GH n JK 4 3 3 2 2 2 O2 NH3 3 3 2 O2 NH3 fed stoich ⇒ O2 is the limiting reactant Required NH3 : 3125 . kmol O2 4 kmol NH3 = 2.50 kmolNH3 5 kmol O2 2.94 − 2.50 × 100% = 17.6% excess NH3 2.50 Extent of reaction: nO2 = nO2 − vO2 ξ ⇒ 0 = 3125 . − −5 ξ ⇒ ξ = 0.625kmol = 625 mol % excess NH3 = d i Mass of NO: 4.41 a. b g 0 3125 . kmol O2 4 kmol NO 30.0 kg NO = 75.0 kg NO 5 kmol O2 1 kmol NO By adding the feeds in stoichometric proportion, all of the H2 S and SO 2 would be consumed. Automation provides for faster and more accurate response to fluctuations in the feed stream, reducing the risk of release of H2 S and SO 2 . It also may reduce labor costs. 4- 31 http://librosysolucionarios.net 4.41 (cont’d) b. n& c = 3.00 × 10 2 kmol 0.85 kmol H 2S 1 kmol SO 2 = 1275 . kmol SO 2 / h h kmol 2 kmol H 2S c. Calibration Curve 1.20 X (mol H 2S/mol) 1.00 0.80 0.60 0.40 0.20 0.00 0.0 20.0 40.0 60.0 80.0 100.0 Ra (mV) X = 0.0199Ra − 0.0605 b d. n& c kmol SO2 / h b n& f kmol / h b g x kmol H 2S / kmol g g Blender Flowmeter calibration: UV W n& f = aR f 20 n& = R &n f = 100 kmol / h , R f = 15 mV f 3 f Control valve calibration: UV W n&c = 25.0 kmol / h, R c = 10.0 mV 7 5 n& = R + n& c = 60.0 kmol / h , Rc = 25.0 mV c 3 c 3 FG H IJ b K 1 7 5 1 20 n& f x ⇒ Rc + = R f 0.0119 Ra − 0.0605 2 3 3 2 3 10 5 ⇒ Rc = R f 0.0119 Ra − 0.0605 − 7 7 Stoichiometric feed: n& c = b n& f = 3.00 × 10 2 kmol / h ⇒ R f = g 3 n& f = 45 mV 20 4- 32 http://librosysolucionarios.net g 4.41 (cont’d) b gb b g e. gb g 10 5 45 0.0119 76.5 − 0.0605 − = 53.9 mV 7 7 7 5 ⇒ n&c = 53.9 + = 127.4 kmol / h 3 3 Faulty sensors, computer problems, analyzer calibration not linear, extrapolation beyond range of calibration data, system had not reached steady state yet. Rc = 4.42 165 mol / s b g x mol C2H 4 / mol b b n& mol / s g 0.310 mol C 2 H 4 / mol g 1 − x mol HBr / mol 0173 . mol HBr / mol 0.517 mol C 2H 5Br / mol C 2 H 4 + HBr → C 2H 5Br C balance: b g b gb g b gb g 165 mol x mol C 2H4 2 mol C = n& 0.310 2 + n& 0.517 2 s mol mol C2 H4 Br balance: 165 (1 − x )( 1) = n& ( 0.173 )( 1) + n& ( 0.517 )(1) (1) (2) Solve (1) and (2) simultaneously ⇒ n& = 108.77 mol / s, x = 0.545mol C2H 4 / mol b g ⇒ 1 − x = 0.455mol HBr / mol Since the C2 H4 /HBr feed ratio (0.545/0.455) is greater than the stoichiometric ration (=1), HBr is the limiting reactant . bn& g = b165mol / sgb0.455mol HBr / molg = 75.08 mol HBr 75.08 − b 0173 . gb108.8 g Fractional conversion of HBr = × 100% = 0.749 mol HBr react / molfed HBr fed dn& i = 75.08 molC H dn& i = b165 mol / sgb 0.545mol C H C2 H4 stoich C2 H4 2 75.08 4 2 fed 4 g / mol = 89.93 mol C2 H4 89.93 − 75.08 = 19.8% 75.08 Extentof reaction: n&C 2H5 Br = n& C2 H5 Br + v C2 H5 Brξ ⇒ 1088 . 0.517 = 0 + 1 ξ ⇒ ξ = 56.2 mol / s % excess of C2H 4 = d i 0 b 4- 33 http://librosysolucionarios.net gb g bg 4.43 a. 2HCl + 1 O 2 → Cl 2 + H 2 O 2 Basis: 100 mol HCl fed to reactor b g n bmolO g n b mol N g n bmol Cl g n b mol H Og 100 mol HCl b n1 mol air n2 mol HCl g 0.21 mol O 2 / mol 3 2 4 2 5 0.79 mol N2 / mol 2 6 35% excess 2 mol O = 25 mol O bO g stoic = 100 mol HCl 0.5 2 mol HCl 35% excess air: 0.21n b mol O fedg = 1.35 × 25 ⇒ n = 160.7 mol air fed 2 2 2 1 2 1 85% conversion ⇒ 85 mol HCl react ⇒ n2 = 15 mol HCl n5 = 85 mol HCl react 1 mol Cl 2 2 mol HCl b gb g = 42.5 mol Cl 2 n6 = 85 1 2 = 42.5 mol H2O N 2 balance: b160.7gb0.79g = n 4 ⇒ n4 = 127 mol N2 O balance: b160.7gb0.21g mol O 2 2 mol O 1 mol O 2 = 2 n3 + 42.5 mol H 2 O 1 mol O 1 mol H2O ⇒ n3 = 12.5 mol O 2 Total moles: 5 ∑ n j = 239.5 mol ⇒ j =2 15 mol HCl mol HCl molO 2 mol N 2 = 0.063 , 0.052 , 0.530 , 239.5 mol mol mol mol 0177 . b. molCl 2 mol H 2 O , 0177 . mol mol As before, n1 = 160.7 mol air fed, n2 = 15 mol HCl 1 2HCl + O2 → Cl2 + H2O 2 b g ni = ni E 0 + vi ξ HCl: 15 = 100 − 2ξ ⇒ ξ = 42.5 mol 4- 34 http://librosysolucionarios.net 4.43 (cont’d) b g 12 ξ = 12.5 mol O = 0.79b160.7g = 127 mol N O 2 : n 3 = 0.21 160.7 − N 2 : n4 2 2 Cl 2 : n 5 = ξ = 42.5 mol Cl 2 H 2 O: n6 = ξ = 42.5 mol H 2 O c. 4.44 These molar quantities are the same as in part (a), so the mole fractions would also be the same. Use of pure O2 would eliminate the need for an extra process to remove the N2 from the product gas, but O2 costs much more than air. The cheaper process will be the process of choice. b g Fe O + 3H SO → Fe bSO g + 3H O bTiOgSO + 2H O → H TiO bsg + H SO H TiO bsg → TiO bsg + H O FeTiO3 + 2H 2SO 4 → TiO SO 4 + FeSO 4 + 2H 2O 2 3 2 4 2 4 2 2 2 3 2 4 3 2 3 2 4 2 Basis: 1000 kg TiO 2 produced 1000 kg TiO 2 kmol TiO 2 1 kmol FeTiO 3 79.90 kg TiO2 1 kmol TiO 2 12.52 kmol FeTiO3 dec. 1 kmol FeTiO3 feed 0.89 kmol FeTiO3 dec. 14.06 kmol FeTiO3 b = 12.52 kmol FeTiO 3 decomposes = 14.06 kmol FeTiO3 fed 1 kmol Ti 47.90 kg Ti 1 kmol FeTiO3 kmol Ti g = 6735 . kg Ti fed 673.5 kg Ti / M kg ore = 0.243 ⇒ M = 2772 kg ore fed b g Ore is made up entirely of 14.06 kmol FeTiO 3 + n kmol Fe 2O3 (Assumption!) n = 2772 kg ore − 638.1 kg Fe2 O3 14.06 kmol FeTiO3 151.74 kg FeTiO3 kmol FeTiO3 kmol Fe 2O3 159.69 kg Fe 2O3 = 6381 . kg Fe 2O3 = 4.00 kmol Fe2 O3 14.06 kmol FeTiO3 2 kmol H2SO4 4.00 kmol FeTiO3 3 kmol H2SO4 + = 4012 . kmol H2SO4 1 kmol FeTiO3 1 kmol Fe2O3 b g 50% excess: 15 . 4012 . kmol H2SO 4 = 6018 . kmol H2SO 4 fed Mass of 80% solution: 60.18 kmol H 2SO 4 98.08 kg H2SO 4 b g 1 kmol H2SO 4 = 59024 . kg H2SO 4 5902.4 kg H 2SO 4 / M a kg soln = 0.80 ⇒ M a = 7380 kg 80% H 2SO 4 feed 4- 35 http://librosysolucionarios.net 4.45 a. Plot C (log scale) vs. R (linear scale) on semilog paper, get straight line through d R = 10, C = 0.30 g m i and FH R 3 1 1 2 = 48, C2 = 2.67 g m3 IK ln C = bR + ln a ⇔ C = ae br b= b g = 0.0575 , ln a = lnb2.67g − 0.0575b48g = −178 . ⇒a=e ln 2.67 0.30 −1.78 48 − 10 ⇒ C = 0169 . e 0.0575 R i C ′(ftlb E d C g m3 = m) 4536 . g 35.31 ft 3 3 1 m3 1 lb m d = 0.169 = 16,020C ′ i 16 ,020C' = 0.169e 0.0575R ⇒ C ′ lb m SO 2 ft 3 = 1.055 × 10 −5 e 0.0575 R b. d2867 ft sib 60 s min g = 138 ft 3 1250 lb m min d 3 lb m coal i R = 37 ⇒ C ′ lb m SO 2 ft 3 = 1055 . × 10 −5 e b0.0575 gb37g = 8.86 × 10 8.86 × 10 −5 lb m SO 2 ft c. 3 138 ft 3 1 lb m coal = 0.012 < 0.018 −5 lb m SO 2 ft 3 lb m SO 2 compliance achieved lb m coal S + O 2 → SO 2 1250 lb m coal 0.05 lb m S 64.06 lb m SO 2 min 1 lb m coal 32.06 lb m S = 1249 . lb m SO 2 generated min 2867 ft3 60 s 8.86 ×10−5 lb m SO 2 = 15.2 lb m SO 2 min in scrubbed gas s 1 min ft3 air 1250 lbm coal/min 62.5 lb m S/min % removal = d. scrubbing fluid furnace stack gas 124.9 lbm SO2 /min ash b124.9 − 15.2g lb scrubber scrubbed gas 15.2 lb m SO2 /min liquid effluent (124.9 – 15.2)lbm SO2 (absorbed)/min SO 2 scrubbed min × 100% = 88% 1249 . lb m SO 2 fed to scrubber min m The regulation was avoided by diluting the stack gas with fresh air before it exited from the stack. The new regulation prevents this since the mass of SO 2 emitted per mass of coal burned is independent of the flow rate of air in the stack. 4- 36 http://librosysolucionarios.net 4.46 a. A + B ===== C + D nA = nA − ξ 0 e = en = en = en j − ξj n ξj n + ξj n n B = nB − ξ y A = n A − ξ nT nC = nC + ξ yB n D = nD + ξ yC 0 0 0 nI = nI Total nT = ∑ ni At equilibrium: yD 0 b b 0 B0 T C0 + D0 gb gb T T g g nC0 + ξ c nD0 + ξ c yC y D = = 487 . (nT ’s cancel) y A yB n A0 − ξ c n B0 − ξ c b c gh b g 387 . ξ 2c − nC0 + nD0 + 487 . nA0 + nB0 ξ c − nC0 nD0 − 487 . nA0 nB0 = 0 [aξ 2c + bξ c + c = 0] a = 387 . 1 2 ∴ ξc = −b ± b − 4ac where b = − nC0 + nD 0 + 4.87 nA0 + nB0 2a c = − nC0nD0 − 4.87nA0nB0 e b. b j Basis: 1 mol A feed nA0 = 1 nB0 = 1 nC0 = nD0 = nI0 = 0 Constants: a = 3.87 b = −9.74 ξe = ( 1 9.74 ± 2 ( 3.87 ) g c = 4.87 ( 9.74) 2 − 4 ( 3.87 )( 4.87 ) )⇒ξ e1 = 0.688 (ξ e 2 = 1.83 is also a solution but leads to a negative conversion ) Fractional conversion: X A ( = X B ) = c. nA0 − nA ξ e1 = = 0.688 nA 0 nA 0 nA0 = 80, nC0 = nD 0 = nJ 0 = 0 nC 0 = 0 nC = 70 = nC 0 + ξ c =======> ξ c = 70 mol n A = nA 0 − ξ c = n A0 − 70 mol nB = n B0 − ξ c = 80 − 70 = 10 mol nC = nC 0 + ξ c = 70 mol nD = nD 0 + ξ c = 70 mol 4.87 = b gb g b gb g 70 70 yC y D nC nD = ⇒ = 4.87 ⇒ n A0 = 170.6 mol methanol fed y A y B n An B n A0 − 70 10 4- 37 http://librosysolucionarios.net 4.46 (cont’d) y A = 0.401 mol CH3OH mol Product gas n A = 170.6 − 70 = 100.6 mol y B = 0.040 mol CH3COOH mol n B = 10 mol ⇒ y C = 0.279 mol CH3COOCH3 mol nC = 70 mol y D = 0.279 mol H 2O mol n D = 70 mol U || V| |W ntotal = 250.6 mol 4.47 d. Cost of reactants, selling price for product, market for product, rate of reaction, need for heating or cooling, and many other items. a. CO + H2O ← → CO 2 + H2 (A) (B) (C) (D) b g n bmol H O g n b mol CO g n b mol H g n b mol Ig 1.00 mol n A mol CO 0.20 mol CO / mol B 010 . mol CO 2 / mol 0.40 mol H 2O / mol 2 C D 0.30 mol I / mol 2 2 I Degree of freedom analysis : 6 unknowns ( n A , nB , nC , n D , n I ,ξ ) bg – 4 expressions for ni ξ – 1 balance on I – 1 equilibrium relationship 0 DF b. Since two moles are prodcued for every two moles that react, n total out = ntotal in = 1.00 mol b g b g b g n A = 0.20 − ξ nB = 0.40 − ξ nC = 010 . +ξ nD = ξ (1) (2) (3) (4) n I = 0.30 (5) ntot = 1.00 mol At equilibrium: b y D = n D = ξ = 0110 . mol H 2 c. b gb g FG H IJ K 010 . +ξ ξ yC yD nC n D 4020 = = = 0.0247exp ⇒ ξ = 0110 . mol y A yB n A nB 0.20 − ξ 0.40 − ξ 1123 b / molg gb g The reaction has not reached equilibrium yet. 4- 38 http://librosysolucionarios.net 4.47 (cont’d) d. T (K) 1223 1123 1023 923 823 723 623 673 698 688 x (CO) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 x (H2O) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1123 1123 1123 1123 0.2 0.4 0.3 0.5 0.4 0.2 0.3 0.4 x (CO2) Keq Keq (Goal Seek) Extent of Reaction 0.6610 0.6610 0.2242 0.8858 0.8856 0.2424 1.2569 1.2569 0.2643 1.9240 1.9242 0.2905 3.2662 3.2661 0.3219 6.4187 6.4188 0.3585 15.6692 15.6692 0.3992 9.7017 9.7011 0.3785 7.8331 7.8331 0.3684 8.5171 8.5177 0.3724 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0 0 0.8858 0.8858 0.8858 0.8858 0.8863 0.8857 0.8856 0.8867 0.1101 0.1100 0.1454 0.2156 y (H2) 0.224 0.242 0.264 0.291 0.322 0.358 0.399 0.378 0.368 0.372 0.110 0.110 0.145 0.216 The lower the temperature, the higher the extent of reaction. An equimolar feed ratio of carbon monoxide and water also maximizes the extent of reaction. 4.48 a. A + 2B → C b g g = lnd10.5 / 2.316 × 10 i = 11458 ln Ke = ln A0 + E T K E= b ln Ke1 / K e2 1 T1 − 1 T2 −4 1 373 − 1 573 ln A0 = ln K e1 − 11458 T1 = ln 10.5 − 11458 373 = −28.37 ⇒ A0 = 4.79 × 10 −13 b gh c K e = 4.79 × 10 −13 exp 11458 T K atm −2 ⇒ K e (450 K ) = 00548 . atm −1 b. U − 2ξ || V +ξ | − 2ξ |W n A = n A0 − ξ nB = n B0 nC = nC 0 nT = nT 0 b = bn = bn g bn − 2ξg − 2ξ g b n − 2ξ g + ξ g bn − 2ξ g +n +n g y A = n A0 − ξ yB B0 ⇒ yC C0 nT 0 = n A0 b T0 T0 T0 B0 C0 At equilibrium, b b gb gb n + ξ n − 2ξ e yC 1 = C0 e T 0 2 2 y A yB P n A0 − ξ e nB 0 − 2ξ e c. g g 2 2 bg bg 1 = Ke T (substitute for K T from Part a.) e P2 Basis: 1 mol A (CO) n A0 = 1 n B0 = 1 nC 0 = 0 ⇒ nT 0 = 2 , P = 2 atm , T = 423K b ξ e 2 − 2ξ e g 2 b1 − ξ gb1 − 2ξ g e e 2 b g 1 -2 2 . =0 2 = Ke 423 = 0.278 atm ⇒ ξ e − ξ e + 01317 4 atm 4- 39 http://librosysolucionarios.net 4.48 (cont’d) (For this particular set of initial conditions, we get a quadratic equation. In general, the equation will be cubic.) ξ e = 0156 . , 0.844 Reject the second solution, since it leads to a negative n B . . gh ⇒ y = 0.500 b g c2 − 2b0156 y = c1 − 2b 0156 . gh c2 − 2b0156 . gh ⇒ y = 0.408 y = b0 + 0.156 g c2 − 2b 0156 . gh ⇒ y = 0.092 n −n ξ Fractional Conversion of CO b Ag = = n n y A = 1 − 0156 . A B B C C A0 A A0 d. = 0.156 mol A reacted / mol A feed A0 Use the equations from part b. i) ii) iii) iv) Fractional conversion decreases with increasing fraction of CO. Fractional conversion decreases with increasing fraction of CH3 OH. Fractional conversion decreases with increasing temperature. Fractional conversion increases with increasing pressure. * 1 2 REAL TRU, A, E, YA0, YC0, T, P, KE, P2KE, C0, C1, C2, C3, EK, EKPI, FN, FDN, NT, CON, YA, YB, YC INTEGER NIT, INMAX TAU = 0.0001 INMAX = 10 A = 4.79E–13 E = 11458. READ (5, *) YA0, YB0, YC0, T, P KE = A * EXP(E/T) P2KE = P*P*KE C0 = YC0 – P2KE * YA0 * YB0 * YB0 C1 = 1. – 4. * YC0 + P2KE * YB0 * (YB0 + 4. * YA0) C2 = 4. * (YC0 –1. – P2KE * (YA0 + YB0)) C3 = 4. * (1. + P2KE) EK = 0.0 (Assume an initial value ξ e = 0 . 0 ) NIT = 0 FN = C0 + EK * (C1 + EK * (C2 + EK * C3)) FDN = C1 + EK * (2. * C2 + EK * 3. * C3) EKPI = EK - FN/FDN NIT = NIT + 1 IF (NIT.EQ.INMAX) GOTO 4 IF (ABS((EKPI – EK)/EKPI).LT.TAU) GOTO 2 EK = EKPI GO TO 1 NT = 1. – 2. * EKPI YA = (YA0 – EKPI)/NT YB = (YB0 – 2. + EKPI)/NT YC = (YC0 + EKPI)/NT 4- 40 http://librosysolucionarios.net 4.48 (cont’d) CON = EKPI/YA0 WRITE (6, 3) YA, YB, YC, CON STOP 4 WRITE (6, 5) INMAX, EKPI 3 FORMAT (' YA YB YC CON', 1, 4(F6.3, 1X)) FORMAT ('DID NOT * CONVERGE IN', I3, 'ITERATIONS',/, * 'CURRENT VALUE = ', F6.3) END $ DATA 0.5 0.5 0.0 423. 2. RESULTS: YA = 0.500, YB = 0.408, YC = 0.092, CON = 0.156 Note: This will only find one root — there are two others that can only be found by choosing different initial values of ξ a 4.49 a. CH4 + O 2 → HCHO + H 2O (1) CH4 + 2O 2 → CO2 + 2H 2O (2) 100 mol / s b g n& b mol O / sg n& b mol HCHO / sg n& b mol H O / sg n&n& bmol (molCO CO g /s) n&1 mol CH4 / s 0.50 mol CH4 / mol 0.50 mol O 2 / mol 2 2 3 4 5 5 7 unknowns ( n&1, n& 2 , n&3, n&4 , n&5 , ξ& 1,ξ& 2 ) – 5 equations for n& ξ& , ξ& i e 1 2 2 2 2 j 2 DF b. n&1 = 50 − ξ& 1 − ξ& 2 n& = 50 − ξ& − 2ξ& 2 1 n& 3 = ξ& 1 n& = ξ& + 2ξ& 4 1 n& 5 = ξ& 2 c. (1) (2) 2 (3) (4) 2 (5) Fractional conversion: Fractional yield : ( 50 − n&1 ) = 0.900 ⇒ n& 1 50 = 5.00 mol CH /s 4 n&3 = 0.855 ⇒ n&3 = 42.75 mol HCHO/s 50 4- 41 http://librosysolucionarios.net 4.49 (cont’d) y CH = 0.0500 mol CH 4 /mol 4 Equation 3 ⇒ ξ1 = 42.75 y O = 0.0275 mol O 2 /mol Equation 1 ⇒ ξ2 = 2.25 2 y Equation 2 ⇒ n&2 = 2.75 ⇒ HCHO = 0.4275 mol HCHO/mol Equation 4 ⇒ n&4 = 47.25 y H O = 0.4725 mol H 2O/mol 2 Equation 5 ⇒ n&5 = 2.25 y CO = 0.0225 mol CO 2 /mol 2 Selectivity: [(42.75mol HCHO/s)/(2.25molCO 2 /s) = 19.0 mol HCHO/mol CO2 4- 42 http://librosysolucionarios.net 4.50 a. Design for low conversion and feed ethane in excess. Low conversion and excess ethane make the second reaction unlikely. b. C2 H6 + Cl2 → C2 H5 Cl + HCl, C2 H5 Cl + Cl2 → C2H4 Cl2 + HCl Basis: 100 mol C2 H5 Cl produced c. n 1 (mol C2 H6 ) 100 mol C2 H5 Cl n 2 (mol Cl2 ) n 3 (mol C2 H6 ) n 4 (mol HCl) n 5 (mol C2 H5 Cl2 ) 5 unknowns –3 atomic balances 2 D.F. Selectivity: 100 mol C 2 H 5Cl = 14 n5 (mol C 2 H 4 Cl 2 ) ⇒ n5 = 7.143 mol C 2 H 4 Cl 2 U| ⇒ n = 714.3 mol C H in V 2 n = 2b100g + 2 n + 2b7.143g|W n = 114.3 mol C H out 6b714.3g = 5b100g + 6b114.3g + n + 4b7 .143g ⇒ n = 607 .1 mol HCl 2 n = 100 + 607.1 + 2b7 .143g ⇒ n = 114 .3 mol Cl b g 15% conversion: 1 − 0.15 n1 = n 3 C balance: H balance: Cl balance: 1 3 1 2 6 3 2 6 4 2 4 2 2 . mol Cl 2 / mol C 2 H 6 Feed Ratio : 114.3 mol Cl 2 / 714.3 mol C 2 H 6 = 016 Maximum possible amount of C2 H5 Cl: 114.3 mol Cl 2 1 mol C 2 H 5Cl n max = = 114.3 mol C 2 H 5Cl 1 mol Cl 2 Fractional yield of C2 H5 Cl: 4.51 nC2 H5 Cl n max = 100 mol = 0.875 114.3 mol d. Some of the C2 H4 Cl2 is further chlorinated in an undesired side reaction: C2 H5 Cl2 + Cl2 → C2H4 Cl3 + HCl a. C2 H4 + H2O → C2 H5OH, 2 C2H5 OH → (C2 H5 )2 O + H2O Basis: 100 mol effluent gas 100 mol 0.433 mol C 2 H 4 / mol 0.025 mol C H OH / mol 2 5 0.0014 mol (C H ) O / mol 2 5 2 0.093 mol I / mol n1 (mol C 2 H 4 ) n [mol H O (v)] 2 2 n 3 (mol I) 3 unknowns -2 independent atomic balances -1 I balance 0 D. F. 0.4476 mol H O (v) / mol 2 b (1) C balance: 2 n1 = 100 2∗0.433 + 2∗0.025 + 4∗0.0014 b g (2) H balance: 4 n1 + 2n 2 = 100 4∗0.433 + 6∗0.025 + 10∗0.0014 + 2∗0.4476 b g g (3) O balance: n 2 = 100 0.025 + 0.0014 + 0.4476 Note; Eq. (1)∗2 + Eq. (3)∗2 = Eq. (2 ) ⇒2 independent atomic balances (4) I balance: n3 = 9.3 4-43 http://librosysolucionarios.net 4.51 (cont'd) b. (1) ⇒ n1 = 46.08 mol C 2 H 6 (3) ⇒ n 2 = 47.4 mol H 2 O ⇒ Reactor feed contains 44.8% C 2 H 6 , 46.1% H 2 O, 9.1% I (4) ⇒ n 3 = 9.3 mol I U| V| W 46.08 − 43.3 × 100% = 6.0% 46.08 If all C2 H4 were converted and the second reaction did not occur, n C2 H5OH % conversion of C2 H4 : d ⇒ Fractional Yield of C2 H5 OH: n C2 H5OH / nC2 H5 OH i max b d g i max = 46.08 mol = 2.5 / 46.08 = 0.054 Selectivity of C2 H5 OH to (C2 H5)2 O: 2.5 mol C 2 H 5OH = 17.9 mol C 2 H 5OH / mol (C2 H 5 ) 2 O 0.14 mol (C 2 H 5 ) 2 O c. 4.52 Keep conversion low to prevent C2 H5OH from being in reactor long enough to form significant amounts of (C2 H5)2 O. Separate and recycle unreacted C2H4 . bg bg bg bg CaF2 s + H 2SO 4 l → CaSO 4 s + 2HF g 1 metric ton acid 1000 kg acid 0.60 kg HF 1 metric ton acid 1 kg acid = 600 kg HF Basis: 100 kg Ore dissolved (not fed) 100 kg Ore dissolved 0.96 kg CaF 2/kg 0.04 kg SiO 2/kg nA (kg 93% H2 SO4 ) 0.93 H2 SO4 kg/kg 0.07 H2 O kg/kg n1 n2 n3 n4 (kg CaSO4) (kg HF) (kg H 4SiF6 ) (kg H 2 SO 4) n5 (kg H2 O) Atomic balance - Si: b g 0.04 100 kg SiO2 28.1 kg Si 60.1 kg SiO 2 = n 3 (kg H 4 SiF6 ) 28.1 kg Si 146.1 kg H 4 SiF6 Atomic balance - F: b g n (kg HF) 19.0 kg F 38.0 kg F = 2 20.0 kg HF 78.1 kg CaF2 9.72 kg H 4SiF6 114.0 kg F + ⇒ n 2 = 41.2 kg HF 146.1 kg H 4 SiF6 0.96 100 kg CaF2 600 kg HF 100 kg ore diss. 41.2 kg HF 1 kg ore feed 0.95 kg ore diss. = 1533 kg ore 4-44 http://librosysolucionarios.net ⇒ n 3 = 9.72 kg H 4 SiF6 4.53 a. C 6 H 6 + Cl 2 → C 6 H 5 Cl + HCl C 6 H 5 Cl + Cl 2 → C 6 H 4 Cl 2 + HCl C 6 H 4 Cl 2 + Cl 2 → C 6 H 3Cl 3 + HCl Convert output wt% to mol%: Basis 100 g output species C6H 6 C 6 H 5Cl C 6 H 4 Cl 2 C 6 H 3Cl 3 g 65.0 32.0 2.5 0.5 Mol. Wt. 78.11 112.56 147.01 181.46 mol 0.832 0.284 0.017 0.003 total 1.136 mol % 73.2 25.0 1.5 0.3 Basis: 100 mol output n1 (mol C6 H6 ) n2 (mol Cl 2) n3 (mol I) n 4 (mol HCl(g)) n 3 (mol I) 65.0 mol C6 H6 73.2 mol C6 H6 32.0 mol C 6 H 5 Cl 25.0 mol C6 H5 Cl 2.5 Cl 2 1.5mol molCC66H H44 Cl 2 0.5 mol C H Cl 3 0.3 mol C6 H 3Cl 6 b. 3 4 -3 -1 0 unknowns atomic balances wt% Cl 2 in feed D.F. 3 C balance: 6n1 = 6 ( 73.2 + 25.0 + 1.5 + 0.3 ) ⇒ n1 = 100 mol C 6 H 6 H balance: 6 (100) = 6 ( 73.2 ) + 5 ( 25.0 ) + 4 (1.5 ) + 3 ( 0.3) + n4 ⇒ n4 = 28.9 mol HCl Cl balance: 2 n2 = 28.9 + 25.0 + 2 (1.5 ) + 3 ( 0.3) ⇒ n2 = 28.9 mol Cl 2 Theoretical C 6 H 6 = 28.9 mol Cl 2 (1 mol C6H 6 1 mol Cl 2 ) = 28.9 mol C6 H6 (100 − 28.9 ) 28.9 × 100% = 246% excess C6H6 Fractional Conversion: (100 − 73.2) 100 = 0.268 mol C6 H6 react/mol fed Excess C 6 H 6 : Yield: (25.0 mol C 6 H 5Cl) (28.9 mol C 6 H 5Cl maximum)=0.865 g gas ⇒ 0.268 g liquid 78.11 g C6 H6 Liquid feed: (100 mol C6 H6 ) = 7811 g liquid mol C6H6 Gas feed: 28.9 mol Cl2 70.91 g Cl2 1 g gas = 2091 g gas mole Cl 2 0.98 g Cl2 c. Low conversion ⇒ low residence time in reactor ⇒ lower chance of 2nd and 3rd reactions occurring. Large excess of C 6 H 6 ⇒ Cl 2 much more likely to encounter C 6 H 6 than substituted C 6 H 6 ⇒ higher selectivity. d. e. Dissolve in water to produce hydrochloric acid. Reagent grade costs much more. Use only if impurities in technical grade mixture affect the reaction rate or desired product yield. 4-45 http://librosysolucionarios.net 4.54 a. 2CO 2 ⇔ 2CO + O 2 2A ⇔ 2B + C O 2 + N 2 ⇔ 2NO C + D ⇔ 2E n A = n A 0 − 2ξ e1 b = bn = bn = bn = bn y A = n A0 − 2ξ e1 n B = n B0 + 2ξ e2 yB n C = n C 0 + ξ e1 − ξ e2 ⇒ y C n D = n D 0 − ξ e2 yD n E = n E 0 + 2ξ e2 yE bn ntotal = n T 0 + ξ e1 T0 g bn g bn B0 + 2ξ e1 C0 + ξ e1 − ξ e 2 D0 − 1ξ e 2 E0 + 2ξ e 2 g bn g bn T0 + ξ e1 T0 + ξ e1 g bn T0 g g + ξ e1 g g T0 + ξ e1 T0 + ξ e1 g = n A0 + n B0 + n C 0 + n D0 + n E 0 g Equilibrium at 3000K and 1 atm y 2B y C y 2A bn = g bn + ξ − ξ g = 0.1071 bn − 2ξ g bn + ξ g B0 + 2ξ e 1 2 A0 e1 C0 2 e1 T0 e2 e1 yE2 ( nE 0 + 2ξe 2 ) = = 0.01493 yC y D ( nA0 + ξe 1 − ξ e 2)( nD0 − ξe 2 ) 2 E b f 1 = 0.1071 n A0 − 2ξ e1 b g bn 2 T0 g b gbn g bn + ξ − ξ g = 0U| Defines functions g − bn + 2ξ g = 0 V|W f bfξ bξ, ξ, ξg and g + ξ e 1 − n B 0 + 2ξ e1 f 2 = 0.01493 nC 0 + ξ e1 − ξ e 2 D0 − ξ e2 2 C0 e1 e2 2 E0 1 1 2 e2 2 1 2 b. Given all n io ’s, solve above equations for ξ e1 and ξ e2 ⇒ n A , n B, n C, n D , n E ⇒ yA , yB, yC, yD , yE c. n A0 = n C0 = nD0 = 0.333, n B0 = n E0 = 0 ⇒ ξ e1 =0.0593, ξ e2 = 0.0208 ⇒ yA = 0.2027, yB = 0.1120, yC = 0.3510, yD = 0.2950, yE = 0.0393 d. a 11d 1 + a 12 d 2 = − f 1 a f − a 22 f 1 d 1 = 12 2 a 11a 22 − a 12 a 21 bξ g e1 new = ξ e1 + d 1 a 21d 1 + a 22 d 2 = − f 2 a f − a 11 f 2 d 2 = 21 1 a11a 22 − a12 a 21 bξ g e 2 new = ξ e1 + d 2 (Solution given following program listing.) . 1 30 IMPLICIT REAL * 4(N) WRITE (6, 1) FORMAT('1', 30X, 'SOLUTION TO PROBLEM 4.57'///) READ (5, *) NA0, NB0, NC0, ND0, NE0 IF (NA0.LT.0.0)STOP WRITE (6, 2) NA0, NB0, NC0, ND0, NE0 4-46 http://librosysolucionarios.net 4.54 (cont’d) 2 FORMAT('0', 15X, 'NA0, NB0, NC0, ND0, NE0 *', 5F6.2/) NTO = NA0 + NB0 + NC0 + ND0 + NE0 NMAX = 10 X1 = 0.1 X2 = 0.1 DO 100 J = 1, NMAX NA = NA0 – X1 – X1 NB = NB0 + X1 + X1 NC = NC0 + X1 – X2 ND = ND0 – X2 NE = NE0 + X2 + X2 NAS = NA ** 2 NBS = NB ** 2 NES = NE ** 2 NT = NT0 + X1 F1 = 0.1071 * NAS * NT – NBS * NC F2 = 0.01493 * NC * ND – NES A11 = – 0.4284 * NA * NT * 0.1071 * NAS – 4.0 * NB * NC – NBS A12 = NBS A21 = 0.01493 * ND A22 = –0.01493 * (NC + ND) – 4.0 * NE DEN = A11 * A22 – A12 * A21 D1 = (A12 * F2 – A22 * F1)/DEN D2 = (A21 * F1 – A11 * F2)/DEN X1C = X1 + D1 X2C = X2 + D2 WRITE (6, 3) J, X1, X2, X1C, X2C 3 FORMAT(20X, 'ITER *', I3, 3X, 'X1A, X2A =', 2F10.5, 6X, 'X1C, X2C =', * 2F10.5) IF (ABS(D1/X1C).LT.1.0E– 5.AND.ABS(D2/X2C).LT.1.0E– 5) GOTO 120 X1 = X1C X2 = X2C 100 CONTINUE WRITE (6, 4) NMAX 4 FORMAT('0', 10X, 'PROGRAM DID NOT CONVERGE IN', I2, 'ITERATIONS'/) STOP 120 YA = NA/NT YB = NB/NT YC = NC/NT YD = ND/NT YE = NE/NT WRITE (6, 5) YA, YB, YC, YD, YE 5 FORMAT ('0', 15X, 'YA, YB, YC, YD, YE =', 1P5E14.4///) GOTO 30 END $DATA 0.3333 0.00 0.3333 0.3333 0.0 0.50 0.0 0.0 0.50 0.0 0.20 0.20 0.20 0.20 0.20 SOLUTION TO PROBLEM 4.54 NA0, NB0, NC0, ND0, NE0 = 0.33 0.00 0.33 ITER = 1 X1A, X2A = 0.10000 0.10000 ITER = 2 X1A, X2A = 0.06418 0.05181 ITER = 3 X1A, X2A = 0.05969 0.02486 0.33 X1C, X1C, X1C, 0.00 X2C = 0.06418 X2C = 0.05969 X2C = 0.05937 4-47 http://librosysolucionarios.net 0.05181 0.02986 0.02213 4.54 (cont’d) ITER = 4 X1A, X2A = 0.05437 ITER = 5 X1A, X2A = 0.05931 ITER = 6 X1A, X2A = 0.05930 0.02213 0.02086 0.02083 X1C, X2C = 0.05931 X1C, X2C = 0.05930 X1C, X2C = 0.05930 YA, YB, YC, YD, YE = 2.0270E − 01 1.1197 E − 01 2 .9501E − 01 3.9319 E − 02 NA0, NB0, NC0, ND0, NE0 = 0.20 ITER = 1 X1A, X2A = 0.10000 ↓ ITER = 7 X1A, X2A = –0.02244 YA, YB, YC, YD, YE= 4.55 0.20 0.20 0.20 0.10000 0.02086 0.02083 0.02083 3.5100E − 01 0.20 X1C, X2C = 0.00012 –0.08339 X1C, X2C = – 0.02244 0.00037 –0.08339 2.5051E − 01 1.5868E − 01 2.6693E − 01 2.8989E − 01 3.3991E − 02 a. (B) m & B 0 (kg A/h) 1 kg B/kg A fed to reactor ( P) ( A) & A0 (kg A/h) m m& B 0 (kg A/h) xRA (kg R/kg A) x RA (kg R/kg A) R → S & 3 (kg A/h) m m & P (kg P/h) xR 3 (kg R/kg) 0.0075 kg R/kg P 99% conv. f m& A0 (kg A/h) xRA (kg R/kg A) Splitting point: 1 allowed material balance Reactor: 1 mass balance + 99% conversion of R (=> 2 equations) Mixing point: 2 allowed material balances (1 mass, 1 on R) & A0 , f , x RA ,m& B0 , m & 3 , x R 3 , m& P ) − 5 equations = 2 degrees of freedom ⇒ 7 unknowns ( m b. Mass balance on splitting point: mA0 = mB0 + f mA0 (1) Mass balance on reactor: 2 mB0 = m3 99% conversion of R: xR3 m3 = 0.01 xRA mB0 Mass balance on mixing point: m3 + f mA0 = mP R balance on mixing point: xR3 m3 + xRA f mA0 = 0.0075 mP Given xRA and mP , solve simultaneously for mA0 , mB0 , f, m3 , xR3 (2) (3) (4) (5) 4-48 http://librosysolucionarios.net 4.55(cont’d) c. mA0 = 2778 kg A/h mB0 = 2072 kg B/h fA = 0.255 kg bypass/kg fresh feed mP 4850 4850 4850 4850 4850 4850 4850 4850 4850 xRA 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 mA0 3327 3022 2870 2778 2717 2674 2641 2616 2596 mB0 1523 1828 1980 2072 2133 2176 2209 2234 2254 f 0.54 0.40 0.31 0.25 0.21 0.19 0.16 0.15 0.13 mP 2450 2450 2450 2450 2450 2450 2450 2450 2450 xRA 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 mA0 1663 1511 1435 1389 1359 1337 1321 1308 1298 mB0 762 914 990 1036 1066 1088 1104 1117 1127 f 0.54 0.40 0.31 0.25 0.22 0.19 0.16 0.15 0.13 f vs. x RA f (kg bypass/kg fresh feed) d. 0.60 0.50 0.40 0.30 0.20 0.10 0.00 0.00 0.02 0.04 0.06 0.08 x R A (kg R/kg A) 4-49 http://librosysolucionarios.net 0.10 0.12 4.56 a. 900 kg HCHO 1 kmol HCHO = 30.0 kmol HCHO / h h 30.03 kg HCHO n (kmol CH OH / h) 1 3 30.0 kmol HCHO / h n2 (kmol H 2 / h) n3 (kmol CH 3OH /h) % conversion: 30.0 = 0.60 ⇒ n1 = 50.0 kmol CH 3 OH / h n1 b. n (kmol CH OH / h) 1 3 30.0 kmol HCHO / h 30.0 kmol HCHO / h n2 (kmol H 2 /h) n2 (kmol H 2 /h) n3 (kmol CH 3OH / h) n (kmol CH OH / h) 3 3 Overall C balance: n1 (1) = 30.0 (1) ⇒ n1 = 30.0 kmol CH3 OH/h (fresh feed) Single pass conversion: c. 4.57 a. 30.0 = 0.60 ⇒ n 3 = 20.0 kmol CH 3 OH / h n1 + n3 n 1 + n 3 = 50.0 kmol CH3 OH fed to reactor/h Increased xsp will (1) require a larger reactor and so will increase the cost of the reactor and (2) lower the quantities of unreacted methanol and so will decrease the cost of the separation. The plot would resemble a concave upward parabola with a minimum around xsp = 60%. Convert effluent composition to molar basis. Basis: 100 g effluent: 10.6 g H2 1 mol H2 2.01 g H 2 64.0 g CO = 5.25 mol H 2 1 mol CO 28.01 g CO 25.4 g CH3 OH = 2.28 mol CO ⇒ H : 0.631 mol H / mol 2 2 CO: 0.274 mol CO / mol CH 3 OH: 0.0953 mol CH 3 OH / mol 1 mol CH 3OH 32.04 g CH3 OH = 0.793 mol CH3O H 4-50 http://librosysolucionarios.net 4.57 (cont’d) n4 (mol / min) 0.004 mol CH 3OH(v)/ mol x (mol CO /mol) (0.896 - x) (mol H 2 / mol) Cond. Reactor 350 mol/ min 0.631 mol CH 3OH(v)/ mol n1 (mol CO/ min) n 2 (mol H 2 / min) n 3 (mol CH 3OH(l) / min) 0.274 mol CO/ mol CO+ H 2 → CH 3OH 0.0953 mol H / mol 2 Condenser 3 unknowns (n3 , n4 , x) -3 balances 0 degrees of freedom Balances around condenser Overall process 2 unknowns (n1 , n2 ) -2 independent atomic balances 0 degrees of freedom U| V| W n = 32.1 mol CH 3OH(l) / min CO: 350∗0.274 = n ∗ x 3 4 H : 350∗0.631 = n ∗ (0.996 − x ) ⇒ n = 318.7 mol recyc le / min 2 4 4 CH OH: 350∗0.0953 = n + 0.004∗ n x =.301 molCO / mol 3 3 4 Overall balances U|V |W n = 32.08 mol / min CO in feed C: n = n 1 3 ⇒ 1 H: 2n = 4n n = 64.16 mol / min H 2 in feed 2 2 2 Single pass conversion of CO: (32.08 + 318 .72 ∗ 0.3009 ) − 350 ∗ 0.274 × 100 % = 25 .07 % (32 .08 + 318 .72 ∗ 0.3009 ) 32 .08 − 0 × 100 % = 100 % 32 .08 Reactor conditions or feed rates drifting. (Recalibrate measurement instruments.) Impurities in feed. (Re-analyze feed.) Leak in methanol outlet pipe before flowmeter. (Check for it.) Overall conversion of CO: b. – – – 4-51 http://librosysolucionarios.net 4.58 a. Basis: 100 kmol reactor feed/hr n3 (kmol CH4 /h) 100 kmol /h Reactor n1 (kmol CH4 /h) 80 kmol CH4 /h n2 (kmol Cl2 /h) 20 kmol Cl 2 /h n3 (kmol CH4 /h) n4 (kmol HCl /h) 5n5 (kmol CH3 Cl /h) n5 (kmol CH2 Cl 2 /h) Cond. Solvent Absorb n3 (kmol CH4 /h) n4 (kmol HCl/h) n4 (kmol HCl/h) 5n5 (kmol CH3Cl /h) Still 5n5 (kmol CH3Cl /h) n5 (kmol CH2Cl 2 /h) n5 (kmol CH2Cl 2 /h) Overall process: 4 unknowns (n1 , n2 , n4 , n5 ) -3 balances = 1 D.F. Mixing Point: 3 unknowns (n1 , n2 , n3 ) -2 balances = 1 D.F. Reactor: 3 unknowns (n3 , n4 , n5 ) -3 balances = 0 D.F. Condenser: 3 unknowns (n3 , n4 , n5 ) -0 balances = 3 D.F. Absorption column: 2 unknowns (n3 , n4 ) -0 balances = 2 D.F. Distillation Column: 2 unknowns (n4 , n5 ) -0 balances = 2 D.F. Atomic balances around reactor: 1) C balance : 80 = n 3 + 5n 5 + n 5 2) H balance : 320 = 4n 3 + n 4 + 15n 5 + 2n 5 ⇒ Solve for n 3 , n 4 , n 5 3) Cl balance : 40 = n 4 + 5n 5 + 2n 5 CH4 balance around mixing point: n1 = (80 – n3 ) Cl2 balance: n2 = 20 b. c. Solve for n1 For a basis of 100 kmol/h into reactor n1 = 17.1 kmol CH4 /h n2 = 20.0 kmol Cl2 /h n3 = 62.9 kmol CH4 /h n4 = 20.0 kmol HCl/h 5n5 = 14.5 kmol CH3 Cl/h (1000 kg CH3 Cl/h)(1 kmol/50.49 kg) = 19.81 kmol CH3 Cl/h Scale factor = 19 .81 kmol CH 3 Cl/h 14 .5 kmol CH 3Cl/h = 1.366 n tot = 50 .6 kmol/h n = (17 .1)(1.366 ) = 23.3 kmol CH 4 /h Fresh feed: 1 ⇒ n 2 = (20 .0 )(1 .366 ) = 27.3 kmol Cl 2 /h 46.0 mol% CH 4 , 54.0 mole% Cl 2 Recycle: n3 = (62.9)(1.366) = 85.9 kmol CH4 recycled/h 4-52 http://librosysolucionarios.net 4.59 a. Basis: 100 mol fed to reactor/h ⇒ 25 mol O2 /h, 75 mol C2 H4 /h n1 (mol C2H 4 //h) n2 (mol O2 /h) Seperator reactor nC2H4 ( mol C2 H 4 /h) nO2 (mol O2 /h) 75 mol C2H 4 //h 25 mol O2 /h n1 (mol C 2H 4 //h) n2 (mol O2 /h) n3 (mol C2H 4O /h) n4 (mol CO2 /h) n5 (mol H2O /h) n3 (mol C2 H 4O /h) n4 (mol CO2 /h) n5 (mol H2O /h) Reactor 5 unknowns (n1 - n5 ) -3 atomic balances -1 - % yield -1 - % conversion 0 D.F. Strategy: 1. Solve balances around reactor to find n1 - n5 2. Solve balances around mixing point to find nO2 , nC2H4 (1) % Conversion ⇒ n1 = .800 * 75 (2) % yield: (.200 )(75) mol C 2 H 4 × 90 mol C 2 H 4 O = n 3 (productio n rate of C 2 H 4 O) 100 mol C 2 H 4 (3) C balance (reactor): 150 = 2 n1 + 2 n3 + n4 (4) H balance (reactor): 300 = 4 n1 + 4 n3 + 2 n5 (5) O balance (reactor): 50 = 2 n2 + n3 + 2 n4 + n5 (6) O2 balance (mix pt): nO2 = 25 – n2 (7) C2 H4 balance (mix pt): nC2H4 = 75 – n1 Overall conversion of C2 H4 : 100% b. n1 = 60.0 mol C2 H4 /h n2 = 13.75 mol O2 /h n3 = 13.5 mol C2 H4 O/h n4 = 3.00 mol CO2 /h c. Scale factor = n5 = 3.00 mol H2 O/h nO2 = 11.25 mol O2 /h nC2H4 = 15.0 mol C2 H4 /h 100% conversion of C2 H4 2000 lbm C 2 H 4 O 1 lb - mole C 2 H 4 O h lb − mol / h = 3.363 h 44 .05 lbm C 2 H 4 O 13 .5 mol C 2 H 4 O mol / h nC2H4 = (3.363)(15.0) = 50.4 lb-mol C2 H4 /h nO2 = (3.363)(11.25) = 37.8 lb-mol O2 /h 4-53 http://librosysolucionarios.net 4.60 a. Basis: 100 mol feed/h 100 mol/h 32 mol CO/h 64 mol H 2 / h 4 mol N 2 / h &11 (mol /h) nn reactor n&n23 (mol CH 3 OH / h) cond. .13 mol N 2 /mol 500 mol / h x1 (mol N 2 /mol) x2 (mol CO / mol) 1-x1-x 2 (mol H 2 / h) n3 (mol / h) (mol/h) x1n&(mol N 2 /mol) 3 x2x(mol CO mol) (mol N2/ /mol) 1 1-x1-x 2 (mol H 2 / h) Purge x 2 (mol CO/mol) 1 − x1 − x2 (mol H2 /mol) Mixing point balances: total: (100) + 500 = n&1 ⇒ n&1 = 600 mol/h N2 : 4 + x1 * 500 = .13 * 600 ⇒ x1 = 0.148 mol N2 /mol Overall system balances: N2 : 4 = n&3 (0.148) ⇒ n&3 = 27 mol/h Atomic C:32(1) = n& 2 (1) + 27 x 2 (1) Atomic H:64(2) = n& 2 (4) + 27(1 − 0.148 − x2 )(2) => n& 2 = 24.3 mol CH3 OH/h x 2 = 0.284 mol CO/mol Overall CO conversion: 100*[32-0.284(27)]/32 = 76% Single pass CO conversion: 24.3/ (32+.284*500) = 14% b. Recycle: To recover unconsumed CO and H2 and get a better overall conversion. Purge: to prevent buildup of N2 . 4.61 a. 3H2NH -> NH 3 2 N2 + 2N 3H22 +→ 3 (1-yp) (1-fsp) n1 (mol N 2) (1-yp) (1-fsp) 3n1 (mol H 2) (1-yp) n2 (mol I) 1 mol (1-XI0)/4 (mol N2 / mol) 3/4 (1-XI0) (mol H2 / mol) XI0 (mol I / mol) nr (mol) n1 (mol N 2) 3n1 (mol H2) n2 (mol I) Reactor (1-fsp) n1 (mol N 2) (1-fsp) 3n1 (mol H 2) n2 (mol I) nr (mol) (1-fsp) n1 (mol N2) (1-fsp) 3n1 (mol H 2) n2 (mol I) 2 fsp n1 (mol NH 3) 4-54 http://librosysolucionarios.net yp (1-fsp) n1 (mol N 2) yp (1-fsp) 3n1 (mol H 2) yp n2 (mol I) Condenser np (mol) 2 fsp n1 (mol NH 3) 4.61 (cont’d) At mixing point: N2 : (1-XI0)/4 + (1-yp )(1-fsp ) n1 = n1 I: XI0 + (1-yp ) n2 = n2 Total moles fed to reactor: nr = 4n1 + n2 Moles of NH3 produced: np = 2fsp n1 Overall N2 conversion: b. (1 − X I 0 ) / 4 − y p (1 − f sp ) n 1 (1 − X I 0 ) / 4 XI0 = 0.01 fsp = 0.20 yp = 0.10 n1 = 0.884 mol N2 n2 = 0.1 mol I × 100 % nr = 3.636 mol fed np = 0.3536 mol NH3 produced N2 conversion = 71.4% c. Recycle: recover and reuse unconsumed reactants. Purge: avoid accumulation of I in the system. d. Increasing XI0 results in increasing nr , decreasing np , and has no effect on fov . Increasing fsp results in decreasing nr , increasing np , and increasing fov . Increasing yp results in decreasing nr, decreasing np , and decreasing fov . Optimal values would result in a low value of nr and fsp , and a high value of np , this would give the highest profit. XI0 0.01 0.05 0.10 0.01 0.01 0.01 0.10 0.10 0.10 fsp 0.20 0.20 0.20 0.30 0.40 0.50 0.20 0.20 0.20 yp 0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.30 0.40 nr 3.636 3.893 4.214 2.776 2.252 1.900 3.000 2.379 1.981 np 0.354 0.339 0.321 0.401 0.430 0.450 0.250 0.205 0.173 4-55 http://librosysolucionarios.net fov 71.4% 71.4% 71.4% 81.1% 87.0% 90.9% 55.6% 45.5% 38.5% 4.62 a. i - C 4 H 10 + C 4 H 8 = C 8 H 18 Basis : 1-hour operation n 2 (n-C 4H10) n 3 (i-C 4H 10) n 1 (C 8H 18) m4 (91% H 2SO 4) D F decanter E Units of n: kmol Units of m: kg still n 1 (C 8H 18) n 2 (n-C 4H 10) n 3 (i-C 4H 10) n 5 (n-C 4H 10) n 6 (i-C 4H 10) n 7 (C 8H 18) m8 (91% H 2SO 4) reactor C B n 1 (C 8H 18) n 2 (n-C4 H10) P m 4 (kg 91% H 2SO 4) 40000 kg A n 0 kmol 0.25 i-C4 H 10 0.50 n-C4 H10 0.25 C4 H 8 n 3 (i-C 4H 10) Calculate moles of feed b gb g b gb g M = 0.25 M L− C 4 H10 + 0.50 M n− C4 H10 + 0.25 M C 4 H8 = 0.75 58.12 + 0.25 56.10 = 57 .6 kg kmol b gb g n 0 = 40000 kg 1 kmol 57.6 kg = 694 kmol b gb g Overall n - C4 H10 balance: n 2 = 0.50 694 = 347 kmol n - C4 H 10 in product C 8 H 18 balance: n1 = b0.25gb 694g kmol C H 4 8 react 1 mol C8 H 18 1 mol C 4 H 8 = 1735 . kmol C 8 H 8 in product b At (A), 5 mol i - C 4 H 10 1 mole C 4 H 8 ⇒ n mol i - C 4 H 10 b 694g = 867.5 kmol g = b15gb404.252gb44 3 A i -C 4 H10 at moles C 4 H8 at A =173.5 g Note: n mol C 4 H 8 = 173.5 at (A), (B) and (C) and in feed b gb g i - C 4 H 10 balance around first mixing point ⇒ 0.25 694 + n3 = 867 .5 ⇒ n3 = 694 kmol i - C 4 H 10 recycled from still At C, 200 mol i - C4 H 10 mol C4 H 8 b ⇒ n mol i - C4 H 10 g = b200gb1735. g = 34,700 kmol i - C H 4 C 4-56 http://librosysolucionarios.net 10 bA g and b B g 4.62 (cont’d) i - C 4 H 10 balance around second mixing point ⇒ 8675 . + n6 = 34 ,700 ⇒ n6 = 33,800 kmol C 4 H 10 in recycle E Recycle E: Since Streams (D) and (E) have the same composition, b g = n bmoles i - C H g ⇒ n n bmoles n - C H g n b moles i - C H g n bmoles C H g n = ⇒ n = 8460 kmol C H n b moles C H g n n 5 moles n - C 4 H 10 E 6 4 10 E 10 D 3 4 10 D 5 2 4 7 8 18 E 6 1 8 18 D 3 7 4 = 16,900 kmol n - C 4 H10 18 Hydrocarbons entering reactor: kg I b347 + 16900gb kmol n - C H g FGH 58.12 kmol JK kg I kg I F F + b867 .5 + 33800gb kmol i - C H g G 58.12 H kmol JK + 173.5 kmol C H GH 56.10 kmolJK kg I F + 8460 kmol C H G114.22 J = 4.00 × 10 kg . H kmol K H SO solution entering reactor 4.00 × 10 kg HC 2 kg H SO baq g = band leaving reactor g 1 kg HC = 8.00 × 10 kg H SO b aq g m bH SO in recycle g n b n - C H in recycle g = 8.00 × 10 bH SO leaving reactor g n + n bn - C H leaving reactorg ⇒ m = 7 .84 × 10 kg H SO b aq g in recycle E 4 10 4 10 4 8 6 8 2 18 6 4 2 4 6 2 8 2 4 4 5 4 10 5 4 10 6 2 4 2 6 8 2 4 m4 = H 2 SO 4 entering reactor − H 2 SO 4 in E b g = 1.6 × 10 5 kg H 2 SO 4 aq recycled from decanter b g d ib g d1.6 × 10 ib0.09gkg H O b1 kmol 18.02 kg g = 799 kmol H ⇒ 1.6 × 10 5 0.91 kg H 2SO 4 1 kmol 98.08 kg = 1480 kmol H 2SO 4 in recycle 5 2 2O from decanter Summary: (Change amounts to flow rates) Product: 173.5 kmol C8 H 18 h , 347 kmol n - C 4 H10 h Recycle from still: 694 kmol i - C 4 H 10 h Acid recycle: 1480 kmol H 2 SO 4 h , 799 kmol H 2 O h Recycle E: 16,900 kmol n - C 4 H 10 h , 33,800 kmol L - C4 H10 h , 8460 kmol C 8 H18 h, 7.84 × 10 6 kg h 91% H 2 SO 4 ⇒ 72,740 kmol H 2SO 4 h , 39,150 kmol H 2 O h 4-57 http://librosysolucionarios.net 4.63 a. A balance on ith tank (input = output + consumption) v& L min C A , i−1 mol L = vC & Ai + kC Ai C Bi mol liter ⋅ min V L b g b g b gbg E ÷ v&, note V / v& = τ C A, i− 1 = C Ai + kτ C Ai C Bi B balance. By analogy, C B, i −1 = CBi + k τ C Ai CBi Subtract equations ⇒ CBi − C Ai = CB, i−1 − C A, i−1 = A from balances on bi −1g tank CB , i −2 − C A, i − 2 =K = CB 0 − C A0 st b. C Bi − C Ai = CB 0 − C A0 ⇒ C Bi = C Ai + C B0 − C A 0 . Substitute in A balance from part (a). b g C A, i−1 = C Ai + kτ C Ai C Ai + CB0 − C A0 . Collect terms in C 2Ai , C 1Ai , C 0Ai . 2 C Ai b g k τ + C AL 1 + kτ C B0 − C A0 − C A, i−1 = 0 b g ⇒ α C 2AL + β C AL + γ = 0 where α = kτ , β = 1 + k τ CB 0 − C A0 , γ = −C A, i−1 − β + β 2 − 4αγ (Only + rather than ±: since αγ is negative and the 2α negative solution would yield a negative concentration.) Solution: C Ai = c. k= v= V= CA0 = CB0 = alpha = beta = 36.2 5000 2000 0.0567 0.1000 14.48 1.6270 N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 gamma -5.670E-02 -2.791E-02 -1.512E-02 -8.631E-03 -5.076E-03 -3.038E-03 -1.837E-03 -1.118E-03 -6.830E-04 -4.182E-04 -2.565E-04 -1.574E-04 -9.667E-05 -5.939E-05 CA(N) 2.791E-02 1.512E-02 8.631E-03 5.076E-03 3.038E-03 1.837E-03 1.118E-03 6.830E-04 4.182E-04 2.565E-04 1.574E-04 9.667E-05 5.939E-05 3.649E-05 xA(N) 0.5077 0.7333 0.8478 0.9105 0.9464 0.9676 0.9803 0.9880 0.9926 0.9955 0.9972 0.9983 0.9990 0.9994 (xmin = 0.50, N = 1), (xmin = 0.80, N = 3), (x min = 0.90, N = 4), (xmin = 0.95, N = 6), (xmin = 0.99, N = 9), (xmin = 0.999, N = 13). As xmin → 1, the required number of tanks and hence the process cost becomes infinite. d. (i) k increases ⇒ N decreases (faster reaction ⇒ fewer tanks) ( ii) v& increases ⇒ N increases (faster throughput ⇒ less time spent in reactor ⇒ lower conversion per reactor) (iii) V increases ⇒ N decreases (larger reactor ⇒ more time spent in reactor ⇒ higher conversion per reactor) 4-58 http://librosysolucionarios.net 4.64 a. Basis: 1000 g gas Species m (g) MW n (mol) mole % (wet) mole % (dry) C3 H8 800 44.09 18.145 77.2% 87.5% C4 H10 150 58.12 2.581 11.0% 12.5% H2 O 50 18.02 2.775 11.8% Total 1000 23.501 100% 100% Total moles = 23.50 mol, Total moles (dry) = 20.74 mol Ratio: 2.775 / 20.726 = 0.134 mol H 2 O / mol dry gas b. C3 H8 + 5 O2 → 3 CO2 + 4 H2 O, C4 H10 + 13/2 O2 → 4 CO2 + 5 H2O Theoretical O2 : C3H8: C 4 H 10 : 100 kg gas 80 kg C 3 H 8 1 kmol C 3 H 8 5 kmol O 2 = 9.07 kmol O 2 / h h 100 kg gas 44.09 kg C3 H 8 1 kmol C 3 H8 100 kg gas 15 kg C 4 H10 1 kmol C 4 H 10 6.5 kmol O 2 = 1.68 kmol O 2 / h h 100 kg gas 58.12 kg C4 H 10 1 kmol C4 H10 Total: (9.07 + 1.68) kmol O2 /h = 10.75 kmol O2 /h Air feed rate : 10.75 kmol O 2 1 kmol Air 1.3 kmol air fed = 66.5 kmol air / h h .21 kmol O 2 1 kmol air required The answer does not change for incomplete combustion 4.65 5 L C 6 H 14 0.659 kg C 6 H 14 1000 mol C 6 H14 = 38.3 mol C6 H14 L C 6 H 14 86 kg C 6 H 14 4 L C 7 H 16 0.684 kg C 7 H 16 1000 mol C7 H16 = 27.36 mol C 7 H 16 L C 7 H 16 100 kg C 7 H16 C6 H14 +19/2 O2 → 6 CO2 + 7 H2 O C6 H14 +13/2 O2 → 6 CO + 7 H2 O C7 H16 + 11 O2 → 7 CO2 + 8 H2 O C7 H16 + 15/2 O2 → 7 CO + 8 H 2 O Theoretical oxygen: 38.3 mol C6 H14 9.5 mol O 2 27.36 mol C7 H 16 + mol C 6 H14 11 mol O 2 = 665 mol O2 required mol C 7 H16 O2 fed: (4000 mol air )(.21 mol O2 / mol air) = 840 mol O2 fed Percent excess air: 840 − 665 × 100% = 26.3% excess air 665 4-59 http://librosysolucionarios.net 4.66 CO + 1 O 2 → CO 2 2 H2 + 1 O2 → H2O 2 175 kmol/h 0.500 kmol N2/kmol x (kmol CO/mol) (0.500–x) (kmol H2/kmol) 20% excess air Note: Since CO and H 2 each require 0 .5 mol O 2 / mol fuel for complete combustion, we can calculate the air feed rate without determining x C O . We include its calculation for illustrative purposes. b g A plot of x vs. R on log paper is a straight line through the points R1 = 10.0 , x1 = 0.05 and bR 2 g = 99.7 , x 2 = 1.0 . b g b g ln a = ln b1.0g − 1.303lnb99.7 g = −6.00 a = expb−6.00 g = 2.49 × 10 −3 b = ln 1.0 0.05 ln 99.7 10.0 = 1.303 ln x = b ln R + ln a @ x = a Rb R = 38.3 ⇒ x = 0.288 ⇒ x = 2.49 × 10 −3 R1.303 moles CO mol Theoretical O 2 : 175 kmol 0.288 kmol CO 0.5 kmol O2 h kmol kmol CO + Air fed: 4.67 a. 175 kmol h 0.212 kmol H 2 kmol kmol O2 0.5 kmol O2 = 43.75 kmol H 2 h 43.75 kmol O 2 required 1 kmol air 1.2 kmol air fed h 0.21 kmol O 2 1 kmol air required CH 4 + 2O 2 → CO 2 + 2H 2 O 7 O → 2CO 2 + 3H 2 O 2 2 C 3 H 8 + 5O 2 → 3CO 2 + 4H 2 O 13 O → 4CO 2 + 5H 2 O 2 2 Theoretical O2 : b g 0.944 100 kmol CH 4 h b g kmol air h 100 kmol/h 0.944 CH4 0.0340 C2H6 0.0060 C3H8 0.0050 C4H10 C2H6 + C 4 H 10 + = 250 17% excess air n a (kmol air/h) 0.21 O2 0.79 N2 b g 2 kmol O 2 0.0340 100 kmol C 2 H 6 3.5 kmol O 2 + 1 kmol CH 4 h 1 kmol C 2 H 6 b g 0.0060 100 kmol C 3 H 8 5 kmol O 2 0.0050 100 kmol C 4 H 10 6.5 kmol O 2 + h 1 kmol C 3 H 3 h 1 kmol C 4 H 10 = 207.0 kmol O 2 h + 4- 60 http://librosysolucionarios.net 4.67 (cont’d) Air feed rate: n f = 207.0 kmol O 2 1 kmol air h 0.21 kmol O2 b gb 1.17 kmol air fed gb kmol air req. = 1153 kmol air h g b. n a = n f 2 x1 + 3.5 x2 + 5 x3 + 6.5 x4 1 + Pxs 100 1 0.21 c. n& f = aR f , (n& f = 75.0 kmol / h, R f = 60) ⇒ n& f = 1.25 R f n& a = bRa , ( n&a = 550 kmol / h, Ra = 25) ⇒ n&a = 22 .0 Ra x i = kAi ⇒ ∑x i =k i ∑A i =1 ⇒ k = i 1 ∑A i i ⇒ xi = Ai , i = CH 4 , C 2 H 4 , C 3 H 8 , C 4 H 10 Ai ∑ i 4.68 Run 1 2 3 Pxs 15% 15% 15% Rf 62 83 108 A1 248.7 305.3 294.2 A2 19.74 14.57 16.61 A3 6.35 2.56 4.78 A4 1.48 0.70 2.11 Run 1 2 3 nf 77.5 103.8 135.0 x1 0.900 0.945 0.926 x2 0.0715 0.0451 0.0523 x3 0.0230 0.0079 0.0150 x4 0.0054 0.0022 0.0066 na 934 1194 1592 d. Either of the flowmeters could be in error, the fuel gas analyzer could be in error, the flowmeter calibration formulas might not be linear, or the stack gas analysis could be incorrect. a. C4H10 + 13/2 O2 → 4 CO2 + 5 H2O Basis: 100 mol C4H10 n CO2 (mol CO2) n H2O (mol H2O) n C4H10 (mol C4H10) n O2 (mol O2) n N2 (mol N2) Pxs (% excess air) n air (mol air) 0.21 O2 0.79 N2 D.F. analysis 6 unknowns (n, n1, n2, n3, n4, n5) -3 atomic balances (C, H, O) -1 N2 balance -1 % excess air -1 % conversion 0 D.F. 4- 61 http://librosysolucionarios.net Ra 42.4 54.3 72.4 4.68 (cont’d) b. i) Theoretical oxygen = (100 mol C4H10)(6.5 mol O2/mol C4H10) = 650 mol O2 n air = ( 650 mol O 2 )(1 mol air / 0.21 mol O 2 ) = 3095 mol air 100% conversion ⇒ n C4H10 = 0 , n O2 = 0 b gb b b g U| V| W n N2 = 0.79 3095 mol = 2445 mol 73.1% N 2 n CO2 = 100 mol C 4 H 10 react 4 mol CO 2 mol C 4 H 10 = 400 mol CO 2 12.0% CO2 n H2O = 100 mol C 4 H10 react 5 mol H 2O mol C 4 H 10 = 500 mol H 2 O 14.9% H 2 O gb gb g g ii) 100% conversion ⇒ n C4H10 = 0 20% excess ⇒ nair = 1.2(3095) = 3714 mol (780 mol O2, 2934 mol N2) Exit gas: 400 mol CO2 10.1% CO2 500 mol H2O 12.6% H2O 130 mol O2 3.3% O2 2934 mol N2 74.0% N 2 iii) 90% conversion ⇒ n C4H10 = 10 mol C4H10 (90 mol C4H10 react, 585 mol O2 consumed) 20% excess: nair = 1.2(3095) = 3714 mol (780 mol O2, 2483 mol N2) Exit gas: 10 mol C4H10 0.3% C4H10 360 mol CO2 9.1% CO2 450 mol H2O (v) 4.69 a. 11.4% H2O 195 mol O2 4.9% O2 2934 mol N2 74.3% N 2 C3H8 + 5 O2 → 3 CO2 + 4 H2O H2 +1/2 O2 → H2O C3H8 + 7/2 O2 → 3 CO + 4 H2O Basis: 100 mol feed gas 100 mol 0.75 mol C3H8 0.25 mol H2 n 1 (mol C3H8) n 2 (mol H2) n 3 (mol CO2) n 4 (mol CO) n 5 (mol H2O) n 6 (mol O2) n 7 (mol N2) n 0 (mol air) 0.21 mol O2/mol 0.79 mol N2/mol Theoretical oxygen: 75 mol C 3H 8 5 mol O 2 25 mol H 2 0.50 mol O 2 + = 387.5 mol O 2 mol C 3 H 8 mol H 2 4- 62 http://librosysolucionarios.net 4.69 (cont’d) Air feed rate: n 0 = 387.5 mol O 2 1 kmol air 1.25 kmol air fed = 2306.5 mol air h 0.21 kmol O2 1 kmol air req'd. 90% propane conversion ⇒ n1 = 0.100(75 mol C3 H 8 ) = 7.5 mol C 3 H 8 (67.5 mol C 3 H 8 reacts) 85% hydrogen conversion ⇒ n 2 = 0150 . (25 mol C 3 H 8 ) = 3.75 mol H 2 95% CO 2 selectivity ⇒ n 3 = 0.95(67.5 mol C 3 H 8 react) 3 mol CO 2 generated mol C3 H 8 react = 192.4 mol CO 2 5% CO selectivity ⇒ n3 = 0.05( 67.5 mol C 3 H 8 react) 3 mol CO generated = 10.1 mol CO mol C 3 H 8 react FG H H balance: (75 mol C 3H 8 ) 8 IJ K mol H + ( 25 mol H 2 )(2) mol C 3 H 8 = (7.5 mol C 3 H 8 )(8 ) + ( 3.75 mol H 2 )(2 ) + n 5 ( mol H 2 O)(2) ⇒ n5 = 291.2 mol H 2 O mol O ) = (192.4 mol CO2 )( 2) mol O 2 + (10.1 mol CO)(1) + (2912 . mol H 2 O)(1) + 2 n6 ( mol O 2 ) ⇒ n6 = 1413 . mol O2 O balance: (0.21 × 2306.5 mol O 2 )(2 N 2 balance: n 7 = 0.79 (2306.5) mol N 2 = 1822 mol N 2 Total moles of exit gas = (7.5 + 3.75 + 192.4 + 10.1 + 291.2 + 141.3 + 1822) mol = 2468 mol CO concentration in exit gas = b. 10.1 mol CO × 10 6 = 4090 ppm 2468 mol If more air is fed to the furnace, (i) more gas must be compressed (pumped), leading to a higher cost (possibly a larger pump, and greater utility costs) (ii) The heat released by the combustion is absorbed by a greater quantity of gas, and so the product gas temperature decreases and less steam is produced. 4- 63 http://librosysolucionarios.net 4.70 a. C5H12 + 8 O2 → 5 CO2 + 6 H2O Basis: 100 moles dry product gas n 1 (mol C5H12) 100 mol dry product gas (DPG) 0.0027 mol C5H12/mol DPG 0.053 mol O2/mol DPG 0.091 mol CO2/mol DPG 0.853 mol N2/mol DPG n 3 (mol H2O) Excess air n 2 (mol O2) 3.76n 2 (mol N2) 3 unknowns (n1, n2, n3) -3 atomic balances (O, C, H) -1 N2 balance -1 D.F. ⇒ Problem is overspecified b. N2 balance: 3.76 n2 = 0.8533 (100) ⇒ n2 = 22.69 mol O2 C balance: 5 n1 = 5(0.0027)(100) + (0.091)(100) ⇒ n1 = 2.09 mol C5H12 H balance: 12 n1 = 12(0.0027)(100) + 2n3 ⇒ n3 = 10.92 mol H2O O balance: 2n2 = 100[(0.053)(2) + (0.091)(2)] + n3 ⇒ 45.38 mol O = 39.72 mol O Since the 4th balance does not close, the given data cannot be correct. c. n 1 (mol C5H12) 100 mol dry product gas (DPG) 0.00304 mol C5H12/mol DPG 0.059 mol O2/mol DPG 0.102 mol CO2/mol DPG 0.836 mol N2/mol DPG n 3 (mol H2O) Excess air n 2 (mol O2) 3.76n 2 (mol N2) N2 balance: 3.76 n2 = 0.836 (100) ⇒ n2 = 22.2 mol O2 C balance: 5 n1 = 100 (5*0.00304 + 0.102) ⇒ n1 = 2.34 mol C5H12 H balance: 12 n1 = 12(0.00304)(100) + 2n3 ⇒ n3 = 12.2 mol H2O O balance: 2n2 = 100[(0.0590)(2) + (0.102)(2)] + n3 ⇒ 44.4 mol O = 44.4 mol O √ 2.344 − 100 × 0 .00304 = 0.870 mol react/mol fed 2 .344 Theoretical O2 required: 2.344 mol C5H12 (8 mol O2/mol C5H12) = 18.75 mol O2 Fractional conversion of C5H12: % excess air: 22.23 mol O 2 fed - 18.75 mol O 2 required × 100 % = 18 .6% excess air 18.75 mol O2 required 4- 64 http://librosysolucionarios.net 4.71 a. 12 L CH 3 OH 1000 ml 0 .792 g mol = 296 .6 mol CH 3 OH / h h L ml 32 .04 g CH3OH + 3/2 O2 → CO2 +2 H2O, CH3OH + O2 → CO +2 H2O n& 2 ( mol dry gas / h) 0.0045 mol CH3OH(v)/mol DG 0.0903 mol CO2/mol DG 0.0181 mol CO/mol DG x (mol N2/mol DG) (0.8871–x) (mol O2/mol DG) n& 3 ( mol H 2 O(v) / h) 296.6 mol CH3OH(l)/h n&1 (mol O 2 / h) 3.76n&1 (mol N 2 / h) 4 unknowns ( n&1 , n& 2 , n& 3 , x ) – 4 balances (C, H, O, N2) = 0 D.F. b. Theoretical O2: 296.6 (1.5) = 444.9 mol O2 / h C balance: 296.6 = n& 2 (0.0045 + 0.0903 + 0.0181) ⇒ n& 2 = 2627 mol/h H balance: 4 (296.6) = n& 2 (4*0.0045) + 2 n& 3 ⇒ n& 3 = 569.6 mol H2O / h O balance : 296.6 + 2n 1 = 2627[0.0045 + 2(0.0903) + 0.0181 + 2(0.8871 - x)] + 569.6 N2 balance: 3.76 n& 1 = x ( 2627) Solving simultaneously ⇒ n&1 = 574.3 mol O 2 / h, x = 0.822 mol N 2 / mol DG Fractional conversion: 296 .6 − 2627 (0.0045 ) = 0.960 mol CH3 OH react/mol fed 296 .6 574 .3 − 444 .9 × 100 % = 29.1% 444 .9 569 .6 mol H 2 O Mole fraction of water: = 0.178 mol H 2 O/mol (2627 + 569 .6 ) mol % excess air: 4.72 c. Fire, CO toxicity. Vent gas to outside, install CO or hydrocarbon detector in room, trigger alarm if concentrations are too high a. G.C. Say ns mols fuel gas constitute the sample injected into the G.C. If xCH4 and xC 2 H 6 are the mole fractions of methane and ethane in the fuel, then b g b n b mol gx bmol CH gb g = 20 mol gb1 mol C 1 mol CH g 85 ns mol x C 2 H6 mol C 2 H 2 mol 2 mol C 1 mol C2 H 6 E s CH 4 b b mol CH 4 4 x C 2 H6 mol C 2 H 6 mol fuel xC H4 4 mol fuel g g = 0.1176 mole C H 2 6 mole CH 4 in fuel gas 4- 65 http://librosysolucionarios.net 4.72 (cont’d) b1.134 g H Ogb1 mol 18.02 gg = 0.126 mole H 2O 0.50 mol product gas mole product gas Basis: 100 mol product gas. Since we have the most information about the product stream composition, we choose this basis now, and would subsequently scale to the given fuel and air flow rates if it were necessary (which it is not). 2 Condensation measurement: CH 4 + 2O 2 → CO2 + 2H 2 O 7 C 2 H6 + O2 → 2CO2 + 3H 2O 2 100 mol dry gas / h n1 (mol CH4 ) 0.1176 n1 (mol C2H6) n2 (mol CO2) 0.126 mol H2O / mol 0..874 mol dry gas / mol 0.119 mol CO2 / mol D.G. x (mol N2 / mol) (0.881-x) (mol O2 / mol D.G.) n3 (mol O2 / h) 376 n3 (mol N2 / h) N 2 balance C balance ⇒ n 2 ; Strategy: H balance ⇒ n ; 1 b gb g b gb gb g O balance UV ⇒ n , x W 3 H balance: 4 n1 + 6 0.1176n1 = 100 0.126 2 ⇒ n1 = 5.356 mol CH 4 in fuel ⇒ 0.1176(5.356) = 0.630 mol C2H6 in fuel b gb g b gb gb g C balance: 5.356 + 2 0.630 + n2 = 100 0.874 0.119 ⇒ n2 = 3.784 mol CO2 in fuel Composition of fuel: 5.356 mol CH 4 , 0.630 mol C 2 H 6 , 3.784 mols CO2 ⇒ 0.548 CH 4 , 0.064 C 2 H 6 , 0.388 CO 2 b gb g N 2 balance: 3.76n3 = 100 0.874 x b gb g b gb g b gb gb g b O balance: 2 3.784 + 2 n3 = 100 0126 . + 100 0.874 2 0119 . + 0.881 − x g Solve simultaneously: n3 = 18.86 mols O2 fed , x = 0.813 5.356 mol CH 4 2 mol O2 0.630 mol C2 H 6 3.5 mol O2 Theoretical O2 : + 1 mol CH 4 1 mol CH 4 = 12 .92 mol O2 required Desired O2 fed: (5.356 + 0.630 + 3.784) mol fuel 7 mol air 0.21 mol O 2 = 14.36 mol O2 1 mol fuel mol air Desired % excess air: b. Actual % excess air: 14 .36 − 12 .92 × 100 % = 11 % 12 .92 18 .86 − 12 .92 × 100 % = 46% 12 .92 Actual molar feed ratio of air to fuel: (18 .86 / 0.21) mol air = 9 :1 9 .77 mol feed 4- 66 http://librosysolucionarios.net 4.73 a. C3H8 +5 O2 → 3 CO2 + 4 H2O, C4H10 + 13/2 O2 → 4 CO2 + 5 H2O Basis 100: mol product gas n 1 (mol C3H8) n 2 (mol C4H10) 100 mol 0.474 mol H2O/mol x (mol CO2/mol) (0.526–x) (mol O2/mol) n 3 (mol O2) Dry product gas contains 69.4% CO2 ⇒ x 69 .4 = ⇒ x = 0.365 mol CO2 /mol 0.526 − x 30 .6 3 unknowns (n 1, n 2, n 3) – 3 balances (C, H, O) = 0 D.F. O balance: 2 n 3 = 152.6 ⇒ n 3 = 76.3 mol O2 C balance : 3 n 1 + 4 n 2 = 36.5 n = 7.1 mol C 3 H8 ⇒ 1 ⇒ 65 .1 % C 3 H8 , 34.9% C 4 H10 H balance : 8 n1 + 10 n 2 = 94.8 n 2 = 3.8 mol C 4 H10 b. n c=100 mol (0.365 mol CO2/mol)(1mol C/mol CO2) = 365 mol C n h = 100 mol (0.474 mol H2O/mol)(2mol H/mol H2O)=94.8 mol H ⇒ 27.8%C, 72.2% H From a: 7.10 mol C 3 H 8 3.80 mol C 4 H10 4 mol C 3 mol C + mol C 3 H 8 mol C 4 H10 7.10 mol C3 H 8 11 mol (C + H) 3.80 mol C 4 H10 14 mol (C + H) + mol C 3 H 8 mol C 4 H10 4.74 Basis: 100 kg fuel oil Moles of C in fuel: 100 kg 0.85 kg C 1 kmol C = 7.08 kmol C kg 12.01 kg C Moles of H in fuel: 100 kg 0.12 kg H 1 kmol H = 12.0 kmol H kg 1 kg H Moles of S in fuel: 100 kg 0.017 kg S 1 kmol S = 0.053 kmol S kg 32.064 kg S 1.3 kg non-combustible materials (NC) 4- 67 http://librosysolucionarios.net × 100 % = 27.8% C 4.74 (cont’d) 100 kg fuel oil 7.08 kmol C 12.0 kmol H 0.053 kmol S 1.3 kg NC (s) 20% excess air n 1 (kmol O2) 3.76 n 1 (kmol N2) n 2 (kmol N2) n 3 (kmol O2) n 4 (kmol CO2) (8/92) n 4 (kmol CO) n 5 (kmol SO2) n 6 (kmol H2O) C + O2 → CO2 C + 1/2 O2 → CO 2H + 1/2 O2 → H2O S + O2 → SO2 Theoretical O2: 7.08 kmol C 1 kmol O 2 12 kmol H .5 kmol O 2 0.053 kmol S 1 kmol O 2 + + = 10 .133 kmol O 2 1 kmol C 2 kmol H 1 kmol S 20 % excess air: n1 = 1.2(10.133) = 12.16 kmol O2 fed O balance: 2 (12.16) = 2 (6.5136) + 0.5664 + 2 (0.053) + 6 + 2 n3 ⇒ n3 = 2.3102 kmol O2 C balance: 7.08 = n4+8n4/92 ⇒ n4 = 6.514 mol CO2 ⇒ 8 (6.514)/92 = 0.566 mol CO S balance: n5 = 0.53 kmol SO 2 H balance: 12 = 2n6 ⇒ n6 = 6.00 kmol H2O N2 balance: n2 = 3.76(12.16) = 45.72 kmol N2 Total moles of stack gas = (6.514 + 0.566 + 0.053 + 6.00 + 2.310 + 45.72) kmol = 61.16 kmol ⇒ 10.7% CO, 0.92% CO, 0.087% SO 2 , 9.8% H 2 O, 3.8% O 2 , 74.8% N 2 4.75 a. Basis: 5000 kg coal/h; 50 kmol air min = 3000 kmol air h 5000 kg coal / h 0.75 kg C / kg 0.17 kg H / kg 0.02 kg S / kg 0.06 kg ash / kg C + 02 --> CO2 2H + 1/2 O2 -->H2O S + O 2 --> SO2 C + 1/2 O2 --> CO 3000 kmol air / h 0.21 kmol O2 / kmol 0.79 kmol N2 / kmol Theoretical O 2: C: b g n1 (kmol O2 / h) n2 (kmol N2 / h) n3 (kmol CO 2 / h) 0.1 n3 (kmol CO / h) n4 (kmol SO2 / h) n5 (kmol H2O / h) mo kg slag / h 0.75 5000 kg C 1 kmol C 1 kmol O2 h 12.01 kg C 1 kmol C = 312.2 kmol O 2 h 4- 68 http://librosysolucionarios.net 4.75 (cont’d) H: S: b g 0.17 5000 kg H 1 kmol H 1 kmol H 2O h 1.01 kg H 2 kmol H 0.02 5000 kg S 1 kmol S 1 kmol O2 h 32.06 kg S 1 kmol S b g 1 kmol O 2 2 kmol H2 O = 210.4 kmol O 2 h = 3.1 kmol O2/h Total = (312.2+210.4 + 3.1) kmol O2/h = 525.7 kmol O 2 h b g O 2 fed = 0.21 3000 = 630 kmol O2 h Excess air: 630 − 525.7 × 100% = 19.8% excess air 525.7 b. Balances: 0.94 0.75 5000 kg C react 1 kmol C C: = n& 3 + 0.1n&3 h 12 .01 kg C b gb gb g ⇒ n&3 = 266.8 kmol CO 2 h , 0.1n& 3 = 26.7 kmol CO h H: b0.17gb5000g kg H S: (from part a) N2 : O: h 1 kmol H 1 kmol H 2 O 1.01 kg H b 2 kmol H 3.1 kmol O 2 for SO2 g = n5 ⇒ n5 = 420.8 kmol H 2O h 1 kmol SO2 h 1 kmol O 2 . kmol SO 2 h = n& 4 ⇒ n&4 = 31 b0.79gb3000g kmol N h = n& ⇒ n& = 2370 kmol N h b0.21g(3000)b2g = 2n& + 2b2668. g + 1b 26.68g + 2b31. g + b1gb420.8g 2 2 2 2 1 ⇒ n&1 = 136.4 kmol O 2 / h Stack gas total = 3223 kmol h Mole fractions: xC O = 26.7 3224 = 8.3 × 10 − 3 mol CO mol xSO 2 = 31 . 3224 = 9.6 × 10 −4 mol SO 2 mol c. 1 SO 2 + O2 → SO 3 2 SO 3 + H 2O → H2SO 4 3.1 kmol SO 2 1 kmol SO 3 1 kmol H2SO 4 h 1 kmol SO 2 1 kmol SO 3 98.08 kg H 2SO 4 kmol H2SO 4 4- 69 http://librosysolucionarios.net = 304 kg H2SO 4 h 4.76 a. Basis: 100 g coal as received (c.a.r.). Let a.d.c. denote air-dried coal; v.m. denote volatile matter 100 g c. a.r. 1.147 g a. d.c. 1.207 g c. a. r. 95.03 g a. d. c = 95.03 g air - dried coal; 4.97 g H 2 O lost by air drying b1.234 − 1.204g g H O = 2.31 g H O lost in second drying step 2 2 1.234 g a.d. c. Total H 2 O = 4.97 g + 2 .31 g = 7.28 g moisture 95.03 g a. d. c b1.347 − 0.811g g b v. m.+ H Og − 2.31 g H O = 35.50 g volatile matter 2 2 1.347 g a. d.c. 95.03 g a. d.c 0.111 g ash 1.175 g a. d.c. = 8.98 g ash b g Fixed carbon = 100 − 7.28 − 3550 . − 8.98 g = 48.24 g fixed carbon 7.28 g moisture 48.24 g fi xed carbon 7.3% moisture 35.50 g volatile matter ⇒ 8.98 g ash 100 g coal as received 48.2% fixed carbon 35.5% volatile matter 9.0% ash b. Assume volatile matter is all carbon and hydrogen. C + CO 2 → CO 2 : 2H + 1 mol O 2 1 mol C 10 3 g 1 mol air 1 mol C 12.01 g C 1 kg 0.21 mol O 2 = 396.5 mol air kg C 1 0.5 mol O 2 1 mol H 10 3 g 1 mol air O2 → H 2O : = 1179 mol air kg H 2 2 mol H 1.01 g H 1 kg 0.21 mol O 2 Air required: 1000 kg coal 0.482 kg C 396.5 mol air kg coal + + kg C 1000 kg 0.355 kg v.m. 6 kg C 396.5 mol air kg 7 kg v. m. kg C 1000 kg 0.355 kg v.m. 1 kg H 1179 mol air kg 7 kg v. m. kg H 4- 70 http://librosysolucionarios.net = 3.72 × 105 mol air 4.77 a. Basis 100 mol dry fuel gas. Assume no solid or liquid products! n1 (mol C) n2 (mol H) n3 (mol S) 100 mol dry gas C + 02 --> CO2 C + 1/2 O2 --> CO 2H + 1/2 O2 -->H2O S + O 2 --> SO2 0.720 mol CO2 / mol 0.0257 mol CO / mol 0.000592 mol SO2 / mol 0.254 mol O2 / mol n4 (mol O2) (20% excess) n5 (mol H2O (v)) O balance : 2 n 4 = 100 [ 2(0.720) + 0.0257 + 2 (0.000592) + 2 (0.254)] + n 5 20 % excess O 2 : (1.20) (74.57 + 0.0592 + 0.25 n 2 ] = n 4 H balance : n 2 = 2 n 5 ⇒ n 2 = 183.6 mol H, n 4 = 144.6 mol O2, n 5 = 91.8 mol H2O Total moles in feed: 258.4 mol (C+H+S) ⇒ 28.9% C, 71.1% H, 0.023% S 4.78 Basis: 100 g oil Stack SO 2, N2, O 2, CO ,2H O2 (612.5 ppm SO )2 x n3 mol SO 2 (N2 , O 2, CO 2, H O) 2 0.10 (1 – x) n 5 mol SO 2 (N2 , O 2, CO 2, H O) 2 100 g oil 0.87 g C/g 0.10 g H/g 0.03 g S/g n1 mol O2 3.76 n1 mol N2 (25% excess) furnace Alkaline solution (1 – x) n5 mol SO 2 (N2 , O 2, CO 2, H O) 2 n2 n3 n4 n5 n6 CO 2: H2 O: b g 0.87 100 g C mol N 2 mol O 2 mol CO 2 mol SO 2 mol H 2O 0.90 (1 – x) n5 mol SO 2 1 mol C 1 mol CO 2 12.01 g C 1 mol C b g 0.10 100 g H 1 mol H 1 mol H 2 O 1.01 g H scrubber 2 mol H FG 7.244 mol O IJ H consumed K F 2.475 mol O IJ = 4.95 mol H OG H consumed K ⇒ n 4 = 7.244 mol CO 2 ⇒ n6 4- 71 http://librosysolucionarios.net 2 2 2 4.78 (cont’d) SO 2 : b g 0.03 100 g S 1 mol S 1 mol SO 2 32.06 g S 1 mol S b ⇒ n5 = 0.0936 mol SO2 g FG 0.0956 mol O IJ H consumed K 2 25% excess O 2 : n1 = 1.25 7.244 + 2.475 + 0.0936 ⇒ 12.27 mol O 2 b g O 2 balance: n 3 = 12.27 mol O 2 fed − 7.244 + 2.475 + 0.0936 mol O 2 consumed = 2.46 mol O2 b g N 2 balance: n 2 = 3.76 12.27 mol = 46.14 mol N 2 b g SO 2 in stack SO 2 balance around mixing point : F H I K b gb g b x 0.0936 + 010 . 1 − x 0.0936 = 0.00936 + 0.0842x mol SO 2 n5 g Total dry gas in stack (Assume no CO2 , O 2 , or N 2 is absorbed in the scrubber) b g b g 7.244 + 2.46 + 46.14 + 0.00936 + 0.0842 x = 55.85 + 0.0842 x mol dry gas bC O g bO g 2 bN g 2 b SO g 2 b 2 g 612.5 ppm SO 2 dry basis in stack gas 0.00936 + 0.0842 x 612 .5 = ⇒ x = 0.295 ⇒ 30% bypassed 5585 . + 0.0842x 1.0 × 10 6 Basis: 100 mol stack gas 4.79 n 1 (mol C) n 2 (mol H) n 3 (mol S) C + O 2 → CO 2 1 2H + O 2 → H 2O 2 S + O 2 → SO 2 n 4 (mol O 2) 3.76 n 4 (mol O 2) a. b gb b gb 100 mol 0.7566 N 2 0.1024 CO 2 0.0827 H O 2 0.0575 O 2 0.000825 SO 2 g gb g C balance: n1 = 100 0.1024 = 10.24 mol C 10.24 mol C mol C ⇒ = 0.62 H balance: n 2 = 100 0.0827 2 = 16.54 mol H 16.54 mol H mol H The C/H mole ratio of CH 4 is 0.25, and that of C2H 6 is 0.333; no mixture of the two could have a C/H ratio of 0.62, so the fuel could not be the natural gas. b. b gb g S balance: n 3 = 100 0.000825 = 0.0825 mol S 122.88 10.24 mol C 12.0 g 1 mol = 122.88 g C = 7.35 g C g H 16.54 mol H 1.01 g 1 mol = 16.71 g H ⇒ 16.71 ⇒ No. 4 fuel oil 2.65 × 100% = 1 .9% S 0.0825 mol S 32.07 g 1 mol = 2.65 g S 142.24 b b b gb gb gb g g U| V |W g 4- 72 http://librosysolucionarios.net 4.80 a. Basis: 1 mol CpHqOr 1 mol CpHqO r no (mol S) Xs (kg s/ kg fuel) C + 02 --> CO2 2H + 1/2 O2 -->H2O S + O2 --> SO2 P (% excess air) n1 (mol O2) 3.76 n1 (mol N2) n2 (mol CO 2) n3 (mol SO2) n4 (mol O2) 3.76 n1 (mol N2) n5 (mol H2O (v)) Hydrocarbon mass: p (mol C) ( 12 g / mol) = 12 p (g C) q (mol H) (1 g / mol) = q (g H) ⇒ (12 p + q + 16 r) g fuel r (mol O) (16 g / mol) = 16 r (g O) S in feed: n o= (12 p + q + 16r) g fuel Theoretical O2: X s (g S) X (12 p + q + 16 r) 1 mol S = s (mol S) (1) (1 - Xs ) (g fuel) 32.07 g S 32 .07 (1 - X s ) p (mol C) 1 mol O 2 q (mol H) 0.5 mol O 2 ( r mol O) 1 mol O 2 + − 1 mol C 2 mol H 2 mol O = (p + 1/4 q − 1/2 r) mol O 2 required % excess ⇒ n 1 = (1 + P/100) (p +1/4 q – ½ r) mol O2 fed (2) C balance: n 2 = p (3) H balance: n 5 = q/2 (4) S balance: n 3 = n 0 (5) O balance: r + 2n 1 = 2n 2 + 2n 3 + 2n 4 + n 5 ⇒ n 4 = ½ (r+2n 1-2n 2-2n 3-n 5) (6) Given: p = 0.71, q= 1.1, r = 0.003, Xs = 0.02 P = 18% excess air (1) ⇒ n0 = 0.00616 mol S (5) ⇒ n3 = 0.00616 mol SO 2 (2) ⇒ n1 = 1.16 mol O2 fed (6) ⇒ n4 = 0.170 mol O2 (3) ⇒ n2 = 0.71 mol CO2 (4) ⇒ n5 = 0.55 mol H2O (3.76*1.16) mol N2 = 4.36 mol N2 Total moles of dry product gas = n2 + n3 + n4 + 3.76 n1=5.246 mol dry product gas Dry basis composition yCO2 = (0.710 mol CO2/ 5.246 mol dry gas) * 100% = 13.5% CO2 yO2 = (0.170 / 5.246) * 100% = 3.2% O2 yN2 = (4.36 / 5.246) * 100% = 83.1% N2 ySO2 = (0.00616 / 5.246) * 106 = 1174 ppm SO 2 4- 73 http://librosysolucionarios.net CHAPTER FIVE 5.1 Assume volume additivity 1 0.400 0.600 = + ⇒ ρ = 0.719 kg L ρ 0.703 kg L 0.730 kg L Av. density (Eq. 5.1-1): a. m A & + m0 ⇒ m & = = mt A mass of tank at time t mass of empty tank & / min) = ⇒ V(L b. 5.2 A A ρO ρD b250 − 150gkg = 14.28 kg min b m& = mass flow rate of liquid g b10 − 3g min 14.28 kg 1L & m(kg / min) & = ⇒ V = 19.9 L min min 0.719 kg ρ (kg / L) bg & = 150 − 14.28 3 = 107 kg m0 = m(t) - mt b g void volume of bed: 100 cm3 − 2335 . − 184 cm 3 = 50.5 cm 3 porosity: 50.5 cm3 void 184 cm3 total = 0.274 cm 3 void cm3 total bulk density: 600 g 184 cm 3 = 3.26 g cm 3 b g absolute density: 600 g 184 − 50.5 cm 3 = 4 .49 g cm 3 5.3 C 6 H 6 ( l) m & B (kg / min) & = 20.0 L / min V B & (kg / min) m & (L / min) V C 7 H 8 (l ) m & T (kg / min) & (L / min) V T 2 2 & = ∆ V = πD ∆h = π (5.5 m) 0.15 m = 0.0594 m3 / min V ∆t 4 ∆t 4 60 min Assume additive volumes &T = V & -V & B = 59.4 − 20.0 L / min = 39.4 L / min V b g & B + ρT ⋅ V & T = 0.879 kg 20.0 L + 0.866 kg 39.4 L = 51.7 kg / min & = ρB ⋅V m L min L min xB = m & B ( 0.879 kg / L)(20.0 L / min) = = 0.34 kg B / kg m & (51.7 kg / min) 5-1 http://librosysolucionarios.net a. F IF I e jge j hbmgGH 11 N JK GH 11 Pa JK = ρ gh b kg m3 m s2 kg ⋅m s2 sl N m2 g 1 − xc 1 x = c + ⇒ check units! ρ sl ρ c ρl 1 kg crystals / kg slurry kg liquid / kg slurry = + kg slurry / L slurry kg crystals / L crystals kg liquid / L liquid L slurry L crystals L liquid L slurry = + = kg slurry kg slurry kg slurry kg slurry ∆P 2775 c. i.) ρ sl = = = 1415 kg / m 3 gh 9.8066 0.200 b. ii.) b gb g 1 x b1 - x g ⇒ x FG 1 − 1 IJ = FG 1 − 1 IJ = + ρ ρ ρ Hρ ρ K Hρ ρ K F 1 I GG 1415 kg / m − 12. d10001kg / m i JJ H K = 0.316 kg crystals / kg slurry x = F I GG 2.3d10001kg / m i − 1.2d10001kg / m i JJ H K c c c sl c l c l sl 3 l 3 c 3 3 m sl 175 kg 1000 L = = 123.8 L ρ sl 1415 kg / m 3 m 3 iii.) Vsl = b gb g iv.) mc = x c m sl = 0.316 kg crystals / kg slurry 175 kg slurry = 55.3 kg crystals v.) mCuSO4 = 55.3 kg CuSO 4 ⋅ 5H 2O 1 kmol 1 kmol CuSO4 159 .6 kg = 35.4 kg CuSO 4 249 kg 1 kmol CuSO4 ⋅ 5 H 2 O 1 kmol b g b gb g vi.) ml = 1 − x c m sl = 0.684 kg liquid / kg slurry 175 kg slurry = 120 kg liquid solution vii.) Vl = h(m) ρl(kg/m^3) ρc(kg/m^3) ∆P(Pa) xc ρsl(kg/m^3) 0.2 1200 2300 2353.58 0 1200.00 ml 120 kg 1000 L = = 100 L 3 ρl m3 1.2 1000 kg / m b gd i d. 2411.24 0.05 1229.40 2471.80 0.1 1260.27 2602.52 0.2 1326.92 2747.84 0.3 1401.02 2772.61 0.316 1413.64 2910.35 0.4 1483.87 3093.28 0.5 1577.14 Effect of Slurry Density on Pressure Measurement 0.6 Solids Fraction 5.4 U| V| W P1 = P0 + ρ slgh 1 P2 = P0 + ρ slgh 2 ⇒ ∆ P = P1 − P2 = ρ sl h = h1 − h 2 0.5 0.4 0.3 ∆P = 2775, ρ = 0.316 0.2 0.1 0 2300.00 2500.00 2700.00 2900.00 3100.00 Pressure Difference (Pa) 5-2 http://librosysolucionarios.net 5.4 (cont’d) e. b g d i Basis: 1 kg slurry ⇒ x c kg crystals , Vc m 3 crystals = b1 - x gb kg liquid g, V d m c l 3 b g x c kg crystals d ρ c kg / m 3 i g i b1- ρx dgbkgkg/ mliquid i liquid = c 3 l ρ sl = 5.5 b 1 kg 1 = 3 xc 1 − xc Vc + Vl m + ρc ρl b gd i g Assume Patm = 1 atm 3 $ = RT ⇒ V $ = 0.08206 m ⋅ atm 313.2 K 1 kmol = 0.0064 m 3 mol PV kmol ⋅ K 4.0 atm 103 mol ρ= 5.6 a. 1 mol 0.0064 m air V= 1 kg mol 10 3 g = 4.5 kg m3 nRT 1.00 mol 0.08206 L ⋅ atm 373.2 K = = 3.06 L P mol ⋅ K 10 atm b. % error = 5.7 29.0 g 3 b3.06L - 2.8Lg × 100% = 9.3% 2.8L Assume Patm = 1.013 bar a. b10 + 1.013gbar PV = nRT ⇒ n = b. g PV nRT T P n = ⇒ n = V⋅ s ⋅ ⋅ s Ps Vs n s RTs T Ps Vs n= 5.8 b kmol ⋅ K 28.02 kg N2 = 249 kg N 2 kmol 25 + 273.2 K 0.08314 m3 ⋅ bar 20.0 m 3 20.0 m 3 273K 298.2K b10 + 1.013gbar 1.013 bar 1 kmol 28.02 kg N 2 = 249 kg N 2 kmol 22.415 m STP 3 b g a. R= Ps Vs 1 atm 22.415 m 3 atm ⋅ m 3 = = 8.21 × 10 −2 n sTs 1 kmol 273 K kmol ⋅ K b. R= Ps Vs 1 atm 760 torr 359.05 ft 3 torr ⋅ ft 3 = = 555 n sTs 1 lb - mole 1 atm 492 o R lb - mole ⋅o R 5-3 http://librosysolucionarios.net 5.9 P = 1 atm + 10 cm H 2O 1m 1 atm = 1.01 atm 10 cm 10.333 m H 2O 2 3 & = 2.0 m = 0.40 m 3 min = 400 L min T = 25o C = 298.2 K , V 5 min & = n& mol / min ⋅ MW g / mol m b a. & = m b. m & = g b g L & 28.02 PV 1.01 atm 400 min ⋅ MW = L⋅atm RT 0.08206 mol⋅K 298.2 K 400 L min 28.02 273 K 1 mol 298.2 K 22.4 L STP b g g mol g mol = 458 g min = 458 g min & P u FG mIJ = V& d m si = nRT H s K Ad m i π D 4 ⇒ u 3 2 5.10 Assume ideal gas behavior: u 1 & nR T P D2 ⋅ 2 ⋅ 1 ⋅ 12 nR & T1 P2 D2 (1.80 + 1.013 ) bar ( 7.50 cm ) (1.53 + 1.013) bar ( 5.00 cm )2 2 T P D 2 60.0 m 333.2K u 2 = u1 2 1 12 = T1 P2D 2 sec 300.2K 5.11 Assume ideal gas behavior: n = 2 2 = b = 165 m sec g PV 1.00 + 1.00 atm 5 L = = 0.406 mol L⋅ atm 0.08206 mol 300 K RT ⋅K MW = 13.0 g 0.406 mol = 32.0 g mol ⇒ Oxygen 5.12 Assume ideal gas behavior: Say m t = mass of tank, n g = mol of gas in tank gU|V ⇒ n = 0.009391 mol g |W m = 37.0256 g b37.062 − 37.0256gg = 3.9 g mol ⇒ Helium MW = b b N2 : 37.289 g = m t + n g 28.02 g mol CO2 : 37.440 g = m t + n g 44.1 g mol unknown: 5.13 a. b. g t 0.009391 mol 3 3 ∆V &Vstd cm3 STP min = ∆ V liters 273K 763 mm Hg 10 cm = 9253 . ∆t ∆ t min 296.2K 760 mm Hg 1L b g b g U| |V straight line plot ||φ = 0.031EV& + 0.93 W 22.4 litersbSTP g 10 cm = 224 cm / min φ & cm3 STP min V std 5.0 9 .0 12.0 139 268 370 & std = 0.010 mol N 2 V min d std 3 3 3 1 mole 1L i φ = 0.031 224 cm 3 / min + 0.93 = 7 .9 5-4 http://librosysolucionarios.net b Fρ I si ⋅ G J Hρ K g b g n kmol M(kg / kmol) 5.14 Assume ideal gas behavior ρ kg L = VL d i d V2 cm 3 s = V1 cm 3 1 bg n P = V RT ====> RT PM 12 = V1 P1M 1T2 P2 M 2 T1 12 2 LM N cm3 758 mm Hg 28.02 g mol 323.2K = 350 s 1800 mm Hg 2.02 g mol 298.2K OP Q 12 = 881 cm3 s a. VH 2 b. M = 0.25MCH4 + 0.75MC3 H8 = 0.25 16.05 + 0.75 44.11 = 37 .10 g mol cm 3 Vg = 350 s b gb g b gb LM b758gb28.02gb 323.2g OP N b1800gb 37.10gb2982. g Q = 205 cm3 s g 12 5.15 a. Reactor ∆h soap b. n& CO2 n& C O2 = 5.16 d 2 & PV πR 2∆ h π 0.012 m & = ⇒ V= = RT ∆t 4 i 2 1.2 m 60 s = 11 . × 10− 3 m 3 / min 7.4 s min 755 mm Hg 1 atm 1.1 ×10-3 m 3 /min 1000 mol = 0.044 mol/min 3 ⋅atm 0.08206 mkmolK 760 mm Hg 300 K 1 kmol ⋅ & air = 10.0 kg / h m n& air (kmol / h) n& (kmol / h) yCO 2 (kmol CO 2 / kmol) 3 & V CO2 = 20.0 m / h n& CO (kmol / h) o 150 C, 1.5 bar 2 Assume ideal gas behavior 10.0 kg 1 kmol n& air = = 0.345 kmol air / h h 29.0 kg air n& CO2 = & PV 1.5 bar 100 kPa 20.0 m 3 / h = = 0.853 kmol CO 2 / h 3 RT 8.314 mkmol⋅kPa 1 bar 423.2 K ⋅K y CO2 × 100% = b 0.853 kmol CO 2 / h × 100% = 71.2% 0.853 kmol CO 2 / h + 0.345 kmol air / h g 5-5 http://librosysolucionarios.net 5.17 Basis: Given flow rates of outlet gas. Assume ideal gas behavior & 1 (kg / min) m 0.70 kg H 2 O / kg 0.30 kg S / kg 311 m 3 / min, 83o C, 1 atm n& 3 (kmol / min) 0.12 kmol H 2 O / kmol 0.88 kmol dry air / kmol n& 2 (kmol air / min) & (m 3 / min) V 2 o 167 C, - 40 cm H 2O gauge m & 4 (kg S / min) a. n& 3 = 1 atm 311 m3 356.2K min kmol ⋅ K 0.08206 m 3 ⋅ atm H 2O balance: 0.70 m1 = 10.64 kmol 0.12 kmol H 2O 18.02 kg kmol kmol min & 1 = 32.9 kg min milk ⇒m b g = 10.64 kmol min b g &4⇒m & 4 = 9.6 kg S min S olids balance: 0.30 32.2 kg min = m Dry air balance: n& 2 = 0.88 (10.64 kmol min ) ⇒ n& 2 = 9.36 kmol min air V& 2 = 9.36 kmol 0.08206 m 3 ⋅ atm kmol ⋅ K min 440K (1033 − 40 ) cm H2O 1033 cm H 2O 1 atm = 352 m air min 3 u air (m/min)= & air (m3 /s) 352 m3 1 min V = A (m2 ) min 60 s π 4 ⋅ (6 m) 2 = 0.21 m/s b. If the velocity of the air is too high, the powdered milk would be blown out of the reactor by the air instead of falling to the conveyor belt. 5.18 SG CO2 = 5.19 a. ρ CO2 ρ air = x CO2 = 0.75 PM CO 2 RT PM air RT = M CO2 M air = 44 kg / kmol = 152 . 29 kg / kmol x air = 1 − 0.75 = 0.25 Since air is 21% O 2 , x O2 = (0.25)(0.21) = 0.0525 = 5.25 mole% O2 b. mC O2 = n ⋅ x CO2 ⋅ M CO2 = b g 2 × 1.5 × 3 m 3 0.75 kmol CO2 44.01 kg CO 2 1 atm =12 kg m3 ⋅atm 298.2 K kmol kmol CO 2 0.08206 kmol ⋅K More needs to escape from the cylinder since the room is not sealed. 5-6 http://librosysolucionarios.net 5.19 (cont’d) c. With the room closed off all weekend and the valve to the liquid cylinder leaking, if a person entered the room and closed the door, over a period of time the person could die of asphyxiation. Measures that would reduce hazards are: 1. Change the lock so the door can always be opened from the inside without a key. 2. Provide ventilation that keeps air flowing through the room. 3. Install a gas monitor that sets off an alarm once the mole% reaches a certain amount. 4. Install safety valves on the cylinder in case of leaks. 5.20 n CO2 = 15.7 kg 1 kmol = 0.357 kmol CO2 44.01 kg Assume ideal gas behavior, negligible temperature change T = 19° C = 292.2 K b a. g P1V n 1RT n1 P 102kPa = ⇒ = 1 = P2 V n 1 + 0.357 RT n 1 + 0.357 P2 3.27 × 103 kPa b g ⇒ n1 = 0.0115 kmol air in tank b. Vtank = n1RT 0.0115 kmol 292.2 K 8.314 m3 ⋅ kPa 10 3L = = 274 L P1 102kPa kmol ⋅ K m3 15700 g CO2 + 11.5 mol air ⋅ (29.0 g air / mol) = 58.5 g / L 274 L c. CO 2 sublimates ⇒ large volume change due to phase change ⇒ rapid pressure rise. Sublimation causes temperature drop; afterwards, T gradually rises back to room temperature, increase in T at constant V ⇒ slow pressure rise. ρf = b gb g 5.21 At point of entry, P1 = 10 ft H 2 O 29.9 in. Hg 33.9 ft H 2O + 28.3 in. Hg = 37.1 in. Hg . At surface, P2 = 28.3 in. Hg, V2 = bubble volume at entry 1 x x 0.20 0.80 Mean Slurry Density: = solid + solution = + 3 ρ sl ρ solid ρ solution (1.2 )(1.00 g / cm ) (100 . g / cm 3 ) = 0.967 cm 3 1.03 g 2.20 lb 5 × 10 −4 ton 106 cm 3 ⇒ ρ sl = = 4.3 × 10 −3 ton / gal g 1 lb 264.17 gal cm 3 1000 g a. 300 ton gal 40.0 ft 3 (STP) 534.7 o R 29.9 in Hg = 2440 ft 3 / hr −3 o hr 4.3 × 10 ton 1000 gal 492 R 37 .1 in Hg b. 4 π P2 V2 nRT V2 P1 3 = ⇒ = ⇒ P1V1 nRT V1 P2 4 π 3 % change = e j e j D2 2 D1 2 3 3 = 37.1 ⇒ D32 = 1.31D13 28.3 b2.2 - 2.0g mm × 100 = 10% 2.0 mm 5-7 http://librosysolucionarios.net ==> D D1 = 2 mm 2 = 2.2 mm 5.22 Let B = benzene n1 , n 2 , n 3 = moles in the container when the sample is collected, after the helium is added, and after the gas is fed to the GC. n inj = moles of gas injected n B , n air , n He = moles of benzene and air in the container and moles of helium added n BGC , m BGC = moles, g of benzene in the GC y B = mole fraction of benzene in room air a. P1V1 = n1RT1 (1 ≡ condition when sample was taken): P1 = 99 kPa, T1 = 306 K n1 = 99 kPa 2 L mol ⋅ K = 0.078 mol = n air + n B kPa 101.3 atm 306 K .08206 L ⋅ atm P2 V2 = n 2 RT2 (2 ≡ condition when charged with He): P2 = 500 kPa, T2 = 306 K n2 = 500 kPa 2 L mol ⋅ K = 0.393 mol = n air + n B + n He kPa 101.3 atm 306 K .08206 L ⋅ atm P3V3 = n 3RT3 (3 ≡ final condition in lab): P3 = 400 kPa, T3 = 296K n3 = 400 kPa 2 L mol ⋅ K = 0.325 mol = (n air + n B + n He ) − n inj kPa 101.3 atm 296 K .08206 L ⋅ atm n inj = n 2 − n 3 = 0.068 mol n B = n BGC × y B (ppm) = n2 0.393 mol m BGC (g B) 1 mol = = 0.0741⋅ m BGC n inj 0.068 mol 78.0 g nB 0.0741⋅ m BGC × 10 6 = × 106 = 0.950 × 10 6 ⋅ m BGC n1 0.078 U| | ) = 0.749 ppm VThe avg. is below the PEL | ) = 0.864 ppm| W 9 am: y B = (0.950 × 10 6 )(0.656 × 10− 6 ) = 0.623 ppm 1 pm: y B = ( 0.950 × 10 6 )(0.788 × 10 −6 5 pm: y B = ( 0.950 × 10 6 )(0.910 × 10 −6 b. Helium is used as a carrier gas for the gas chromatograph, and to pressurize the container so gas will flow into the GC sample chamber. Waiting a day allows the gases to mix sufficiently and to reach thermal equilibrium. c. (i) It is very difficult to have a completely evacuated sample cylinder; the sample may be dilute to begin with. (ii) The sample was taken on Monday after 2 days of inactivity at the plant. A reading should be taken on Friday. (iii) Helium used for the carrier gas is less dense than the benzene and air; therefore, the sample injected in the GC may be Herich depending on where the sample was taken from the cylinder. (iv) The benzene may not be uniformly distributed in the laboratory. In some areas the benzene concentration could be well above the PEL. 5- 8 http://librosysolucionarios.net b g 4 3 5.23 Volume of balloon = π 10 m = 4189 m 3 3 Moles of gas in balloon b g n kmol = a. 4189 m 3 492° R 3 atm 1 kmol b g = 5159. kmol 535° R 1 atm 22.4 m 3 STP He in balloon: b gb g m = 5159 . kmol ⋅ 4.003 kg kmol = 2065 kg He mg = b. dP dP 2065 kg 9.807 m 1N = 20,250 N 2 s 1 kg ⋅ m / s2 gas in balloon air displaced iV = n iV = n Fbuoyant gasRT air RT ⇒ n air = Pair 1 atm ⋅ n gas = ⋅ 515.9 kmol = 172.0 kmol Pgas 3 atm Fbuoyant = Wair displaced = 172.0 kmol 29.0 kg 9.807 m 1 N = 48,920 N 1 kmol s2 1 kg2⋅m s Since balloon is stationary, Wtotal Fcable ∑F = 0 1 Fcable = Fbuoyant − Wtotal = 48920 N − b2065 + 150gkg 9.807 m 1 N = 27,200 s2 1 kg⋅2m s c. When cable is released, Fnet dAi = 27200 N = M ⇒a= 27200 N tota b2065 + 150g kg 1 kg ⋅ m / s2 N = 12 .3 m s2 d. When mass of displaced air equals mass of balloon + helium the balloon stops rising. Need to know how density of air varies with altitude. e. The balloon expands, displacing more air ⇒ buoyant force increases ⇒ balloon rises until decrease in air density at higher altitudes compensates for added volume. 5.24 Assume ideal gas behavior, Patm = 1 atm 3 PN VN 5.7 atm 400 m / h 3 a. PN VN = Pc Vc ⇒ Vc = = = 240 m h 9.5 atm Pc b. Mass flow rate before diversion: 400 m 3 273 K 5.7 atm 1 kmol 44.09 kg kg C 3 H 6 = 4043 3 h 303 K 1 atm 22.4 m ( STP ) kmol h 5- 9 http://librosysolucionarios.net 5.24 (cont’d) Monthly revenue: ( 4043 c. kg h )( 24 h day )( 30 days month )( $0.60 kg ) = $1,747,000 month Mass flow rate at Noxious plant after diversion: 400 m 3 hr 273 K 303 K 2.8 atm 1 atm 1 kmol 22.4 m 3 44.09 kg kmol = 1986 kg hr Propane diverted = ( 4043 − 1986 ) kg h = 2057 kg h 5.25 a. PHe = y He ⋅ P = 0.35 ⋅ (2.00 atm) = 0.70 atm PCH 4 = y CH 4 ⋅ P = 0.20 ⋅ (2.00 atm) = 0.40 atm PN 2 = y N 2 ⋅ P = 0.45 ⋅ (2.00 atm) = 0.90 atm b. Assume 1.00 mole gas 4.004 g 0.35 mol He = 1.40 g He mol U| || 16.05 gI F 0.20 mol CH G H mol JK = 3.21 g CH V|17.22 g ⇒ mass fraction CH F 28.02 gIJ = 12.61 g N || 0.45 mol N G H mol K W FG H IJ K 4 4 2 4 = 3.21 g = 0.186 17.22 g 2 g of gas = 17.2 g / mol mol P MW 2.00 atm 17.2 kg / kmol m n MW = = = = = 115 . kg / m 3 3 V V RT 0.08206 mkmol⋅atm 363 . 2 K ⋅K c. MW = d. ρ gas d i d i b e gb jb g g 5.26 a. It is safer to release a mixture that is too lean to ignite. If a mixture that is rich is released in the atmosphere, it can diffuse in the air and the C3 H8 mole fraction can drop below the UFL, thereby producing a fire hazard. b. fuel-air mixture n& 1 ( mol / s) y C3 H8 = 0.0403 mol C3 H8 / mol n& C3 H8 = 150 mol C3H 8 / s n& 3 (mol / s) 0.0205 mol C3 H 8 / mol diluting air n& 2 ( mol / s) n& 1 = 150 mol C 3H8 mol = 3722 mol / s s 0.0403 mol C 3H8 Propane balance: 150 = 0.0205⋅ n& 3 ⇒ n& 3 = 7317 mol / s 5- 10 http://librosysolucionarios.net 5.26 (cont’d) Total mole balance: n& 1 + n& 2 = n& 3 ⇒ n& 2 = 7317 − 3722 = 3595 mol air / s c. b g n& 2 = 1.3 n& 2 min = 4674 mol / s U| |V | |W 3 & = 4674 mol / s 8.314 m ⋅ Pa 398.2 K = 118 m 3 / s V 2 & mol ⋅ K 131,000 Pa V m 3 diluting air 2 = 141 . & 3 V m 3 fuel gas 1 &V = 3722 mol 8.314 m ⋅ Pa 298.2 K = 83.9 m 3 / s 1 s mol ⋅ K 110000 Pa y2 = 150 mol / s 150 mol / s = × 100% = 1.8% n& 1 + &n 2 3722 mol / s + 4674 mol / s b g d. The incoming propane mixture could be higher than 4.03%. If n& 2 = n& 2 min , fluctuations in the air flow rate would lead to temporary explosive conditions. b g 5.27 Basis: (12 breaths min )( 500 mL air inhaled breath ) = 6000 mL inhaled min o 24 C, 1 atm 6000 mL / min lungs n& in (mol / min) 0.206 O 2 0.774 N 2 0.020 H 2O a. n& in = blood 37o C, 1 atm n& out (mol / min) 0.151 O 2 0.037 CO2 0.750 N 2 0.062 H 2 O 6000 mL 1L 273K 1 mol = 0.246 mol min 3 min 10 mL 297K 22.4 L STP b g b gb g N 2 balance: 0.774 0.246 = 0.750 &n out ⇒ n& out = 0.254 mol exhaled min O 2 transferred to blood: b0.246gb0.206g − b0.254 gb0.151g bmol O 2 g min 32.0 g mol = 0.394 g O2 min CO2 transferred from blood: b0.254gb0.037g b mol CO 2 g min 44.01 g mol = 0.414 g CO2 min H2 O transferred from blood: b0.254 gb0.062g − b0.246gb0.020g b mol H O ming 18.02 g mol 2 = 0.195 g H 2 O min 5- 11 http://librosysolucionarios.net 5.27 (cont’d) PVin n RT = in in PVout n out RTout FG IJ FG T IJ = FG 0.254 mol min IJ FG 310KIJ = 1.078 mL exhaled ml inhaled H K H T K H 0.246 mol min K H 297KK b0.414 g CO lost ming + b0.195 g H O lost ming − b 0.394 g O gained ming = 0.215 g min ⇒ b. Vout n = out Vin n in out in 2 5.28 2 2 STACK Ts (K) M s (g/mol) Ps (Pa) LL(m) ( M) PM RT Ideal gas: ρ = a. b g D = ρgL Ta (K) Ma (g/mol) Pc (Pa) combust. b g − ρgL stack = L MN Pa M a PM P gL M a M a gL − a s gL = a − RTa RTs R Ta Ts O PQ b gb g b gb g b gb g b. M s = 0.18 44.1 + 0.02 32 .0 + 0.80 28.0 = 31.0 g mol , Ts = 655K , Pa = 755 mm Hg M a = 29.0 g mol , Ta = 294 K , L = 53 m D= 755 mm Hg × 1 atm 53.0 m 9.807 m kmol - K 2 760 mm Hg s 0.08206 m3 − atm LM 29.0 kg kmol − 310. kg kmolOP × FG 1 N IJ = 323 N 1033 cm H O 655K N 294K Q H 1 kg ⋅ m / s K m 1.013 × 10 N m 2 2 2 5 2 = 3.3 cm H 2 O 5.29 a. b. b g =======> MWCCl 2 O = 98.91 g /mol ρ CCl 2 O 98.91 P MW = = 3.41 RT ρ air 29.0 Phosgene, which is 3.41 times more dense than air, will displace air near the ground. ρ= Vtube = b g 2 π Din L π = 0.635 cm - 2 0.0559 cm 4 4 b m CCl2 O = Vtube ⋅ ρ CCl2 O = c. n CCl 2 O(l) = 3.22 cm 3 g b15.0 cmg = 3.22 cm 2 3 1L 1 atm 98.91 g / mol = 0.0131 g 3 3 L⋅atm 10 cm 0.08206 mol⋅K 296.2 K 3.22 cm 3 1.37 × 1.000 g mol = 0.0446 mol CCl 2 O cm 3 98.91 g 5- 12 http://librosysolucionarios.net 5.29 (cont’d) PV 1 atm 2200 ft 3 28.317 L mol ⋅ K = = 2563 mol air 3 RT 296.2K .08206 L ⋅ atm ft n air = n CCl2 O n air = 0.0446 = 17.4 × 10 −6 = 17.4 ppm 2563 The level of phosgene in the room exceeded the safe level by a factor of more than 100. Even if the phosgene were below the safe level, there would be an unsafe level near the floor since phosgene is denser than air, and the concentration would be much higher in the vicinity of the leak. d. Pete’s biggest mistake was working with a highly toxic substance with no supervision or guidance from an experienced safety officer. He also should have been working under a hood and should have worn a gas mask. 5.30 CH 4 + 2O 2 → CO 2 + 2 H 2 O 7 C 2 H6 + O2 → 2 CO 2 + 3H 2O 2 C 3H 8 + 5O 2 → 3CO 2 + 4 H 2 O 3 o 1450 m / h @ 15 C, 150 kPa n& 1 (kmol / h) 0.86 CH 4 , 0.08 C2 H 6 , 0.06 C 3 H 8 n& 2 (kmol air / h) 8% excess, 0.21 O 2 , 0.79 N2 n& 1 = 1450 m 3 273.2K h b101.3 + 150gkPa 1 kmol 101.3 kPa 22.4 m 3 STP 288.2K b g = 152 kmol h Theoretical O 2: LM F MN GH I JK F GH I JK F GH 152 kmol 2 kmol O 2 3.5 kmol O 2 5 kmol O2 0.86 + 0.08 + 0.06 h kmol CH 4 kmol C 2 H 6 kmol C3 H 8 b g & air = 1.08 349.6 kmol O2 Air flow: V h b g = 4.0 × 10 1 kmol Air 22.4 m 3 STP 0.21 kmol O 2 kmol 5- 13 http://librosysolucionarios.net I OP = 349.6 kmol h O JK PQ 4 b g 2 m 3 STP h 5.31 Calibration formulas bT = 25.0; R = 14g , bT = 35.0, R = 27g ⇒ Tb° Cg = 0.77R + 14.2 d P = 0; R = 0i , dP = 20.0, R = 6i ⇒ P bkPag = 3.33R d V& = 0; R = 0i , dV& = 2.0 × 10 , R = 10i ⇒ V& d m hi = 200R dV& = 0; R = 0h , dV& = 1.0 × 10 , R = 25i ⇒ V& d m hi = 4000R T g T p g T r gauge p 3 F p F 3 F F 5 A A F 3 A A A A & (m 3 / h), T, P V F g n& F (kmol / h) xA (mol CH 4 / mol) xB (mol C 2 H 6 / mol) xC (mol C 3 H8 / mol) xD (mol n - C 4 H 10 / mol) xE (mol i - C 4 H10 / mol) CH 4 + 2O 2 → CO2 + 2 H 2 O 7 C 2 H 6 + O 2 → 2CO2 + 3H 2 O 2 C 3 H 8 + 5O 2 → 3CO2 + 4H 2 O 13 C 4 H 10 + O 2 → 4CO 2 + 5H 2 O 2 & ( m3 / h) (STP) V A & A (kmol / h) n 0.21 mol O2 / mol 0.79 mol N2 / mol n& F = d & F m3 h V i 273.2K d P + 101.3i kPa 1 kmol g bT + 273.2gK 101.3 kPa & d P + 101.3i kmol 0.12031V FG IJ = b T + 273g H h K F b g 22.4 m 3 STP g Theoretical O 2: dn& i o2 Th c b gh = n& F 2x A + 3.5x B + 5x C + 6.5 x D + x E kmol O 2 req. h Air feed: n& A = dn& i o2 Th kmol O 2 req. 1 kmol air h 0.21 kmol O 2 FG P IJ d n i H 100 K b kmol air hg d22.4 m bSTPg kmol i = 22.4n& = 4.762 1 + & A = n& a V b1 + P g 100 kmol feed 1 kmol req. x x o2 Th 3 A b g m3 STP h RT T(C) Rp Pg(kPa) Rf xa xb xc xd xe PX(%) nF nO2, th nA Vf(m3/h) Va (m3/h) Ra 23.1 32.0 7.5 25.0 7.25 0.81 0.08 0.05 0.04 0.02 15 72.2 183.47 1004.74 1450 22506.2 5.63 7.5 20.0 19.3 64.3 5.8 0.58 0.31 0.06 0.05 0.00 23 78.9 226.4 1325.8 1160 29697.8 7.42 46.5 50.0 15.8 52.6 2.45 0.00 0.00 0.65 0.25 0.10 33 28.1 155.2 983.1 490 22022.3 5.51 21 30.4 3 10.0 6 0.02 0.4 0.35 0.1 0.13 15 53.0 248.1 1358.9 1200 30439.2 7.6 23 31.9 4 13.3 7 0.45 0.12 0.23 0.16 0.04 15 63.3 238.7 1307.3 1400 29283.4 7.3 25 33.5 5 16.7 9 0.5 0.3 0.1 0.04 0.06 15 83.4 266.7 1460.8 1800 32721.2 8.2 27 35.0 6 20.0 10 0.5 0.3 0.1 0.04 0.06 15 94.8 303.2 1660.6 2000 37196.7 9.3 5- 14 http://librosysolucionarios.net 5.32 NO + 12 O2 ⇔ NO2 1 mol 0.20 mol NO / mol 0.80 mol air / mol 0.21 O 2 0.79 N 2 P0 = 380 kPa R| S| T a. n1 (mol NO) n2 (mol O 2 ) n3 (mol N2 ) n4 (mol NO2 ) Pf (kPa) U| V| W Basis: 1.0 mol feed 90% NO conversion: n1 = 0.10 (0.20) = 0.020 mol NO ⇒ NO reacted = 0.18 mol 0.18 mol NO 0.5 mol O 2 = 0.0780 mol O2 mol NO N2 balance: n 3 = 0.80(0.79 ) = 0.632 mol N 2 O 2 balance: n 2 = 0.80(0.21) − n4 = y NO 0.18 mol NO 1 mol NO2 = 018 . mol NO 2 ⇒ n f = n1 + n 2 + n 3 + n 4 = 0.91 mol 1 mol NO 0.020 mol NO mol NO = = 0.022 0.91 mol mol y O2 = 0.086 mol O2 mol N 2 mol NO2 y N2 = 0.695 y NO2 = 0.198 mol mol mol FG H IJ K Pf V n f RT n 0.91 mol = ⇒ Pf = P0 f = 380 kPa = 346 kPa P0 V n 0RT n0 1 mol b. Pf 360 kPa = (1 mol) = 0.95 mol P0 380 kPa n i = n i0 + υ iξ nf = n0 E n1 (mol NO) = 0.20 − ξ n 2 ( mol O2 ) = ( 0.21)(0.80 ) − 0.5ξ n 3 (mol N 2 ) = (0.79 )(0.80) n 4 ( mol NO2 ) = ξ n f = 1 − 0.5ξ = 0.95 ⇒ ξ = 010 . ⇒ n 1 = 0.10 mol NO , n 2 = 0.118 mol O 2 , n 3 = 0.632 mol N 2 , n 4 = 0.10 mol NO 2 ⇒ y NO = 0.105, y O2 = 0.124, y N 2 = 0.665, y NO2 = 0.105 NO conversion = b0.20- n g × 100% = 50% 1 0.20 360 kPa P (atm) = = 3.55 atm 101.3 kPa atm Kp = (y NO 2 P ) ( y NO P)( y O2 P ) 0.5 = (y NO2 ) 0.5 ( y NO )( y O2 ) P 0.5 = b 0.105 (0.105) 0.124 5- 15 http://librosysolucionarios.net g b3.55g 0.5 1 0.5 = 151 . atm 2 5.33 Liquid composition: 49.2 kg M 1 kmol = 0.437 kmol M 112.6 kg 100 kg liquid ⇒ 0.481 kmol M / kmol 29.6 kg D 1 kmol = 0.201 kmol D 147.0 kg ⇒ 0.221 kmol D / kmol 21.2 kg B 1 kmol = 0.271 kmol B 78.12 kg 0.298 kmol B / kmol 0.909 kmol a. Basis: 1 kmol C6 H 6 fed 3 o V1 (m ) @ 40 C, 120 kPa n1 (kmol) 0.920 HCl 0.080 Cl2 1 kmol C6 H 6 ( 78.12 kg) n 0 (kmol Cl2 ) n 2 (kmol) 0.298 C6 H 6 0.481 C 6 H5Cl 0.221 C 6 H4 Cl 2 C 6H 6 + Cl2 → C 6H 5Cl + HCl C balance: 1 kmol C6 H 6 C 6H 5Cl + Cl 2 → C6 H 5Cl 2 + HCl 6 kmol C = n 2 0.298 × 6 + 0.481 × 6 + 0.221 × 6 1 kmol C6 H 6 ⇒ n 2 = 100 . kmol H balance: 1 kmol C6 H6 b g 6 kmol H = n 1 0.920 (1) 1 kmol C6 H6 + n 2 0.298 × 6 + 0.481 × 5 + 0.221 × 4 ⇒ n1 = 1.00 kmol V1 = n1RT 1.00 kmol 101.3 kPa 0.08206 m3 ⋅ atm 313.2 K = = 21.7 m3 P 120 kPa 1 atm kmol ⋅ K ⇒ b. V1 217 . m3 = = 0.278 m 3 / kg B m B 78.12 kg B 2 & & ( m3 / s) = u(m / s) ⋅ A(m 2 ) = u ⋅ πd ⇒ d 2 = 4 ⋅ Vgas V gas 4 π ⋅u d2 = & B0 (kg B) 0.278 m3 4m s 1 min 10 4 cm 2 = 5.90 m & B0 (cm2 ) min kg B π (10) m 60 s m2 b g & B0 ⇒ d(cm) = 2.43⋅ m 1 2 c. Decreased use of chlorinated products, especially solvents. 5- 16 http://librosysolucionarios.net 5.34 Vb ( m 3 / min) @900o C, 604 mtorr 60% DCS conversion n& 1 (mol DCS / min) n& 2 (mol N 2 O / min) n& b (mol / min) n& 3 (mol N 2 / min) n& 4 (mol HCl(g) / min) 3.74 SCMM U| V| W & a ( mol / min) n 0.220 DCS 0.780 N 2 O SiH 2Cl 2(g) + 2 N 2O(g) → SiO2(s) + 2 N 2(g) + 2 HCl (g) a. n& a = 3.74 m 3 (STP) 10 3 mol =167 mol / min min 22.4 m3 (STP) mol DCS I gFGH 0.220 mol JK b167 mol / ming = 14.7 mol DCS / min mol DCS DCS reacted: b0.60gb 0.220gb167 g = 22.04 mol DCS reacted / min min b 60% conversion: n& 1 = 1 - 0.60 b g molminN O N2 O balance: &n 2 = 0.780 167 − N2 balance: n& 3 = 2 22.04 mol DCS 2 mol N 2O = 86.18 mol N 2O / min min mol DCS 22.04 mol DCS 2 mol N 2 = 44.08 mol N 2 / min min mol DCS HCl balance: n& 4 = 22.04 mol DCS 2 mol HCl = 44.08 mol HCl / min min mol DCS n& B = n& 1 + n& 2 + n& 3 + n& 4 = 189 mol / min & = ⇒V B n& B RT 189 mol 62.36 L ⋅ torr 0.001 m3 1173 K = = 2.29 × 104 m 3 / min P min mol ⋅ K L 0.604 torr n& 14.7 mol DCS/min ⋅ P= 1 P= ⋅ 604 mtorr=47.0 mtorr DCS DCS n& 189 mol/min B n& 86.2 mol N 2O/min p N2 O = x N 2O ⋅ P= 2 P= ⋅ 604 mtorr=275.5 mtorr &n B 189 mol/min b. p =x r = 3.16 × 10−8 p DCS ⋅ p N2 O0.65 = 3.16 ×10-8 ( 47.0 )( 275.5 ) 0.65 = 5.7 × 10 −5 mol SiO 2 m2 ⋅ s & MW 5.7 × 10 −5 mol SiO2 60 s 120 min 60.09 g/mol 1010 A & c. h(A)=r ⋅t ⋅ = ρSiO2 min m2 ⋅ s 2.25 × 10 6 g/m 3 1 m (Table B.1) & =1.1 ×105 A The films will be thicker closer to the entrance where the lower conversion yields higher pDCS and p N 2O values, which in turn yields a higher deposition rate. 5- 17 http://librosysolucionarios.net 5.35 Basis: 100 kmol dry product gas n1 (kmol C x H y ) m1 (kg C x H y ) kmol dry gasU R|100 |V 0.105 CO S|0.053 O |W T0.842 N & (m3 ) V 2 n2 (kmol air) 0.21 O 2 0.79 N 2 2 2 2 o n 3 (kmol H2 O) 30 C, 98 kPa a. N2 balance: 0.79n 2 = 0.842 (100) ⇒ n 2 = 106.6 kmol air b g b g b g O balance: 2 0.21n 2 = 100 2 0.105 + 2 0.053 + n 3 ⇒ n 3 = 1317 . kmol H 2O C balance: d n 1 kmol C x H y i x bkmol Cg = 100b0105 . g ⇒ n x = 10.5 dkmol C H i b1g 1 x y b2g n 3 =13.17 H balance: n 1y = 2n 3 ====> n1y = 26.34 b g b g yx = 2610.34.5 = 2.51 mol H / mol C fed: 0.21b106.6 kmol air g = 22.4 kmol in excess = 5.3 kmol ⇒ Theoretical O = b22.4 - 5.3g kmol = 17.1 kmol Divide 2 by 1 ⇒ O2 O2 2 % excess = b. V2 = m1 = 5.3 kmol O2 × 100% = 31% excess air 17.1 kmol O 2 106.6 kmol N 2 22.4 m 3 (STP) 101.3 kPa 303 K = 2740 m 3 kmol 98 kPa 273 K b g b g n1x kmol C 12.0 kg n1y kmol H 101 . kg n1x=10.5 + =====> m 1 = 152.6 kg kmol kmol n1y =26.34 V2 2740 m3 air m3 air = = 18.0 m1 152 .6 kg fuel kg fuel 5.36 3N 2 H 4 → 6 xH 2 + (1 + 2 x)N 2 + (4 − 4 x)NH3 a. 0 ≤ x ≤ 1 b. n N 2 H4 = 50 L 0.82 kg 1 kmol = 1.28 kmol L 32.06 kg LM 6x kmol H + b1 + 2xg kmol N + b4 − 4xg kmol NH OP 3 kmol N H N 3 kmol N H 3 kmol N H Q 1.28 = b6x + 1 + 2x + 4 − 4xg = 1.707 x + 2.13 kmol 3 n product = 1.28 kmol N2 H 4 2 2 2 4 2 5- 18 http://librosysolucionarios.net 4 3 2 4 5.36 (cont’d) nproduct 2.13 2.30 2.47 2.64 2.81 2.98 3.15 3.32 3.50 3.67 3.84 Vp (L) 15447.92 16685.93 17923.94 19161.95 20399.96 21637.97 22875.98 24113.99 25352.00 26590.01 27828.02 Volume of Product Gas 30000.00 25000.00 20000.00 V (L) x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 15000.00 10000.00 5000.00 0.00 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x c. Hydrazine is a good propellant because as it decomposes generates a large number of moles and hence a large volume of gas. 5.37 & A (g A / h) m c h & m3 / h V air 3 C A (g A / m ) a. (i) Cap left off container of liquid A and it evaporates into room, (ii) valve leak in cylinder with A in it, (iii) pill of liquid A which evaporates into room, (iv) waste containing A poured into sink, A used as cleaning solvent. b. c. d. m &A yA FG kg A IJ H hK FG kg A IJ H h K C e j⋅ V mol A = = mol air M e j ⋅ n =m &A in gA A m3 gA A mol yA = 50 × 10−6 d h & V air out air F I FG GH JK H 3 & m C kg A =V air A h m3 ===================> m & PV CA = A ; nair = k⋅Vair RT IJ K yA = & A RT m k ⋅ Vair M A P m & A = 90 . g/h & 8.314 mmol⋅Pa m RT 9.0 g / h 293 K ⋅K = A = = 83 m3 / h 3 −6 kyA MA P 0.5 50 × 10 101.3 × 10 Pa 104.14 g / mol 3 min d i Concentration of styrene could be higher in some areas due to incomplete mixing (high concentrations of A near source); 9.0 g/h may be an underestimate; some individuals might be sensitive to concentrations < PEL. e. Increase in the room temperature could increase the volatility of A and hence the rate of & : At higher T, need evaporation from the tank. T in the numerator of expression for V air a greater air volume throughput for y to be < PEL. 5- 19 http://librosysolucionarios.net C 3H 6 + H 2 ⇔ C3H 8 5.38 Basis: 2 mol feed gas U| V| W np (mol C3 H8 ) (1- np )(mol C 3 H 6 ) n 2 = n p + 2(1 − n p ) = 2 − n p (1- np )(mol H 2 ) 1 mol C3 H 6 1 mol H 2 25o C, 32 atm 235o C, P2 a. At completion, n p = 1 mol , n 2 = 2 − 1 = 1 mol 1 mol 508K P2 V n 2 RT2 n T = ⇒ P2 = 2 2 P1 = 2 mol 298K P1V n 1RT1 n 1 T1 b. 32.0 atm = 27.3 atm P2 = 35.1 atm n2 = 35.1 atm 298K P2 T1 n1 = 32.0 atm 508K P1 T2 2 mol = 1.29 mol 1.29 = 2 − n p ⇒ n p = 0.71 mol C3H 8 produced b g ⇒ 1 - 0.71 = 0.29 mol C 3H 6 unreacted ⇒ 71% conversion of propylene c. n2 1.009 1.028 1.083 1.101 1.156 1.174 1.211 1.229 1.248 1.266 1.285 1.358 1.431 1.468 C3H8 prod. 0.99075 0.9724 0.91735 0.899 0.84395 0.8256 0.7889 0.77055 0.7522 0.73385 0.7155 0.6421 0.5687 0.532 %conv. 99.075 97.24 91.735 89.9 84.395 82.56 78.89 77.055 75.22 73.385 71.55 64.21 56.87 53.2 Pressure vs Fraction Conversion 120 100 80 % conversion P2 (atm) 27.5 28.0 29.5 30.0 31.5 32.0 33.0 33.5 34.0 34.5 35.0 37.0 39.0 40.0 60 %conv. 40 20 0 25.0 27.0 29.0 31.0 33.0 Pressure (atm) 5- 20 http://librosysolucionarios.net 35.0 37.0 39.0 41.0 5.39 Convert fuel composition to molar basis Basis: 100 g ⇒ b UV W g g 95 g CH4 1 mol 16.04 g = 5.92 mol CH 4 97.2 mol % CH 4 ⇒ 5 g C 2 H6 1 mol 30.07 g = 017 . mol C2 H 6 2.8 mol % C 2 H6 b 500 m3 / h n& 2 (kmol CO2 / h) n& 3 (kmol H2 O / h) n& 1 (mol / h) 0.972 CH 4 n& 4 (kmol O 2 / h) n& 5 (kmol N 2 / h) 0.028 C 2 H 6 40 o C, 1.1 bar & (SCMH) V air 25% excess air n& 1 = & P1V 11 . bar 500 m3 1 = RT1 313K h kmol ⋅ K 0.08314 m3 ⋅ bar 7 C2 H 6 + O 2 → 2 CO2 + 3H 2O 2 CH 4 + 2O 2 → CO 2 + 2 H2 O Theoretical O 2 = = 211 . kmol h LM N 21.1 kmol 0.972 kmol CH 4 kmol h 2 kmol O 2 1 kmol CH 4 OP = 43.1 kmol O kmol 1 kmol C H Q h 125 . b431 . kmol O g 1 kmol Air 22.4 m bSTPg Air Feed: = 5700 SCMH + 0.028 kmol C 2 H 6 3.5 kmol O 2 2 2 6 3 2 h 0.21 kmol O 2 1 kmol 5.40 Basis: 1 m3 gas fed @ 205° C, 1.1 bars Ac = acetone 1 m 3 @205 o C, 1.1 bar n3 (kmol), 10o C, 40 bar condenser n1 (kmol) y1 (kmol Ac / kmol) (1 - y1 )(kmol air / kmol) pAC = 0100 . bar y 3 (kmol Ac / kmol) (1- y 3 )(kmol air / kmol) p AC = 0.379 bar n 2 (kmol Ac(l)) a. n1 = y1 = 100 . m 3 273K 110 . bars 1 kmol b g = 0.0277 kmol 478K 10132 . bars 22.4 m3 STP 0.100 bar 0.379 bar = 0.0909 kmol Ac kmol , y 3 = = 9.47 × 10 −3 kmol Ac kmol 1.1 bars 40.0 bars b gb g Air balance: 0.0277 0.910 = (1 − 9.47 × 10 −3 )n 3 ⇒ n 3 = 0.0254 kmol Mole balance: 0.0277 = 0.0254 + n 2 ⇒ n 2 = 0.0023 kmol Ac condensed Acetone condensed = 0.0023 kmol Ac 58.08 kg Ac 1 kmol Ac = 0.133 kg acetone condensed 5- 21 http://librosysolucionarios.net 5.40 (cont’d) Product gas volume = b. 20.0 m 3 effluent b g 0.0254 kmol 22.4 m 3 STP 273K 0.0277 kmol feed 0.0149 m effluent 5.41 Basis: 1.00 × 10 6 gal. wastewater day. kmol feed kmol Ac = 0.0149 m 3 = 196 kg Ac h Neglect evaporation of water. Effluent gas: 68o F, 21.3 psia(assume) 1.00 × 106 gal / day n1 (lb - moles H2 O / day) 0.03n1 (lb - moles NH3 / day) a. 40.0 bars 0.0909 kmol Ac 58.08 kg Ac 3 h 283K 1.0132 bars n2 (lb - moles air / day) n3 (lb - moles NH3 / day) 300 × 106 ft 3 air / day Effluent liquid 68o F, 21.3 psia n 2 (lb-moles air/day) n1 (lb - moles H2 O / day) n4 (lb - moles NH 3 / day) Density of wastewater: Assume ρ = 62.4 lb m ft 3 LMn lb - moles H O N day 1 2 = 1.00 × 10 6 OP Q 18.02 lbm 0.03 n1 lb m NH3 17.03 lbm 1 ft 3 + × 1 lb - mole day 1 lb - mole 62.4 lb m 7.4805 gal 1 ft 3 gal day ⇒ n 1 = 450000 lb - moles H 2 O fed day , 0.03n 1 = 13500 lb - moles NH 3 fed day n2 = 300 × 106 ft 3 492 o R 21.3 psi 1 lb - mole 527.7 R 14.7 psi 359 ft 3 STP o day b g = 113 . × 106 lb - moles air day 93% stripping: n 3 = 0.93 × 13500 lb - moles NH 3 fed day = 12555 lb - moles NH 3 day Volumetric flow rate of effluent gas PVout n out RT n 300 × 10 6 ft 3 = ⇒ Vout = Vin out = PVin n in RT n in day d1.13 × 10 6 i + 12555 lb - moles day 1.13 × 10 lb - moles day 6 = 303 × 10 ft day 6 3 Partial pressure of NH 3 = y NH 3 P = 12555 lb - moles NH 3 day d1.129 × 10 6 i + 12555 lb - moles day = 0.234 psi 5- 22 http://librosysolucionarios.net × 21.3 psi 5.42 Basis: 2 liters fed / min Cl ads.= 2.0 L soln 1130 g 0.12 g NaOH 1 mol 0.23 NaOH ads. 1 mol Cl 2 mol = 0.013 60 min L g soln 40.0 g mol NaOH 2 mol NaOH min 2 L / min @ 23o C, 510 mm H 2O n& 1 (mol / min) y (mol Cl2 / mol) (1 - y)(mol air / mol) n 2 (mol air / mol) 0.013 mol Cl 2 / min b g = b10.33 + 0.510g m H O = 10.84 m H O Assume Patm = 10.33 m H 2O ⇒ Pabs n& 1 = 2L min 2 273K 10.84 m H 2O 1 mol = 0.0864 mol min 296K 10.33 m H 2O 22.4 L STP b g Cl balance: 0.0864y = 0.013 ⇒ y = 0150 . 5.43 2 in mol Cl 2 ,∴ specification is wrong mol & (L / min) @ 65o C, 1 atm V 3 125 L / min @ 25o C, 105 kPa n& 1 ( mol / min) y1 (mol H2 O / mol) 1- y1 ( mol dry gas / mol) 0.235 mol C2 H 6 / mol DG 0.765 mol C2 H 4 / mol DG R|b g S| T n& C 2 H6 (mol C 2 H 6 / min) n& C 2 H4 (mol C2 H 4 / min) n& air (mol air / min) n& H 2 O (mol H 2 O / min) U| V| W 355 L / min air @ 75o C, 115 kPa n& 2 (mol / min) y2 ( mol H2 O / mol) (1- y2 )( mol dry air / mol) a. Hygrometer Calibration ln y = bR + ln a b= b ln y 1 y 2 R2 − R1 d y = ae i bR g = lnd0.2 10 i = 0.08942 −4 90 − 5 bg ln a = ln y1 − bR 1 = ln 10 −4 − 0.08942 5 ⇒ a = 6.395 × 10 −5 ⇒ y = 6.395 × 10 −5 e 0.08942R b. n& 1 = 125 L min 273K 105 kPa 298K 101 kPa 1 mol = 5.315 mol min wet gas 22.4 L STP n& 2 = 355 L 273K 115 kPa 1 mol = 14.156 mol min wet air min 348K 101 kPa 22.4 L STP b g b g R1 = 86.0 → y 1 = 0.140 , R 2 = 12.8 → y 2 = 2.00 × 10 −4 mol H 2O mol 5- 23 http://librosysolucionarios.net 5.43 (cont’d) b C 2 H6 balance: n& C 2 H6 = 5.315 mol min C H I gFGH b1 − 0.140g molmolDG IJK FGH 0.235 mol J mol DG K 2 6 = 1.07 mol C2 H 6 min C 2 H 4 balance: n& C 2 H 4 = 5.315 0.860 0.765 = 3.50 mol C2 H 4 min b gb gb g Dry air balance: n& = b14.156gd1 − 2.00 × 10 i = 14.15 mol DA min Water balance: n& = b5.315gb0.140g + b14.156gd1.00 × 10 i = 0.746 mol H O min n& = b1.07 + 3.50 + 14.15g mol min = 18.72 mol min , n& = b18.72 + 0.746g = 19.47 mol min & = 19.47 mol min 22.4 L bSTPg 338K = 540 liters min V −4 air −4 H 2O 2 dry product gas total 3 mol Dry basis composition: c. p H 2O = y H 2 Ol ⋅ P = 273K FG 1.07 IJ × 100% = 5.7% C H , 18.7% C H , 75% dry air H 18.72K 2 6 2 4 0.746 mol H 2O × 1 atm = 0.03832 atm 19.47 mol y H 2O = 0.03832 ⇒ R = FG H IJ K 1 0.03832 ln = 71.5 0.08942 6.395 × 10 −5 5.44 CaCO 3 → CaO + CO 2 n& CO2 = 1350 m3 273K 1 kmol b g = 12.92 kmol CO 1273K 22.4 m 3 STP h 12.92 kmol CO2 1 kmol CaCO3 100.09 kg CaCO3 h 1 kmol CO2 0.17 kg clay h 0.83 kg limestone 0.95 kg CaCO 3 = 279 kg clay h Weight % F e 2O3 b0.07g kg Fe2 O 3 kg clay 279 . Fe O b g × 100% = 18% 1362 + 279 − 12.92 44.1 kg clay 14243 kg limestone 2 h 1 kg limestone 1 kmol CaCO 3 1362 kg limestone 2 3 kg CO2 evolved 5- 24 http://librosysolucionarios.net = 1362 kg limestone h 5.45 Basis: R|864.7 g C b1 mol 12.01 g g = 72.0 mol C |116.5 g H b1 mol 1.01 gg = 1153. mol H 1 kg Oil ⇒ S |13.5 g S b1 mol 32.06 gg = 0.4211 mol S |T5.3 g I 53 . gI n1 (mol CO 2 ) n 2 (mol CO) n 3 (mol H 2 O) n 4 (mol SO 2 ) n5 (mol O 2 ) n 6 (mol N 2 ) 72.0 mol C 115.3 mol H 0.4211 mol S 5.3 g I C + O 2 → CO2 1 C + O 2 → CO 2 S + O 2 → SO 2 1 2H + O 2 → H 2O 2 na (mol), 0.21 O 2 , 0.79 N 2 15% excess air o 175 C, 180 mm Hg (gauge) a. Theoretical O 2: 72.0 mol C 1 mol O 2 + 1 mol C + 115.3 mol H 0.25 mol O 2 1 mol H 0.4211 mol S 1 mol O 2 = 101.2 mol O 2 1 mol S ( 1.15 101.2 mol O Air Fed: ) 1 mol Air 0.21 mol O 554 mol Air 1 kg oil 2 22.4 liter ( STP ) mol 1 m3 3 10 liter = 554 mol Air = n 2 448K 760 mm Hg 273K 940 mm Hg a = 16.5 m air kg oil 3 b. S balance: n 4 = 0.4211 mol SO 2 H balance: 115.3 = 2n 3 ⇒ n 3 = 57.6 mol H 2O b g C balance: 0.95 72.0 = n 1 ⇒ n1 = 68.4 mol CO 2 ⇒ 0.05(72.0) = n 2 = 3.6mol CO N2 balance: 0.79 ( 554 ) =n 6 ⇒ n 6 = 437.7 mol N 2 O balance: 0.21 ( 554 ) 2=57.6+3.6+2(68.4)+2 ( 0.4211 ) +2n 5 ⇒ n 5 = 16.9 mol O 2 Total moles ( excluding inerts ) wet: 585 mols dry: 527 mols dry basis: wet basis: 3.6 mol CO 527 mol 3.6 mol CO 585 mol = 6.8 ×10 −3 mol CO mol , × 10 6 = 6150 ppm CO , 0.4211 mol SO2 527 mol = 7.2 × 10 −4 0.4211 mol SO 2 585 mol 5- 25 http://librosysolucionarios.net mol SO 2 mol × 10 6 = 720 ppm SO 2 bg 5.46 Basis: 50.4 liters C 5H 12 l min 50.4 L C5 H12 (l) / min n& 1 (kmol C5 H12 /min) heater n& 1, n& 2 Combustion chamber 15% excess air, V& air (L / min) &n 2 kmol air 0.21 O 2 0.79 N 2 336 K, 208.6 kPa (gauge) & 3 (kmol C5 H 12 / min) n & 4 (kmol O 2 / min) n & 5 (kmol N 2 / min) n & 6 (kmol CO 2 / min) n & 7 (kmol H 2 O / min) n Condenser C5 H 12 + 80 2 → 5CO 2 + 6 H 2O a. & (L/min) V liq & m=3.175 kg C5 O12 /min n& 3 (kmol C5O12 /min) n& 7 (kmol H 2O(l) / m i n ) n& 1 = 50.4 L 0.630 kg 1 kmol min L 72.15 kg n& 3 = 3175 . kg 1 kmol = 0.044 kmol / min min 72.15 kg frac. convert = n& 2 = V& gas (L/min), 275 K, 1 atm &n 4 (kmol O2 / min) & 5 (kmol N 2 / min) n &n 6 (kmol CO 2 / min) = 0.440 kmol min 0.440 - 0.044 kmol × 100 = 90% C5 H12 converted 0.440 0.440 kmol C5 H12 1.15 (8 kmol O2 ) 1 mol air = 19.28 kmol air min min kmol C5 H12 0.21 mol O2 b g & air = 19.28 kmol 22.4 L STP V min mol 336K 101 kPa 1000 mol = 173000 L min 273K 309.6 kPa kmol n& 4 = [(0.21)(19.28) − (0.90)(0.440)(8)] kmol O 2 = 0.882 kmol O 2 /min min 19.28 kmol air 0.79 kmol N2 = 15.23 kmol N2 /min min kmol air 0.90(0.440 kmol C5H12 ) 5 kmol CO2 n& 6 = = 1.98 kmol CO2 / min min kmol C 5 H12 n& 5 = & = 0.882+15.23+1.98 kmol 22.4 L(STP) 275 K 1000 mol = 4.08 × 10 5 L/min V gas min mol 273 K kmol 5- 26 http://librosysolucionarios.net 5.46 (cont’d) n& 7 = 0.9( 0.440 kmol C5H 12 ) 6 kmol H 2 O = 2.38 kmol H2 O( l ) / min min kmol C5H 12 Condensate: &C H = V 5 12 &H O = V 2 0.044 kmol 72.15 kg min kmol 2.38 kmol 18.02 kg min L kmol 0.630 kg L 1 kg = 5.04 L min = 42 .89 L min Assume volume additivity (liquids are immiscible) & liq = 5.04 + 42.89 = 47.9 L min V b. C5 H12 ( l) bg C5 H12 l bg H2 O l bg H2 O l 5.47 o n& air (kmol / min), 25 C, 1 atm 0.21 O 2 0.79 N 2 n& 0 (kmol / min) n& 1 (kmol H 2 S / min) Furnace H 2 S + 32 O 2 → SO 2 + H 2 O 0.20 kmol H 2S / mol 0.80 kmol CO 2 / mol Reactor &n 2 (kmol H 2S / min) 2H 2 S +SO 2 → 3S(g) + 2 H 2 O 10.0 m 3 / min @ 380o C, 205 kPa n& exit (kmol / min) n& 3 (kmol N 2 / min) n& 4 (kmol H 2 O / min) n& 5 (kmol CO 2 / min) n& 6 (kmol S / min) n& exit = & PV 205 kPa 10.0 m 3 / min = = 0.377 kmol / min m3 ⋅ kPa RT 8.314 kmol 653 K ⋅K b g n& 1 = 0.20 n& 0 / 3 = 0.0667n& 0 ; n& 2 = 2 n& 1 = 0.133n& 0 5- 27 http://librosysolucionarios.net 5.47 (cont’d) Air feed to furnace: n& air = 0.0667 &n 0 (kmol H 2S fed) 15 . kmol O 2 1 kmol air (min) 1 kmol H 2 S 0.21 kmol O 2 = 0.4764 n& 0 kmol air / min 0.4764 n& 0 (kmol air) 0.79 kmol N 2 = 0.3764 n& 0 (kmol N 2 / min) (min) min 0.200n& 0 (kmol H 2S) 1 kmol S Overall S balance: n& 6 = = 0.200 n& 0 (kmol S / min) (min) 1 kmol H 2S Overall N2 balance: n& 3 = Overall CO 2 balance: n& 5 = 0.800n& 0 (kmol CO2 / min) Overall H balance: 0.200n& 0 (kmol H 2 S) 2 kmol H n& kmol H 2 O 2 kmol H = 4 (min) 1 kmol H 2S min 1 kmol H 2 O ⇒ n& 4 = 0.200n& 0 (kmol H 2 O / min) b g n& exit = n& 0 0.376 + 0.200 + 0.200 + 0.800 = 0.377 kmol / min ⇒ n& 0 = 0.24 kmol / min n& air = 0.4764(0.24 kmol air / min) = 0114 . kmol air / min 5.48 Basis: 100 kg ore fed ⇒ 82.0 kg FeS 2 (s), 18.0 kg I. b gb g n FeS 2 fed = 82.0 kg FeS2 1 kmol / 120.0 kg = 0.6833 kmol FeS 2 100 kg ore Vout m3 (STP) 0.6833 kmol FeS2 18 kg I n2 n3 n4 n5 40% excess air n 1 (kmol) 0.21 O 2 0.79 N 2 V1 m 3 (STP) (kmol SO2 ) (kmol SO 3 ) (kmol O 2 ) (kmol N2 ) m6 (kg FeS2 ) m7 (kg Fe 2O 3 ) 18 kg I 2 FeS2(s) + 11 O2(g) → Fe 2 O3(s) + 4SO 2(g) 2 2 FeS2(s) + 152 O2(g) → Fe 2O3(s) + 4SO 3(g) a. n1 = 0.6833 kmol FeS2 7 .5 kmol O2 1 kmol air req' d 1.40 kmol air fed = 17.08 kmol air 2 kmol FeS 2 0.21 kmol O2 kmol air req'd b gb g V1 = 17.08 kmol 22.4 SCM / kmol = 382 SCM / 100 kg ore n2 = ( 0.85)(0.40)0.6833 kmol FeS 2 4 kmol SO 2 = 0.4646 kmol SO2 2 kmol FeS2 5- 28 http://librosysolucionarios.net 5.48 (cont’d) n3 = (0.85)(0.60) 0.6833 kmol FeS2 4 kmol SO 2 = 0.6970 kmol SO 3 2 kmol FeS 2 n = (0.21 ×17.08 ) kmol O fed − 4 2 − b .4646 kmol SO 2 5.5 kmol O 4 kmol SO 2 2 .697 kmol SO 7.5 kmol O 3 2 = 1.641 kmol O 2 4 kmol SO 3 g n5 = 0.79 × 17.08 kmol N2 = 13.49 kmol N 2 Vout = (0.4646+0.6970+1.641+13.49 ) kmol [ 22.4 SCM (STP)/kmol] = 365 SCM/100 kg ore fed ySO 2 = 0.4646 kmol SO 2 × 100% = 2.9%; y SO 3 = 4.3%; y O2 = 10.1%; y N 2 = 82.8% 16.285 kmol b. e j Product gas, T o C Converter 0.4646 kmol SO2 0.697 kmol SO 3 1633 . kmol O 2 1349 . kmol N 2 nSO2 (kmol) nSO3 (kmol) nO2 (kmol) nN 2 (kmol) Let ξ (kmol) = extent of reaction n SO 2 = 0.4646 − ξ n SO3 = 0.697 + ξ n O2 = 1.641 − 12 ξ n N 2 = 13.49 n=16.29- 12 ξ K p (T)= 0.4646 − ξ 0.697 + ξ ySO = , y SO3 = 2 1 16.29- 2 ξ 16.29- 12 ξ ⇒ 1.641 − 12 ξ 13.49 yO 2 = , y N2 = 1 16.29- 2 ξ 16.29- 12 ξ (0.697 + ξ ) (16.29 − 12 ξ ) 2 1 P ⋅ y SO3 1 2 P ⋅ y SO2 (P ⋅ yO2 ) ⇒ (0.4646 − ξ ) (1.641 − 12 ξ ) 1 2 -1 ⋅ P 2 = K p (T) P=1 atm, T=600 o C, K p = 9.53 atm - 2 ⇒ ξ = 0.1707 kmol 1 ⇒ n SO2 = 0.2939 kmol ⇒ fSO2 = ( 0.4646 − 0.2939 ) kmol SO2 0.4646 kmol SO 2 fed reacted = 0.367 P=1 atm, T=400 o C, Kp = 397 atm 2 ⇒ ξ = 0.4548 kmol -1 ⇒ n SO2 = 0.0098 kmol ⇒ fSO2 = 0.979 The gases are initially heated in order to get the reaction going at a reasonable rate. Once the reaction approaches equilibrium the gases are cooled to produce a higher equilibrium conversion of SO 2 . 5- 29 http://librosysolucionarios.net 5.48 (cont’d) c. SO 3 leaving converter: (0.6970 + 0.4687) kmol = 1.156 kmol 1.156 kmol SO 3 1 kmol H 2SO 4 98 kg H 2 SO 4 = 1133 . kg H 2SO 4 min 1 kmol SO 3 kmol ⇒ Sulfur in ore: 0.683 kmol FeS 2 2 kmol S 32.1 kg S = 438 . kg S kmol FeS 2 kmol 113.3 kg H 2SO 4 kg H 2SO 4 = 2.59 43.8 kg S kg S 100% conv.of S: ⇒ 0.683 kmol FeS2 2 kmol S 1 kmol H2SO 4 98 kg = 1339 . kg H2SO 4 kmol FeS 2 1 kmol S kmol 133.9 kg H 2SO 4 kg H2SO 4 = 3.06 43.8 kg S kg S The sulfur is not completely converted to H2 SO4 because of (i) incomplete oxidation of FeS2 in the roasting furnace, (ii) incomplete conversion of SO 2 to SO 3 in the converter. 5.49 N 2 O 4 ⇔ 2 NO 2 dP gauge i + 1.00 V n0 = b. n1 = mol NO 2 , n 2 = mol N 2 O 4 RT0 = b2.00 atmgb2.00 Lg b473Kgb0.08206 L ⋅ atm mol - Kg = 0.103 mol NO a. F n IP⇒ K = n P GH n + n JK n bn + n g Ideal gas equation of state ⇒ PV = b n + n gRT ⇒ n + n = PV / RT b1g p NO2 = y NO 2 P = F n IP, p GH n + n JK 2 1 1 N 2O 4 = 2 1 2 p 2 1 1 2 2 2 1 1 2 2 Stoichiometric equation ⇒ each mole of N 2O 4 present at equilibrium represents a loss of two moles of NO 2 from that initially present ⇒ n1 + 2n 2 = 0.103 b3g , Solve (1) and (2) ⇒ n1 = 2(PV / RT) − 0.103 b2 g b4g n 2 = 0.103 − (PV / RT) Substitute (3) and (4) in the expression for Kp , and replace P with Pgauge + 1 b2n − 0.103g d P = n b0.103 − n g 2 gauge t T(K) 350 335 315 300 Pgauge(atm) 0.272 0.111 -0.097 -0.224 i + 1 where n t = dP gauge nt Kp(atm) 0.088568 5.46915 0.080821 2.131425 0.069861 0.525954 0.063037 0.164006 (1/T) ln(Kp) 0.002857 1.699123 0.002985 0.756791 0.003175 -0.64254 0.003333 -1.80785 i +1V ⇒ nt = d i 24.37 Pg + 1 V =2 L RT t T Variation of Kp with Temperature ln Kp Kp t 2 1 y = -7367x + 22.747 R2 = 1 0 -1 -2 0.0028 0.003 0.0032 1/T 5- 30 http://librosysolucionarios.net 0.0034 5.49 (cont’d) c. A semilog plot of Kp vs. 1 is a straight line. Fitting the line to the exponential law T yields ln K p = − FG H IJ K 7367 −7367 a = 7.567 × 109 atm + 22.747 ⇒ K p = 7.567 × 10 9 exp ⇒ T T b = 7367K 10.00 atm 5.50 & 1 (kmol A / h) n &n 2 (kmol H 2 / h) 5.00 kmol S / h &n 4 (kmol A / h) n& 5 (kmol H 2 / h) 3n& 3 (kmol A / h) &n 3 (kmol H 2 / h) 5.00 kmol S / h n& 4 (kmol A / h) n& 5 (kmol H 2 / h) V&rcy (SCMH) A + H2 S 5.00 kmol S 1 kmol A react = 5.00 kmol A / h h 1 kmol S form 5.00 kmol S 1 kmol H 2 react Overall H 2 balance: n 2 = = 5.00 kmol H 2 / h h 1 kmol S form Overall A balance: n1 = Extent of reaction equations: &n i = n& i0 + ν iξ& A + H2 ↔ S n& 4 = 3 &n 3 − ξ& H 2 : n& 5 = n& 3 − ξ& S: 5.00 = ξ& =====> n& 4 = 3n& 3 − 5.00 n& 5 = n& 3 − 5.00 n& 3n& - 5.00 ⇒ pA = yA P = 4 P = 3 10.0 &n S = 5.00 n& tot 4 n& 3 − 5.00 A: n& tot = 4 n& 3 U| |V | − 5.00 |W n& 5 n& - 5.00 P= 3 10.0 &n tot 4 n& 3 − 5.00 5.00 p S = yS P = 10.0 4 n& 3 − 5.00 p H 2 = yH 2 P = Kp = b g 5.00 4n& 3 − 5.00 pS = = 0.100 ⇒ n& 3 = 1194 . kmol H 2 / h p A p H 2 10.0 3n& 3 − 5.00 n& 3 − 5.00 b gb g n& 4 = 3(11.94 ) - 5.00 = 30.82 kmol A / h n& 5 = 11.94 − 5.00 = 6.94 kmol H 2 / h & = 30.82 + 6.94 kmol / h 22.4 m 3 (STP ) / kmol = 846 SCMH V rcy b g d i 5- 31 http://librosysolucionarios.net 5.51 n& 4 (kmol CO / h) n& 5 (kmol H 2 / h) Reactor & 1 (kmol CO / h) n &n 2 (kmol H 2 / h) n& 4 (kmol CO/h) n& 5 (kmol H 2 /h) n& 6 (kmol CH 3OH/h) T, P 100 kmol CO / h &n 3 (kmol H2 / h) T (K), P (kPa) H xs (% H 2 excess) a. Separator n& 6 (kmol CH 3 OH/h) %XS H 2 , 2 atomic balances, Eq. relation ⇒ four equations in n& 3 , n& 4 , n& 5 , and n& 6 5% excess H2 in reactor feed: n&3 = 100 mol CO 2 mol H2 req'd 1.05 mol H2 fed mol H 2 = 210 h mol CO 1 mol H2 req'd h C balance: 100(1) = n&4 (1) + n&6 (1) ⇒ n&4 = 1 − n&6 H balance: 210(2) = n&5 (2) + n&6 (4) ⇒ n&5 = 210 − 2n&6 (1) (2) n& T = n& 4 + &n5 + &n6 = (100 − n& 6 ) + ( 210 − 2n& 6 ) + n& 6 = 310 − 2n& 6 b g K p T = 500K = 1390 . × 10 −4 F 21.225 + 9143.6 − 7.492lnb500K g I G JJ K exp GH +4.076 × 10500b500K g - 1.161 × 10 b500Kg K -3 = 9.11 × 10 −7 kPa-2 Kp = yM P ( y CO P y H2 P K p P = 9.11 × 10 2 ) −7 2 (1) − (3) yM ⇒ Kp P 2 = ( ) y CO y H2 kPa -2 ( 5000 kPa ) 2 2 ====> = 22.775 = 2 -8 n& 6 ( 310 − 2n& 6 ) (100 − n& 6 ) ( 210 − 2n& 6 ) ( 310 − 2n& 6 ) ( 310 − 2n& 6 )2 2 n& 6 (310 − 2n& 6 ) 2 (100 − n& 6 )( 210 − 2n& 6 ) 2 (3) Solving for n& 6 ⇒ n& 6 = 75.7 kmol M/h ⇒ n& 4 = 100 − n& 6 = 24.3 kmol CO/h , n& 5 = 210 − 2n& 6 = 58.6 kmol H2 / h 1 kmol CO 2 kmol H 2 n& 6 = 75.7 kmol CO/h , n& 2 = n& 6 = 151 kmol H2 /h 1 kmol M 1 kmol M 3 & = ( n& + n& ) 22.4 m (STP) = 1860 SCMH V rec 4 5 kmol n& 1 = 5-32 http://librosysolucionarios.net 5.51 (cont’d) b. P(kPa) 1000 5000 10000 5000 5000 5000 5000 5000 5000 ` T(K) Hxs(%) 500 5 500 5 500 5 400 5 500 5 600 5 500 0 500 5 500 10 n6(kmol ntot M/h) (kmol/h) KpcE8 25.55 258.90 9.1E-01 9.00 292.00 2.3E-01 86.72 136.56 9.1E+01 98.93 112.15 7.8E+03 75.68 158.64 2.3E+01 14.58 280.84 4.1E-01 73.35 153.30 2.3E+01 75.68 158.64 2.3E+01 77.77 164.45 2.3E+01 Kp(T)E8 9.1E+01 9.1E+01 9.1E+01 3.1E+04 9.1E+01 1.6E+00 9.1E+01 9.1E+01 9.1E+01 KpP^2 0.91 22.78 91.11 7849.77 22.78 0.41 22.78 22.78 22.78 KpP^2- n1(kmol KpcP^2 CO/h) 1.3E-05 25.55 2.3E+01 9.00 4.9E-03 86.72 3.2E-08 98.93 3.4E-03 75.68 -2.9E-04 14.58 9.8E-03 73.35 3.4E-03 75.68 -3.1E-03 77.77 n3(kmol n4(kmol n5(kmol H2/h) CO/h) H2/h) 210 74.45 158.90 210 91.00 192.00 210 13.28 36.56 210 1.07 12.15 210 24.32 58.64 210 85.42 180.84 200 26.65 53.30 210 24.32 58.64 220 22.23 64.45 n2(kmol Vrec H2/h) (SCMH) 51.10 5227 18.00 6339 173.44 1116 197.85 296 151.36 1858 29.16 5964 146.70 1791 151.36 1858 155.55 1942 c. Increase yield by raising pressure, lowering temperature, increasing Hxs . Increasing the pressure raises costs because more compression is needed. d. If the temperature is too low, a low reaction rate may keep the reaction from reaching equilibrium in a reasonable time period. e. Assumed that reaction reached equilibrium, ideal gas behavior, complete condensation of methanol, not steady-state measurement errors. 5.52 CO 2 ⇔ CO + 12 O 2 1.0 mol CO 2 1.0 mol O 2 1.0 mol N 2 T = 3000 K, P = 5.0 atm K1 dp = 1/ 2 i = 0.3272 atm 1/ 2 p CO 2 1 1 O2 + 2 N 2 ⇔ NO 2 p NO K2 = = 01222 . 1/ 2 p N 2 p O2 d 1 A ⇔ B+ C 2 1 1 C+ D = E 2 2 CO p O2 i A − CO 2 , B − CO , C − O 2 , D − N 2 , E − NO ξ 1 - extent of rxn 1 n A0 = n C0 = n D0 = 1 , n B0 = n E0 = 0 ξ 2 - extent of rxn 2 5-33 http://librosysolucionarios.net 5.52 (cont’d) nA = 1 − ξ1 nB = ξ1 1 1 nC = 1 + ξ1 − ξ2 2 2 1 nD = 1 − ξ 2 2 nE = ξ 2 1 6 + ξ1 n tot = 3 + ξ 1 = 2 2 U| || y = n n = 2 b1 − ξ g b6 + ξ g | yy == 22ξ + ξb6 +− ξξ g 6 + ξ gb g V b || y = b2 − ξ g b 6 + ξ g || y = 2ξ b6 + ξ g |W A B A tot 1 1 1 C 1 D 2 1 2 1 g b5g p b gb g ⇒ 0.3272b1 − ξ gb6 + ξ g = 2.236ξ b2 + ξ − ξ g K1 = p CO p1O22 = CO2 b y B y 1C 2 b1+ 12 −1g 2ξ 1 2 + ξ 1 − ξ 2 p = yA 2 1 − ξ1 6 + ξ1 12 K2 = d p NO p O2 p N 2 b i 12 = ⇒ 0.1222 2 + ξ 1 − ξ 2 = 0.3272 12 1 1 yE 12 12 yC yD 12 12 12 1 p i = y iP 1 2 E 1 p 1−1 2 −1 2 = 1 2ξ 2 b2 + ξ − ξ g b2 − ξ g 12 1 g b2 − ξ g 12 2 12 (1) 2 2 12 = 01222 . 2 = 2ξ 2 (2) Solve (1) and (2) simultaneously with E-Z Solve ⇒ ξ 1 = 0.20167 , ξ 2 = 012081 . , b gb g y A = 2 1 − ξ 1 6 + ξ 1 = 0.2574 mol CO2 mol y D = 0.3030 mol N 2 mol y B = 0.0650 mol CO mol y E = 0.0390 mol NO mol y C = 0.3355 mol O2 mol 5.53 a. n& 4 (kmol / h) 0.04 O2 0.96 N2 PX=C8 H10 , TPA=C6H 10O 4 , S=Solvent & (m 3 / h) @105o C, 5.5 atm V 3 n& 3O (kmol O2 / h) n& 3N (kmol N 2 / h) n& 3W (kmol H 2O(v) / h) & (m 3 / h) at 25o C, 6.0 atm V 2 n& 2 (kmol / h) 0.21 O 2 0.79 N 2 condenser n& 3W (kmol H2 O(v) / h) & (m 3 / h) V 3W reactor n& 1 (kmol PX / h) ( n& 1 + n& 3p ) kmol PX / h & s (kg S / h) m 3 kg S / kg PX n& 3p ( kmolPX / h ) 100 kmol TPA / h m & s (kg S / h) n& 3p (kmol PX / h) & s (kg S / h) m 5-34 http://librosysolucionarios.net separator 100 mol TPA / s 5.53 (cont’d) b. Overall C balance: n& 1 c. FG kmol PXIJ 8 kmol C = 100 kmol TPA H h K kmol PX h 8 kmol C ⇒ n& 1 = 100 kmol PX / h kmol TPA 100 kmol TPA 3.0 kmol O 2 = 300 kmol O2 /h h 1 kmol TPA kmol O 2 Overall O2 balance: 0.21n& 2 = 300 +0.04n& 4 n& 2 = 1694 kmol air/h h ⇒ n& 4 = 1394 kmol/h Overall N2 balance: 0.79n& 2 = 0.96n& 4 100 kmol TPA 2 kmol H2 O Overall H2 O balance: n& 3W = = 200 kmol H 2O / h h 1 kmol TPA O2 consumed = 3 & = n& 2RT = 1694 kmol 0.08206 m ⋅ atm 298 K = 6.90 × 103 m3 air/h V 2 P h kmol ⋅ K 6.0 atm 3 & & & = ( n 3W + n 4 ) RT = ( 200+1394 ) kmol 0.08206 m ⋅ atm 378 K = 8990 m3 /h V 3 P h kmol ⋅ K 5.5 atm 3 &V3W = 200 kmol H 2O (l) 18.0 kg 1 m = 3.60 m 3 H 2O(l) / h leave condenser h kmol 1000 kg d i n& 1 =100 d. 90% single pass conversion ⇒ n& 3p = 0.10 n& 1 + n& 3p ====> n& 3p = 111 . kmol PX / h m& recycle = m& S + m& 3 P = (100+11.1) kmol PX h 3 kg S 11.1 kmol PX + h 1 kmol PX kg PX 106 kg PX 106 kg kmol PX = 3.65 × 104 kg h e. O2 is used to react with the PX. N2 does not react with anything but enters with O2 in the air. The catalyst is used to accelerate the reaction and the solvent is used to disperse the PX. f. The stream can be allowed to settle and separate into water and PX layers, which may then be separated. 5.54 n& 1 (kmol CO / h), n& 3 (kmol H 2 / h), 0.10n & 2 (kmol H 2 / h) Separator &n 6 (kmol CO / h) &n 7 (kmol H 2 / h) n& 8 (kmol CO 2 / h) 2 kmol N 2 / h 0.90n& 2 2 kmol N2 / h n& 1 , n& 2 , n& 3 2 kmol N2 / h 0.300 kmol CO / kmol 0.630 kmol H 2 / kmol 0.020 kmol N 2 / kmol 0.050 kmol CO 2 / kmol Reactor n& 1 (kmol CO / h) n& 2 (kmol H 2 / h) n& 3 (kmol CO2 / h) n& 4 (kmol M / h) n& 5 (kmol H 2 O / h) 2 kmol N 2 / h 5-35 http://librosysolucionarios.net Separator n& 4 (kmol M / h) &n5 (kmol H 2 O / h) 5.54 (cont’d) CO + 2H 2 ⇔ CH3OH(M) CO2 + 3H2 ⇔ CH 3OH + H 2O a. Let ξ 1 ( kmol / h) = extent of rxn 1, ξ 2 ( kmol / h) = extent of rxn 2 CO: n& 1 = 30 - ξ 1 H2 : n& 2 = 63 - 2ξ 1 − 3ξ 2 U| M: n& = ξ + ξ || P ⋅y P ⋅ y H O: n& = ξ V ⇒ dK i = P ⋅ y P ⋅ Py ⋅ y , dK i = bP ⋅ y gd P ⋅ y i || d i d id i N : n& = 2 n& = 100 - 2ξ − 2ξ |W n& − 2ξ − 2 ξ g &n = 84 .65 (1) dK i ⋅ P = n& F n& I = bbξ30+−ξξ gbgb100 63 − 2ξ − 3ξ g n& GH n& JK FG n& IJ FG n& IJ (2) dK i ⋅ P = FH nn&& IKFH nn&& IK = ξ bbξ5 −+ξξ gbgb63100− 2−ξ2ξ− 3−ξ2ξg g = 1.259 GH n& JK GH n& JK CO2 : n& 3 = 5 - ξ 2 2 2 4 1 5 2 2 M p 1 CO N2 tot 1 CO2 H2 2 2 1 tot p 1 2 1 2 2 2 H2 O 3 H2 4 2 M p 2 2 1 2 tot tot 2 1 4 5 tot tot 3 2 tot tot p 2 1 2 2 2 1 2 1 2 2 3 2 1 2 Solve (1) and (2) fo r ξ 1 , ξ 2 ⇒ ξ 1 = 25.27 kmol / h ξ 2 = 0.0157 kmol / h n& 1 = 30.0 − 25.27 = 4.73 kmol CO / h ⇒ 9.98% CO n& 2 = 63.0 − 2 (25.27 ) − 3(0.0157 ) = 12.4 kmol H 2 / h 26.2% H 2 n& 3 = 5.0 − 0.0157 = 4.98 kmol CO2 / h 10.5% CO 2 n& 4 = 25.27 + 0.0157 = 25.3 kmol M / h ⇒ n& 5 = 0.0157 = 0.0157 kmol H 2 O / h n total = 49 .4 kmol / h 53.4% M 0.03% H 2 O UV W n& 6 = 25.4 kmol CO / h C balance: n& 4 = 25.3 kmol / h ⇒& n 8 = 0.02 kmol CO 2 / h O balance: n& 6 + 2 n& 8 = n& 4 + n& 5 = 25.44 mol / s H balance: 2n& 7 = 2 (0.9 n& 2 ) + 4 n& 4 + 2 n& 5 = 1237 . ⇒ n& 7 = 618 . mol H 2 / s b. (n& 4 ) process = 237 kmol M / h ⇒ Scale Factor = 237 kmol M / h 25.3 kmol / h 5-36 http://librosysolucionarios.net 5.54 (cont’d) 237 kmol / h I F 22.4 m (STP)I gFGH 25.3 J kmol JK = 18,700 SCMH kmol / h K GH F 237 kmol / hIJ = 444 kmol / h Reactor effluent flow rate: b 49.4 kmol / h gG H 25.3 kmol / sK F kmol IJ FG 22.4 m (STP) IJ = 9946 SCMH ⇒ V& G 444 H h K H kmol K b 3 Process feed: 25.4 + 618 . + 0.02 + 2.0 3 std c. 9950 m 3 (STP ) ⇒ V&actual = h 3 & $ = V = 354 m / h 1000 L V n& 444 kmol / h m 3 4732 . K 1013 . kPa = 354 m 3 / h 273.2 K 4925 kPa 1 kmol = 0.8 L / mol 1000 mol $ < 20 L / mol====> ideal gas approximation is poor V (5.2-36) & from n& using the ideal gas equation of state is likely Most obviously, the calculation of V to lead to error. In addition, the reaction equilibrium expressions are probably strictly valid only for ideal gases, so that every calculated quantity is likely to be in error. 5.55 a. $ PV B RT = 1 + $ ⇒ B = c Bo + ωB1 RT Pc V From Table B.1 for ethane: Tc = 305.4 K, Pc = 48.2 atm b g From Table 5.3-1 ω = 0.098 0.422 0.422 Bo = 0.083 − 1.6 = 0.083 − = −0.333 1.6 Tr 3082 . K 305.4 K 0.172 0.172 B1 = 0.139 − 4.2 = 0.139 − = −0.0270 4 .2 Tr 308.2 K 305.4K RTc 0.08206 L ⋅ atm 305.4 K B(T) = Bo + ωB1 = −0.333 − 0.098 0.0270 Pc mol ⋅ K 48.2 atm = −01745 . L / mol b e j e j g FG H b IJ K g $2 PV mol ⋅ K $ 2 $ $ - B = 10.0 atm −V V − V + 0.1745 = 0 RT 308.2K 0.08206 L ⋅ atm $ = ⇒V b gb g = 2.343 L / mol, 0.188 L / mol 1 ± 1 - 4 0.395 mol / L 0.1745 L / mol b 2 0.395 mol / L g V$ideal = RT / P = 0.08206 × 3082 . / 10.0 = 2.53, so the second solution is b. c. likely to be a mathematical artifact. $ PV 10.0 atm 2.343 L / mol z= = = 0.926 L ⋅atm RT 0.08206 mol 308.2K ⋅K & = m & V 1000 L mol 30.0 g 1 kg MW = = 12.8 kg / h $ h 2.343 L mol 1000 g V 5-37 http://librosysolucionarios.net 5.56 $ PV B RT = 1 + $ ⇒ B = c Bo + ωB1 RT Pc V b g b g T bC H g = 369.9 K, P = 42 .0 atm From Table 5.3-1 ω bCH OHg = 0.559, ω bC H g = 0.152 From Table B.1 Tc CH3OH = 513.2 K, Pc = 78.50 atm c 3 8 c 3 0.422 Bo (CH 3OH) = 0.083 − Bo (C 3H 8 ) = 0.083 − B1 (C3 H8 ) = 0.139 − B(CH 3OH) = Tr 1.6 0.422 = 0.083 − = 0.083 − Tr 1.6 B1 (CH 3OH) = 0.139 − 3 e 8 0.422 e 513.2K 0.422 373.2K 369.9K 0172 . j 0.172 = 0.139 − Tr 4.2 b RTc Bo + ω B1 Pc e 513.2K 0.172 373.2K 369.9K j j 4 .2 = −0.619 = −0.333 1.6 0.172 = 0.139 − Tr 4.2 373.2K e j 1.6 373.2K 4 .2 = −0.516 = −0.0270 g 0.08206 L ⋅ atm 513.2K −0.619 − 0.559 0.516 = −0.4868 mol ⋅ K 78.5 atm RT B(C3 H8 ) = c Bo + ωB1 Pc c = b = Bmix = h 0.08206 L ⋅ atm 369.9 K −0.333 − 0.152 0.0270 = −0.2436 mol ⋅ K 42.0 atm b c i b g L mol g ∑∑ y y B i b j ij d ⇒B ij = 0.5 Bii + B jj j g g h L mol i Bij = 0.5 −0.4868 − 0.2436 L / mol = -0.3652 L / mol b gb gb g b gb gb g b gb gb Bmix = 0.30 0.30 −0.4868 + 2 0.30 0.70 −0.3652 + 0.70 0.70 −0.2436 = −0.3166 L / mol FG H g IJ K $2 PV mol ⋅ K $ 2 $ $ - B = 10.0 atm −V V − V + 0.3166 = 0 mix RT 373.2K 0.08206 L ⋅ atm $ $ = Solve for V:V b gb g = 2.70 L / mol, 0.359 L / mol 1 ± 1 - 4 0.326 mol / L 0.3166 L / mol b g 2 0.326 mol / L RT 0.08206 L ⋅ atm 3732 . K $ $ V = = 3.06 L / mol ⇒ V ideal = virial = 2.70 L / mol P mol ⋅ K 10.0 atm $ & = 2.70 L / mol & = Vn V 15.0 kmol CH 3OH / h 1000 mol 1 m 3 =135 m3 / h 0.30 kmol CH3OH / kmol 1 kmol 1000 L 5-38 http://librosysolucionarios.net 5.57 a. van der Waals equation: P = d i d RT a2 − 2 $ $ -b V V i $2 V $ - b ⇒ PV $ 3 − PV $ 2 b = RTV $ 2 − aV $ + ab Multiply both sides by V b g $ 3 + -Pb - RT V $ 2 + aV $ - ab = 0 PV c 3 = P = 50.0 atm b g b gb g c c 2 = -Pb - RT = −50.0 atm 0.0366 L / mol − 0.08206 c 1 = − a = 1.33 atm ⋅ L2 / mol 2 d ib L⋅ atm mol⋅ K hb223 Kg = −20.1 L ⋅ atm / mol g c 0 = −ab = - 1.33 atm ⋅ L2 / mol2 0.0366 L / mol = −0.0487 b. atm ⋅ L3 mol 3 RT 0.08206 L ⋅ atm 223 K $ V = = 0.366 L / mol ideal = P mol ⋅ K 50.0 atm c. T(K) 223 223 223 223 223 P(atm) 1.0 10.0 50.0 100.0 200.0 c3 c2 1.0 10.0 50.0 100.0 200.0 c1 -18.336 -18.6654 -20.1294 -21.9594 -25.6194 c0 1.33 1.33 1.33 1.33 1.33 -0.0487 -0.0487 -0.0487 -0.0487 -0.0487 V(ideal) V f(V) % error (L/mol) (L/mol) 18.2994 18.2633 0.0000 0.2 1.8299 1.7939 0.0000 2.0 0.3660 0.3313 0.0008 10.5 0.1830 0.1532 -0.0007 19.4 0.0915 0.0835 0.0002 9.6 d. 1 eq. in 1 unknown - use Newton-Raphson. $ =0 b1g ⇒ gd V$ i = 50.0V$ + b-20.1294 gV$ + b1.33gV-.0487 3 2 ∂g $ 2 − 40.259 V $ +1.33 = 150 V $ ∂V solve −g Eq. (A.2-14) ⇒ ad = −g ⇒ d = a Eq. (A.2-13) ⇒ a = $ (k +1) = V $ (k) + d Guess V $ (1) = V $ Then V ideal = 0.3660 L / mol . 1 2 3 4 $ (k) V 0.3660 0.33714 0.33137 0.33114 $ (k +1) V 0.33714 0.33137 0.33114 0.33114 converged 5-39 http://librosysolucionarios.net b d 5.58 C 3H 8 : TC = 369 .9 K Specific Volume PC = 42.0 atm 4.26 × 10 6 Pa 5.0 m3 44.09 kg 1 kmol 75 kg 1 kmol 10 3 mol i ω = 0.152 = 2.93 × 10 −3 m 3 mol Calculate constants a= 0.42747 b= 0.08664 d8.314 m ⋅ Pa mol ⋅ Ki b369.9 Kg 2 3 2 4.26 × 10 Pa 6 = 0.949 m6 ⋅ Pa mol 2 d8.314 m ⋅ Pa mol ⋅ Ki b369.9 Kg = 6.25 × 10 3 4.26 × 10 6 Pa b g b m = 0.48508 + 1.55171 0.152 − 0.15613 0.152 e α = 1 + 0.717 1 − 298.2 369.9 j 2 g 2 −5 m 3 mol = 0.717 = 115 . SRK Equation: d8.314 m ⋅ Pa mol ⋅ Kib298.2 Kg − d2.93 × 10 − 6.25 × 10 i m mol 2.93 × 10 d 115 . 0.949 m 6 ⋅ Pa mol 2 3 P= −3 −5 3 −3 d i i m3 mol 2.93 × 10 −3 + 6.25 × 10 −5 m 3 mol ⇒ P = 7.40 × 10 6 Pa ⇒ 7.30 atm P= Ideal: ib d (8.35 − 7.30) atm × 100% = 14.4% 7.30 atm Percent Error: TC = 304.2 K 5.59 CO2 : g 3 . K RT 8.314 m ⋅ Pa mol ⋅ K 2982 = = 8.46 × 10 6 Pa ⇒ 8.35 atm − 3 3 $V 2.93 × 10 m mol PC = 72.9 atm ω = 0.225 TC = 151.2 K PC = 48.0 atm ω = −0.004 $ = 35.0 L / 50.0 mol = 0.70 L mol P = 510 . atm , V Ar: Calculate constants (use R = 0.08206 L ⋅ atm mol ⋅ K ) CO 2 : a = 3.65 Ar: bg a = 1.37 f T = L2 ⋅ atm mol2 L ⋅ atm 2 mol2 , m = 0.826 , b = 0.0297 , m = 0.479 , b = 0.0224 e RT a − 1 + m 1 − T TC $ $ V $ +b V−b V d i j 2 e L , α = 1 + 0.479e1 − mol −P =0 Use E-Z Solve. Initial value (ideal gas): L L ⋅ atm Tideal = 51.0 atm 0.70 0.08206 = 4350 . K mol mol ⋅ K gFGH E - Z Solve ⇒ bT g b max CO2 IJ FG K H = 455.4 K , bT g max Ar j T 1512 . j L , α = 1 + 0.826 1 − T 304.2 mol IJ K = 431.2 K 5-40 http://librosysolucionarios.net 2 2 b g 5.60 O2 : TC = 154.4 K ; PC = 49.7 atm ; ω = 0.021 ; T = 208.2 K 65° C ; P = 8.3 atm ; m & = 250 kg h ; R = 0.08206 L ⋅ atm mol ⋅ K SRK constants: a = 1.38 L2 ⋅ atm mol2 ; b = 0.0221 L mol ; m = 0.517 ; α = 0.840 d i dV$RT− bi − V$ dVa$α+ bi − P = 0 =====> V$ = 2.01 L / mol $ = f V SRK equation: E-Z Solve & = ⇒V 5.61 W ∑F y 250 kg kmol h 32.00 kg = PCO 2 ⋅ A - W = 0 103 mol 2.01 L 1 kmol mol e = 15,700 L h where W = mg = 5500 kg 9.81 m s2 j = 53900 N PCO2 ⋅ A a. PCO2 = W A piston = 53900 N π 4 b0.15 mg 2 b. SRK equation of state: P = 1 atm = 30.1 atm 1.013 × 10 5 N / m2 RT αa − $ -b V $ V $ +b V d i d i For CO 2: Tc = 304 .2, Pc = 72.9 atm , ω = 0.225 a = 3.654 m 6 ⋅ atm / kmol2 , b = 0.02967 m 3 / kmol, m = 0.8263, α (25o C) = 1.016 e0.08206 jb298.2 Kg − b1.016ge3.654 j 301 . atm = e V$ - 0.02967 j V$ dV$ + 0.02967 i m 3 ⋅atm kmol⋅ K m 6 ⋅atm kmol2 m6 2 kmol m3 kmol $ = 0.675 m3 / kmol =====> V E-Z Solve b g Vbafter expansiong = 0.030 m V before expansion = 0.030 m 3 mC O2 = 3 b g b15. mg = 0.0565 m + π4 0.15 m 2 3 V 0.0565 m3 44.01 kg MW = = 3.68 kg 3 $V 0.675 m / kmol kmol mC O2 ( initially) = PV 1 atm 0.030 m 3 44.01 kg MW = = 0.0540 kg 3 RT 298.2 K kmol 0.08206 mkmol⋅atm ⋅K mCO2 (added) = 3.68 - 0.0540 kg = 3.63 kg 5-41 http://librosysolucionarios.net 5.61 (cont’d) c. W = 53,900 N V h add 3.63 kg CO2 n o (kmol) Vo (m3 ) 1 atm, 25o C ho ========> n (kmol) P (atm), 25o C ho d(m) d(m) Given T, Vo , h, find d Initial: n o = Vo RT Final: V = Vo + Vo + bP = 1g o πd 2 h 3.63 (kg) V , n = no + = o + 0.0825 4 44 (kg / kmol) RT πd 2 h 4 $ =V= V n Vo + 0.0825 RT W RT αa 53,900 RT αa P= = − ⇒ 2 = − $ $ $ V $ +b $ V $ +b A piston V - b V πd / 4 V - b V b1g i d i $ in b1g ⇒ one equation in one unknown. Solve for d . Substitute expression for V d 5.62 a. Using ideal gas assumption: Pg = nRT 35.3 lb m O 2 1 lb - mole 10.73 ft 3 ⋅ psia 509.7 o R − Patm = − 14.7 psia = 2400 psig V 32.0 lb m lb - mole ⋅ o R 2.5 ft 3 b. SRK Equation of state: P = RT αa − $ -b V $ V $ +b V d i d i 3 ft 3 $ = 2.5 ft 32.0 lb m / lb - mole = 2.27 V 35.3 lb m lb - mole For O2: Tc = 277.9 o R, Pc = 7304 . psi, ω = 0.021 a = 5203.8 ft 6 ⋅ psi ft 3 , b = 0 . 3537 , m = 0.518, α 50o F = 0.667 lb - mole 2 lb - mole d i e10.73 jd509.7 R i − b 0.667 ge52038. b2400 + 14.7g psi = V$ - 0.3537 $ dV $ + 0.3537 i V d i 3 ft ⋅ psi lb-mole⋅o R o ft 3 lb -mole $ = 2.139 ft 3 / lb - mole E - Z Solve ⇒ V V 2.5 ft 3 32.0 lb m mO 2 = MW = = 37.4 lb m 3 $ 2.139 ft / lb - mole lb - mole V 5-42 http://librosysolucionarios.net 6 ft ⋅ psi lb-mole2 j ft 6 2 lb-mole 5.62 (cont’d) Ideal gas gives a conservative estimate. It calls for charging less O2 than the tank can safely hold. c. 1. 2. 3. 4. Pressure gauge is faulty The room temperature is higher than 50°F Crack or weakness in the tank Tank was not completely evacuated before charging and O2 reacted with something in the tank 5. Faulty scale used to measure O2 6. The tank was mislabeled and did not contain pure oxygen. 5.63 a. SRK Equation of State: P = RT αa − $ $ $ +b V-b V V d i d i d id i $ i = PV $ dV $ - bidV $ + b i − RTV $ dV $ + b i + α ad V $ - bi = 0 fdV $ i = PV $ − RTV $ + dαa - b P - bRTiV $ - α ab = 0 fdV $ V $ -b V $ +b : ⇒ multiply both sides of the equation by V 3 2 2 b. Problem 5.63-SRK Equation Spreadsheet Species Tc(K) Pc(atm) ω a b m CO2 304.2 R=0.08206 m^3 atm/kmol K 72.9 0.225 3.653924 m^6 atm/kmol^2 0.029668 m^3/kmol 0.826312 f(V)=B14*E14^3-0.08206*A14*E14^2+($B$7*C14-$B$8^2*B14-$B$8*0.08206*A14)*E14-C14*$B$7*$B$8 T(K) 200 250 300 300 300 P(atm) 6.8 12.3 6.8 21.5 50.0 alpha 1.3370 1.1604 1.0115 1.0115 1.0115 V(ideal) 2.4135 1.6679 3.6203 1.1450 0.4924 V(SRK) 2.1125 1.4727 3.4972 1.0149 0.3392 f(V) 0.0003 0.0001 0.0001 0.0000 0.0001 c. E-Z Solve solves the equation f(V)=0 in one step. Answers identical to VSRK values in part b. d. REAL T, P, TC, PC, W, R, A, B, M, ALP, Y, VP, F, FP INTEGER I CHARACTER A20 GAS DATA R 10.08206/ READ (5, *) GAS WRITE (6, *) GAS 10 READ (5, *) TC, PC, W READ (5, *) T, P IF (T.LT.Q.) STOP 5-43 http://librosysolucionarios.net 5.63 (cont’d) R = 0.42747 *R*R/PC*TC*TC B = 0.08664 *R*TC/PC M = 0.48508 + W = 155171 . − W∗015613 . d c b b g g hi ALP = 1.+ M∗ 1 − T / TC ∗∗0.5 ∗∗2 . VP = R∗ T / P DO 20 I = 7 , 15 V = VP F = R * T/(V – B) – ALP * A/V/(V + B) – P FP = ALP * A * (2. * V + B)/V/V/(V + B) ** 2 – R * T/(V – B) ** 2. VP = V – F/FP IF (ABS(VP – V)/VP.LT.0.0001) GOTO 30 20 CONTINUE WRITE (6, 2) 2 FORMAT ('DID NOT CONVERGE') STOP 30 WRITE (6, 3) T, P, VP 3 FORMAT (F6.1, 'K', 3X, F5.1, 'ATM', 3X, F5.2, 'LITER/MOL') GOTO 10 END $ DATA CARBON 304.2 200.0 250.0 300.0 –1 72.9 6.8 12.3 21.5 0. DIOXIDE 0.225 RESULTS CARBON DIOXIDE 200.0 K 6.8 ATM 250.0 K 12.3 ATM 300.0 K 6.8 ATM 300.0 K 21.5 ATM 300.0 K 50.0 ATM 5.64 a. b. 2.11 LITER/MOL 1.47 LITER/MOL 3.50 LITER/MOL 1.01 LITER/MOL 0.34 LITER/MOL b g U| V |W Tr = 40 + 273.2 126.2 = 2.48 N2 : TC = 126.2 K ⇒ 40 MPa 10 atm PC = 33.5 atm Pr = = 11.78 33.5 atm 1.013 MPa He: TC = 5.26 K PC = 2.26 atm ⇒ Fig. 5.4-4 . U| g b5.26 + 8g = 552 V| P = 350 b2.26 + 8 g = 34.11 W b Tr = −200 + 2732 . r ↑ Newton’s correction 5-44 http://librosysolucionarios.net ⇒ z = 12 . Fig. 5.4-4 ⇒ z = 1.6 d i 5.65 a. ρ kg / m3 = = b. m (kg) 3 V (m ) = (MW)P RT 30 kg kmol 9.0 MPa 10 atm = 69 .8 kg m3 3 m ⋅ atm 465 K 0.08206 kmol ⋅ K 1.013 MPa UV P = 9.0 4.5 = 2.0 W Tr = 465 310 = 1.5 Fig. 5.4-3 ⇒ z = 0.84 r ρ= (MW)P 69.8 kg m3 = = 83.1 kg m 3 zRT 0.84 100 lb m CO2 1 lb - mole CO 2 = 2.27 lb - moles 44.01 lb m CO2 TC = 304.2 K (1600 + 14.7 ) psi 1 atm = 1.507 ⇒ Pr = P PC = 72.9 atm 14.7 psi PC = 72.9 atm 5.66 Moles of CO 2: V̂r = ˆ 10.0 ft 3 72.9 atm lb-mole ⋅°R 1k VP C = = 0.80 3 RTC 2.27 lb-moles 304.2 K 0.7302 ft ⋅ atm 1.8 °R Fig. 5.4-3: Pr = 1.507 , Vr = 0.80 ⇒ z = 0.85 PV 1614.7 psi 10.0 ft 3 lb - mole⋅° R 1 atm T= = = 779° R = 320 ° F 3 znR 0.85 2.27 lb - moles 0.7302 ft ⋅ atm 14.7 psi Pr1 Tr2 Pr2 V2 = V1 V2 = |UVz = 1.00 (Fig. 5.4 - 2) = 1 49.7 = 0.02 |W = 358 154.4 = 2.23 U| Vz = 1.61 b Fig. 5.4 - 4g = 1000 49.7 = 20.12|W Tr1 = 298 154.4 = 1.93 5.67 O : T = 154.4 K 2 C PC = 49.7 atm 1 2 z 2 T2 P1 z 1 T1 P2 127 m3 1.61 358 K 1 atm = 0.246 m3 h h 1.00 298 K 1000 atm b g Tr = 27 + 273.2 154.4 = 1.94 Pr1 = 175 49.7 = 3.52 ⇒ z1 = 0.95 5.68 O 2: TC = 154.4 K PC = 49.7 atm (Fig. 5.3-2) Pr2 = 1.1 49.7 = 0.02 ⇒ z 2 = 1.00 n1 − n 2 = F GH I JK 10.0 L V P1 P2 − = RT z1 z2 300.2 K FG H IJ K mol ⋅ K 175 atm 11 . atm − = 74.3 mol O2 0.08206 L ⋅ atm 0.95 1.00 5- 45 http://librosysolucionarios.net 5.69 a. b. $ = V = 50.0 mL 44.01 g = 440.1 mL / mol V n 5.00 g mol RT 82.06 mL ⋅ atm 1000 K P= $ = = 186 atm mol ⋅ K 440.1 mL / mol V For CO 2: Tc = 304.2 K, Pc = 72.9 atm T 1000 K = = 3.2873 Tc 304.2 K $ VP 4401 . mL 72.9 atm mol ⋅ K c Vr ideal = = = 1.28 RTc mol 304.2 K 82.06 mL ⋅ atm Tr = Figure 5.4-3: Vr ideal = 1.28 and Tr = 3.29 ⇒ z=1.02 P= c. zRT 1.02 82.06 mL ⋅ atm mol 1000 K = = 190 atm ˆ mol ⋅ K 440.1 mL V a = 3.654 × 10 6 mL2 ⋅ atm / mol2 , b = 29 .67 mL / mol, m = 0.8263, α (1000 K) = 0.1077 . ge3.654 × 10 j = 198 atm c82.06 hb1000 Kg − b01077 P= b440.1 - 29.67g 440.1b440.1+ 29.67 g 6 mL2 ⋅atm mol 2 mL ⋅atm mol ⋅ K 2 mL mol mL mol2 5.70 a. The tank is being purged in case it is later filled with a gas that could ignite in the presence of O 2 . b. Enough N2 needs to be added to make x O2 = 10 × 10 −6 . Since the O2 is so dilute at this condition, the properties of the gas will be that of N2 . Tc = 126.2 K, Pc = 33.5 atm, Tr = 2.36 n initial = n 1 = PV 1 atm 5000 L = = 204.3 mol L⋅ atm RT 0.08206 mol⋅ K 298.2 K FG 0.21 mol O IJ = 42.9 mol O H mol air K n O2 = 204.3 mol air n O2 n2 2 2 = 10 × 10 −6 ⇒ n 2 = 4.29 × 10 −6 mol $ = V 5000 L = 116 . × 10 -3 L / mol 4.29 × 10 6 mol $ . × 10 −3 L mol ⋅ K 33.5 atm $ ideal = VPc = 116 V = 3.8 × 10 −3 r RTc mol 0.08206 L ⋅ atm 126.2 K ⇒ not found on compressibility charts Ideal gas: P = RT 0.08206 L ⋅ atm 2982 . K = = 2.1 × 10 4 atm −3 $ mol ⋅ K 116 V . × 10 L / mol The pressure required will be higher than 2.1 × 10 4 atm if z ≥ 1, which fro m Fig. 5.3- 3 is very likely. ib d g n added = 4.29 × 106 − 204.3 ≅ 4.29 × 106 mol N 2 0.028 kg N 2 / mol = 1.20 × 105 kg N2 5- 46 http://librosysolucionarios.net 5.70 (cont’d) c. 143 . kmol N 2 143 . kmol N 2 n initial = 0.204 kmol y O2 = 0.21 kmol O 2 / kmol 1.43 kmol N 2 y1 1.43 kmol N 2 y2 Fig 5.4-2 N 2 at 700 kPa gauge = 7.91 atm abs. ⇒ Pr = 0.236, Tr = 2.36 =======> z = 0.99 n2 = P2 V 7.91 atm 5000 L = = 1.633 kmol L ⋅atm zRT 0.99 0.08206 mol 298.2 K ⋅K y1 = 0.21 0.204 y init n init = = 0.026 1.634 1634 . y2 = y 1n init n init = y init 1.634 1.634 b g FG H IJ K = 0.0033 Fy I FG n IJ ⇒ n = GH y JK = 4.8 ⇒ Need at least 5 stages H 1.634 K F n IJ ln G H 1.634K = 5b143 . kmol N gb28.0 kg / kmolg = 200 kg N ln n y n = y init 2 n init init init Total N 2 2 2 d. Multiple cycles use less N2 and require lower operating pressures. The disadvantage is that it takes longer. 5.71 & = MW a. m b. UV W Tc = 369.9 K = 665.8o R ⇒ Tr = 0.85 Pc = 42.0 atm ⇒ Pr = 0.16 & = 60.4 m F GH I JK & & & & PV SPV 44.09 lb m / lb - mol SPV SPV & = MW ⇒ Cost ($ / h) = mS = = 60 . 4 3 ft ⋅ atm RT RT T T 0.7302 lb-mol ⋅o R Fig. 5.4-2 ⇒ z = 0.91 & m & PV & ideal = ideal = 110 . m zT z ⇒ Delivering 10% more than they are charging for (undercharging their customer) 5- 47 http://librosysolucionarios.net 5.72 a. For N2 : Tc = 12620 . K = 227.16 o R, Pc = 335 . atm U| |V | |W 609.7 o R = 2.68 22716 . oR ⇒ z = 1.02 600 psia 1 atm Pr = = 1.2 33.5 atm 14.7 psia After heater: Tr = n& = 150 SCFM = 0.418 lb - mole / min 359 SCF / lb - mole . 0.418 lb - mole 10.73 ft 3 ⋅ psia 609.7 o R & = zRTn& = 102 V = 4 .65 ft 3 / min o P min 600 psia lb - mole ⋅ R b. tank = 0.418 lb - mole 28 lb m / lb - mole 60 min 24 h 7 days 2 weeks min 0.81 62.4 lb m / ft 3 h day week b g = 4668 ft 3 = 34,900 gal 5.73 a. For CO: Tc = 133.0 K, Pc = 34 .5 atm U| |V || W 300 K = 2.26 133.0 K 2514.7 psia 1 atm Pr1 = = 5.0 34.5 atm 14.7 psia Initially: Tr1 = n1 = Fig. 5.4-3 ⇒ z = 1.02 2514.7 psia 150 L 1 atm mol ⋅ K = 1022 mol 1.02 300 K 14.7 psia 0.08206 L ⋅ atm U| |V || W 300 K = 2 .26 133.0 K 2258.7 psia 1 atm Pr1 = = 4 .5 34.5 atm 14.7 psia After 60h: Tr1 = n2 = n1 − n2 = 1.73 mol / h 60 h n 2 = y 2 n air = y 2 t min = ⇒ z = 1.02 2259.7 psia 150 L 1 atm mol ⋅ K = 918 mol 1.02 300 K 14.7 psia 0.08206 L ⋅ atm n& leak = b. Fig. 5.4-3 PV 200 × 10 −6 mol CO 1 atm 30.7 m 3 1000 L = = 0.25 mol L ⋅atm RT mol air 0.08206 mol 300 K m3 ⋅K n2 0.25 mol = = 014 . h n& leak 1.73 mol / h ⇒ t min would be greater because the room is not perfectly sealed c. (i) CO may not be evenly dispersed in the room air; (ii) you could walk into a high concentration area; (iii) there may be residual CO left from another tank; (iv) the tank temperature could be higher than the room temperature, and the estimate of gas escaping could be low. 5- 48 http://librosysolucionarios.net 5.74 CH 4 : Tc = 190.7 K , Pc = 45.8 atm C 2 H6 : Tc = 305.4 K , Pc = 48.2 atm C 2H 4 : Tc = 2831 . K , Pc = 50.5 atm b gb g b gb g b gb g Pseudocritical pressure: P ′ = b0.20gb45.8g + b0.30gb48.2g + b 0.50gb50.5g = 48.9 atm U| b90 + 273.2gK = 1.34 Reduced temperature: T = |V ⇒ z = 0.71 2713 . K 200 bars 1 atm Reduced pressure: P = = 4.04 | |W 48.9 atm 1.01325 bars Mean molecular weight of mixture: M = b0.20g M + b0.30g M + b0.50gM = b0.20gb16.04g + b0.30gb30.07 g + b0.50gb28.05g Pseudocritical temperature: Tc′ = 0.20 1907 . + 0.30 305.4 + 0.50 2831 . = 2713 . K c r Figure 5.4 -3 r CH4 C2 H 6 C 2 H4 = 26.25 kg kmol V= znRT 0.71 10 kg 1 kmol = P 26.25 kg 0.08314 m3 ⋅ bar kmol ⋅ K UV W b90 + 273g K = 0.041 m (41 L) 3 200 bars b g b g b g 5.75 N 2 : Tc = 126.2 K, PC = 33.5 atm T ′ = 0.10 309.5 + 0.90 126.2 = 144.5 K c N 2 O: Tc = 309.5 K, PC = 71.7 atm Pc′ = 0.10 71.7 + 0.90 33.5 = 37.3 atm b g b b g g M = 0.10 44.02 + 0.90 28.02 = 29.62 b g n = 5.0 kg 1 kmol 29.62 kg = 0.169 kmol = 169 mol a. b g 37.3 atm $ = 30 L V r 169 mol 144.5 K P= b. U| mol ⋅ K V ⇒ z = 0.97b Fig. 5.4 - 3g = 0.56| 0.08206 L ⋅ atm W Tr = 24 + 273.2 144.5 = 2.06 0.97 169 mol 297.2 K 0.08206 L ⋅ atm mol ⋅ K 30 L |UV g |W = 133 atm ⇒ 132 atm gauge Pr = 273 37.3 = 7.32 ⇒ z = 1.14 Fig. 5.4 - 3 $ = 0.56 from a. V r b T= b g 273 atm 30 L mol ⋅ K = 518 K ⇒ 245° C 1.14 169 mol 0.08206 L ⋅ atm 5- 49 http://librosysolucionarios.net UV W b g b g b g g 5.76 CO: Tc = 133.0 K, Pc = 34.5 atm Tc′ = 0.60 133.0 + 0.40 33 + 8 = 96.2 K H 2 : Tc = 33 K, Pc = 12 .8 atm Pc′ = 0.60 34.5 + 0.40 12.8 + 8 = 29.0 atm b U| 1 atm V → z ≈ 1.01 = 4.69 | 14.7 psi W b g Tr = 150 + 273.2 96.2 = 4.4 Turbine inlet: Pr = Fig. 5.4-1 2000 psi 29.0 atm Turbine exit: Tr = 373.2 96.2 = 3.88 ⇒ z=1.0 Pr = 1 29.0 = 0.03 & Pin V z nRTin P z T ft 3 14.7 psia 1.01 423.2K in = in ⇒ Vin = Vout × out in in = 15,000 & Pout V z out n RTout Pin z out Tout min 2000 psia 1.00 373.2 out = 126 ft 3 / min If the ideal gas equation of state were used, the factor 1.01 would instead be 1.00 ⇒ −1% error UV W b g b g b g 5.77 CO: Tc = 133.0 K, Pc = 34.5 atm Tc′ = 0.97 133.0 + 0.03 304.2 = 138.1 K CO2 : Tc = 304.2 K, Pc = 72.9 atm Pc′ = 0.97 34.5 + 0.03 72.9 = 35.7 atm = 524.8 psi UV → z = 2014.7 524.8 = 3.8 W Initial: Tr = 303.2 138.1 = 2.2 Pr Fig. 5.4-3 1 b g = 0.97 Final: Pr = 1889.7 524.8 = 3.6 ⇒ z 1 = 0.97 Total moles leaked: n1 − n 2 = FG P − P IJ V = b2000 − 1875gpsi 0.97 H z z K RT 1 2 30.0 L 1 2 303 K 14.7 psi mol ⋅ K 1 atm 0.08206 L ⋅ atm = 10.6 mol leaked b g Moles CO leaked: 0.97 10.6 = 10.3 mol CO Total moles in room: Mole% CO in room = 24.2 m 3 10 3 L 273 K 1m 3 1 mol b g = 9734. mol 303 K 22.4 L STP 10.3 mol CO × 100% = 1.0% CO 9734 . mol 5- 50 http://librosysolucionarios.net CO + 2H 2 → CH 3OH 5.78 Basis: 54.5 kmol CH 3OH h n& 1 (kmol CO / h) 2n& 1 (kmol H 2 / h) 644 K 34.5 MPa Catalyst Bed Condenser CO, H 2 545 . kmol CH 3OH( l) / h a. n& 1 = 54.5 kmol CH 3OH 1 kmol CO react h 1 kmol CO fed 1 kmol CH 3OH b g 0.25 kmol CO react b = 218 kmol h CO g 2n& 1 = 2 218 = 436 kmol H 2 h ⇒ 218 + 436 = 654 kmol h (total feed) CO: Tc = 133.0 K Pc = 34.5 atm H 2 : Tc = 33 K Pc = 12.8 atm ⇓ Newton’s corrections b g b g 1 2 P ′ = b34.5g + b12.8 + 8g = 25.4 atm 3 3 T = 644 71.7 = 8.98 U| 34.5 MPa 10 atm V → z P = = 13.45| 24.5 atm 1.013 MPa W Tc′ = 1 2 1330 . + 33 + 8 = 71.7 K 3 3 c r Fig. 5.4 -4 1 = 1.18 r 644 K & feed = 1.18 654 kmol V h 34.5 MPa Vcat = 120 m 3 h 0.08206 m 3 ⋅ atm 1.013 MPa kmol ⋅ K 1 m3 cat 25,000 m3 / h 10 atm = 120 m 3 h = 0.0048 m 3 catalyst (4.8 L) b. CO, H 2 n& 4 kmol CO / h 2n& 4 kmol H 2 / h 54.5 kmol CH3OH (l) / h Overall C balance ⇒ n& 4 = 54.5 mol CO h Fresh feed: 54.5 kmol CO h 109.0 kmol H 2 h 163.5 kmol feed gas h 644 K & feed = 1.18 163.5 kmol V h 34.5 MPa 0.08206 m 3 ⋅ atm 1.013 MPa kmol ⋅ K 5- 51 http://librosysolucionarios.net 10 atm = 29.9 m 3 h 5.79 H 2 : Tc = ( 33.3 + 8) K = 41.3 K 1 - butene: Tc = 419.6 K Pc = (12.8 + 8 ) atm = 20.8 atm Pc = 39.7 atm Tc ' = 0.15(41.3 K) + 0.85(419.6 K) = 362.8 K UV P ' = 0.27 W Tr ' = 0.89 Pc ' = 0.15(20.8 atm) + 0.85(39.7 atm) = 36.9 atm Fig. 5.4-2 ⇒ z = 0.86 r & 0.86 35 kmol 0.08206 m3 ⋅ atm 323 K 1 h & = znRT V = = 133 . m3 / min P h kmol ⋅ K 10 atm 60 min F I FG IJ d i GH JK H K 3 2 & & m = u m A m 2 = u × πd ⇒ d = 4V = V min min 4 πu 5.80 CH4 : d i FG 100 cmIJ = 10.6 cm π b150 m / ming H m K 4 1.33 m 3 / min Tc = 190.7 K Pc = 45.8 atm C2 H4 : Tc = 283.1 K Pc = 50.5 atm C2 H6 : Tc = 305.4 K Pc = 48.2 atm U| V P ' = 0.15(45.8 atm) + 0.60(50.5 atm) + 0.25(48.2 atm) = 49.2 atm =====> P ' = 35 . |W T=90 o C Tc ' = 0.15(1907 . K) + 0.60(283.1 K) + 0.25(305.4 K) = 274.8 K ====> Tr ' = 1.32 P=175 bar c r 5.4-3 Fig. → z = 0.67 F I FG IJ d i FG GH JK H K H 3 & m = u m A m 2 = 10 m V s s s n& = 5.81 IJ FG 60 s IJ π b0.02 mg K H min K 4 2 = 0.188 m3 min & PV 175 bar 1 atm kmol ⋅ K 0.188 m 3 / min = = 1.63 kmol / min zRT 0.67 1.013 bar .08206 m3 ⋅ atm 363 K N2 : Tc = 126.2 K = 227.16o R Pc = 33.5 atm acetonitrile: Tc = 548 K = 986.4o R Pc = 47.7 atm Fig. 5.4-3 Tank 1 (acetonitrile): T1 = 550o F, P1 = 4500 psia ⇒ Tr1 = 1.02 Pr1 = 6.4 ⇒ z 1 = 0.80 ⇒ n& 1 = P1V1 306 atm 0.200 ft 3 = z 1RT1 0.80 1009 .7 o R lb - mole ⋅o R = 0.104 lb - mole 0.7302 ft 3 ⋅ atm Fig. 5.4-3 Tank 2 (N 2 ): T2 = 550 o F, P2 = 10 atm ⇒ Tr2 = 4.4 , Pr2 = 6.4 ⇒ z 2 = 1.00 ⇒ n& 2 = P2 V2 10.0 atm 2.00 ft 3 = z 2 RT2 1.00 1009.7 o R lb - mole ⋅o R = 0.027 lb - mole .7302 ft 3 ⋅ atm 5- 52 http://librosysolucionarios.net 5.81 (cont’d) FG 0.104IJ 986.4 R + FG 0.027 IJ 227.16 R = 830 R H 0.131K H 0.131K . F 0104 IJ 47.7 atm + FG 0.027 IJ 33.5 atm = 44.8 atm P '=G H 0.131K H 0.131 K Final: Tc ' = o o o o T=550 F→ Tr ' = 1.22 c dV$ i r P= = ideal $ ' Fig. 5.4-2 VP 2.2 ft 3 44.8 atm lb - mole ⋅o R c = = 1.24 ⇒ z = 0.85 RTc ' 0.131 lb - mole 830 o R 0.7302 ft 3 ⋅ atm znRT 0.85 0.131 lb - mole .7302 ft 3 ⋅ atm 1009.7 o R = = 37.3 atm V lb - mole ⋅o R 2.2 ft 3 5.82 3.48 g Ca H bO c , 26.8o C, 499.9 kPa n c (mol C), n H (mol H), n O (mol O) 1 L @483.4o C, 1950 kPa n p (mol) 0.387 mol CO2 / mol 0.258 mol O 2 / mol 0.355 mol H 2O / mol n O2 (mol O 2 ) 26.8o C, 499.9 kPa a. d i Volume of sample: 3.42 g 1 cm3 159 . g = 2.15 cm 3 O 2 in Charge: n O2 = d 1.000 L − 2.15 cm 3 10 −3 L km 3 L ⋅ atm mol ⋅ K 0.08206 i 499.9 kPa 1 atm 300 K 101.3 kPa = 0.200 mol O 2 Product 1.000 L 1950 kPa 1 atm L ⋅ atm = 0.310 mol product 0.08206 756.6 K 101.3 kPa mol ⋅ K Balances: np = b g b g b g O: 2 0.200 + n O = 0.310 2 0.387 + 2 0.258 + 0.355 ⇒ n O = 0.110 mol O in sample b g C: n C = 0.387 0.310 = 0.120 mol C in sample b gb g H: n H = 2 0.355 0.310 = 0.220 mol H in sample Assume c = 1 ⇒ a = 0.120 0.110 = 1.1 b = 0.220 0.110 = 2 Since a, b, and c must be integers, possible solutions are (a,b,c) = (11,20,10), (22,40,20), etc. b. b g b g MW = 12.01a + 1.01b + 16.0c = 12.01 1.1c + 1.01 2c + 16.0c = 31.23c 300 < MW < 350 ⇒ c = 10 ⇒ C11H 20 O10 5- 53 http://librosysolucionarios.net bg C5 H10 + 5.83 Basis: 10 mL C5H10 l charged to reactor 15 O 2 → 5CO2 + 5H 2O 2 bg 10 mL C 5H10 l n1 (mol C5H10 ) n 2 (mol air) 0.21 O 2 0.79 N 2 27 o C, 11.2 L, Po (bar) a. n 3 (mol CO 2 ) n 4 mol H 2 O(v) n 5 (mol N 2 ) 75.3 bar (gauge), Tad b bg 10.0 mL C5H 10 l n1 = Stoichiometric air: n 2 = Po = 0.745 g 1 mol mL 70.13 g g d Ci o = 0.1062 mol C5 H 10 0.1062 mol C5H10 7.5 mol O2 1 mol air 1 mol C 2 H10 0.21 mol O 2 = 3.79 mol air nRT 3.79 mol 0.08314 L ⋅ bar 300K = = 8.44 bars V 11.2 L mol ⋅ K (We neglect the C5H 10 that may be present in the gas phase due to evaporation) Initial gauge pressure = 8.44 bar − 1 bar = 7.44 bar b. U || |V || |W 5 mol CO2 = 0.531 mol CO 2 1 mol C 5 H10 0.531 mol CO 2 1 mol H 2 O n4 = = 0.531 mol H 2 O ⇒ 4.052 mol product gas 1 mol CO 2 n 5 = 0.79 3.79 = 2.99 mol N 2 n3 = 0.1062 mol C5 H 10 b g CO 2 : y 3 = 0.531 / 4.052 = 0.131 mol CO 2 / mol, Tc = 304.2 K Pc = 72.9 atm H 2 O: y 4 = 0.531 / 4.052 = 0.131 mol H 2 O / mol, N2: y 5 = 2.99 / 4.052 = 0.738 mol N 2 / mol, Tc = 647.4 K Pc = 218.3 atm Tc = 126.2 K Pc = 33.5 atm Tc ' = 0.131(304.2 K) + 0.131(647.4 K) + 0.738(126.2 K) = 217.8 K Pc ' = 0.131(72.9 atm) + 0.131(218.3 atm) + 0.738(33.5 atm) = 62.9 atm ⇒ Pr ' = 1.21 $ mol ⋅ K $ ideal = VPc ' = 11.2 L 62.9 atm V = 9.7 ⇒ z ≈ 1.04 (Fig. 5.4 - 3) r RTc ' 4.052 mol 217 .8 K .08206 L ⋅ atm T= b g 75.3 + 1 bars 11.2 L PV mol ⋅ K = = 2439 K - 273= 2166o C znR 1.04 4.052 mol 0.08314 L ⋅ bar 5- 54 http://librosysolucionarios.net CHAPTER SIX 6.1 a. AB: Heat liquid - -V ≈ constant BC: Evaporate liquid - -V increases, system remains at point on vapor - liquid equilibrium curve as long as some liquid is present. T = 100 o C. CD: Heat vapor - -T increas es, V increas es . b. Point B: Neglect the variation of the density of liquid water with temperature, so ? = 1.00 g/mL and VB = 10 mL Point C: H2 O (v, 100°C) n= 10 mL 1.00 g 1 mol = 0.555 mol mL 18.02 g PCVC = nRTC ⇒ VC = 6.2 nRTC 0.555 mol 0.08206 L ⋅ atm 373 K = = 17 L 1 atm mol ⋅ K PC a. Pfinal = 243 mm Hg . Since liquid is still present, the pressure and temperature must lie on the vapor-liquid equilibrium curve, where by definition the pressure is the vapor pressure of the species at the system temperature. b. Assuming ideal gas behavior for the vapor, (3.000 - 0.010) L mol ⋅ K 243 mm Hg 1 atm 119.39 g m(vapor) = = 4.59 g (30 + 273.2) K 0.08206 L ⋅ atm 760 mm Hg mol m(liquid) = 10 mL 1.489 g mL = 14.89 g m total = m(vapor) + m(liquid) = 19.5 g x vapor = 6.3 a. 4.59 = 0.235 g vapor / g total 19 .48 log10 p ∗ = 7.09808 − 1238.71 = 2.370 ⇒ p * = 10 2.370 = 2345 . mm Hg 45 + 217 d i * * ∆H$ v 1 ∆H$ v ln p2 / p1 b. ln p = − + B⇒− = 1 1 = R T R T2 − T1 ∗ B = ln( p1* ) + b g ln 760 / 118.3 b 1 77 .0 + 273.2 K g −b ∆H$ v / R 4151 K = ln 118.3 + = 18.49 T1 29.5 + 273.2 K b g b g 6-1 http://librosysolucionarios.net 1 29 .5+ 273.2 K g = −4151K 6.3 (cont’d) ln p ∗ (45 o C) = − b 4151 + 18.49 ⇒ p ∗ = 231.0 mm Hg 45 + 273.2 g 231.0 − 234.5 × 100% = −1.5% error 2345 . c. p∗ = FG 1183. − 760 IJ b45 − 29.5g + 118.3 = 327.7 mm Hg H 29.5 − 77 K 327.7 − 234.5 × 100% = 39.7% error 2345 . b g 1 (rect. scale) on semilog paper T + 273.2 ⇒ straight line: slope = −7076 K , intercept = 21.67 Plot p ∗ log scale vs b g ln p∗ mm Hg = b 7076 K ∆ Hv = 7076K ⇒ ∆ H$ v = R g 8.314 J 1 kJ mol ⋅ K 10 3 J OP Q = 58.8 kJ mol ln p* = A/T(K) + B p*(mm Hg) 5 20 40 100 400 760 1/T(K) 0.002834 0.002639 0.002543 0.002410 0.002214 0.002125 ln(p*) p*(fitted) 1.609 5.03 2.996 20.01 3.689 39.26 4.605 101.05 5.991 403.81 6.633 755.13 T( oC) p*(fitted) 50 0.80 80 5.12 110 24.55 198 760.00 230 2000.00 Least confidence (Extrapolated) 7 6 5 4 3 2 1 0.003 0.0026 0.0024 0.0022 0 y = -7075.9x + 21.666 0.002 T( oC) 79.7 105.8 120.0 141.8 178.5 197.3 ln(p*) 6.5 LM N −7076 −7076 + 2167 . ⇒ p∗ mm Hg = exp + 2167 . o T ( C) + 2732 . T ( C) + 2732 . o 0.0028 6.4 1/T 6-2 http://librosysolucionarios.net 6.6 a. T(°C) 1/T(K) 42.7 58.9 68.3 77.9 88.6 98.3 105.8 3.17×10 -3 3.01×10 -3 2.93×10 -3 2.85×10 -3 2.76×10 -3 2.69×10 -3 2.64×10 -3 p * (mm Hg) =758.9 + hright -hleft 34.9 78.9 122.9 184.9 282.9 404.9 524.9 b. Plot is linear, ln p∗ = − ∆H$ v −51438 . K + B ⇒ ln p∗ = + 19 .855 RT T At the normal boiling point, p∗ = 760 mmHg ⇒ Tb = 116° C 8.314 J 5143.8 K 1 kJ ∆ H$ v = = 42.8 kJ mol mol ⋅ K 10 3 J c. Yes — linearity of the ln p∗ vs 1 / T plot over the full range implies validity. 6.7 a. b g ln p∗ = a T + 273.2 + b ⇒ y = ax + b b g y = ln p∗ ; x = 1 T + 273.2 Perry' s Handbook, Table 3 - 8: T1 = 39.5° C , p1 ∗ = 400 mm Hg ⇒ x 1 = 31980 . × 10 − 3 , y1 = 5.99146 T2 = 56.5° C , p 2 ∗ = 760 mm Hg ⇒ x 2 = 3.0331 × 10 −3 , y 2 = 6.63332 T = 50° C ⇒ x = 3.0941 × 10 −3 x − x1 y = y1 + y 2 − y1 = 6.39588 ⇒ p∗ 50° C = e6.39588 = 599 mm Hg x 2 − x1 F GH Ib JK g b g b. 50° C = 122° F c. 6.8 Cox Chart ⇒ p∗ = 12 psi 760 mm Hg log p∗ = 7.02447 − 1161.0 = 2.7872 ⇒ p∗ = 10 2.7872 = 613 mm Hg 50 + 224 b 14.6 psi g Estimate p ∗ 35° C : Assume ln p∗ = = 625 mm Hg a + b , interpolate given data. T K b g U| ln p∗ b35° Cg = − 6577.1 + 25.97 = 4.630 35 + 273.2 − − |V ⇒ a 6577.1 b = ln p ∗− = lnb50g + = 25.97 | p∗ b35° Cg = e = 102.5 mm Hg |W T 25 + 273.2 a= b g= ln p 2 ∗ p1 ∗ 1 T2 1 T1 b g ln 200 50 1 45+ 273.2 1 25 + 273.2 = − 65771 . 4 .630 1 1 6-3 http://librosysolucionarios.net 6.8 (cont’d) Moles in gas phase: n = 150 mL b 273 K 102.5 mm Hg 1L 1 mol 3 35 + 273.2 K 760 mm Hg 10 mL 22.4 L STP g b g = 8.0 × 10 −4 mol 6.9 m = 2 π = 2 ⇒ F = 2 + 2 − 2 = 2 . Two intensive variable values (e.g., T & P) must be specified to determine the state of the system. 1209.6 b. log p∗ MEK = 6.97421 − = 2.5107 ⇒ p∗ MEK = 10 2.5107 = 324 mm Hg 55 + 216. Since vapor & liquid are in equilibrium p MEK = p∗ MEK = 324 mm Hg a. ⇒ y MEK = p MEK / P = 324 1200 = 0.27 > 0115 . The vessel does not constitute an explosion hazard. 6.10 a. The solvent with the lower flash point is easier to ignite and more dangerous. The solvent with a flash point of 15°C should always be prevented from contacting air at room temperature. The other one should be kept from any heating sources when contacted with air. b. At the LFL, y M = 0.06 ⇒ p M = p *M = 0.06 × 760 mm Hg = 45.60 mm Hg 1473.11 Antoine ⇒ log 10 45.60 = 7.87863⇒ T = 6.85° C T + 230 c. The flame may heat up the methanol-air mixture, raising its temperature above the flash point. 6.11 a. At the dew point, p ∗ ( H 2 O) = p( H 2 O) = 500 × 0.1= 50 mm Hg ⇒ T = 38.1° C from Table B.3. b. VH2 O = 30.0 L 273 K 500 mm Hg 1 mol 0.100 mol H2 O 18.02 g 1 cm3 =134 . cm3 (50 + 273) K 760 mm Hg 22.4 L (STP) mol mol g c. (iv) (the gauge pressure) 6-4 http://librosysolucionarios.net 6.12 a. b g = 110°C , p ∗ = 755 mm Hg − b577 − 222 gmm Hg = 400 mm Hg T1 = 58.3° C , p1 ∗ = 755 mm Hg − 747 − 52 mm Hg = 60 mm Hg T2 2 ln p∗ = a= a +b T K b g b g= b ln p 2 ∗ p1 ∗ 1 T2 − b = ln p1 ∗− 1 T1 g ln 400 60 1 110+ 273.2 − 1 58.3 + 273 .2 = −46614 . b g a 4661.4 = ln 60 + = 18.156 T1 58.3 + 273.2 T=130o C=403.2 K −46614 . + 18.156 T ln p∗ 130° C = 6.595 ⇒ p∗ 130° C = e 6.595 = 7314 . mm Hg ln p∗ = b b. g b g Basis: 100 mol feed gas CB denotes chlorobenzene. n 1 mol @ 58.3°C, 1atm y1 (mol CB(v)/mol) (sat’d) (1-y1 ) (mol air/mol) 100 mol @ 130°C, 1atm y0 (mol CB(v)/mol) (sat’d) (1-y0 ) (mol air/mol) n 2 mol CB (l) b g Saturation condition at inlet: y o P = p CB ∗ 130° C ⇒ y o = 731 mm Hg = 0.962 mol CB mol 760 mm Hg b 60 mm Hg = 0.0789 mol CB mol g 760 mm Hg Air balance: 100b1 − y g = n b1 − y g ⇒ n = b100gb1 − 0.962g b1 − 0.0789g = 4.126 mol Total mole balance: 100 = n + n ⇒ n = 100 − 4.126 = 95.87 mol CBbl g Saturation condition at outlet: y 1 P = p CB ∗ 58.3° C ⇒ y 1 = o 1 1 1 % condensation: b 2 1 2 95.87 mol CB condensed × 100% = 99 .7% 0.962 × 100 mol CB feed g c. Assumptions: (1) Raoult’s law holds at initial and final conditions; (2) CB is the only condensable species (no water condenses); (3) Clausius-Clapeyron estimate is accurate at 130°C. 6.13 T = 78° F = 25.56° C , Pbar = 29.9 in Hg = 759.5 mm Hg , hr = 87% b y H 2O P = 0.87 p∗ 25.56° C g Table B.3 yH 2O = 0.87 ( 24.559 mm Hg) 759.5 mm Hg ( ) Dew Point: p ∗ Tdp = yH2 O P = 0.0281( 759.5 ) = 21.34 mm Hg 6-5 http://librosysolucionarios.net = 0.0281 mol H 2 O mol air Table B.3 Tdp = 23.2 °C 6.13 (cont’d) 0.0281 = 0.0289 mol H2 O mol dry air 1 − 0.0281 0.0289 mol H2O 18.02 g H2O mol dry air ha = = 0.0180 g H2 O g dry air mol dry air mol H2O 29.0 g dry air hm = hp = hm p ∗ ( 25.56 °C ) P − p ∗ ( 25.56 °C ) ×100% = 0.0289 × 100 = 86.5% 24.559 [759.5 − 24.559 ] 6.14 Basis I : 1 mol humid air @ 70° F (21.1° C), 1 atm, h r = 50% b h r = 50% ⇒ y H 2 O P = 0.50 p H 2 O ∗ 21.1° C Table B.3 Mass of air: y H 2O = g 0.50 × 18.765 mm Hg mol H 2 O = 0.012 760.0 mm Hg mol 0.012 mol H 2 O 18.02 g 0.988 mol dry air 29.0 g + = 28.87 g 1 mol 1 mol Volume of air: 1 mol b g b273.2 + 21.1gK = 24.13 L 22.4 L STP 1 mol 273.2K 28.87 g = 1196 . g L 24.13 L Basis II : 1 mol humid air @ 70° F (21.1° C), 1 atm, hr = 80% Density of air = b h r = 80% ⇒ y H 2 O P = 0.80 p H 2 O ∗ 21.1° C Table B.3 Mass of air: y H 2O = 0.80 × 18.765 mm Hg mol H 2 O = 0.020 760.0 mm Hg mol 0.020 mol H 2 O 18.02 g 1 mol Volume of air: Density of air = 1 mol g + 0.980 mol dry air 29.0 g 1 mol b g b273.2 + 21.1gK = 24.13 L 22.4 L STP 1 mol 273.2K 28.78 g = 1193 . g L 24.13 L Basis III: 1 mol humid air @ 90° F (32.2° C), 1 atm, h r = 80% b h r = 80% ⇒ y H2 O P = 0.80 p H2 O ∗ 32.2° C Table B.3 y H 2O = g 0.80 × 36.068 mm Hg mol H 2 O = 0.038 760.0 mm Hg mol 6-6 http://librosysolucionarios.net = 28.78 g 6.14 (cont’d) Mass of air: 0.038 mol H 2 O 18.02 g Volume of air: Density = 1 mol + 0.962 mol dry air 29.0 g 1 mol = 28.58 g b g b 273.2 + 32.2g K = 25.04 L 1 mol 22.4 L STP 1 mol 273.2K 28.58 g = 1141 . g L 25.04 L Increase in T ⇒ increase in V ⇒ decrease in density Increase in hr ⇒ more water (MW = 18), less dry air (MW = 29) ⇒ decrease i n m ⇒ decrease in density Since the density in hot, humid air is lower than in cooler, dryer air, the buoyancy force on the ball must also be lower. Therefore, the statement is wrong. b 6.15 a. h r = 50% ⇒ y H2 O P = 0.50 p H2 O ∗ 90° C Table B.3 y H 2O = g 0.50 × 52576 . mm Hg = 0.346 mol H 2 O / mol 760.0 mm Hg b g d i Dew Point: y H2 O p = p∗ Tdp = 0.346 760 = 262.9 mm Hg Table B.3 Tdp = 72.7 ° C Degrees of Superheat = 90 − 72.7 = 17.3° C of superheat b. Basis: 1 m3 feed gas 10 3 L 273K m 3 363K mol b g = 33.6 mol 22.4 L STP n 1 mol @ 25°C, 1atm y1 (mol H2 O (v)/mol) (sat’d) (1-y1 ) (mol air/mol) 33.6 mol @ 90°C, 1atm 0.346 H2 O mol /mol 0.654 mol air/mol n 2 mol H2 O (l) Saturation Condition: y 1 = b p *H 2O 25° C g = 23.756 = 0.0313 mol H O mol P 760 Dry air balance: 0.654 (33.6 ) = n1 (1 − 0.0313 ) ⇒ n1 = 22.7 mol 2 Total mol balance: 33.6=22.7+n2 ⇒ n2 = 10.9 mol H 2 O condense/m 3 b g c. y H 2O P = p∗ 90° C ⇒ P = p * ( 90° C) 525.76 mmHg = = 1520 mm Hg = 2.00 atm yH 2 O 0.346 6-7 http://librosysolucionarios.net 6.16 T = 90° F = 32.2° C , p = 29.7 in Hg = 754.4 mm Hg , hr = 95% Basis: 10 gal water condensed/min n&condensed = 1 ft 3 10 gal H2O min 62.43 lb m 7.4805 gal ft 18.02 lb m y2 (lb-mol H2 O (v)/lb-mol) (sat’d) (1-y2 ) (lb-mol DA/lb-mol) 40o F (4.4o C), 754 mm Hg y1 (lb-mol H2 O (v)/lb-mol) (1-y1 ) (lb-mol DA/lb-mol) h r =95%, 90o F (32.2o C), 29.7 in Hg (754 mm Hg) 4.631 lb-moles H2 O (l)/min b g 95% hr at inlet: y H2 O P = 0.95 p ∗ 32.2° C y H 2O = = 4.631 lb-mole/min n& 2 (lb - moles / min) V&1 (ft 3 / min) n&1 (lb - moles / min) Table B.3 1 lb-mol 3 b g 0.95 36.068 mm Hg = 0.045 lb - mol H 2O lb - mol 754.4 mm Hg Raoult's law: y2 P = p* ( 4.4° C) Table B.3 y2 = 6.274 = 0.00817 lb-mol H 2O lb-mol 754.4 Mole balance: n&1 = n&2 + 4.631 n&1 = 124.7 lb-moles/min ⇒ Water balance: 0.045 n&1 = 0.00817 n&2 + 4.631 n& 2 = 120.1 lb-moles/min Volume in: V& = 124.7 lb-moles 359 ft 3 (STP) (460+90) oR min lb-moles o 492 R 760 mm Hg 754 mm Hg = 5.04 ×104 ft 3 /min 6.17 a. Assume no water condenses and that the vapor at 15°C can be treated as an ideal gas. p final = 760 mm Hg (15 + 273) K (200 + 273) K = 462.7 mm Hg ⇒ ( p H2 O ) final = 0.20 × 462.7 = 92.6 mm Hg p * (15° C) = 12.79 mm Hg < p H2 O . Impossible ⇒ condensation occurs. Tfinal 288 K = ( 0.80 × 760) mm Hg × = 370.2 mm Hg Tinitial 473 K = 370.2 + 12.79 = 383 mm Hg ( p air ) final = ( p air ) initial P = p H 2 O + p air b. Basis: 1 L 273 K 473 K mol 22.4 L (STP) = 0.0258 mol 6-8 http://librosysolucionarios.net 6.17 (cont’d) n 1 mol @ 15°C, 383.1 mm Hg y1 (mol H2 O (v)/mol) (sat’d) (1-y1 ) (mol dry air/mol) 0.0258 mols @ 200°C, 760 mm Hg 0.20 H2 O mol /mol 0.80 mol air/mol n 2 mol H2 O (l) Saturation Condition: y1 = b b p *H2 O 15° C P g = 12.79 mm Hg = 0.03339 mol H O mol 2 383.1 mm Hg g b g Dry air balance: 0.800 0.0258 = n1 1 − 0.03339 ⇒ n1 = 0.02135 mol c. Total mole balance: 0.0258 = 0.02135 + n 2 ⇒ n 2 = 0.00445 mol Mass of water condensed = 0.00445 mol 18.02 g mol = 0.0802 g 6.18 Basis: 1 mol feed 3 n2 (mol), 15.6°C, 3 atm y 2 (mol H 2O (v)/mol)(sat'd) (1 – y 2) (mol DA/mol) V1(m ) 1 mol, 90°C, 1 atm 0.10 mol H O 2 (v)/mol 0.90 mol dry air/mol heat 100°C, 3 atm n2 (mol) 3 V2(m ) n3 (mol) H 2O( l), 15.6°C, 3 atm Saturation: y2 = b p *H2 O 15.6° C g Table B.3 P y2 = bg b g H O mol balance: 0.10b1g = 0.00583b 0.9053g + n 13.29 mm Hg atm 3 atm 760 mm Hg = 0.00583 Dry air balance: 0.90 1 = n 2 1 − 0.00583 ⇒ n 2 = 0.9053 mol 2 Fraction H 2 O condensed: hr = 3 ⇒ n3 = 0.0947 mol 0.0947 mol condensed = 0.947 mol condense mol fed 0100 . mol fed b g y2 P × 100% 0.00583 3 atm = × 100% = 1.75% p∗ 100° C 1 atm b g 6-9 http://librosysolucionarios.net 6.18 (cont’d) b g V2 = 0.9053 mol 22.4 L STP V1 = 1 mol 22.4 L STP 273K 3 atm 10 L 1 m3 363K = 2 .98 × 10 −2 m 3 feed air @ 90° C 273K 10 3 L mol = 9.24 × 10 −3 m 3 outlet air @ 100° C 3 mol b g 1 m3 373K 1 atm V2 9.24 × 10 −3 m 3 outlet air = = 0.310 m 3 outlet air m 3 feed air −2 3 V1 2.98 × 10 m feed air 25 L 1.00 kg 6.19 Liquid H 2 O initially present: Saturation at outlet: y H2 O = ⇒ b P Evaporation Rate: b g 15 L STP min 23.76 mm Hg = 0.0208 mol H 2 O mol air 1.5 × 760 mm Hg 1 mol = 0.670 mol dry air min 22.4 L STP b g 0.670 mol dry air 0.0212 mol H 2 O min mol dry air Complete Evaporation: 1.387 kmol 10 3 mol 1h 0.0142 mol 60 min = 1628 h b67.8 daysg 7.069 × 103 ft 3 7.481 gal π ⋅ 302 ⋅ (18 − 8) = = 5.288 × 104 gal / day 4 day ft 3 5.288 × 10 4 gal 1 ft 3 0.703 × 62.43 lb m day 7.481 gal ft 3 ( SG ) C8 H18 = 0.703 ⇒ 0.703 × 62 .43 lb m = 0.0142 mol H 2 O min min kmol 6.20 a. Daily rate of octane use = ∆p = g= = 1.387 kmol H 2 O l 18.02 kg 0.0208 = 0.0212 mol H 2 O mol dry air 1 − 0.0208 Flow rate of dry air: b. L p *H2 O 25° C bg 1 kmol = 3.10 × 10 5 lb m C 8 H 18 / day 32.174 ft ft 3 s2 c. Table B.4: p *C8 H18 (90 o F) = 1 lb f lb ⋅ ft 32.174 m2 s 20.74 mm Hg (18 - 8) ft 14.696 psi 29.921 in Hg 14.696 lb f / in 2 = 6.21 in Hg = 0.40 lb f / in 2 = p octane = y octane P 760 mm Hg Octane lost to environment = octane vapor contained in the vapor space displaced by liquid during refilling. Volume: 5.288 × 10 4 gal 1 ft 3 7.481 gal = 7069 ft 3 6-10 http://librosysolucionarios.net 6.20 (cont’d) pV (16.0 + 14.7) psi 7069 ft 3 = = 36.77 lb - moles RT 10.73 ft 3 ⋅ psi / (lb - mole ⋅o R) (90 + 460) o R pC H 0.40 psi Mole fraction of C 8 H18 : y = 8 18 = = 0.0130 lb - mole C 8 H18 / lb - mole P (16.0 + 14.7) psi Total moles: n = Octane lost = 0.0130( 36.77 ) lb - mole = 0.479 lb - mole (= 55 lb m = 25 kg) d. A mixture of octane and air could ignite. * * 6.21 a. Antoine equation ⇒ p tol (85o F) = p tol (29.44 o C) = 35.63 mmHg = p tol Mole fraction of toluene in gas: y = p tol 35.63 mmHg = = 0.0469 lb - mole toluene / lb - mole P 760 mmHg yPV RT 0.0469 lb - mole tol Toluene displaced = yntotal = = 1 atm ft ⋅ atm 3 lb - mole 0.7302 lb - mole ⋅ o R 1 ft 3 900 gal (85 + 460) o R 7.481 gal 92.13 lb m tol lb - mole = 1.31 lb m toluene displaced b. Basis: 1mol 0.0469 mol C7 H8 (v)/mol 0.9531 mol G/mol n V (mol) y (mol C7 H8 (v)/mol) (1-y) (mol G/mol) T(o F), 5 atm Assume G is noncondensable n L [mol C7 H8 (l)] 90% of C7 H8 in feed 90% condensation ⇒ n L = 0.90( 0.0469 )(1) mol C 7 H 8 = 0.0422 mol C 7 H 8 ( l ) Mole balance: 1 = nV + 0.0422 ⇒ nV = 0.9578 mol Toluene balance: 0.0469(1) = y ( 0.9578 ) + 0.0422 ⇒ y = 0.004907 mol C 7 H 8 / mol Raoult’s law: * p tol = yP = (0.004907 )(5 × 760) = 18.65 mmHg = p tol (T ) Antoine equation: T= B − C ( A − log 10 p* ) 1346.773 − 219.693(6.95805 − log10 18.65) = = 17.11o C=62.8 o F A − log10 p * 6.95805 − log10 18.65 6-11 http://librosysolucionarios.net 6.22 a. Molar flow rate: n& = & VP 100 m 3 kmol ⋅ K 2 atm = = 6.53 kmol / h -3 3 RT h 82.06 × 10 m ⋅ atm (100 + 273) K b. Antoine Equation: 1175.817 = 3.26601 100+224.867 ⇒ p * = 1845 mm Hg log 10 p *Hex (100°C)=6.88555- p Hex = y Hex ⋅ P = 0.150(2.00) atm 760 mm Hg atm p *Hex (T ) = 228 mm Hg ⇒ log10 228=6.88555- c. 6.53 kmol/h 0.15 C6 H14 (v) 0.85 N2 = 228 mm Hg < p *Hex ⇒ not saturated 1175.817 = 2.35793 ⇒ T = 34.8°C T+224.867 n V (kmol/h) y (kmol C6 H14 (v)/kmol), sat’d (1-y) (kmol N2 /kmol) T (o C), 2 atm n L (kmol C6 H14 (l)/h) 80% of C6 H14 in feed 80% condensation: n L = 0.80(0.15)(6.53 kmol / h) = 0.7836 kmol C 6 H 14 ( l) / h Mole balance: 6.53 = nV + 0.7836 ⇒ nV = 5.746 kmol / h Hexane balance: 0.15(6.53) = y (5.746 ) + 0.7836 ⇒ y = 0.03409 kmol C 6 H 14 / kmol p Hex = yP = ( 0.03409)(2 × 760 mmHg) = 51.82 mmHg = p *Hex (T ) 1171530 . Antoine equation: log10 5182 . = 6.87776 − ⇒ T = 2.52 o C T + 224.366 Raoult’s law: 6.23 Let H=n-hexane a. n& 0 ( kmol / min) y 0 (kmol H(v)/kmol (1-y 0 ) (kmol N2 /kmol) 80o C, 1 atm, 50% rel. sat’n Condenser n&1 ( kmol / min) 0.05 kmol H(v)/kmol, sat’d 0.95 kmol N2 /kmol T (o C), 1 atm 1.50 kmol H(l)/min 50% relative saturation at inlet: y o P = 0.500 p *H (80 o C) Table B.4 yo = (0.500)(1068 mmHg) = 0.703 kmolH / kmol 760 mmHg Saturation at outlet: 0.05 P = p *H (T1 ) ⇒ p *H ( T1 ) = 0.05(760 mmHg) = 38 mmHg 6-12 http://librosysolucionarios.net 6.23 (cont’d) Antoine equation: log 10 38 = 6.88555 − 1175.817 ⇒ T1 = −3.26o C T1 + 224.867 UV ⇒ RSn& = 2.18 kmol / min = 0.95n& W Tn& = 0.682 kmol / min Mole balance: n&0 = n&1 + 150 . N 2 balance: (1 − 0.703)n&0 0 1 1 (0.95)0.682 kmol 22.4 m 3 (STP ) N2 volume: V&N 2 = = 14.5 SCMM min kmol b. Assume no condensation occurs during the compression 2.18 kmol/min 0.703 H(v) 0.297 N2 80o C, 1 atm Compressor V&1 (m3 / min) 0.682 kmol/min 0.05 H(v), sat’d 0.95 N2 T1 (o C), 10 atm V&0 ( m 3 / min ) 2.18 kmol/min 0.703 H(v) 0.297 N2 T0 (o C), 10 atm, 50% R.S. Condenser 1.5 kmol H(l)/min 50% relative saturation at condenser inlet: 0.500 p *H (T0 ) = 0.703(7600 mmHg) ⇒ p *H (T0 ) = 1.068 × 10 4 mmHg Saturation at outlet: 0.050(7600 mmHg) = 380 mmHg = p *H (T1 ) Volume ratio : Antoine Antoine T0 = 187 o C T1 = 48.2° C V&1 n1R T1 / P n1 (T1 + 273.2) 0.682 kmol/min 321 K m 3 out = = = × = 0.22 3 V&0 n0 RT0 / P n0 (T0 + 273.2) 2.18 kmol/min 460 K m in c. The cost of cooling to −3.24 o C (installed cost of condenser + utilities and other operating costs) vs. the cost of compressing to 10 atm and cooling at 10 atm. 6.24 a. Maximum mole fraction of nonane achieved if all the liquid evaporates and none escapes. (SG)nonane n max = 15 L C 9 H 20 (l ) 0.718 × 1.00 kg kmol L C 9 H 20 128.25 kg Assume T = 25o C, P = 1 atm n gas = 2 × 10 4 L 273 K 1 kmol 298 K 22.4 × 10 L(STP) 3 = 0.818 kmol 6-13 http://librosysolucionarios.net = 0.084 kmol C 9 H 20 6.24 (cont’d) y max = n max 0.084 kmol C 9 H 20 = = 0.10 kmol C 9 H 20 / kmol (10 mole%) n gas 0.818 kmol As the nonane evaporates, the mole fraction will pass through the explosive range (0.8% to 2.9%). The answer is therefore yes . The nonane will not spread uniformly—it will be high near the sump as long as liquid is present (and low far from the sump). There will always be a region where the mixture is explosive at some time during the evaporation. b. ln p * = − A +B T T1 = 258 . o C = 299 K, p1* = 5.00 mmHg T2 = 66.0 o C = 339 K, p *2 = 40.0 mmHg ln( 40.0 / 5.00) 5269 5269 ⇒ A = 5269, B = ln(5.00) + = 19.23 ⇒ p * = exp(19.23 − ) 1 1 299 T ( K) − 339 299 At lower explosion limit, y = 0.008 kmol C 9 H 20 / kmol ⇒ p * (T ) = yP = (0.008)(760 mm Hg) −A = = 6.08 mm Hg Formula for p * T = 302 K = 29 o C c. The purpose of purge is to evaporate and carry out the liquid nonane. Using steam rather than air is to make sure an explosive mixture of nonane and oxygen is never present in the tank. Before anyone goes into the tank, a sample of the contents should be drawn and analyzed for nonane. 6.25 Basis: 24 hours of breathing n0 (mol H 2O) 23°C, 1 atm n1 (mol) @ hr = 10% 0.79 mol N 2/mol y1 (mol H 2O/mol) + O2 , CO2 Lungs O2 Air inhaled: n 1 = 37°C, 1 atm n2 (mol), saturated 0.75 mol N /mol 2 y 2 (mol H 2O/mol) + O2 , CO 2 CO2 12 breaths 500 ml 1 liter min breath 10 3 ml b 273K 1 mol 23 + 273 K 22.4 liter STP g 60 min 24 hr 1 hr 1 day b g = 356 mol inhaled day Inhaled air - -10% r. h.: y1 = Inhaled air - -50% r. h.: y1 = b 0.10 p∗ H2 O 23° C P b g = 0.10b 2107 . mm Hgg = 2.77 × 10 0.50 p∗ H 2O 23° C P −3 mol H 2 O mol −2 mol H 2 O mol 760 mm Hg g = 0.50b2107 . mm Hg g = 1.39 × 10 760 mm Hg 6-14 http://librosysolucionarios.net 6.25 (cont’d) H 2 O balance: n 0 = n 2 y 2 − n1 y 1 ⇒ ( n0 ) 10% FG H = 356 IJ L K MN rh − ( n0 ) 50% rh = ( n1 y 1 ) 50% − (n1 y 1 ) 10% mol H 2 O mol (0.0139 − 0.00277) day mol OPFG 18.0 gIJ = 71 g / day QH 1 mol K Although the problem does not call for it, we could also calculate that n 2 = 375 mol exhaled/day, y2 = 0.0619, and the rate of weight loss by breathing at 23o C and 50% relative humidity is n 0 (18) = (n 2y2 - n 1 y1 )18 = 329 g/day. 6.26 a. To increase profits and reduce pollution. b. Assume condensation occurs. A=acetone n 1 mol @ To C, 1 atm 1 mol @ 90o C, 1 atm y1 mol A(v)/mol (sat’d) (1-y1 ) mol N2 /mol 0.20 mol A(v)/mol 0.80 mol N2 /mol n 2 mol A(l) For cooling water at 20o C ( ) log 10 p *A 20 o C = 7.11714 − ( ) 1210.595 = 2.26824 ⇒ p*A 20 o C = 184.6 mmHg 20.0 + 229.664 d i Saturation: y1 ⋅ P = p *A 20 o C ⇒ y1 = 184.6 = 0.243 > 0.2 , so no saturation occurs. 760 For refrigerant at –35o C ( ) log 10 p *A −35 o C = 7.11714 − ( ) 1210.595 = 0.89824 ⇒ p *A −35 o C = 7.61 mmHg −35.0 + 229.644 Note: –35o C is outside the range of Antoine equation coefficients in Table B.4. If the correct vapor pressure of acetone at that temperature is looked up (e.g., in Perry’s Handbook) and used, the final result is almost identical. 7.61 = 0.0100 d i 760 mole balance: 1b0.8g = n b1 − 0.01g ⇒ n = 0.808 mol Saturation: y1 ⋅ P = p *A −35 o C ⇒ y1 = N2 1 1 Total mole balance: 1 = 0.808 + n2 ⇒ n 2 = 0192 . mol 0.192 ×100% = 96% 2 c. Costs of acetone, nitrogen, cooling tower, cooling water and refrigerant d. The condenser temperature could never be as low as the initial cooling fluid temperature because heat is transferred between the condenser and the surrounding environment. It will lower the percentage acetone recovery. Percentage acetone recovery: 6-15 http://librosysolucionarios.net 6.27 Basis: 12500 L 1 mol 273 K 103000 Pa = 5285 . mol / h h 22.4 L(STP) 293 K 101325 Pa n o (mol/h) @ 35o C, 103 KPa y0 [mol H2 O(v)/mol] yo1–mol H2 O(v)/mol y0 (mol DA/mol) (1-y o ) mol DA/mol h r=90% h r =90% 528.5 (mol/h) @ 20o C, 103 KPa y0 [mol H2 O(v)/mol] y11–mol H2 O(v)/mol (sat’d) y0 (mol DA/mol) (1-y1 ) mol DA/mol H2 O(l)/h] 2 [mol n 2nmol H2O(l)/h Inlet: y o = d hr ⋅ p H* 2 O 35 o C P Outlet: y1 = p *H 2O b i = 0.90 × 42.175 mmHg 103000 Pa 101325 Pa = 0.4913 mol H 2 O / mol 760 mmHg d20 Ci = 17.535 mmHg 101325 Pa = 0.02270 mol H O / mol o P 103000 Pa g b 760 mmHg gb 2 g Dry air balance: 1 − 0.04913 n o = 1 − 0.02270 528.5 ⇒ n o = 5432 . mol / h 5432 . mol 22.4 L(STP) 308 K 101325 Pa = 13500 L / h h mol 273 K 103000 Pa Total balance: 543.2 = 528.5 + n 2 ⇒ n 2 = 14.7 mol / h Inlet air : Condensatio n rate: 6.28 Basis: 14.7 mol 18.02 g H 2 O 1 kg = 0.265 kg / h h 1 mol H 2 O 1000 g 10000 ft 3 1 lb - mol 492 o R 29.8 in Hg = 24.82 lb - mol / min min 359 ft 3 (STP) 550 o R 29.92 in Hg n 1 lb -mole/min 40o F, 29.8 in.Hg y1 [lb-mole H2 O(v)/lb-mole] 1- y1 (lb-mole DA/mol) 24.82 lb -mole/min 90o F, 29.8 in.Hg y0 [lb-mole H2 O(v)/mol 1- y0 (lb-mole DA/mol) h r = 88% n 1 lb-mole/min 65o F, 29.8 in.Hg y1 [lb-mole H2 O(v)/lb-mole] 1- y1 (lb-mole DA/lb-mole) n 2 [lb-mole H2 O(l)/min] Inlet: y o = d i = 0.88b36.07 mmHgg hr ⋅ p *H2 O 90 o F Outlet: y1 = P 29 .8 in Hg d 1 in Hg = 0.0419 lb - mol H 2O / lb - mol 25.4 mmHg i = 6.274 mmHg p H* 2 O 40 o F P b 1 in Hg = 0.00829 lb - mol H 2 O / lb - mol 29 .8 in Hg 25.4 mmHg g b g Dry air balance: 24.82 1 − 0.0419 = n1 1 − 0.00829 ⇒ n1 = 23.98 lb - mol / min Total balance: 24.82 = 23.98 + n 2 ⇒ n 2 = 0.84 lb - mole / min 6-16 http://librosysolucionarios.net 6.28 (cont’d) 0.84 lb - mol 18.02 lb m 1 ft 3 7.48 gal = 181 . gal / min min lb − mol 62.4 lb m 1 ft 3 Condensation rate: Air delivered @ 65o F: 23.98 lb - mol 359 ft 3 (STP) 525 o R 29.92 in Hg = 9223 ft 3 / min min 1 lb − mol 492 o R 29.8 in Hg 6.29 Basis: 100 mol product gas no mol, 32oC, 1 atm yo mol H2O(v)/mol (1-yo) mol DA/mol hr=70% 100 mol, T1, 1 atm 100 mol, 25oC,1 atm y1 mol H2O(v)/mol, (sat’d) (1-y1) mol DA/mol y1 mol H2O(v)/mol, (1-y1) mol DA/mol hr=55% (mol HH22O(l)) nn2 2lb-mol O(l)/min Outlet: y1 = d h r ⋅ p H* 2 O 25o C i = 0.55b23.756g = 0.0172 mol H O / mol 2 P 760 Saturation at T1 : 0.0172 760 = 13.07 = p *H2 O T1 ⇒ T1 = 15.3 o C Inlet: yo = hr ⋅ b g b g d32 Ci = 0.70b35.663g = 0.0328 mol H O / mol p *H2 O o P 2 760 b g b g Dry air balance: n o 1 − 0.0328 = 100 1 − 0.0172 ⇒ no = 1016 . mol Total balance: 101.6 + n 2 = 100.0 ⇒ n 2 = −1.6 mol (i.e. removed) kg H 2 O removed : kg dry air : Ratio: b 16 . mol 18.02 g 1 kg = 0.0288 kg H 2 O 1 mol 1000 g g 100 1 − 0.0172 mol 29.0 g 1 kg = 2.85 kg dry air 1 mol 1000 g 0.0288 = 0.0101 kg H 2O removed / kg dry air 2.85 6-17 http://librosysolucionarios.net 6.30 a. Room air − T = 22 ° C , P = 1 atm , hr = 40% : b g y1 P = 0.40 P∗ H 2 O 22° C ⇒ y 1 = b 0.40g19.827 mm Hg = 0.01044 mol H O mol 2 760 mm Hg Second sample − T = 50° C , P = 839 mm Hg , saturated: y2 P = p ∗H 2 O (50 °C ) ⇒ y2 = 92.51 mm Hg = 0.1103 mol H2 O mol 839 mm Hg ln y = bH + ln a ⇔ y = ae bH , y 1 = 0.01044 , H1 = 5 , y 2 = 01103 . , H 2 = 48 b= b ln y 2 y 1 g = lnb0.1103 0.01044 g = 0.054827 H2 − H1 48 − 5 b g b gb g expb 0.054827 H g b g ln a = ln y1 − bH 1 = ln 0.01044 − 0.054827 5 = −4.8362 ⇒ a = exp −4.8362 = 7.937 × 10 −3 ⇒ y = 7.937 × 10 −3 b. Basis: 1 m3 delivered air 273K b22 + 273gK 1 k mol 10 3 mol 22.4m 3 STP 1 kmol b g o 41.31 mol, 1 atm 41.4 mol, 22o22 C,1C,atm 41.31 mol, T, 1 atm n o mol, 35o C, 1 atm 0.0104 mol H22 O(v)/mol, (sat’d) sat’d mol DA/mol 0.09896 0.9896 mol DA/mol yo mol H2 O(v)/mol (1-yo ) mol DA/mol H=30 = 41.31 mol air delivered 0.0104 0.0104mol molH2HO(v)/mol 2 O(v)/mol 0.09896 0.9896 mol mol DA/mol DA/mol n 1 mol H2 O(l) Saturation condition prior to reheat stage: yH 2 O P = p*H2 O (T ) ⇒ ( 0.01044 )( 760 mm Hg ) = 7.93 mm Hg ⇒ T = 7.8°C (from Table B.3) bg Part a Humidity of outside air: H = 30 ⇒ y 0 = 0.0411 mol H 2 O mol Overall dry air balance: n0 (1 − y0 ) = 41.31 ( 0.9896 ) ⇒ n0 = ( 41.31)(0.9896 ) = 42.63 mol (1 − 0.0411) Overall water balance: n0 y0 = n1 + ( 41.31)( 0.0104 ) ⇒ n1 = ( 42.63 )( 0.0411) − ( 41.31)( 0.0104 ) = 1.32 mol H2 O condensed Mass of condensed water = 1.32 mol H 2 O 18.02 g H 2 O 1 kg 1 mol H 2 O 10 3 g = 0.024 kg H 2 O condensed m 3 air delivered 6-18 http://librosysolucionarios.net 6.31 a. Basis: n& 0 mol feed gas . S = solvent , G = solvent - free gas n 1 (mol) @ T f (°C), P4 (mm Hg) y 1 [mol S(v)/mol] (sat’d) (1–y 1 ) (mol G/mol) n 0 (mol) @ T0 (°C), P0 (mm Hg) y 0 (mol S/mol) (1-y 0 ) (mol G/mol) Td0 (°C) (dew point) Inlet dew point = T0 ⇒ n 2 (mol S (l)) b g y o Po = p ∗ Tdo ⇒ y o = b g p ∗ Tdo Po d i Saturation condition at outlet: y 1 Pf = p∗ T f ⇒ y1 = Fractional condensation of S = f ⇒ n 2 = n0 y 0 f Total mole balance: n& 0 = n1 + n 2 ⇒ n1 = n&0 − n2 (1) d i p∗ T f (2) Pf b gP n& fp∗ bT g − (1) → n 2 = n0 fp∗ T0 bg Eq. 3 for n1 ⇒ n1 = n& 0 b gb g 0 0 do Po S balance: n0 y 0 = n1 y 1 + n2 (1) - (4) b g OPFG p∗dT PQGH P iIJ + n& fp∗bT g JK p LM fp∗ eTdo j OP p∗ dT i 1 − MM PP P o b1 − f g p∗bT g = LM1 − fp∗ bT g OP p∗ dT i ⇒ P = N Q P P P MN PQ p∗ T b1 − f g eP do j b g LM MN n& 0 p∗ Tdo n& 0 fp∗ Tdo = n& 0 − Po Po f 0 do f o f ⇒ do f do f o o f o b. Condensation of ethylbenzene from nitrogen Antoine constants for ethylbenzene A= 6.9565 B= 1423.5 C= 213.09 Run T0 P0 Td0 f 1 2 3 4 50 50 50 50 765 765 765 765 40 40 40 40 0.95 0.95 0.95 0.95 Tf p* (Td0) p*(Tf) 45 40 35 20 21.472 21.472 21.472 21.472 27.60 21.47 16.54 7.07 Pf 19139 14892 11471 4902 6-19 http://librosysolucionarios.net Crefr Ccomp Ctot 2675 4700 8075 26300 107027 109702 83329 88029 64239 72314 27582 53882 (3) (4) 6.31 (cont’d) When Tf decreases, Pf decreases. Decreasing temperature and increasing pressure both to c. increase the fractional condensation. When you decrease Tf, less compression is required to achieve a specified fractional condensation. d. 6.32 a. A lower Tf requires more refrigeration and therefore a greater refrigeration cost (Crefr). However, since less compression is required at the lower temperature, Ccomp is lower at the lower temperature. Similarly, running at a higher Tf lowers the refrigeration cost but raises the compression cost. The sum of the two costs is a minimum at an intermediate temperature. Basis : 120m 3 min feed @ 1000 o C(1273K), 35 atm . Use Kay’s rule. Cmpd. Tc ( K ) Pc ( atm ) (T c )corr . ( Pc )corr ( Apply Newton's corrections for H2 ) H2 33.2 12.8 41.3 20.8 CO 133.0 34.5 − − CO 2 304.2 72.9 − − CH 4 190.7 45.8 − − ∑y T P′ = ∑ y P Tc′ = c i ci i ci b g b g b g b g = 0.40b20.8g + 0.35b 34.5g + 0.20b72.9 g + 0.05b458 . g = 37.3 atm = 0.40 41.3 + 0.35 133.0 + 0.20 304.2 + 0.05 1907 . = 133.4 K Feed gas to heater Tr = 1273 K 133.4 K = 9.54 Fig. 5.3-2 ⇒ z = 1.02 Pr = 35.0 atm 37.3 atm = 0.94 Vˆ = 1.02 8.314 N ⋅ m 1273 K 1 atm mol ⋅ K 35 atm 101325 N m ⇒ n&gas feed = 120 m 3 min −3 3.04 ×10 mol 1 kmol 3 103 mol m 2 = 3.04 × 10 −3 m 3 mol = 39.5 kmol min Feed gas to absorber Fig. 5.4-1 Tr = 283K/133.4K = 2.12, Pr = 35.0 atm/37.3 atm = 0.94 → z = 0.98 znRT 0.98 39.5 kmol V& = = P min 8.314 N ⋅ m 283 K 1 atm mol ⋅ K 35.0 atm 101325 N/m 2 103 mol 1 kmol n 1 (kmol/min), 261 K, 35atm 1.2(39.5) kmol/min MeOH(l) y NaOH sat’d y H2 y CH4 (2% of feed) y CO 39.5 kmol/min, 283K, 35 atm 0.40 mol H2 /mol 0.35 mol CO/mol 0.20 mol CO2 /mol 0.05 mol CH4 /mol n 2 (kmol/min), liquid y MeOH y CO2 y CH4 (98% of feed) 6-20 http://librosysolucionarios.net = 25.7 m3 min 6.32 (cont’d) Saturation at Outlet: y McOH 10 7.87863 −1473 .11 b −12+ 2300g mm Hg p∗ MeOH 261K = = P 35 atm 760 mm Hg atm b g b g = 4.97 × 10 −4 mol MeOH mol y McOH = b. 6.33 nMeOH n MeOH n + H 2 + n CH4 A = input A =0.02 of input + n CO = nMeOH A =input n MeOH + 39.5(0.40 + 0.02 ( 0.05) + 0.35) E n MeOH = 0.0148 kmol min MeOH in gas The gas may be used as a fuel. CO2 has no fuel value, so that the cost of the added energy required to pump it would be wasted. n& 0 (kmol/min wet air) @ 28°C, 760 mmHg y 1 (mol H2 O/mol) (1-y 1 ) (mol dry air/mol) 50% rel. sat. y 2 (mol H2 O/mol) (1-y 2 ) (mol dry air/mol) Tdew point = 40.0o C m& 1 (kg/min wet pulp) 1500 kg/min wet pulp 0.75 /(1 + 0.75) kg H2 O/kg 1/1.75 kg dry pulp/kg Dry pulp balance: 1500 × n& 1 (kmol/min wet air) @ 80°C, 770 0.0015 kg H2 O/kg 0.9985 kg dry pulp/kg 1 =m & 1 (1 − 0.0015) ⇒ m & 1 = 858 kg / min 1 + 0.75 50% rel. sat’n at inlet: y1 P = 0.50 pH* 2 O (28 o C) ⇒ y1 = 0.50(28.349 mm Hg)/(760 mm Hg) = 0.0187 mol H 2 O/mol 40 C dew point at outlet: y 2 P = o p *H2 O ( 40 o C) ⇒ y 2 = (55.324 mm Hg) / (770 mm Hg) = 0.0718 mol H 2O / mol Mass balance on dry air: n& 0 (1 − 0.0187 ) = n&1 (1 − 0.0718) (1) Mass balance on water: n& 0 ( 0.0187 )(18.0 kg / kmol ) + 1500 ( 0.75 / 1.75) = n&1 ( 0.0718 )(18 ) + 858 (0 .0015) (2 ) Solve (1) and (2) ⇒ n& 0 = 622.8 kmol / min, n&1 = 658.4 kmol / min Mass of water removed from pulp : [1500(0.75/1.75)–858(.0015)]kg H2 O = 642 kg / min 622.8 kmol 22.4 m3 (STP) (273 + 28) K Air feed rate : V&0 = = 1.538 × 10 4 m 3 / min min kmol 273 K 6-21 http://librosysolucionarios.net 6.34 Basis: 500 lb m hr dried leather (L) n&1 (lb - moles / h)@130o F, 1 atm n& 0 ( lb - moles dry air / h)@140o F, 1 atm y1 (lb - moles H2 O / lb - mole) (1 - y1 )(lb - moles dry air / lb - mole) m& 0 (lb m / h) 500 lb m / h 0.61 lb m H 2O(l) / lb m 0.39 lb m L / lb m 0.06 lb m H 2 O(l) / lb m 0.94 lb m L/ lb b gb g Dry leather balance: 0.39 m0 = 0.94 500 ⇒ m0 = 1205 lb m wet leather hr b g Humidity of outlet air: y 1 P = 0.50 p∗ H 2O 130° F ⇒ y 1 = b gb g a 0.50 (115 mm Hg) mol H 2 O = 0.0756 760 mmHg mol fb H 2 O balance: 0.61 1205 lb m hr = ( 0.06) 500 lb m hr + b E g 0.0756n1 lb - moles H 2 O 18.02 lb m hr 1 lb - mole n1 = 517.5 lb - moles hr g 359 ft bSTPg b140 + 460 g° R = 2.09 × 10 Dry air balance: n 0 = 1 − 0.0756 (5175 . ) lb - moles hr = 478.4 lb - moles hr Vinlet = 6.35 a. 478.4 lb - moles hr 3 5 492 ° R 1 lb - mole ft 3 hr Basis: 1 kg dry solids n1 (kmol)N 2, 85°C n 2 (kmol) 80°C, 1 atm y 2 (mol Hex/mol) (1 – y )2 (mols N 2/mol) 70% rel. sat. dryer 1.00 kg solids 0.78 kg Hex condenser n 3 (kmol) 28°C, 5.0 atm y 3 (mol Hex/mol) sat'd (1 – y)3 (mols N 2/mol) n 4 (kmol) Hex(l) 0.05 kg Hex 1.00 kg solids Mol Hex in gas at 80° C b0.78 − 0.05gkg kmol 86.17 kg = 8.47 × 10 −3 kmol Hex Antoine eq. ↓ 70% rel. sat.: y 2 = 0.70 p ∗hex ( 80°C ) P 6.885551175.817 − (80+ 224.867) 0.70 )10 ( = 760 6-22 http://librosysolucionarios.net = 0.984 mol Hex mol 6.35 (cont’d) n2 = 8.47 × 10 −3 kmol Hex 1 kmol 0.984 kmol Hex b = 0.0086 kmol g N 2 balance on dryer: n1 = 1 − 0.984 0.0086 = 1376 . × 10 −4 kmol Antoine Eq. ↓ − ( 28+224.867) p ∗hex ( 28 °C ) 106.885551175.817 Saturation at outlet: y3 = = = 0.0452 mol Hex mol P 5 ( 760) b g Overall N 2 balance: 1.376 × 10 -4 = n 3 1 − 0.0452 ⇒ n 3 = 1.44 × 10 −4 kmol Mole balance on condenser: 0.0086 = 1.44 × 10 −4 + n 4 ⇒ n 4 = 0.0085 kmol Fractional hexane recovery: b. 0.0085 kmol cond. 86.17 kg 0.78 kg feed kmol = 0.939 kg cond. kg feed Basis: 1 kg dry solids 0.9n 3 heater 0.9n 3 (kmol) @ 28°C, 5.0 atm y3 (1 – y3) n 1 (kmol)N 2 85°C dryer 1.00 kg solids 0.78 kg Hex y 3 (mol Hex/mol) sat'd (1 – y3) (mol N 2/mol) n 2 (kmol) 80°C, 1 atm y 2 (mol Hex/mol) (1 – y 2) (mols N2 /mol) 70% rel. sat. condenser n3 (kmol) y3 (1 – y 3) 0.1n3 n4 (kmol) Hex(l) 0.05 kg Hex 1.00 kg solids Mol Hex in gas at 80°C: 8.47x10-3 + 0.9n 3 (0.0452) = n 2 (0.984) (1) N2 balance on dryer: n1 + 0.9n 3 (1 − 0.0452 ) = n 2 (1 − 0.984 ) (2 ) Overall N2 balance: n1 = 0.1n3 (1 − 0.0452) (3) n1 = 1.38 × 10 kmol Equations (1) to (3) ⇒ n2 = 0.00861 kmol −4 n3 = 1.44 × 10 kmol 1.376 × 10 -4 −1.38 × 10−5 Saved fraction of nitrogen= ×100% = 90% 1.376 ×10 −4 −5 Introducing the recycle leads to added costs for pumping (compression) and heating. 6-23 http://librosysolucionarios.net 6.36 b. m& 1 (lb m/h) 300 lb m/h wet product 0.2 = 0167 . lb m T(l) / lb m 1 + 0.2 0.833 lb m D / lb m 0.02 / (1.02 ) = 0.0196 lb m T(l) / 0.9804 lb m D / lb m Dryer n&3 ( lb-mole/h) n& 1 (lb-mole/h) y1 (lb-mole T(v)/lb-mole) (1–y1 ) (lb-mole N2 /lbmole) T=toluene 70% r.s.,150o F, 1.2 atm D=dry solids @ 200O F, y3 (lb-mole T/lb-mole) (1-y3 )( lb-mole N2 /lb-mole) Heater n&3 ( lb-mole/h) y3 (lb-mole T(v)/lb-mole) (1-y3 ) (lb-mole N2 /lb-mole) Condenser Eq.@ 90O F, 1atm n& 2 ( lb-mole T(l)/h )T(l) Strategy: Overall balance⇒ m& 1 & n& 2 ; Relative saturation⇒y1; , Gas and liquid equilibrium⇒y3 Balance over the condenser⇒ n&1 & n& 3 UV RS W T Toluene Balance: 300 × 0.167 = m& 1 × 0.0196 + n&2 × 92.13 & = 255 lb m / h m ⇒ 1 & 1 × 0.9804 Dry Solids Balance: 300 × 0.833 = m n&2 = 0.488 lb - mole / h 70% relative saturation of dryer outlet gas: pC*7 H8 (150 O F=65.56 O C)=10 (6.95805 − y1 P = 0.70 pC* 7 H8 (150 O F) ⇒ y 1 = 1346.773 ) 65.56 + 219.693 0.70 pC*7 H8 P = = 172.47 mmHg (0.70)(172.47) = 01324 . lb - mole T(v) / lb - mole 1.2 × 760 Saturation at condenser outlet: 1346.773 (6.95805) * o o 32.22 + 219.693 pC7 H8 (90 F=32.22 C)=10 y3 = p*C7 H8 P = = 40.90 mmHg 40.90 = 0.0538 mol T(v)/mol 760 Condenser Toluene Balance: n&1 × 0.1324 = 0.488 + n& 3 × 0.0538 Condenser N 2 Balance: n&1 × (1 − 0.1324) = n& 3 × (1 − 0.0538) 6-24 http://librosysolucionarios.net UV ⇒ RSn& = 5.875 lb - mole / h W Tn& = 5.387 lb - mole / h 1 3 6.36 (cont’d) Circulation rate of dry nitrogen = 5.875 × (1 - 0.1324) = 5.097 lb - mole lb - mole h 28.02 lb m = 0.182 lb m / h Vinlet = 6.37 b g 5.387 lb - moles 359 ft 3 STP hr (200 + 460)° R 492° R 1 lb - mole C 6 H 14 + Basis: 100 mol C 6 H 14 100 mol C 6H = 2590 ft 3 h 19 O2 → 6CO 2 + 7H 2 O 2 n1 (mol) dry gas, 1 atm 0.821 mol N /mol D.G. 2 0.069 mol CO 2 /mol D.G. 0.069 mol CO /mol D.G. 2 0.021 mol CO/mol D.G. 0.021 mol CO/mol D.G. 0.00265 mol C6 H14 /mol 0.086 molOO/mol) /mol D.G. 2 x (mol 2 0.00265 mol C H /mol D.G. 6 14/mol) (0.907–x) (mol N 2 n2n (mol H O) 2 O) (mol H 14 n 0 (mol) air 0.21 mol O 2/mol 0.79 mol N 2/mol L O C balance: 6b100g = n M0.069 + 0.021+ 6b0.00265gP ⇒ n = 5666 mol dry gas MN b g b g b g PQ 100 − 0.00265b5666g mol reacted Conversion: × 100% = 85.0% 100 mol fed H balance: 14b100g = 2 n + 5666b14 gb0.00265g ⇒ n = 595 mol H O p∗ d T i 595 Dew point: y = = ⇒ p∗ dT i = 72.2 mm Hg ⇒ 595 + 5666 760 mm Hg 2 1 C O2 2 1 CO C6 H14 2 2 2 Table B.3 dp H 2O dp N2 balance: 0.79n0 = 5666(0.907 − x ) O balance: 0.21(n0 )(2) = 5666[(0.069)(2) + 0.021 + 2 x ) + 595 Solve simultaneously to obtain n 0 = 5888 mol air, x = 0.086 mol O2 /mol Theoretical air: Excess air: 100 mol C 2 H14 19 mol O 2 1 mol air 2 mol C 2 H 14 0.21 mol O 2 5888 − 4524 × 100% = 30.2% excess air 4524 6-25 http://librosysolucionarios.net = 4524 mol air Tdp = 451 . °C 6.38 Basis: 1 mol outlet gas/min n& 0 ( mol / min) y0 ( mol CH 4 / mol) (1 − y0 ( mol C 2 H 6 / mol) 1 mol / min @ 573K, 105 kPa y1 (mol CO2 / mol) n&1 (mol O2 / min) y 2 (mol H 2 O / mol) 3.76n& 1 (mol N 2 / min) (1 − y1 − y2 ) mol N 2 / mol CH 4 + 2O 2 → CO 2 + 2H 2 O p CO2 = 80 mmHg ⇒ y1 = C2 H6 + 7 O 2 → 2CO 2 + 3H 2 O 2 80 mmHg 101325 Pa = 0.1016 mol CO2 / mol 105000 Pa 760 mmHg 7 2 b g 100% O2 conversion : 2no y o + no 1 − y o = n1 (1) . C balance: no yo + 2no 1 − yo = 01016 (2) N2 balance: 376 . n1 = 1 − y1 − y2 (3) H balance: 4 no y o + 6no 1 − y o = 2 y2 (4) b g b g R|n = 0.0770 mol |y = 0.6924 mol CH / mol Solve equations 1 to 4 ⇒ S ||n = 0.1912 mol O . mol H O / mol Ty = 01793 Dew point: 01793 . b105000g Pa 760 mmHg = 141.2 mmHg ⇒ T p dT i = o o 4 1 2 2 * H2 O 2 dp dp 101325 Pa b 6.39 Basis: 100 mol dry stack gas P = 780 mm Hg Stack gas: Tdp = 46.5°C 100 mol dry gas 0.000527 mol C3 H 8/mol 0.000527 mol C 4 H 10/mol 0.0148 mol CO/mol 0.0712 mol CO 2/mol + O2, N 2 n P (mol C 3H 8) n B (mol C 4 H10 ) n out (mol) 0.21 O2 0.79 N2 nw (mol H2 O) C 3 H 8 + 5O 2 → 3CO 2 + 4H 2 O C 4 H10 + 13 O 2 → 4CO 2 + 5H 2 O 2 6-26 http://librosysolucionarios.net g = 58.8 o C Table B.3 6.39 (cont’d) b g Dew point = 46.5° C ⇒ y w P = p ∗ w 46.5° C ⇒ y w = But yw = 77.6 mm Hg mol H 2 O = 0.0995 780 mm Hg mol nw = 0.0995 ⇒ nw = 11.05 mol H2 O (Rounding off strongly affects the result) 100 + n w b gb gb g b gb g C balance: 3n p + 4 n B = 100 0.000527 3 + 0.000527 4 + 0.0148 + 0.0712 ⇒ b1g 3n p + 4 n B = 8.969 H balance: 8 n p + 10 nB = (100 ) ( 0.000527 )(8 ) + ( 0.000527 )(10 ) + (11.05 )( 2 ) ( 2) ⇒ 8n p + 10 nB = 23.047 49% C3 H8 n p = 1.25 mol C3H8 Solve (1) & ( 2 ) simultaneously: ⇒ ⇒ nB = 1.30 mol C4 H10 51% C 4 H10 ( Answers may vary ± 8% due to loss of precision ) 6.40 a. L&1 (lb - mole C10 H 22 / h) L& 2 (lb - mole / h) x 2 (lb - mole C 3 H 8 / lb - mole) 1 − x 2 (lb - mole C10 H 22 / lb - mole) G& 1 (lb - mole / h) G& 2 = 1 lb - mole / h y1 (lb - mole C 3 H8 / lb - mole) 0.07 (lb - mole C 3 H 8 / lb - mole) 1 − y 1 (lb - mole N 2 / lb - mole) 0.93 (lb - mole N 2 / lb - mole) Basis: G& 2 = 1 lb - mole h feed gas b gb g b g b g = b1 − 0.985gb1gb0.07 g ⇒ G& y b1g b2 g N 2 balance: 1 0.93 = G& 1 1 − y1 ⇒ G& 1 1 − y 1 = 0.93 98.5% propane absorption ⇒ G& 1 y1 . × 10 1 1 = 105 1 & 2 ⇒ G&1 = 0.93105 lb - mol h , y1 = 1128 . × 10 −3 mol C 3H 8 mol Assume G& 2 − L& 2 streams are in equilibrium bg b g −3 From Cox Chart (Figure 6.1-4), p * C3 H8 (80 o F ) = 160 lb / in 2 = 10.89 atm b g Raoult's law: x 2 p∗ C3 H8 80° F = 0.07 p ⇒ x 2 = b0.07gb1.0 atmg = 0.006428 mol H b gb g 10.89 atm Propane balance: 0.07 1 = G& 1 y1 + L&2 x 2 ⇒ L& 2 = = 10.726 lb - mole h b gd h b d L& / G& h b gd mol 0.07 − 0.93105 1128 . × 10 −3 i 0.006428 gb g Decane balance: L&1 = 1 − x 2 L& 2 = 1 − 0.006428 10.726 = 10.66 lb - mole h ⇒ 1 2 min = 10.7 mol liquid feed / mol gas feed 6-27 http://librosysolucionarios.net 2O 6.40 (cont’d) b. The flow rate of propane in the exiting liquid must be the same as in Part (a) [same feed rate and fractional absorption], or n& C 3H 8 = 10.726 lb - mole 0.006428 lb - mole C 3H 3 h lb - mole = 0.06895 lb - mol C 3 H 8 h The decane flow rate is 1.2 x 10.66 = 12.8 lb-moles C10H22 /h ⇒ x2 = b 0.06895 lb - mole C 3 H 8 h = 0.00536 lb - mole C 3 H 8 / lb - mole 0.06895 + 12.8 lb - moles h g c. Increasing the liquid/gas feed ratio from the minimum value decreases the size (and hence the cost) of the column, but increases the raw material (decane) and pumping costs. All three costs would have to be determined as a function of the feed ratio. Let B = n - butane , HC = other hydrocarbons 6.41 a. Basis: 100 mol/s liquid feed stream n& 4 (mol/s) @ 30°C, 1 atm y 4 (mol B/mol) (1-y 4 ) (mol N2 /mol) 100 mol/s @ 30o C, 1 atm xB =12.5 mol B/s 87.5 mol other hydrocarbon/s n& 3 (mol N2 /s) 88.125 mol/s 0.625 mol B/s (5% of B fed) 87.5 mol HC/s p *B (30 o C) ≅ 41 lb / in 2 = 2120 mm Hg (from Figure 6.1-4) x B p *B (30 o C) 0.125 × 2120 = = 0.3487 P 760 95% n-butane stripped: n& 4 ⋅ 0.3487 = 12.5 0.95 ⇒ n& 4 = 34.06 mol / s Raoult's law: y 4 P = x B p B* (30 o C) ⇒ y 4 = b g b gb g Total mole balance: 100 + n&3 = 34.06 + 88.125 ⇒ n&3 = 22.18 mol/s ⇒ mol gas fed = 22.18 mol/s = 0.222 mol gas fed/mol liquid fed mol liquid fed 100 mol/s b. If y 4 = 0.8 × 0.3487 = 0.2790 , following the same steps as in Part (a), b g b gb g 95% n-butane is stripped: n& 4 ⋅ 0.2790 = 12.5 0.95 ⇒ n&4 = 42 .56 mol / s Total mole balance: 100 + n&3 = 42.56 + 88.125 ⇒ n&3 = 30.68 mol / s mol gas fed 30.68 mol/s ⇒ = = 0.307 mol gas fed/mol liquid fed mol liquid fed 100 mol/s c. When the N2 feed rate is at the minimum value calculated in (a), the required column length is infinite and hence so is the column cost. As the N2 feed rate increases for a given liquid feed rate, the column size and cost decrease but the cost of purchasing and compressing (pumping) the N2 increases. To determine the optimum gas/liquid feed ratio, you would need to know how the column size and cost and the N2 purchase and compression costs depend on the N2 feed rate and find the rate at which the cost is a minimum. 6-28 http://librosysolucionarios.net 6.42 Basis: 100 mol NH 3 Preheated air 100 mol NH 3 780 kPasat’d sat'd 820 kPa, 820 kPa, sat’d N2 O2 converter n3 n4 n5 n6 n 1 (mol) O2 3.76 n 1 (mol) N2 n 2 (mol) H2 O 1 atm, 30°C h r= 0.5 a. i) hydrator absorber (mol NO) (mol N 2) (mol O2 ) (mol H 2O) 55 wt% HNO 3 (aq ) n 8 (mol HNO 3 ) n 9 (mol H 2O) n7 (mol H 2O) b g NH 3 feed: P = P∗ Tsat = 820 kPa = 6150 mm Hg = 8.09 atm Antoine : log10 6150 = 7 .55466 − 1002.711 Tsat + 247885 . ⇒ Tsat = 18.4° C = 291.6 K b g b Table B.1 ⇒ V NH 3 = g UV ⇒ z = 0.92 W Pc = 1113 . atm ⇒ Pr = 8.09 / 1113 . = 0.073 Tc = 405.5 K ⇒ Tr = 291.6 / 405.5 = 0.72 b 0.92 100 mol g 8.314 Pa 291.6 K mol - K 820 × 10 3 Pa (Fig. 5.3-1) = 0.272 m 3 NH 3 Air feed: NH 3 + 2 O 2 → HNO 3 + H 2 O n1 = 100 mol NH 3 2 mol O 2 mol NH 3 b = 200 mol O 2 g hr ⋅ p * 30° C 0.500 × 31824 . Water in Air: y H2 O = = = 0.02094 p 760 n2 ⇒ 0.02094 = ⇒ n 2 = 20.36 mol H 2O n 2 + 4.76( 200) A ( 4 .76 mol air mol O2 ) Vair = b g b g 4.76 200 + 20.36 mol 22.4 L STP 1 mol 303K 1 m3 3 273K 10 L = 24.2 m 3 air ii) Reactions: 4 NH 3 + 5O 2 → 4 NO + 6 H 2 O , 4 NH 3 + 3O 2 → 2 N 2 + 6 H 2 O Balances on converter NO: n 3 = 97 mol NH 3 4 mol NO 4 mol NH 3 = 97 mol NO 6- 29 http://librosysolucionarios.net 6.42 (cont’d) b g N 2 : n 4 = 3.76 2.00 mol + O 2 : n 5 = 200 mol − 3 mol NH 3 2 mol N 2 4 mol NH 3 97 mol NH 3 = 7535 . mol N 2 5 mol O 2 4 mol NH 3 − 3 mol NH 3 3 mol O 2 4 mol NH 3 H 2 O: n 6 = 20.36 mol + 100 mol NH 3 = 76.5 mol O2 6 mol H 2 O 4 mol NH 3 = 1704 . mol H 2 O ⇒ n total = ( 97 + 7535 . + 76.5 + 170.4 )mol = 1097 mol converter effluent 8.8% NO, 68.7% N 2 , 7.0% O 2 , 15.5% H 2 O iii) Reaction: 4 NO + 3O 2 + 2 H 2 O → 4 HNO 3 HNO 3 bal. in absorb er: n8 = H 2 O in product: n9 = 97 mol NO react 4 mol HNO 3 4 mol NO 97 mol HNO3 63.02 g HNO 3 = 97 mol HNO 3 45 g H 2 O mol 1 mol H 2 O 55 g HNO 3 18.02 g H 2 O = 27756 . mol H 2 O b gb g b gb gb H balance on absorber: 1704 . 2 + 2n 7 = 97 + 277 .6 2 mol H g ⇒ n7 = 1557 . mol H 2 O added VH 2 O = b. 155.7 mol H 2 O 18.02 g H 2 O 1 cm 3 1 mol 1 m3 10 6 cm 3 1g bg = 2.81 × 10 −3 m 3 H 2 O l 63.02 g HNO3 277.6 mol H 2 O 18.02 g HNO3 + mol mol = 11115 g = 11115 . kg M acid in old basis = Scale factor = 97 mol HNO 3 b1000 metric tonsgb1000 kg metric ton g = 8.997 × 10 11.115 kg d id i = d8.997 × 10 id24.2 m air i = 2 .18 × 10 m air = d8.997 × 10 id2.81 × 10 m H Oi = 253 m H Obl g VNH3 = 8.997 × 10 4 0.272 m 3 NH 3 = 2.45 × 10 4 m 3 NH 3 Vair VH 2 O 4 3 4 6 −3 3 3 3 2 2 6- 30 http://librosysolucionarios.net 4 6.43 a. Basis: 100 mol feed gas 100 mol 0.10 mol NH3 /mol 0.90 mol G/mol G = NH 3 -free gas Absorber n 1 (mol H2 O( l)) n 2 (mol) in equilibrium y A (mol NH 3 /mol) at 10°C(50°F) y W (mol H 2O/mol) and 1 atm y G (mol G/mol) n 3 (mol) x A (mol NH 3 /mol) (1 – x A) (mol H 2O/mol) Composition of liquid effluent . Basis: 100 g solution Perry, Table 2.32, p. 2-99: T = 10o C (50o F), ρ = 0.9534 g/mL ⇒ 0.120 g NH3 /g solution ⇒ 12.0 g NH 3 88.0 g H 2 O = 0.706 mol NH 3 , = 4.89 mol NH 3 (17.0 g / 1 mol) (18.0 g / 1 mol) ⇒ 12.6 mole% NH 3 (aq), 87.4 mole% H 2 O(l) Composition of gas effluent g U| = 0.155 psia bTable 2 - 21gV |W = 14 .7 psia b T = 50 F, x A = 0.126 → o Perry p NH 3 = 121 . psia Table 2 - 23 pH 2O p total y A = 1.21 / 14.7 = 0.0823 mol NH 3 mol ⇒ y W = 0.155 / 14.7 = 0.0105 mol H 2 O mol y G = 1 − y A − yW = 0.907 mol G mol b gb g b gb g b 0.907 g = 99.2 mol absorbed = b100gb0.10 g − b99.2gb0.0823g = 184 . mol NH G balance: 100 0.90 = n 2 y G ⇒ n 2 = 100 0.90 NH 3 in % absorption = 3 out 1.84 mol absorbed × 100% = 18.4% 100 0.10 mol fed b gb g b. If the slip stream or densitometer temperature were higher than the temperature in the contactor, dissolved ammonia would come out of solution and the calculated solution composition would be in error. 6.44 a. 15% oleum: Basis - 100kg 15 kg SO 3 + 85 kg H 2SO 4 1 kmol H 2SO 4 1 kmol SO 3 80.07 kg SO 3 98.08 kg H 2SO 4 1 kmol H 2 SO 4 1 kmol SO 3 ⇒ 84.4% SO 3 6- 31 http://librosysolucionarios.net = 84 .4 kg 6.44 (cont’d) b. Basis 1 kg liquid feed n o (mol), 40oC, 1.2 atm n1 (mol), 40oC, 1.2 atm 0.90 mol SO3 /mol 0.10 mol G/mol y1 mol SO3/mol (1-y 1) mol G/mol Equilibrium @ 40o C 1 kg 98% H2SO4 m1 (kg) 15% oleum 0.98 kg SO3 0.02 kg H2O 0.15 kg SO3 /kg 0.85 kg H2SO4 /kg b p SO3 40° C, 84.4% g = 115 . = 151 . × 10 −3 mol SO 3 mol P 760 ii) 0.98 kg H 2SO 4 2.02 kg H 0.02 kg H 2 O 2.02 kg H H balance: + 98.08 kg H 2SO 4 18.02 kg H 2 O 0.85 m 1 H 2 SO 4 2.02 kg H = ⇒ m1 = 1.28 kg 98.08 kg H 2SO 4 But since the feed solution has a mass of 1 kg, 0.28 kg SO 3 10 3 g 1 mol SO 3 absorbed = 1.28 − 1.0 kg = = 3.50 mol kg 80.07 g ⇒ 3.5 mol = n 0 − n1 G balance: 0.10n 0 = 1 − 151 . × 10 −3 n1 1444444444444442444444444444443 i) y1 = b g d i E n 0 = 3.89 mol n1 = 0.39 mol V= b g 3.89 mol 22.4 L STP 1 kg liquid feed mol 313K 1 atm 1 m3 273K 1.2 atm 10 3 L = 8.33 × 10 -2 m 3 kg liquid feed 6.45 a. Raoult’s law can be used for water and Henry’s law for nitrogen. b. Raoult’s law can be used for each component of the mixture, but Henry’s law is not valid here. c. Raoult’s law can be used for water, and Henry’s law can be used for CO2. 6.46 p ∗B (100°C) = 10 ∗∗ ( 6.89272 − 1203.531 (100 + 219.888 ) ) = 1350.1 mm Hg pT∗ (100 °C ) = 10∗∗ ( 6.95805 − 1346.773 (100 + 219.693) ) = 556.3 mm Hg Raoult's Law: y B P = x B p B∗ ⇒ yB = yT = 0.40 (1350.1) 10 (760 ) 0.60 ( 556.3) 10 ( 760) = 0.0711 mol Benzene mol = 0.0439 mol Toluene mol y N2 = 1 − 0.0711 − 0.0439 = 0.885 mol N 2 mol 6- 32 http://librosysolucionarios.net 6.47 N 2 - Henry' s law: Perry' s Chemical Engineers' Handbook, Page. 2 - 127, Table 2 -138 b g ⇒ H N 2 80° C = 12 .6 × 10 4 atm mole fraction b gd i 3551 . mm Hg 1 atm H O - Raoult's law: p b80° Cg = = 0.467 atm 760 mm Hg ⇒ p = d x id p i = b 0.997gb0.467 g = 0.466 atm ⇒ p N 2 = x N 2 H N2 = 0.003 12 .6 × 10 4 = 378 atm ∗ H 2O 2 H 2O H 2O ∗ H2 O Total pressure: P = p N 2 + p H2 O = 378 + 0.466 = 378.5 atm Mole fractions: y H 2O = p H2 O P = 0 / 466 / 3785 . = 1.23 × 10 −3 mol H 2 O mol gas y N 2 = 1 − y H2 O = 0.999 mol N 2 mol gas b g 6.48 H 2 O - Raoult's law: p ∗H2 O 70° C = 2337 . mm Hg 1 atm 760 mm Hg b gb = 0.3075 atm g ⇒ p H 2O = xH 2 O p ∗H2 O = 1 − xm 0.3075 Methane − Henry' s law: p m = x m ⋅ Hm Total pressure: P = p m + p H2 O = x m ⋅ 6.66 × 10 4 + (1 − x m )(0.3075) = 10 ⇒ x m = 1.46 × 10 −4 mol CH 4 / mol 6.49 a. Moles of water : n H 2 O = 1000 cm 3 1g cm 3 mol 18.02 g = 55.49 mol Moles of nitrogen: n N2 = (1 - 0.334) × 14.1 cm 3 (STP ) 1 mol 1L = 4.192 × 10 −4 mol 3 22.4 L (STP) 1000 cm Moles of oxygen: n O2 = (0.334) ⋅ 14.1 cm3 (STP) mol L = 2.102 × 10 −4 mol 22.4 L (STP) 1000 cm3 Mole fractions of dissolved gases: n N2 4 .192 × 10 −4 x N2 = = n H 2O + n N 2 + n O2 55.49 + 4.192 × 10 −4 + 2.102 × 10 −4 x O2 = 7.554 × 10 −6 mol N 2 / mol nO2 2.102 × 10 −4 = = n H2 O + n N2 + nO2 55.49 + 4.192 × 10 −4 + 2 .102 × 10 −4 = 3.788 × 10 −6 mol O 2 / mol 6- 33 http://librosysolucionarios.net 6.49 (cont’d) Henry' s law p N2 Nitrogen: HN 2 = 0.79 ⋅ 1 = 1046 . × 10 5 atm / mole fraction 7.554 × 10 −6 0.21 ⋅ 1 = 5544 . × 10 4 atm / mole fraction x O2 3.788 × 10 −6 Mass of oxygen dissolved in 1 liter of blood: p O2 Oxygen: HO2 = b. x N2 = = 2.102 × 10 -4 mol 32.0 g = 6.726 × 10 −3 g mol 0.4 g O2 1 L blood Mass flow rate of blood: m& blood = = 59 L blood / min min 6.72 × 10 -3 g O 2 c. Assumptions: (1) The solubility of oxygen in blood is the same as it is in pure water (in fact, it is much greater); (2) The temperature of blood is 36.9°C. m O2 = 6.50 a. bg Basis: 1 cm 3 H 2 O l H2O =1.0 (SG) → 1 g H 2 O 1 mol = 0.0555 mol H 2 O 18.0 g = 0.0901 CO2 → ( SC) b g 0.0901 cm3 STP CO 2 1 mol = 4.022 × 10 − 6 mol CO 2 3 22,400 cm STP b g d4.022 × 10 i mol CO = 7.246 × 10 mol CO d0.0555 + 4.022 × 10 i mol 1 atm ⇒ H b20° Cg = = 13800 atm mole fraction 7.246 × 10 −6 p CO2 = x CO2 HCO2 b. −5 2 p CO2 = 1 atm ⇒ x CO 2 = −6 2 mol −5 CO2 b g For simplicity, assume n total ≈ n H 2 O mol b xCO2 = p CO2 H = 3.5 atm g b13800 atm mole fractiong = 2.536 × 10 −4 mol CO 2 mol 1L 10 3 g H 2 O 1 mol H 2 O 2.536 × 10 − 4 mol CO 2 33.8 oz 1L 18.0 g H 2 O 1 mol H 2 O = 0.220 g CO 2 n CO2 = c. V = 12 oz 0.220 g CO 2 44.0 g CO 2 1 mol CO 2 b g b273 + 37gK = 0127 . L = 127 cm 1 mol CO2 22.4 L STP 44.0 g CO 2 1 mol 273K 6- 34 http://librosysolucionarios.net 3 6.51 a. – SO2 is hazardous and should not be released directly into the atmosphere, especially if the analyzer is inside. – From Henry’s law, the partial pressure of SO2 increases with the mole fraction of SO2 in the liquid, which increases with time. If the water were never replaced, the gas leaving the bubbler would contain 1000 ppm SO2 (nothing would be absorbed), and the mole fraction of SO2 in the liquid would have the value corresponding to 1000 ppm SO2 in the gas phase. b g b g b. Calculate x mol SO 2 mol in terms of r g SO 2 100 g H 2 O b g r (g SO )b1 mol 64.07 gg = 0.01561r (mol SO ) 0.01561r FG mol SO IJ ⇒x = 5.55 + 0.01561r H mol K Basis: 100 g H 2O 1 mol 18.02 g = 5.55 mol H2 O 2 2 2 SO2 From this relation and the given data, pS O2 (torr) 0 42 xSO2 (mol SO2 /mol) 85 –3 0 1.4x10 129 –3 176 –3 2.8x10 5.6x10–3 4.2x10 A plot of pSO 2 vs. xS O2 is a straight line. Fitting the line using the method of least squares (Appendix A.1) yields mm Hg pSO2 = H SO2 xS O2 , H SO 2 = 3.136 × 10 4 mole fraction d i c. 100 ppm SO 2 ⇒ ySO = 100 mol SO 2 = 1.00 × 10 −4 mol SO 2 /mol gas 2 106 mols gas ( ) ⇒ pSO2 = ySO2 P = 1.0 ×10−4 ( 760 mm Hg ) = 0.0760 mm Hg Henry' s law ⇒ xSO 2 = Since xS O2 H SO2 = 0.0760 mm Hg 3.136 × 104 mm Hg mole fraction = 2.40 × 10 −6 mol SO 2 mol is so low, we may assume for simplicity that Vfinal ≈ Vinitial = 140 L , and n final ≈ ninitial = ⇒ nS O2 = pSO 2 bg 140 L 103 g H 2 O l 1L 1 mol 18 g = 7.78 × 10 3 moles 7.78 × 10 3 mol solution 2.40 × 10 −6 mol SO 2 1 mol solution = 0.0187 mol SO 2 dissolved 0.0187 mol SO2 dissolved = 1.34 × 10 −4 mol SO 2 L 140 L Gas-phase composition ySO2 = 1.0 × 10 −4 mol SO 2 mol yH 2 O = xH2 O p*H2O (30o C) P = (1)(31.824 torr) 760 torr = 4.19 × 10 −2 mol H 2 O(v) mol yair = 1 − ySO2 − yH2O = 0.958 mol dry air/mol d. Agitate/recirculate the scrubbing solution, change it more frequently. Add a base to the solution to react with the absorbed SO 2. 6- 35 http://librosysolucionarios.net 6.52 Raoult’s law + Antoine equation (S = styrene, T = toluene): − ( T +214.985) y S P = xS p∗S ⇒ x S = 0.650(150 mm Hg)/10 7.066231507.434 yT P = xT pT∗ ⇒ xT = 0.350(150 mm Hg)/106.95805−1346.773 (T + 219.693 ) 0.65(150) 1 = x S + xT = + 7.066231507.434 − (T + 214.985) 0.35(150) 6.958051346.773 − ( T +219.693) 10 10 ⇒ T = 86.0°C (Determine using E-Z Solve or a spreadsheeet) xS = 0.65(150) 10 7.066231507.434 − ( 86.0 +214.985) = 0.853 mol styrene/mol ⇒ xT = 0.147 mol toluene/mol 6.892721203.531 − ( 85+ 219.888) 6.53 PB∗ ( 85°C ) = 10 = 881.6 mm Hg 6.95805−1346.773 (85.0+ 219.693 ) PT∗ ( 85°C ) = 10 = 345.1 mm Hg yB = 0.35 (881.6 ) /[10(760)] = 0.0406 mol Benzene mol Raoult's Law: y B P = x B PB∗ ⇒ yT = 0.65 (345.1) /[10(760)] = 0.0295 mol Toluene mol y N2 = 1 − 0.0406 − 0.0295 = 0.930 mol N2 mol 6.54 a. From the Cox chart, at 77° F, p *P = 140 psig , p *nB = 35 psig, p *iB = 51 psig * * Total pressure P=x p ⋅ p*p +x nB ⋅pnB +x iB ⋅ piB = 0.50(140) + 0.30(3 5)+ 0.20(51)= 91 psia ⇒ 76 psig P < 200 psig, so the container is technically safe. b. From the Cox chart, at 140° F, pP* = 300 psig , p *nB = 90 psig, piB* = 120 psig Total pressure P = 0.50( 300) + 0.30 (90) + 0.20(120 ) ≅ 200 psig The temperature in a room will never reach 140o F unless a fire breaks out, so the container is adequate. 6.844711060.793 − (120 +231.541) 6.55 a. Antoine: Pnp∗ (120 °C ) = 10 Pip∗ (120°C) = 10 6.73457 −992.019 (120 + 231.541) = 6717 mm Hg = 7883 mm Hg Note: We are using the Antoine equation at a temperature well above the validity ranges in Table B.4, so that all calculated values must be considered rough estimates. When the first bubble of vapor forms, x np = 0.500 mol n - C5H12 (l) / mol xip = 0.500 mol i -C5H 12 (l)/mol Total pressure: P=xnp ⋅ p *np +x ip ⋅ pip* = 0.50(6717) + 0.50(7883) = 7300 mm Hg 6- 36 http://librosysolucionarios.net 6.55 (cont’d) ynp = * xnp ⋅ pnp P = 0.500(6725) = 0.46 mol n-C5 H12 (v)/mol 7342 yip = 1 − ynp = 1 − 0.46 = 0.546 mol i-C5H 12 (v)/mol When the last drop of liquid evaporates, ynp = 0.500 mol n - C5H 12 (v) / mol x np + xip = xnp = y np P * pnp (120 o C) yip P * pip (120o C) + yip = 0.500 mol i-C5H12 (v)/mol = 0.500 P 0.500P + = 1 ⇒ P = 7250 mm Hg 6717 7883 0.500*7250 mm Hg = 0.54 mol n-C5H12 (l)/mol 6717 mm Hg xip = 1 − x np = 1 − 0.54 = 0.46 mol i -C5H12 (l)/mol b. When the first drop of liquid forms, ynp = 0.500 mol n - C5H 12 (v) / mol yip = 0.500 mol i - C12 H12 (v) / mol P = (1200 + 760) = 1960 mm Hg x np + xip = 0.500 P 0.500 P 980 980 + * = 6.844711060.793/( + 6.73457− 992.019/(T + 231.541) = 1 * − Tdp + 231.541) dp pnp (Tdp ) pip (Tdp ) 10 10 ⇒ Tdp = 63.1o C p ∗np = 10 pip∗ 6.844711060.793 − ( 63.1+ 231.541 ) 6.73457 −992.019 ( 63.1+ 231.541 ) = 10 x np = = 1758 mm Hg = 2215 mm Hg 0.5*1960 mm Hg = 0.56 mol n -C5 H12 /mol * pnp (63.1o C) xip = 1 − xnp = 1 − 0.56 = 0.44 mol i -C5 H12/mol When the last bubble of vapor condenses, x np = 0.500 mol n - C5H12 (l) / mol x ip = 0.500 mol i - C5H 12 (l) / mol Total pressure: P= xnp ⋅ p *np +x ip ⋅ p*ip − ( T + 231.541) ⇒ 1960 = (0.5)106.844711060.793 + (0.5)10 6.73457 − 992.019/(Tb p + 231.541) ⇒ T = 62.6°C (Obtained with E-Z Solve) xnp ⋅ p*np (62.6o C) 0.5(1731) = 0.44 mol n -C5H12 (v)/mol P 1960 yip = 1 − y np = 1 − 0.44 = 0.56 mol i -C5 H12 (v)/mol ynp = = 6- 37 http://librosysolucionarios.net 6.56 B = benzene, T = toluene n&v (mol / min) at 80o C, 3 atm n& N2 = 10 L(STP)/min xB [mol B(l)/mol] yN2 (mol N2 /mol) yB [mol B(v)/mol] n& N2 ( mol / min) xT [mol T(l)/mol] yT [mol T(v)/mol] 10.0 L(STP) / min = 0.4464 mol N 2 / min 22.4 L(STP) / mol 6.89272−1203.531 (80+ 219.888 ) = 757.6 mm Hg 6.958051346.773 − (80+ 219.693 ) = 291.2 mm Hg Antoine: p ∗B (80 °C ) = 10 pT∗ ( 80°C ) = 10 a. Initially, xB = 0.500, xT = 0.500. Raoult's law: yB = x B p∗B (80o C) 0.500 ( 757.6 ) = = 0.166 mol B(v) mol P 3(760) yT = xT p∗T (80o C) 0.500 ( 291.2 ) = = 0.0639 mol T(v) mol P 3(760) N 2 balance: 0.4464 mol N 2 / min = n&v (1 − 0.166 − 0.0639) ⇒ n&v = 0.5797 mol / min FG H F = G 0.5797 H ⇒ n&B 0 = 0.5797 n&T0 mol BI mol B(v) IJ FG 0166 . = 0.0962 J KH mol K min mol I F mol BI mol T(v) 0.0639 = 0.0370 J G J min K H mol K min mol min b. Since benzene is evaporating more rapidly than toluene, xB decreases with time and xT (= 1–xB) increases. c. Since xB decreases, yB (= xBp B*/P) also decreases. Since xT increases, yT (= xTp T*/P) also increases. 6.57 a. P = ∗ xhex phex dT i + bp x hep p∗hep dT i bp , yi = d i x i pi∗ Tbp P 760 mm Hg = 0.500 10 6.885551175.817/( − Tbp + 224.867) , Antoine equation for p ∗i + 0.500 10 6.90253−1267.828 /(Tbp + 216.823) E-Z Solve or Goal Seek ⇒ Tbp = 80.5° C ⇒ yhex = 0.713, y hep = 0.287 b. xi = yi P ⇒ Tdp pi∗ d i ∑x i i ∑ =P i ∗ pi yi =1 Tdp d i 6- 38 http://librosysolucionarios.net 6.57 (cont’d) 0.30 0.30 760 mmHg 6.88555−1175.817/(T + 224.867) + 6.902531267.828 =1 − /( T + 216.823) dp dp 10 10 E-Z Solve or Goal Seek ⇒ Tdp = 711 . ° C ⇒ x hex = 0.279 , x hep = 0.721 6.58 a. f (T ) = P − N ∑ xi pi* (T ) = 0 ⇒ T , where pi* (T ) FG A − B IJ = 10H T + C K i i i i =1 yi (i = 1,2,L , N ) = x i pi* (T ) P b. Calculation of Bubble Points A B Benzene 6.89272 1213.531 Ethylbenzene 6.95650 1423.543 Toluene 6.95805 1346.773 C 219.888 213.091 219.693 P(mmHg)= 760 xB 0.226 0.443 0.226 xEB 0.443 0.226 0.226 T bp (o C) 108.09 96.47 104.48 xT 0.331 0.331 0.548 b g d i When x B = 1 pure benzene , Tbp = Tbp b g = 80.1o C C6 H 6 d i When x EB = 1 pure ethylbenzene , Tbp = Tbp b g d i When x T = 1 pure toluene , Tbp = Tbp C 7 H8 pB pEB pT f(T) 378.0 148.2 233.9 -0.086 543.1 51.6 165.2 0.11 344.0 67.3 348.6 0.07 C 8H 10 = 136.2 o C ⇒ Tbp , EB > Tbp ,T > Tbp, B = 1106 . oC Mixture 1 contains more ethylbenzene (higher boiling point) and less benzene (lower bp) than Mixture 2, and so (Tbp )1 > (Tbp )2 . Mixture 3 contains more toluene (lower bp) and less ethylbenzene (higher bp) than Mixture 1, and so (Tbp )3 < (Tbp )1 . Mixture 3 contains more toluene (higher bp) and less benzene (lower bp) than Mixture 2, and so (Tbp )3 > (Tbp )2 6- 39 http://librosysolucionarios.net 6.59 a. Basis: 150.0 L/s vapor mixture n& 1 (mol/s) @ T(o C), 1100 mm Hg 0.600 mol B(v)/mol 0.400 mol H(v)/mol &n2 (mol/s) x2 [mol B(l)/mol] (1- x2 ) [mol H(l)/mol] n& 0 (mol/s)@120°C, 1 atm 1atm 0.500 mol B(v)/mol 0.500 mol H(v)/mol Gibbs phase rule: F=2+c-π =2+2-2=2 Since the composition of the vapor and the pressure are given, the information is enough. Equations needed: Mole balances on butane and hexane, Antoine equation and Raoult’s law for butane and hexane b. Molar flow rate of feed: n& 0 = 150.0 L 273 K mol = 4.652 mol/s s 393 K 22.4 L (STP) Raoult's law for butane: 0.600(1100)=x 2 ⋅10 6.82485 −943.453/(T +239.711) (1) Raoult's law for hexane: 0.400(1100)=(1-x 2 ) ⋅ 10 Mole balance on butane: 4.652(0.5)=n& 1 ⋅ 0.6+ n& 2 ⋅ x 2 Mole balance on hexane: 4.652(0.5)=n& 1 ⋅ 0.4 + n& 2 ⋅ (1 − x 2 ) (2) (3) (4) 6.88555− 1175.817/(T + 224.867) c. From (1) and (2), 1= ⇒ T = 57.0 ° C x2 = 1100(0.6) 1100(0.4) + 943.453 1175.817 10**(6.82485 − ) 10**(6.88555 − ) T + 239.711 T + 224.867 1100(0.6) 6.82485943.453/(57.0 − + 239.711) 10 = 0.149 mol butane /mol Solving (3) and (4) simultaneously ⇒ n&1 = 3.62 mol C4 H10 /s; n&2 = 1.03 mol C6 H14 /s d. Assumptions: (1) Antoine equation is accurate for the calculation of vapor pressure; (2) Raoult’s law is accurate; (3) Ideal gas law is valid. 6.60 P = n-pentane, H = n-hexane 170.0 kmol/h, T1a (o C), 1 atm 85.0 kmol/h, T1b (o C), 1 &n0 (kmol/h) 0.98 mol P(l)/mol 0.02 mol H(l)/mol 0.45 kmol P(l)/kmol 0.55 kmol H(l)/kmol &n2 (kmol/h) (l), o x2 (kmol P(l)/kmol) (1- x2 ) (kmol H(l)/kmol) 6- 40 http://librosysolucionarios.net 6.60 (cont’d) a. Molar flow rate of feed: n& 0 (0.45)(0.95) = 85( 0.98) ⇒ n& 0 = 195 kmol / h Total mole balance : 195 = 85.0 + n& 2 ⇒ n& 2 = 110 kmol / h Pentane balance: 195( 0.45) = 85.0 (0.98) + 110 ⋅ x 2 ⇒ x 2 = 0.0405 mol P / mol b. Dew point of column overhead vapor effluent: Eq. 6.4-7, Antoine equation ⇒ 0.98(760) 10 6.844711060.793/( − T1a + 231.541) + 0.02(760) 10 6.88555−1175.817 /( T1a + 224.687) = 1 ⇒ T1a = 37.3o C Flow rate of column overhead vapor effluent. Assuming ideal gas behavior, 170 kmol 0.08206 m3 ⋅ atm (273.2 + 37.3) K & Vvapor = = 4330 m 3 / h h kmol ⋅ K 1 atm Flow rate of liquid distillate product. Table B.1 ⇒ ρ P = 0.621 g / mL, ρ H = 0.659 g / mL 0.98(85) kmol P 72 .15 kg P L V&distillate = h kmol P 0.621 kg P 0.02 (85) kmol H 86.17 kg H L = 9 .9 × 10 3 L / h h kmol H 0.659 kg H c. Reboiler temperature. + 6.84471−1060.793/(T2 + 231.541) + 0.96 ⋅106.88555−1175.817/(T2 + 224.867) = 760 ⇒ T2 =66.6°C 0.04 ⋅10 Boilup composition. y2 = − + 231.541) x2 pP* (66.6 o C) 0.04 ⋅ 106.844711060.793/(66.6 = = 0.102 mol P(v)/mol P 760 ⇒ (1 - y 2 ) = 0.898 mol H(v) / mol d. Minimum pipe diameter F I GH JK m3 V& s = u max ⇒ D min = FG m IJ × πD HsK 4 2 min 4V&vapor π ⋅ u max = ( m2 ) 4 4330 m 3 / h 1 h = 0.39 m (39 cm) π 10 m / s 3600 s Assumptions : Ideal gas behavior, validity of Raoult’s law and the Antoine equation, constant temperature and pressure in the pipe connecting the column and the condenser, column operates at steady state. 6- 41 http://librosysolucionarios.net Condenser 6.61 a. F (mol) x 0 (mol butane/mol) V (mol) 0.96 mol butane/mol R (mol) x 1 (mol butane/mol) T P Partial condenser: 40° C is the dew point of a 96% C 4 H 10 − 4% C 5H 12 vapor mixture at P = Pmin Total condenser: 40° C is the bubble point of a 96% C 4 H 10 - 4% C5 H 12 liquid mixture at P = Pmin Dew Point: 1 = (Raoult's Law) ∑x = ∑ p i ∗ i yi P ⇒ Pmin = 40° C b Antoine Eq. for g pi∗ i b pi∗ 40° C 943.453 6.82485 − 40 +239.711 ( C4 H10 ) = 10 Antoine Eq. for pi∗ ( C5 H12 ) = 10 ⇒ Pmin = ∑y 1 1060.793 6.84471− 40 + 231.541 g = 2830.7 mm Hg = 867.2 mm Hg 1 = 2596 mm Hg ( partial condenser ) 0.96 2830.7 + 0.04867.2 Bubble Point: P = ∑ y P = ∑ x p b40° Cg i i ∗ i P = 0.96 ( 2830.7 ) + 0.04 (867.2 ) = 2752 mm Hg ( total condenser ) b. V& = 75 kmol / h , R& V& = 15 . ⇒ R& = 75 × 15 . kmol / h = 112.5 kmol / h Feed and product stream compositions are identical: y = 0.96 kmolbutane kmol Total balance: F& = 75 + 112.5 = 187.5 kmol / h c. Total balance as in b. R& = 1125 . kmol / h UV P = 2596 mm Hg gb gW x = 0.8803 mol butane mol = 112.5b0.8803g + 0.96b75g ⇒ x = 0.9122 mol butane mol reflux b b g Equilibrium: 0.96 P = x1 2830.70 Raoult' s law 0.04 P = 1 − x1 867.22 b g Butane balance: 187 .5 x 0 6.62 a. F& = 187.5 kmol / h 1 0 y i p ∗i y x p ∗ P p ∗A = ⇒ α AB = A A = ∗A = = α AB xi P y B xB p B P p ∗B Raoult's law: b. ( ) 1507.434 7.06623 − 85 + 214.985 pS 85 C = 10 * o 1423.543 6.95650 − 85 + 213.091 pEB (85 C) = 10 * = 109.95 mm Hg o 1213.531 6.89272− 85 + 219.888 p*B (85o C) = 10 = 151.69 mm Hg = 881.59 mm Hg 6- 42 http://librosysolucionarios.net 6.62 (cont’d) α S,EB p*S 109.95 p * 881.59 = * = = 0.725 , α B,EB = *B = = 5.812 pEB 151.69 pEB 151.69 Styrene − ethylbenzene is the more difficult pair to separate by distillation because α S,EB is closer to 1 than is α B,EB . c. α ij = yi xi yj xj y j =1 − yi x j =1− xi ⇒α ij d. α B, EB = 5.810 ⇒ y B = α ij x i yi xi ⇒ yi = (1 − y i ) 1 − xi 1 + α ij − 1 x i b g x Bα B, EB 1 + (α B , EB − 1) x B d = i 5.81 x B , P = x B p *B + (1 − x B ) p *EB 1 + 4.81x B bg bg xB yB P 6.63 a. = 0.0 0.2 0.4 0.6 0.8 1.0 mol B l mol 0.0 0.592 0.795 0.897 0.959 1.0 mol B v mol 152 298 444 5900 736 882 mmHg Since benzene is more volatile, the fraction of benzene will increase moving up the column. For ideal stages, the temperature of each stage corresponds to the bubble point temperature of the liquid. Since the fraction of benzene (the more volatile species) increases moving up the column, the temperature will decrease moving up the column. b. Stage 1: n& l = 150 mol / h, n& v = 200 mol / h ; x 1 = 0.55 mol B mol ⇒ 0.45 mol S mol ; y 0 = 0.65 mol B mol ⇒ 0.35 mol S mol Bubble point T : P = ∑x p i ∗ i bT g − T + 214.985) P1 = (0.400 × 760) mmHg = ( 0.55 )10 6.89272−1203.531/(T + 219.888) + ( 0.45 )107.066231507.434/( E-Z Solve → T1 = 67.6 o C ⇒ y1 = b g= x1 p ∗B T b g 0.55 508 = 0.920 mol B mol ⇒ 0.080 mol S mol P 0.400 × 760 B balance: y 0 n& v + x 2 n& l = y 1n& v + x 1n&l ⇒ x 2 = 0.910 mol B mol ⇒ 0.090 mol S mol E-Z Solve Stage 2: (0.400 × 760) mmHg = 0.910 p *B (T2 ) + 0.090 p *S ( T 2) →T2 = 55.3o C y2 = b 0.910 3310 . g = 0.991 mol B mol ⇒ 0.009 mol S mol 760 × 0.400 B balance: y 1n& v + x 3n& l = y 2n&v + x 2 n&l ⇒ x 3 ≈ 1 mol B mol ⇒ ≈ 0 mol S mol c. In this process, the styrene content is less than 5% in two stages. In general, the calculation of part b would be repeated until (1–yn ) is less than the specified fraction. 6- 43 http://librosysolucionarios.net 6.64 Basis: 100 mol/s gas feed. H=hexane. 200 mol oil/s n F (mol/s) y F (mol H/mol) 1 – y F (mol N 2/mol) 100 mol/s 0.05 mol H/mol 0.95 mol N /mol 2 a. n l (mol/s) x +i 1 (mol H/mol) n 2 (mol/s) x 2 (mol H/mol) 1 – x 2 (mol Oil/mol) n v (mol/s) y i (mol H/mol) Stage i n l (mol/s) x i (mol H/mol) n v (mol/s) y i– 1 (mol H/mol) 99.5% of H in feed. U|V |W b g b g b gb g n F = 95.025 mol s N 2 balance: 0.95 100 = 1 − y F n F ⇒ 99.5% absorption: 0.05 100 0.005 = y F n F y F = 2 .63 × 10 −4 mol H(v) mol Mole Balance: 100 + 200 = 95.025 + n 2 ⇒ n2 = 205 mol s b g b g b g 1 = b100 + 95.025g ⇒ n& 2 Hexane Balance: 0.05 100 = 2.63 × 10 −4 95.025 + x 1 204.99 ⇒ x 1 = 0.0243 mol H(l) mol n& L = b g 1 200 + 205 ⇒ n& L = 202.48 mol s , n&G 2 B G = 97 .52 mol s Antoine b. b g b g y1 = x1 p ∗H 50° C / P = 0.0243 403.73 / 760 = 0.0129 mol H(v) mol H balance on 1 st Stage: y0 n&v + x2 n& l = y1 n&v + x1n& l ⇒ x2 = 0.00643 mol H(l) mol c. The given formulas follow from Raoult’s law and a hexane balance on Stage i. d. Hexane Absorption P= y0= nGf= A= 760 0.05 95.025 6.88555 T 30 p*(T) 187.1 i 0 1 2 3 x(i) 2.43E-02 3.10E-03 5.86E-04 PR= x1= nL1= B= y(i) 5.00E-02 5.98E-03 7.63E-04 1.44E-04 1 0.0243 204.98 1175.817 ye= 2.63E-04 nG= 97.52 nL= C= 224.867 T 50 p*(T) 405.3059 i 0 1 2 3 4 5 x(i) 2.43E-02 6.46E-03 1.88E-03 7.01E-04 3.99E-04 y(i) 5.00E-02 1.30E-02 3.45E-03 1.00E-03 3.74E-04 2.13E-04 202.48 T 70 p*(T) 790.5546 i 0 1 2 3 4 5 ... 21 x(i) 6- 44 http://librosysolucionarios.net 2.43E-02 1.24E-02 6.43E-03 3.44E-03 1.94E-03 ... 4.38E-04 y(i) 5.00E-02 2.53E-02 1.29E-02 6.69E-03 3.58E-03 2.02E-03 ... 4.56E-04 6.64 (cont’d) e. If the column is long enough, the liquid flowing down eventually approaches equilibrium with the entering gas. At 70o C, the mole fraction of hexane in the exiting liquid in equilibrium with the mole fraction in the entering gas is 4.56x10–4 mol H/mol, which is insufficient to bring the total hexane absorption to the desired level. To reach that level at 70o C, either the liquid feed rate must be increased or the pressure must be raised to a value for which the final mole fraction of hexane in the vapor is 2.63x10–4 or less. The solution is Pmin = 1037 mm Hg. 6.65 a. Intersection of vapor curve with y B = 0.30 at T = 104° C ⇒ 13% B(l), 87%T(l) b g b b. T = 100° C ⇒ x B = 0.24 mol B mol liquid , y B = 0.46 mol B mol liquid g n V (mol vapor) 0.46 mol B(v)/mol n L (mol liquid) 0.24 mol B(l)/mol Basis: 1 mol 0.30 mol B(v)/mol Balances UV W Total moles: 1 = nV + n L n L = 0.727 mol nV mol vapor ⇒ ⇒ = 0.375 B: 0.30 = 0.46 nV + 0.24 n L nV = 0.273 mol n L mol liquid c. Intersection of liquid curve with x B = 0.3 at T = 98° C ⇒ 50% B(v), 50%T(v) 6.66 a. P = 798 mm Hg, y B = 0.50 mol B(v) mol b. P = 690 mm Hg, xB = 0.15 mol B(l) mol c. P = 750 mm Hg, y B = 0.43 mol B(v) mol, xB = 0.24 mol B(l) mol nV (mol) 0.43 mol B/mol nL (mol) 0.24 mol B/mol 3 mol B 7 mol T UV W Mole bal.: 10 = nV + n L nV = 3.16 mol n mol vapor ⇒ ⇒ v = 0.46 B bal.: 3 = 0.43nV + 0.24 n L n L = 6.84 mol n l mol liquid Answers may vary due to difficulty of reading chart. d. i) P = 1000 mm Hg ⇒ all liquid . Assume volume additivity of mixture components. V= 3 mol B 78.11 g B mol B 10 −3 L 0.879 g B + 7 mol T 92.13 g T mol T ii) 750 mmHg. Assume liquid volume negligible 6- 45 http://librosysolucionarios.net 10 −3 L 0.866 g T = 1.0 L 6.66 (cont’d) V= 3.16 mol vapor 0.08206 L ⋅ atm 373 K 760 mm Hg mol ⋅ K 750 mm Hg 1 atm − 0.6 L = 97.4 L (Liquid volume is about 0.6 L) iii) 600 mm Hg v= 10 mol vapor 0.08206 L ⋅ atm 373K 760 mm Hg mol ⋅ K 600 mm Hg 1 atm = 388 L 6.67 a. M = methanol n V (mol) y (mol M(v)mol) n L (mol) x (mol M(l)/mol) n f (mol) x F (mol M(l)/mol) UV W Mole balance: n f = nV + n L n x −x ⇒ x F nV + x F n L = ynV + xn L ⇒ f = V = F MeOH balance: x F n f = ynV + xn L nL y−x x F = 0.4 , x = 0.23, y = 0.62 ⇒ f = 0.4 − 0.23 = 0.436 0.62 − 0.23 b. Tmin = 75o C, f = 0 , Tmax = 87 o C, f = 1 6.68 a. Txy diagram (P=1 atm) 80 75 o T( C) 70 Vapor 65 liquid 60 55 50 0 0.2 0.4 0.6 0.8 Mole fraction of Acetone b. x A = 0.47; y A = 0.66 6- 46 http://librosysolucionarios.net 1 6.68 (cont’d) c. (i) x A = 0.34; y A = 0.55 (ii) Mole bal.: 1 = nV + nL A bal.: ⇒ nV = 0.762 mol vapor, nL = 0.238 mol liquid 0.50 = 0.55nV + 0.34 nL ⇒ 76.2 mole% vapor (iii) ρ A (l ) = 0.791 g/cm 3 , ρ E(l) = 0.789 g/cm 3 ⇒ ρ l ≈ 0.790 g/cm3 (To be more precise, we could convert the given mole fractions to mass fractions and calculate the weighted average density of the mixture, but since the pure component densities are almost identical there is little point in doing all that.) M A = 58.08 g/mol, M E = 46.07 g/mol ⇒ Ml = ( 0.34 )( 58.08) + (1 − 0.34 )( 46.07 ) = 50.15 g/mol Basis: 1 mol liquid ⇒ (0.762 mol vapor / 0.238 mol liquid) = 3.2 mol vapor (1 mol)(50.15 g / mol) Liquid volume: Vl = = 63.48 cm 3 3 (0.790 g / cm ) Vapor volume: 3.2 mol 22400 cm 3 (STP) (65 + 273)K = 88 ,747 cm 3 mol 273K 88,747 Volume percent of vapor = × 100% = 99.9 volume % vapor 88747 + 63.48 Vv = d. For a basis of 1 mol fed, guess T, calculate n V as above; if n V ≠ 0.20, pick new T. T 65 °C 64.5 °C e. xA 0.34 0.36 yA 0.55 0.56 fV 0.333 0.200 Raoult's law: y i P = xi p i* ⇒ P = x A p *A + x E p E* 760 = 0.5 × 10 7.11714 −1210.595/(Tbp +229.664) 8.11220 −1592.864/( Tbp +226.184) + 0.5 × 10 ⇒ Tbp = 66.16 o C xp*A 0.5 ×107.11714 −1210.595/(66.25+ 229.664) = = 0.696 mol acetone/mol P 760 ∆Tbp 66.25 − 61.8 The actual Tbp = 61.8o C ⇒ = ×100% = 7.20% error in Tbp Tbp (real) 61.8 y= y A = 0.674 ⇒ ∆y A 0.696 − 0.674 = ×100% = 3.26% error in yA yA (real) 0.674 Acetone and ethanol are not structurally similar compounds (as are, for example, pentane and hexane or benzene and toluene). There is consequently no reason to expect Raoult’s law to be valid for acetone mole fractions that are not very close to 1. 6- 47 http://librosysolucionarios.net 6.69 a. B = benzene, C = chloroform. At 1 atm, (Tbp )B = 80.1o C, (Tbp)C = 61.0o C The Txy diagram should look like Fig. 6.4-1, with the curves converging at 80.1o C when xC = 0 and at 61.0o C when xC = 1. (See solution to part c.) b. Txy Diagram for an Ideal Binary Solution A B C Chloroform 6.90328 1163.03 227.4 Benzene 6.89272 1203.531 219.888 P(mmHg)= 760 x 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 T 80.10 78.92 77.77 76.66 75.58 74.53 73.51 72.52 71.56 70.62 69.71 68.82 67.95 67.11 66.28 65.48 64.69 63.93 63.18 62.45 61.73 y 0 0.084 0.163 0.236 0.305 0.370 0.431 0.488 0.542 0.593 0.641 0.686 0.729 0.770 0.808 0.844 0.879 0.911 0.942 0.972 1 p1 0 63.90 123.65 179.63 232.10 281.34 327.61 371.15 412.18 450.78 487.27 521.68 554.15 585.00 614.02 641.70 667.76 692.72 716.27 738.72 760 p2 760 696.13 636.28 580.34 527.86 478.59 432.30 388.79 347.85 309.20 272.79 238.38 205.83 175.10 145.94 118.36 92.17 67.35 43.75 21.33 0 p1+p2 760 760.03 759.93 759.97 759.96 759.93 759.91 759.94 760.03 759.99 760.07 760.06 759.98 760.10 759.96 760.06 759.93 760.07 760.03 760.05 760 Txy diagram (P=1 atm) 85 75 Vapor o T( C) 80 70 Liquid 65 60 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Mole fraction of chloroform 6- 48 http://librosysolucionarios.net 0.8 0.9 1 6.69 (cont’d) d. Txy diagram (P=1 atm) 85 T(oC) 80 yc xc 75 70 x y 0.2 0.3 0.4 0.5 65 60 0 0.1 0.6 0.7 0.8 0.9 1 Mole fraction of choloroform ∆T 71 − 75.3 = × 100% = −5.7% error in Tbp Tactual 75.3 Raoult’s law: Tbp = 71o C, y = 0.58 ⇒ ∆y 0.58 − 0.60 = × 100% = −3.33% error in y y actual 0.60 Benzene and chloroform are not structurally similar compounds (as are, for example, pentane and hexane or benzene and toluene). There is consequently no reason to expect Raoult’s law to be valid for chloroform mole fractions that are not very close to 1. d i b g d i 6.70 P ≈ 1 atm = 760 mm Hg = x m p *m Tbp + 1 − x m p *P Tbp 7.878631473.11/( − Tbp + 230) 760 = 0.40 ×10 7.74416 −1437.686/(Tbp + 198.463) + 0.60 × 10 E-Z Solve →T = 79.9 o C We assume (1) the validity of Antoine’s equation and Raoult’s law, (ii) that pressure head and surface tension effects on the boiling point are negligible. The liquid temperature will rise until it reaches 79.9 °C, where boiling will commence. The escaping vapor will be richer in methanol and thus the liquid composition will become richer in propanol. The increasing fraction of the less volatile component in the residual liquid will cause the boiling temperature to rise. 6- 49 http://librosysolucionarios.net 6.71 Basis: 1000 kg/h product nH4 (mol H 2 /h) E = C2 H5 OH ( M = 46.05) A = CH 3 CHO ( M = 44.05) scrubber n3 (mol/h) y A3 (mol A/mol), sat'd y E3 (mol E/mol), sat'd y H3 (mol H 2 /h) vapor, –40°C P = 760 mm Hg Fresh feed n0 (mol E/h) nA1 (mol A/h) nE1 (mol E/h) 280°C reactor nA2 (mol A/h) nE2 (mol E/h) nH2 (mol H 2/h) condenser nC (mol/h) 0.550 A 0.450 E liquid, –40°C Scrubbed Hydrocarbons nA4 (mol A/h) nE4 (mol E/h) still Product 1000 kg/h np (mol/h) 0.97 A 0.03 E nr (mol/h) 0.05 A 0.95 E Strategy a. d i • Calculate molar flow rate of product n& p from mass flow rate and composition • Calculate y A3 and y E3 from Raoult’s law: y H3 = 1 − y A3 − y E3 . Balances about the still involve fewest unknowns ( n&c and n& r ) • Total mole balance about still • A, E and H 2 balances about scrubber ⇒ n&A4 , n& E4 , and n& H4 in terms of n& 3 . Overall atomic balances on C, H, and O now involve only 2 unknowns ( n& 0 , n&3 ) • Overall C balance • • • • A balance about fresh feed-recycle mixing point ⇒ n& A1 E balance about fresh feed-recycle mixing point ⇒ n& E1 A, E, H 2 balances about condenser n& A2 , n& E2 , n& H2 All desired quantities may now be calculated from known molar flow rates. UV ⇒ n& , n& W c A balance about still r UV ⇒ n& , n& Overall H balanceW 0 3 Molar flow rate of product b gb g b gb g M = 0.97 M A + 0.03 M E = 0.97 44.05 + 0.03 46.05 = 44.11 g mol n& p = 1000 kg 1 kmol = 22.67 kmol h h 44.11 kg Table B.4 (Antoine) ⇒ p *A ( −40 °C ) = 44.8 mm Hg p *E ( −40 °C ) = 0.360 mm Hg Note: We are using the Antoine equation at a temperature below the ranges of validity in Table B.4, so that all calculated values must be considered rough estimates. Raoult’s law ⇒ yA3 = 0.550 p*A ( −40 °C ) P = 0.550(44.8) = 0.03242 kmol A/kmol 760 6- 50 http://librosysolucionarios.net 6.71 (cont’d) yE3 = 0.450 p*E ( −40 °C) yH3 P = 1 − y A3 − y E3 0.450(0.360) = 2.13 × 10 −4 kmol E kmol 760 = 0.9674 kmol H 2 kmol = Mole balance about still: n& c = n& p + n& r ⇒ n&c = 22.67 + n&r A balance about still: 0.550n&c = 0.97 (22 .67) + 0.05n& r UV ⇒ n& W n& r = 29.5 kmol / h recycle c = 52.1 kmol / h A balance about scrubber: n& A4 = n& 3 y A3 = 0.02815n& 3 (1) E balance about scrubber: n& E4 = n&3 y E3 = 2.03 × 10 −4 n& 3 (2) H 2 balance about scrubber: n& H4 = n&3 y H3 = 0.9716n&3 (3) Overall C balance: n& 0 (mol E) 2 mol C h 1 mol E b gb g b gb g d ib g d ib g = n& A4 2 + n& E4 2 + 0.97n& p 2 + 0.03n& p 2 ⇒ n& 0 = n& A 4 + n& E 4 + 22.67 (4) Overall H balance: b gb g b gb g 6n& 0 = 2 n& H4 + 4 n& A4 + 6n& E4 + n& p 0.97 4 + 0.03 6 (5) Solve (1)–(5) simultaneously (E-Z Solve): n&0 = 23.4 kmol E/h (fresh feed), n&H 4 = 22.8 kmol H2 /h (in off-gas) n&3 = 23.5 kmol/h, n&A 4 = 0.76 kmol A/h, n&E 4 = 0.0050 kmol E/h A balance about feed mixing point: n& A1 = 0.05n& r = 1.47 kmol A h E balance about feed mixing point: n& E1 = n&0 + 0.95 n&r = 51.5 kmol E h E balance about condenser: n& E2 = n&3 y E3 + 0.450 n&c = 23.5 kmol E h Ideal gas equation of state: Vreactor feed = (1.47 + 51.5 ) kmol b. Overall conversion = h n&0 − 0.03 n& p 22.4 m 3 (STP ) ( 273+280 ) K = 2.40 × 10 3 m 3 h 1 kmol 273K 23.4 − ( 0.03 )( 22.67 ) × 100% = 97% n&0 23.4 n& − n& 51.5 − 23.5 Single-pass conversion = E1 E2 × 100% = × 100% = 54% n&E1 51.5 Feed rate of A to scrubber: n&A4 =0.76 kmol A/h Feed rate of E to scrubber: × 100% = n& E4 = 0.0050 kmolE h 6- 51 http://librosysolucionarios.net 6.72 a. G = dry natural gas, W = water n& 3 (lb - mole G / d) n& 4 (lb - mole W / d) 10 lb m W /106 SCF gas 90 o F, 500 psia Absorber n& 7 ( lb - mole W / d) FG lb - mole TEG IJ H d K F lb - mole W IJ n& G H d K 4.0 × 106 SCF / d 4 × 80 = 320 lb m W / d n& 1 ( lb - mole G / d) n& 2 [lb - mole W(v) / d] n& 5 Distillation Column 6 FG lb - mole TEGIJ H d K F lb- mole WIJ n& G H d K n&5 8 Overall system D.F. analysis: Water feed rate : n& 2 = 5 unknowns (n&1 , n& 2 , n& 3 , n& 4 , n&7 ) − 2 feed specifications (total flow rate, flow rate of water) − 1 water content of dried gas −2 balances (W, G) 0 D.F. 320 lb m W 1 lb - mole d 18.0 lb m = 17 .78 lb - moles W / d Dry gas feed rate: 4.0 × 106 SCF 1 lb- mole lb - moles W &n1 = − 17.78 = 1112 . × 104 lb - moles G/ d d 359 SCF d Overall G balance: n&1 = n& 3 ⇒ n&3 = 1112 . × 10 4 lb - moles G / d Flow rate of water in dried gas: n& 4 = (n& 3 + n&4 ) lb - moles 359 SCF gas 10 lb m W 1 lb - mole W d lb - mole 10 6 SCF 18.0 lb m n& =1.112 ×104 3 → n& 4 = 2.218 lb - mole W(l) / d Overall W balance: n& 7 = (17.78 − 2.218) lb - moles W 18.0 lb m d 1 lb - mole = 280 lb m W × d 6-52 http://librosysolucionarios.net F 1 ft I = 4.5 ft W GH 62.4 lb JK d 3 3 m 6.72 (cont’d) b. Mole fraction of water in dried gas = yw = n&4 2.218 lb - moles W / d lb - moles W(v) = = 1.99 × 10 −4 4 n&3 + n& 4 (2.218 + 1.112 × 10 ) lb - moles / d lb - mole Henry’s law: yw P = Hwxw ⇒ (1.99 × 10 −4 )(500 psia)(1 atm / 14.7 psia) lb - mole dissolved W = 0.0170 0.398 atm / mole fraction lb - mole solution c. Solvent/solute mole ratio ( x w ) max = 37 lb m TEG 1 lb - mole TEG 18.0 lbm W n&5 lb - mole TEG = = 4.434 lb m W 150.2 lb m TEG 1 lb m W n&2 − n&4 lb - mole W absorbed ⇒ n&5 = 4.434(17.78 − 2.22) = 69.0 lb - moles TEG / d xw = 0.80(0.0170) = 0.0136 lb - mole W n&6 &5 = 69 .0 = n → n&6 = 0951 . lb - mole W/ d lb - mole n&5 + n&6 Solvent stream entering absorber m= & 0.951 lb- moles W 18.0 lb m 69.0 lb - moles TEG + d lb - mole d 150.2 lb m lb - mole = 1.04 × 104 lb m / d W balance on absorber n&8 = (17.78 + 095 . − 2.22) lb -moles W/ d = 16.51 lb - moles W/ d 16.51 lb - moles W / d ⇒ xw = = 019 . lb - mole W / lb - mole (16.51 + 69.9) lb - moles / d c. The distillation column recovers the solvent for subsequent re-use in the absorber. 6.73 Basis: Given feed rates G1 G2 G3 100 mol/h 200 mol air/h n1 (mol/h) 0.96 H2 0.999 H 2 0.04 H2 S, sat'd 0.001 H 2S 1.8 atm absorber stripper L2 0°C L1 40°C n3 (mol/h) n4 (mol/h) 0.002 H 2S x 3 (mol H 2S/mol) (1 – x 3) (mol solvent/mol) 0.998 solvent 0°C G4 200 mol air/h n2 mol H 2S/mol 0.40°C, 1 at m n3 (mol/h) x 3 (mol H 2S/mol) (1 – x 3) (mol solvent/mol) 40°C heater 6-53 http://librosysolucionarios.net 6.73 (cont’d) b gb g Equilibrium condition: At G1, p H 2S = 0.04 18 . atm = 0.072 atm ⇒ x3 = p H 2S H H2 S = 0.072 atm = 2.67 × 10 −3 mole H 2 S mole 27 atm mol fraction Strategy: Overall H 2 and H 2 S balances ⇒ n&1 , n& 2 n& 2 + air flow rate ⇒ volumetric flow rate at G4 H 2 S and solvent balances around absorber ⇒ n&3 , n& 4 0.998n& 4 = solvent flow rate b gb g Overall H S balance: b100gb0.04 g = 0.001n& + n& Overall H 2 balance: 100 0.96 = 0.999 n1 ⇒ n&1 = 96.1 mol h 2 1 n&1 = 96.1 ⇒ n&2 = 3.90 mol H 2S h 2 Volumetric flow rate at stripper outlet b g b g b273 + 40gK = 5240 L hr 200 + 3.90 mol 22.4 liters STP V&G4 = h 1 mol 273 K H 2 S and solvent balances around absorber: b100gb0.04g + 0.002n& = 0.001n& 0.998n& = n& d1 − 2.67 × 10 i 4 1 −3 4 U| ⇒ n& V| W + n& 3 x 3 ⇒ n& 4 = 1.335n& 3 − 1952 3 3 Solvent flow rate = 0.998n&4 = 5820 mol solvent h 6.74 Basis: 100 g H 2 O Sat'd solution @ 60°C 100 g H 2 O 16.4 g NaHCO 3 Sat'd solution @ 30°C 100 g H 2 O 11.1 g NaHCO3 ms (g NaHCO3 ( s)) bg NaHCO 3 balance ⇒ 16.4 = 111 . + ms ⇒ m s = 5.3 g NaHCO 3 s % crystallization = 5.3 g cryst allized × 100% = 32.3% 16.4 g fed 6.75 Basis: 875 kg/h feed solution m1 (kg H2 O(v )/h) 875 kg/h x 0 (kg KOH/kg) (1 – x0) (kg H 2O/kg) Sat'd solution 10°C m2 (kg H2 O(1)/h) 1.03 m2 (kg KOH/h) m3 (kg KOH-2H 2O( s)/h) 60% of KOH in feed 6-54 http://librosysolucionarios.net ≈ n& 4 = 5830 mol h 6.75 (cont’d) Analysis of feed: 2KOH + H 2 SO 4 → K 2 SO 4 + 2H 2 O bg 22.4 mL H 2 SO 4 l 1L 0.85 mol H 2 SO 4 2 mol KOH 3 5 g feed soln 10 mL L 1 mol H 2 SO 4 = 0.427 g KOH g feed x0 = 56.11 g KOH 1 mol KOH 60% recovery: 875 (0.427 )( 0.60 ) = 224.2 kg KOH h m3 = 224.2 kg KOH 92.15 kg KOH ⋅ 2H2 O = 368.2 kg KOH ⋅ 2H2 O h (143.8 kg H 2 O h ) h 56.11 kg KOH KOH balance: 0.427 (875 ) = 224.2 + 1.03m2 ⇒ m2 = 145.1 kg h Total mass balance: 875 = 368.2 + 2.03 (145.1) + m1 ⇒ m1 = 212kg H 2 O h evaporated 6.76 a. R 0 30 45 g A dissolved mL solution CA 0 0.200 0.300 Plot CA vs. R ⇒ CA = R / 150 CA = 500 mol 1.10 g = 550 g (160 g A, 390 g S) ml The initial solution is saturated at 10.2 °C. 160 g A Solubility @ 10.2 °C = = 0.410 g A g S = 41.0 g A 100 g S @ 10.2° C 390 g S 17.5 150 g A 1 mL soln At 0°C, R = 17.5 ⇒ CA = = 0106 . g A g soln mL soln 110 . g soln Thus 1 g of solution saturated at 0°C contains 0.106 g A & 0.894 g S. 0106 . gA Solubility @ 0°C = 0.118 g A g S = 118 . g A 100 g S @ 0° C 0.894 g S 390 g S 11.8 g A Mass of solid A: 160 g A − = 114 g A s 100 g S b. Mass of solution: bg c. A remaining in sol n 6 4 g44 47444 4 8 g A initia l 6 44 7448 0.5 × 390 g S 11.8 g A 160 − 114 g A − = 23.0 g A s 100 g S b g bg 6.77 a. Table 6.5-1 shows that at 50o F (10.0o F), the salt that crystallizes is MgSO 4 ⋅ 7 H 2 O , which contains 48.8 wt% MgSO 4. b. Basis: 1000 kg crystals/h. m& 0 (g/h) sat’d solution @ 130o F m& 1 (g/h) sat’d solution @ 50o F 0.35 g MgSO4 /g 0.65 g H2 O/g 0.23 g MgSO4 /g 0.77 g H2 O/g 6-55 http://librosysolucionarios.net 1000 kg MgSO4 ·7H2 O(s)/h 6.77 (cont’d) & 0 = 2150 kg feed / h m Mass balance: m& 0 = m& 1 + 1000 kg / h MgSO 4 balance: 0.35m 0 = 0.23m & 1 + 0.488(1000) kg MgSO 4 / h ⇒ m& = 1150 kg soln / h 1 The crystals would yield 0.488 × 1000 kg / h = 488 kg anhydrous MgSO 4 h 6.78 Basis: 1 lb m feed solution. Figure 6.5-1 ⇒ a saturated KNO3 solution at 25o C contains 40 g KNO3 /100 g H2 O ⇒ x KNO3 = 40 g KNO3 = 0.286 g KNO3 / g = 0.286 lb m KNO3 / lb m x (40 + 100) g solution 1 lb m solution @ 80o C 0.50 lb m KNO3 /lb m 0.50 lb m H2 O/lb m m1 (lb m) sat’d solution @ 25o C 0.286 lb m KNO3 /lb m soln 0.714 lb m H2 O/lb m soln m2 [lb m KNO3 (s)] m1 = 0.700 lb m solution / lb m feed Mass balance: 1 lb m = m1 + m2 ⇒ m2 = 0.300 lb m crystals/ lb m feed KNO3 balance: 0.50 lb m KNO 3 = 0286 . m1 + m2 Solid / liquid mass ratio = 0.300 lb m crystals/ lb m feed = 0.429 lb m crystals/ lb m solution 0.700 lb m solution / lb m feed 6.79 a. Basis: 1000 kg NaCl(s)/h. Figure 6.5-1 ⇒ a saturated NaCl solution at 80o C contains 39 g NaCl/100 g H2 O ⇒ x NaCl = 39 g NaCl = 0.281 g NaCl / g = 0.281 kg NaCl / kg (39 + 100) g solution m& 2 [kg H 2 O(v) / h] m& 0 (kg/h) solution m& 1 (kg/h) sat’d solution @ 80o C 0.100 kg NaCl/kg 0.900 kg H2 O/kg 0.281 kg NaCl/kg soln 0.719 kg H2 O/kg soln 1000 kg NaCl(s)/h & 0 = m&1 + m &2 Mass balance: m NaCl balance: 0.100 kg NaCl = 0281 . m& 1 + m &2 Solid / liquid mass ratio = ⇒ & 1 =0.700 lbm solution / lb m feed m m& 2 = 0.300 lbm crystals/ lb m feed 0.300 lbm crystals/ lb m feed =0.429 lbm crystals / lb m solution 0.700 lbm solution / lb m feed The minimum feed rate would be that for which all of the water in the feed evaporates to produce solid NaCl at the specified rate. In this case 6-56 http://librosysolucionarios.net 6.79 (cont’d) 0100 . (m& 0 ) min = 1000 kg NaCl / h ⇒ ( m & 0 ) min = 10,000 kg / min & 2 = 9000 kg H 2O / h Evaporation rate: m &1 = 0 Exit solution flow rate: m m& 2 [kg H 2 O(v) / h] b. m& 0 (kg/h) solution m& 1 (kg/h) sat’d solution @ 80o C 0.281 kg NaCl/kg soln 0.719 kg H2 O/kg soln 1000 kg NaCl(s)/h 0.100 kg NaCl/kg 0.900 kg H2 O/kg 40% solids content in slurry ⇒ 1000 kg NaCl kg & 1 ) max ⇒ (m& 1 ) max = 2500 = 0.400(m h h NaCl balance: 0.100m & 0 = 0.281(2500) ⇒ m & 0 = 7025 kg / h Mass balance: m & 0 = 2500 + m &2 ⇒ m & 2 = 4525 kg H2O evaporate / h 6.80 Basis: 1000 kg K 2 Cr2 O 7 (s) h . Let K = K 2 Cr2 O 7 , A = dry air, S = solution, W = water. Composition of saturated solution: 0.20 kg K 0.20 kg K ⇒ = 01667 . kg K kg soln kg W 1 + 0.20 kg soln b g n& 2 (mol/ h) y2 (mol W(v) / mol) m& e [kg W(v) / h) (1 − y2 )(mol A / mol) 90 C, 1 atm, Tdp = 392 . C o & f (kg/ h) m m& f + m& r (kg / h) CRYSTALLIZERCENTRIFUGE 0.210 kg K / kg 0.790 kg W(l)/ kg m& 1 ( kg / h) 0.90 kg K(s) / kg DRYER o 1000 kg K(s) / h 0.10 kg soln / kg 0.1667 kg K/ kg 0.8333 kg W/ kg n& a (mol A / h) & r (kg recycle / h) m 0.1667 kg K / kg 0.8333 kg W / kg b g Dryer outlet gas: y2 P = p *W 39.2° C ⇒ y2 = 53.01 mm Hg = 0.0698 mol W mol 760 mm Hg 6-57 http://librosysolucionarios.net & f = 1000 kg K h ⇒ m & f = 4760 kg h feed solution Overall K balance: 0.210m 6.80 (cont’d) b gb g . 010 . m & 1 = 1000 kg h ⇒ m& 1 = 1090 kg h K balance on dryer: 0.90m& 1 + 01667 Mass balance around crystallizer-centrifuge m& f + m& r = m & e + m& 1 + m & r ⇒ me = 4760 − 1090 = 3670 kg h water evaporated 95% solution recycled ⇒ m& r = b0.10 × 1090g kg h not recycled 95 kg recycled 5 kg not recycled = 2070 kg h recycled Water balance on dryer . gb1090g kg W h b0.8333gb010 = 0.0698n& 1801 . × 10−3 kg mol 2 ⇒ n&2 = 7.225 × 104 mol h Dry air balance on dryer na = b1 − 0.0698g7.225 × 10 4 b g b g mol 22.4 L STP = 151 . × 10 6 L STP h h 1 mol 6-58 http://librosysolucionarios.net 6.81. Basis : 100 kg liquid feed. Assume P atm=1 atm n2w (kmol H2 O )(sat' d) 100 kg Feed 0.07 kg Na 2CO 3 / kg 0.93 kg H 2 O / kg Reactor Reactor n2c (kmol CO2 ) e n2a (kmol Air) 70o C, 3 atm(absolute) n1(kmol) 0.70 kmol CO 2 / kmol 0.30 kmol Air / kmol m3 ( kg NaHCO 3( s)) R|m (kg solution) U| S|0.024 kg NaHCO / kgV| T0.976 kg H O / kg W 4 3 2 Filtrate m5 (kg) Filter 0.024 kg NaHCO 3 / kg 0.976 kg H 2 O / kg Filter cake m6 (kg) 0.86 kg NaHCO 3 (s) / kg R|0.14 kg solution U| S|0.024 kg NaHCO / kgV| T0.976 kg H O / kg W 3 2 Degree of freedom analysis : Reactor 6 unknowns (n1 , n2 , y2w , y2c, m3 , m4 ) –4 atomic species balances (Na, C, O, H) –1 air balance –1 (Raoult's law for water) 0 DF Filter 2 unknowns –2 balances 0 DF Na balance on reactor 100 kg 0.07 kg Na 2 CO3 46 kg Na (m + 0.024m4 ) kg NaHCO3 23 kg Na = 3 kg 106 kg Na2 CO3 84 kg NaHCO3 ⇒ 3.038 = 0.2738(m3 + 0.024m4 ) (1) Air balance: 0.300 n1 = n2a (2 ) C balance on reactor : n1 (kmol) 0.700 kmol CO2 12 kg C 100 kg 0.07 kg Na 2CO3 12 kg C + kmol 1 kmol CO2 kg 106 kg Na 2CO3 12 = (n2c )(12) + (m3 + 0.024m2 )( ) ⇒ 8.40n1 + 0.7924 = 12n2c + 01429 . (m3 + 0.024m4 ) (3) 84 H balance : 2 1 2 ) = ( n2 w )(2 ) + (m3 + 0.024 m4 )( ) + 0.976m4 ( ) 18 84 18 ⇒ 10.33 = 2 n2 w + 0.01190( m3 + 0.024 m4 ) + 0.1084 m4 (4 ) (100)(0.93)( 6-59 http://librosysolucionarios.net 6.81(cont'd) O balance (not counting O in the air): 48 16 n1 (0.700)(932 ) + 100 (0.07 )( ) + 100 ( 0.93)( ) 106 18 48 16 = (n 2w )(16) + n2c (32) + (m3 + 0.024 m4 )( ) + 0.976m4 ( ) 84 18 ⇒ 22.4 n1 + 85.84 = 16n 2w + 32n 2c + 0.5714(m 3 + 0.024 m4 ) + 0.8676 m4 (5) Raoult's Law : y w P = p *w (70 o C) ⇒ ⇒ n2 w = 0.1025( n2 w n2 w 233.7 mm Hg = n 2w + n 2c + n 2a (3 * 760) mm Hg + n 2c + n 2a ) (6) Solve (1)-(6) simultaneously with E-Z solve (need a good set of starting values to converge). n1 = 0.8086 kmol, n2a = 0.2426 kmol air, n 2w = 0.0848 kmol H 2 O(v), n2c = 0.500 kmol CO 2 , m3 = 8.874 kg NaHCO3 (s), m4 = 92.50 kg solution NaHCO3 balance on filter: m3 + 0.024 m4 = 0.024 m5 + m6 [0.86 + (0.14 )( 0.024 )] m3 =8.874 11.09 = 0.024m 5 + 0.8634m6 (7 ) m4 =92 .50 Mass Balance on filter: 8.874 + 92.50 = 1014 . = m5 + m6 Solve (7) & (8) ⇒ Scale factor = m5 = 91.09 kg filtrate m6 = 10.31 kg filter cake (8) ⇒ (0.86)(10.31) = 8.867 kg NaHCO3 (s) 500 kg / h = 56.39 h −1 8.867 kg (a) Gas stream leaving reactor U| V| W R| |S | |T 46.7kmol / h n& 2w = (0.0848)(56.39) = 4.78 kmol H 2 O(v) / h 0.102 kmol H 2 O(v) / kmol n& 2c = (0.500)(56.39) = 28.2 kmol O 2 / h ⇒ 0.604 kmol CO 2 / kmol n& 2a = (0.2426)(56.39) = 13.7 kmol air / h 0.293 kmol Air / kmol n& RT V&2 = 2 = P (46.7 kmol / h)(0.08206 3 atm m 3atm )(343 K) kmol ⋅ K = 438 m 3 / h 56.39 × 0.8086 kmol 22.4 m 3 (STP) 1h (b) Gas feed rate : V&1 = = 17.0 SCMM h kmol 60 min 6-60 http://librosysolucionarios.net 6.81(cont'd) (c) Liquid feed: (100)(56.39) = 5640 kg / h To calculate V& , we would need to know the density of a 7 wt% aqueous Na 2 CO3 solution. (d) If T dropped in the filter, more solid NaHCO 3 would be recovered and the residual solution would contain less than 2.4% NaHCO 3. (e) Henry's law Benefit: Higher pressure ⇒ greater pCO2 higher concentration of CO2 in solution ⇒ higher rate of reaction ⇒ smaller reactor needed to get the same conversion ⇒ lower cost Penalty: Higher pressure ⇒ greater cost of compressing the gas (purchase cost of compressor, power consumption) 6.82 600 lb m / h Dissolution Dissolution 0.90 MgSO4 ⋅ 7H 2 O Dissolution Tank Tank Tank 010 . I m & 1 ( lb m H 2O / h) Filter I R|m& (lb soln / h) U| S|0.32 kg MgSO / kgV| T0.68 kg H O / kg W 2 4 4 6000 lb m I / h 110o F m & 6 (lb m / h) 0.23 lb m MgSO 4 / lb m 0.77 lbm H 2O / lb m & 4 ( lb m MgSO 4 ⋅ 7 H 2 O / h) m Filter II R|m& (lb |S0.23 lb ||0.77 lb T 5 m soln ) m MgSO 4 / lb m m H 2O / lb m U| |V || W R|300 lb soln / hU| S|0.32 MgSO V| T0.68 H O W m m 2 6000 lbm I / h 2 m & 3 ( lb m so ln/ h) 0.32 MgSO4 0.68 H 2 O Crystallizer & 4 ( lb m MgSO 4 ⋅ 7H 2 O) m R|0.05m& S|0.23 lb T0.77 lb ( lb m soln ) m MgSO 4 / lb m m H 2 O / lb m 4 U| V| W a. Heating the solution dissolves all MgSO 4 ; filtering removes I, and cooling recrystallizes MgSO 4 enabling subsequent recovery. (b) Strategy: Do D.F analysis. 6-61 http://librosysolucionarios.net 6.82(cont'd) UV ⇒ m& , m& balanceW Overall mass balance Overall MgSO 4 1 Diss. tank overall mass balance 4 UV ⇒ m& , m& W 2 Diss. tank MgSO 4 balance 6 ( MW) MgSO4 = (2431 . + 32.06 + 6400 . ) = 12037 . , ( MW) MgSO4 ⋅7H2 O = (12037 . + 7 *1801 . ) = 24644 . Overall MgSO 4 balance: 60,000 lb m 0.90lb m MgSO4 ⋅ 7H 2 O h lb m = (300 lb m / h)(0.32 lb m 120.37 lb m MgSO 4 246.44 lb m MgSO 4 ⋅ 7H 2 O MgSO 4 / lb m ) + m& 4 (12037 . / 246.44 ) + 0.05m& 4 (0.23) & 4 = 5.257 x10 4 lb m crystals / h ⇒ m &4 Overall mass balance: 60,000 + m& 1 = 6300 + 1.05m c. Diss. tank overall mass balance: Diss. tank MgSO 4 balance: ⇒ & 4 = 5.257 x10 4 lb m / h m m& 1 = 1494 lb m H 2 O / h 60,000 + m &1 + m & 6 = m& 2 + 6000 54 ,000(120.37 / 24644 . ) + 0.23m & 6 = 0.32 m& 2 m & 2 = 1512 . x10 5 lb m / h UV W & 6 = 9.575x10 4 lb m / h recycle m Recycle/fresh feed ratio = 9.575x10 4 lb m / h = 64 lb m recycle / lb m fresh feed 1494 lb m / h 6.83 a. n& 1 (kmol CO 2 / h) Cryst Filter 1000 kg H 2SO 4 / h (10 wt%) 1000 kg HNO 3 / h m & w (kg H 2 O / h) m & 2 (kg CaSO4 / h) m & 3 (kg Ca(NO3) 2 / h) m & 4 (kg H2O / h) Filter cake & 5 (kg / h) m 0.96 kg CaSO 4 (s) / kg 0.04 kg soln / kg & 0 (kg CaCO3 / h) m & 0 (kg solution / h) 2m m & 0 (kg CaCO 3 / h) m & 8 (kg soln / h) 2m & 0 (kg solution / h) R| X (kg CaSO / kg) U| Solution composition: S 500 X (kg H O / kg) |T(1 − 501X )(kg Ca(NO ) / kg)V|W a 4 a a 6-62 http://librosysolucionarios.net 2 3 2 6.83 (cont’d) b. Acid is corrosive to pipes and other equipment in waste water treatment plant. c. Acid feed: 1000 kg H 2SO 4 / h = 0.10 ⇒ m & w = 8000 kg H 2 O / h (2000 + m& w ) kg / h Overall S balance: 1000 kg H 2SO 4 32 kg S h 98 kg H 2SO 4 + = & 5 (kg / h) (0.96 + 0.04 X a ) (kg CaSO 4 ) m kg 32 kg S 136 kg CaSO 4 & 8 (kg / h) X a (kg CaSO 4 ) m 32 kg S kg 136 kg CaSO 4 ⇒ 3265 . = 0.2353m & 5 (0.96 + 0.04 X a ) + 0.2353m& 8 X a (1) Overall N balance: 1000 kg HNO 3 14 kg N h 63 kg HNO 3 + = 0.04m& 5 (kg / h) (1 − 501X a ) (kg Ca(NO 3 ) 2 ) kg m& 8 (kg / h) (1 − 501X a ) (kg Ca(NO 3 ) 2 ) kg 28 kg N 164 kg Ca(NO 3 ) 2 28 kg N 164 kg Ca(NO 3 ) 2 ⇒ 222.2 = 0.00683m & 5 (1 − 501X a ) + 0.171m& 8 (1 − 501X a ) (2) Overall Ca balance: & 0 (kg / h) m & 5 (kg / h) (0.96 + 0.04X a ) (kg CaSO 4 ) 40 kg Ca m 40 kg Ca = 100 kg CaCO 3 kg 136 kg CaSO 4 & 5 (kg / h) (1 − 501X a ) (kg Ca(NO 3 ) 2 ) 0.04m 40 kg Ca + kg 164 kg Ca(NO 3 ) 2 & 8 (kg / h) X a (kg CaSO 4 ) m 40 kg Ca + kg 136 kg CaSO 4 & 8 (kg / h) (1 − 501X a ) (kg Ca(NO 3 ) 2 ) m 40 kg Ca + kg 164 kg Ca(NO 3 ) 2 & 0 = 0.294m& 5 (0.96 + 0.04 X a ) + 0.00976m & 5 (1 − 501 X a ) ⇒ 0.40m & 8 X a + 0.244m& 8 (1 − 501X a ) + 0.294 m ( 3) Overall C balance : m & 0 (kg / h) 12 kg C 100 kg CaCO 3 ⇒ 0.01m & 0 = n&1 = n& 1 (kmol CO 2 / h) 1 kmol C 12 kg C 1 kmol CO 2 1 kmol C (4 ) 6-63 http://librosysolucionarios.net 6.83 (cont’d) Overall H balance : 1000 (kg H 2SO4 ) 2 kg H + 1000 kg HNO3 h 98 kg H 2SO 4 ⇒ 92517 . = 2.22m & 5 X a + 5556 . m &8 Xa (5) 1 kg H h + m & w (kg / h) 2 kg H 63 kg HNO 3 18 kg H 2O & 5 (kg / h) 500 X a (kg H 2 O) & (kg / h) 500 X a (kg H 2 O) 2 kg H 0.04m 2 kg H m = + 8 kg 18 kg H 2 O kg 18 kg H 2 O Solve eqns. (1)-(5) simultaneously, using E-Z Solve. m& 0 = 1812.5 kg CaCO 3 (s) / h, m& 5 = 1428.1 kg / h, & 8 = 9584.9 kg soln / h, m n&1 = 18.1 kmol CO 2 / h(v), X a = 0.00173 kg CaSO 4 / kg Recycle stream = 2 * m& 0 = 3625 kg soln / h . CaSO U R| 0.00173(kg CaSO / kg) U| R||0173% || S| 500 * 0.00173(kg H O / kg) V| ⇒ S|86.5% H O V| T(1 − 501 * 0.00173)(kg Ca(NO ) / kg)W |T13.3% Ca(NO ) |W 4 4 2 2 3 2 d. 3 2 From Table B.1, for CO2 : Tc = 304.2 K, Pc = 72.9 atm T (40 + 273.2 ) K ⇒ Tr = = = 103 . , Tc 304.2 Pr = 30 atm = 0.411 72.9 atm From generalized compressibility chart (Fig. 5.4-2): z = 0.86 ⇒ V$ = zRT 0.86 0.08206 L ⋅ atm 313.2 K L = = 0.737 mol ⋅ K 30 atm P mol CO2 Volumetric flow rate of CO2 : 18.1kmol CO 2 V& = n&1 * V$ = h e. 0.737 L 1000 mol mol CO 2 1 kmol = 1.33x104 L / h Solution saturated with Ca(NO3 )2 : ⇒ 1 − 501X a (kg Ca(NO 3 ) 2 / kg) = 1.526 ⇒ X a = 0.00079 kg CaSO4 / kg 500Xa (kg H 2 O / kg) Let m& 1 (kg HNO3 /h) = feed rate of nitric acid corresponding to saturation without crystallization. 6-64 http://librosysolucionarios.net 6.83 (cont’d) Overall S balance: 1000kg H 2SO 4 32 kg S h 98 kg H 2SO 4 + = m & 5 (kg / h) (0.96 + (0.04)(0.00079)) (kg CaSO 4 ) 32 kg S kg 136 kg CaSO 4 & 8 (kg / h) 0.00079(kg CaSO4 ) m kg 32 kg S 136kg CaSO 4 & 5 + 0.000186m &8 ⇒ 326.5 = 0.226m (1' ) Overall N balance: m &1 (kg HNO3 ) 14 kg N h 63 kg HNO3 = 0.04m & 5 (kg / h) (1 − (501)(0.00079)) (kg Ca(NO 3) 2 ) kg + 164kg Ca(NO 3) 2 & 8 (kg / h) (1 − (501)(0.00079)) (kg Ca(NO3 )2 ) m kg 28 kg N 28 kg N 164 kg Ca(NO3 )2 &1 = 000413 & 5 + 0103 &8 ⇒ 0222 . m . m . m (2') Overall H balance: 1000 (kg H 2SO 4 ) 2 kg H h 98 kg H 2SO 4 + 8000 (kg / h) 2 kg H 18 kg H2 O = + + m& 1 kg HNO3 1 kg H h 63 kg HNO3 & 5 (kg / h) 500(0.00079) (kg H 2 O) 0.04m kg m& 8 (kg / h) 500(0.00079) (kg H 2O) kg & 1 = 0.00175m& 5 + 0.0439m& 8 ⇒ 909.30 + 0.0159m 2 kg H 18 kg H2 O 2 kg H 18 kg H2 O (3') Solve eqns (1')-(3') simultaneously using E-Z solve: m& 1 = 1155 . x10 4 kg / h; m & 5 = 1.424 x10 3 kg / h; Maximum ratio of nitric acid to sulfuric acid in the feed = 1155 . x10 4 kg / h = 115 . kg HNO 3 / kg H 2 SO 4 1000 kg / h 6-65 http://librosysolucionarios.net m & 8 = 2.484x10 4 kg / h 6.84 Moles of diphenyl (DP): Moles of benzene (B): ⇒ x DP = bg U| |V || W 56.0 g = 0.363 mol 154.2 g mol 550.0 ml 0.879 g 1 mol = 6.19 mol ml 78.11 g 0.363 = 0.0544 mol DP mol 6.19 + 0.363 bg b g p *B T = (1 − x DP ) p *B T = 0.945 120.67 mm Hg = 114.0 mm Hg b g b0.0554 g = 3.6 K = 3.6 C ⇒ T 8.314b 273.2 + 801 .g = . K = 1.85 C b0.0554 g = 185 2 8.314 2732 . + 5.5 RTm0 ∆Tm = x DP = $ 9837 ∆H m ∆Tbp = RTb02 x DP ∆H$ 2 o m = 5.5 − 3.6 = 1.9 ° C 2 o 30,765 v ⇒ Tb = 80.1 + 185 . = 82.0 ° C 6.85 Tm0 = 0.0 o C, ∆Tm = 4.6 o C=4.6K ∆Tm∆Hˆ m (4.6K)(600.95 J/mol) Eq. 6.5-5 → x = = = 0.0445 mol urea/mol u Table B.1 2 R(Tm 0 ) (8.314 J/mol ⋅ K)(273.2K)2 Eq. (6.5-4) ⇒ ∆Tb = RTb 0 2 (8.314)(373.2) 2 xu = 0.0445 = 1.3K = 1.3o C ∆Hˆ v 40,656 1000 grams of this solution contains mu (g urea) and (1000 – mu ) (g water) nu 1 (mol urea) = mu1 (g) 60.06 g/mol nw 1 (mol water) = (1000 − mu1 )(g) 18.02 g/mol mu1 (mol urea) 60.06 xu 1 = 0.0445 = ⇒ mu 1 = 134 g urea, mw1 = 866 g water mu1 + (1000 − mu1 ) (mol solution) 60.06 18.02 ∆Tb = 3.0 o C = 3.0K ⇒ xu 2 = ∆Tb ∆Hˆ v R (Tb 0 ) 2 = (3.0K)(40,656 J/mol) (8.314 J/mol ⋅ K)(373.2K) 2 mu 2 = 0.105 mol urea/mol (mol urea) 60.06 xu 2 = 0.105 = ⇒ mu 2 = 339 g urea 866 mu 2 60.06 + 18.02 (mol solution) ⇒ Add (339-134) g urea = 205 g urea 6-66 http://librosysolucionarios.net 6.86 x aI = b0.5150 gg b1101. g mol g b0.5150 g g b1101. g molg + b100.0 gg b94.10 g molg = 0.00438 mol solute mol ∆Tm = ⇒ b1 − 0.00523g mol solvent 94.10 g solvent 0.4460 g solute 0.00523 mol solute 1 mol solvent 95.60 g solvent ∆H$ m = 6.87 a. RTm20 ∆T I xI ∆T II 0.49 ° C mol solute x s ⇒ mII = IIs ⇒ xsII = x Is mI = 0.00438 = 0.00523 $ 0.41° C mol solution ∆Tm xs ∆Tm ∆Hm b g b0.00523g = 6380 J mol = 6.38 kJ / mol 8.314 2732 . − 5.00 RTm20 xs = ∆Tm 0.49 b g ln ps* Tb0 = − 2 ∆H vI ∆H vII + B , ln ps* Tbs = − +B RTb0 RTbs b g Assume ∆HvI ≅ ∆HvII ; T0 Ts ≅ T02 b g b g ⇒ ln Ps* Tb 0 − ln P0* Tbs = − b. Raoult’s Law: = 8350 . g solute mol p *s F1 GH T ∆Hv R b0 b T g = b1 − xg b T g b0 p *0 − bs I JK 1 ∆Hv Tbs − Tb 0 ≅ Tbs R Tb20 ∆Hv ∆Tb RTb20 ⇒ ln 1 − x ≈ − x = − ⇒ ∆Tb = x ∆Hv RTb20 b g 6.88 m1 (g styrene) 90 g ethylbenezene 100 g EG 90 g ethylbenzene 30 g styrene m2 (g styrene) 100 g EG Styrene balance: m1 + m2 = 30 g styrene Equilibrium relation: F GH m2 m1 = 0.19 100 + m2 90 + m1 I JK solve simultaneously m1 = 25.6 g styrene in ethylbenzene phase m 2 = 4.4 g styrene in ethylene glycol phase 6-67 http://librosysolucionarios.net 6.89 Basis: 100 kg/h. A=oleic acid; C=condensed oil; P=propane 100 kg / h 95.0 kg C / h m & 2 kg A / h 0.05 kg A / kg 0.95 kg C / kg & 3 kg A / h m & 1 kg P / h m m & 1 kg P / h a. 90% extraction: m& 3 = (0.09 )(0.05)(100 kg / h) = 4.5 kg A / h Balance on oleic acid : ( 0.05)(100) = m& 2 + 4.5 kg A / h ⇒ m& 2 = 0.5 kg A / h Equilibrium condition: 0.15 = 0.5 / ( n&1 + 0.5) ⇒ n&1 = 73.2 kg P / h 4.5 / (4 .5 + 95) b. Operating pressure must be above the vapor pressure of propane at T=85o C=185o F Figure 6.1-4 ⇒ p *propane = 500 psi = 34 atm c. Other less volatile hydrocarbons cost more and/or impose greater health or environmental hazards. 6.90 a. Benzene is the solvent of choice. It holds a greater amount of acetic acid for a given mass fraction of acetic acid in water. Basis: 100 kg feed. A=Acetic acid, W=H 2 O, H=Hexane, B=Benzene 100 (kg) 0.30 kg A / kg 0.70 kg W / kg m1 (kg) 0.10 kg A / kg 0.90 kg W / kg m2 (kg A) m H (kg H) or m B (kg B) m H (kg H) or mB (kg B) Balance on W: 100 * 0.70 = m1 * 0.90 ⇒ m1 = 77.8 kg Balance on A: 100 * 0.30 = m2 + 77.8 * 0.10 ⇒ m 2 = 22.2 kg Equilibrium for H: KH = m2 / ( m2 + mH ) 22.2 / (22 .2 + mH ) = = 0.017 ⇒ mH = 1.30 x10 4 kg H xA 010 . Equilibrium for B: KB = m2 / (m2 + mB ) 22.2 / (22.2 + mB ) = = 0.098 ⇒ mB = 2.20 x10 3 kg B xA 0.10 (b) Other factors in picking solvent include cost, solvent volatility, and health, safety, and environmental considerations. 6-68 http://librosysolucionarios.net 6.91 a. Basis: 100 g feed ⇒ 40 g acetone, 60 g H 2 O. A = acetone, H = n - C6 H 14 , W = water 40 g A 60 g W e1 (g A) 60 g W 25°C 100 g H 100 g H r 1 (g A) b 25°C 75 g H 75 g H r 2 (g A) xA in H pha se / xA in W phase = 0.343 x = mass fraction Balance on A − stage 1: Equilibrium condition − stage 1: g U| e = 27.8 g acetone b g = 0.343V ⇒ r = 12.2 g acetone |W e b60 + e g 27.8 = e + r U| r = 7.2 g acetone r b75 + r g ⇒ = 0.343V| e = 20.6 g acetone e b60 + e g W 40 = e1 + r1 r1 100 + r1 1 1 1 Balance on A − stage 2: e 2 (g A) 60 g W 1 2 2 2 Equilibrium condition − stage 2: % acetone not extracted = 2 2 2 2 2 20.6 g A remaining × 100% = 515% . 40 g A fed b. 40 g A 60 g W e1 g A 60 g W r1 g A 175 g H 175 g H Balance on A − stage 1: Equilibrium condition − stage 1: % acetone not extracted = c. U| r = 17.8 g acetone b g = 0.343V ⇒ e = 22.2g acetone |W b60 + e g 40.0 = e1 + r1 r1 175 + r1 e1 1 1 22.2 g A remaining × 100% = 55.5% 40 g A fed 40 g A 60 g W 19.4 g A 60 g W 20.6 g A m (g H) m (g H) Equilibrium condition: 1 20.6 / ( m + 20.6) = 0.343 ⇒ m = 225 g hexane 19.4 / ( 60 + 19.4) d. Define a function F=(value of recovered acetone over process lifetime)-(cost of hexane over process lifetime) – (cost of an equilibrium stage x number of stages). The most costeffective process is the one for which F is the highest. 6-69 http://librosysolucionarios.net 6.92 a. P--penicillin; Ac--acid solution; BA--butyl acetate; Alk--alkaline solution Broth Mixing tank 100 kg 0.015 P 0.985 Ac m1 (kg BA) Extraction Unit I Acid D.F. analysis : Extraction Unit I 3 unknown (m1 , m2p , m3p ) –1 balance (P) –1 distribution coefficient – 1 (90% transfer) 0 DF m3P (kg P) 98.5 (kg Ac) pH=2.1 Extraction II m4 (kg Alk) m6P (kg P) m1 (kg BA) m5P (kg P) m4 (kg Alk) pH=5.8 Extraction Unit II (consider m1 , m3p ) 3 unknowns – 1 balance (P) – 1 distribution coefficient – 1 (90% transfer) 0 DF b. In Unit I, 90% transfer ⇒ m 3P = 0.90(15 . ) = 135 . kg P P balance: 1.5 = m2 P + 1.35 ⇒ m 2 P = 0.15 kg P 1.35 / (1.35 + m1 ) pH=2.1 ⇒ K = 25.0 = ⇒ m1 = 34.16 kg BA 015 . / ( 015 . + 98.5) In Unit II, 90% transfer: m5 P = 0.90(m3 P ) = 1.215 kg P P balance: m 3P = 1.215 + m6 P ⇒ m 6 P = 0135 . kg P m / ( m6 P + 34.16) pH=5.8 ⇒ K = 0.10 = 6 P ⇒ m4 = 29.65 kg Alk 1.215 / (1215 . + m4 ) m1 34.16 kg BA = = 0.3416 kg butyl acetate / kg acidified broth 100 100 kg broth m 4 29.65 kg Alk = = 0.2965kg alkaline solution / kg acidified broth 100 100 kg broth Mass fraction of P in the product solution: m5P 1.215 P xP = = = 0.394 kg P / kg m4 + m5P (29.65 + 1.215) kg c. (i). The first transfer (low pH) separates most of the P from the other broth constituents, which are not soluble in butyl acetate. The second transfer (high pH) moves the penicillin back into an aqueous phase without the broth impurities. (ii). Low pH favors transfer to the organic phase, and high pH favors transfer back to the aqueous phase. (iii).The penicillin always moves from the raffinate solvent to the extract solvent. 6-70 http://librosysolucionarios.net 6.93 W = water, A = acetone, M = methyl isobutyl ketone x W = 0.20 x A = 0.33 x M = 0.47 U| V| ⇒ W Figure 6.6-1 Phase 1: x W = 0.07 , x A = 0.35, x M = 0.58 Phase 2: x W = 0.71, x A = 0.25, x M = 0.04 Basis: 1.2 kg of original mixture, m1 =total mass in phase 1, m2 =total mass in phase 2. H 2 O Balance: 1.2 * 0.20 = 0.07m1 + 0.71m2 Acetone balance: 1.2 * 0.33 = 0.35m1 + 0.25m 2 ⇒ R|m = 0.95 kg in MIBK - rich phase S|m = 0.24 kg in water - rich phase T 1 2 6.94 Basis: Given feeds: A = acetone, W = H2 O, M=MIBK Overall system composition: U| b g V 3500 g b 20 wt% A, 80 wt% Mg ⇒ 700 g A, 2800 g M |W 2200 g A U | ⇒ 3500 g WV ⇒ 25.9% A, 41.2% W, 32.9% M 2800 g M |W 5000 g 30 wt% A, 70 wt% W ⇒ 1500 g A, 3500 g W Fig. 6.6-1 Phase 1: 31% A, 63% M, 6% W Phase 2: 21% A, 3% M, 76% W Let m1 =total mass in phase 1, m2 =total mass in phase 2. H 2 O Balance: 3500 = 0.06 m1 + 0.76m 2 Acetone balance: 2200 = 0.31m1 + 0.21m 2 ⇒ R|m = 4200 g in MIBK - rich phase S| m = 4270 g in water - rich phase T 1 2 6.95 A=acetone, W = H 2 O, M=MIBK 41.0 lb m / h 32 lb m / h x AF (lb m A / lb m ) x WF (lb m W / lb m ) xA,1 , x W,1, 0.70 & 2 lbm / h m m & 1 (lb m M / h) xA ,2 , xW ,2 , x M ,2 Figure 6.6-1⇒ Phase 1: x M = 0.700 ⇒ xw ,1 = 0.05; x A,1 = 0.25 ; Phase 2: x w, 2 = 0.81; x A, 2 = 0.81; x M , 2 = 0.03 Overall mass balance: MIBK balance: m& 1 = 28.1 lb m MIBK / h 32.0 lb m / h + m& 1 = 41.0 lb m h + m& 2 ⇒ & 1 = 41.0 * 0.7 + m& 2 * 0.03 m m& 2 = 19.1lb m h UV W 6-71 http://librosysolucionarios.net 6.96 a. Basis: 100 kg; A=acetone, W=water, M=MIBK System 1: x a,org = 0.375 mol A, x m,org = 0.550 mol M, x w,org = 0.075 mol W x a,aq = 0.275 mol A, x m,aq = 0.050 mol M, x w,aq = 0.675 mol W UV W maq,1 = 417 . kg Mass balance: maq ,1 + morg,1 = 100 ⇒ Acetone balance: maq ,1 * 0.275 + morg ,1 * 0.375 = 33.33 morg,1 = 58.3 kg System 2: x a,org = 0.100 mol A, x m,org = 0.870 mol M, x w,org = 0.030 mol W x a,aq = 0.055 mol A, x m,aq = 0.020 mol M, x w,aq = 0.925 mol W UV W m aq,2 = 22 .2 kg Mass balance: maq ,2 + morg, 2 = 100 ⇒ Acetone balance: maq ,2 * 0.055 + morg , 2 * 0.100 = 9 morg,2 = 77.8 kg b. K a,1 = xa ,org,1 xa ,aq,1 = 0.375 = 136 . ; 0.275 K a, 2 = xa, org ,2 x a, aq , 2 = 0.100 = 182 . 0.055 High Ka to extract acetone from water into MIBK; low Ka to extract acetone from MIBK into water. c. β aw,1 = xa, org / x w ,org = xa ,aq / x w ,aq 0.375 / 0.075 0.100 / 0.040 = 12.3; β = = 418 . aw,2 0.055 / 0.920 0.275 / 0.675 If water and MIBK were immiscible, x w, org = 0 ⇒ β aw → ∞ d. Organic phase= extract phase; aqueous phase= raffinate phase β a, w = ( xa / x w ) org ( xa / x w ) aq = ( x a ) org / ( xa ) aq ( xw ) org / ( x w ) aq = Ka Kw When it is critically important for the raffinate to be as pure (acetone-free) as possible. 6.97 Basis: Given feed rates: A = acetone, W = water, M=MIBK e& 2 (kg / h) x2A (kg A / kg) x2W (kg W / kg) x2M (kg M / kg) e& 1 (kg / h) x1A (kg A / kg) x1W (kg W / kg) x1M (kg M / kg) 200 kg / h 0.30 kg A / kg 0.70 kg M / kg Stage I &r1 (kg / h) y1A (kg A / kg) y1W (kg W / kg) y1M (kg M / kg) 300 kg W / h 6-72 http://librosysolucionarios.net Stage II Stage IIStage 300 kg W / h &r2 (kg / h) y2A (kg A / kg) y2W (kg W / kg) y2M (kg M / kg) 6.97(cont'd) Overall composition of feed to Stage 1: b200gb0.30g = 60 kg A h U| 500 kg h 200 − 60 = 140 kg M h V ⇒ 12% A, 28% M, 60% W 300 kg W h |W Figure 6.6-1 ⇒ Extract: x1A = 0.095, x1W = 0.880, x1M = 0.025 Raffinate: y1A = 0.15, y1W = 0.035, y1M = 0.815 R| S| T e&1 = 273 kg / h ⇒ & r1 = 227 kg / h 60 = 0.095e&1 + 015 . r&1 500 = e&1 + r&1 Mass balance Acetone balance: Overall composition of feed to Stage 2: U| 527 kg h b227gb0.15g = 34 kg A h b227gb0.815g = 185 kg M h V ⇒ 6.5% A, 35.1% MIBK, 58.4% W b227gb0.035g + 300 = 308 kg W h|W Figure 6.6-1 ⇒ Extract: x2 A = 0.04, x 2W = 0.94, x2 M = 0.02 Raffinate: y2 A = 0.085, y2 W = 0.025, y2 M = 0.89 Mass balance: Acetone balance: R| S| T e&2 = 240 kg / h ⇒ & r2 = 287 kg / h 34 = 0.04 e2 + 0.085r2 527 = e&2 + r&2 Acetone removed: [60 − (0.085)(287 )] kg A removed / h = 0.59 kg acetone removed / kg fed 60 kg A / h in feed Combined extract: Overall flow rate = e&1 + e&2 = 273 + 240 = 513 kg / h Acetone: ( x1 A e&1 + x 2 A e&2 ) kg A = 0.095 * 273 + 0.04 * 240 = 0.069 kg A / kg 513 Water : ( x1w e&1 + x 2w e&2 ) kg W 0.88 * 273 + 0.94 * 240 = = 0.908 kg W / kg e&1 + e&2 513 MIBK: ( x1 M e&1 + x 2 M e&2 ) kg M 0.025 * 273 + 0.02 * 240 = = 0.023 kg M / kg (e&1 + e& 2 )kg 513 6-73 http://librosysolucionarios.net 6.98. a. 1.50 L / min 25o C, 1atm, rh = 25% n&0 (mol / min) y 0 (mol H2O / mol) (1- y 0 ) (mol dry air / mol) n& 0 = M (g gel) M a (g H2 O) (1 atm)(1.50 L / min) PV& = = 0.06134 mol / min RT (0.08206 L ⋅ atm / mol ⋅ K)(298 K) r.h.=25%⇒ pH 2 O pH* 2O (25o C) = 025 . Silica gel saturation condition: X * = 12 .5 Water feed rate : ⇒ m& H 2O = y0 = 0.25 p *H2 O ( 25 o C) p p H2 O p *H2 O = = 12 .5 * 0.25 = 3125 . 0.25( 23.756 mm Hg) mol H 2 O = 0.00781 760 mm Hg mol 0.06134 mol 0.00781 mol H 2 O 18.01g H 2 O min mol g H 2 O ads 100 g silica gel mol H 2 O = 0.00863 g H 2 O / min Adsorption in 2 hours = (0.00863 g H 2 O / min)(120min) = 1.035 g H 2 O Saturation condition: 1.035 g H 2O 3.125 g H 2 O = ⇒ M = 33.1g silica gel M (g silica gel) 100 g silica gel Assume that all entering water vapor is adsorbed throughout the 2 hours and that P and T are constant. b. Humid air is dehumidified by being passed through a column of silica gel, which absorbs a significant fraction of the water in the entering air and relatively little oxygen and nitrogen. The capacity of the gel to absorb water, while large, is not infinite, and eventually the gel reaches its capacity. If air were still fed to the column past this point, no further dehumidific ation would take place. To keep this situation from occurring, the gel is replaced at or (preferably) before the time when it becomes saturated. 6.99 a. Let c = CCl4 Relative saturation = 0.30 ⇒ pc * p c (34 o C) ⇒ pc = 0.30 * (169 mm Hg) = 50.7 mm Hg b. Initial moles of gas in tank: n0 = 1 atm 50.0 L P0V 0 = = 1.985 mol RT0 0.08206 L ⋅ atm / mol ⋅ K 307 K Initial moles of CCl4 in tank: n c 0 = yc 0 n0 = p c0 50.7 mm Hg n0 = × 1.985 mol = 0.1324 mol CCl 4 P0 760 mm Hg 6-74 http://librosysolucionarios.net 6.99 (cont’d) 50% CCl4 adsorbed ⇒ n c = 0.500n c0 = 0662 mol CCl 4 (= n ads) Total moles in tank: n tot = n 0 − n ads = (1.985 − 0.0662) mol = 1.919 mol Pressure in tank. Assume T = T0 and V = V0 . P= FG H IJ FG 760 mm Hg IJ = 735 mm Hg K H atm K n tot RT0 (1919 . )( 0.08206)(307) = atm V0 50.0 yC = nc 0.0662 mol CCl 4 mol CCl 4 = = 0.0345 n tot 1.919 mol mol ⇒ p c = 0.0345(760 mm Hg) = 26.2 mm Hg c. Moles of air in tank: n a = n0 − nc 0 = (1.985 − 01324 . ) mol air = 1.853 mol air yc = nc mol CCl 4 = 0.001 ⇒ nc = 1.854 × 10 −3 mol CCl 4 n c + 1853 . mol ⇒ n tot = nc + n air = 1.854 mol LM n RT OP = 1854 . × 10 mol 50.0 L N V Q −3 p c = y c P = 0.001 tot 0 0 0.08206 L ⋅ atm 307 K mol ⋅ K 760 mm 1 atm = 0.710 mm Hg X* F g CCl I = 0.0762 p GH g carbon JK 1 + 0.096 p 4 ⇒ X* = c c 0.0762( 0.710) g CCl 4 adsorbed = 0.0506 1 + 0.096 (0.710) g carbon Mass of CCl4 adsorbed m ads = (n c0 − nc )( MW ) c = (0.1324 − 0.001854 ) mol CCl 4 153.85 g 1 mol CCl 4 = 20.3 mol CCl 4 adsorbed 20.3g CCl 4 ads Mass of carbon required: m c = = 400 g carbon g CCl 4 ads 0.0506 g carbon β X * = K F p βNO2 ⇒ ln X * = ln K F + β ln p NO 2 ln(PNO2) 6.100 a. y = 1.406x - 1.965 2 1.5 1 0.5 0 -0.5 -1 -1.5 0 1 2 ln(X*) 6-75 http://librosysolucionarios.net 3 6.100 (cont’d) .406 .406 ln X * = 1406 . ln p NO2 − 1.965 ⇒ X * = e −1.965 p 1NO = 0.140p 1NO 2 2 K F = 0.140 (kg NO 2 / 100 kg gel)(mm Hg)−1.406 ; β = 1.406 b. Mass of silica gel : m g = π * (0.05m) 2 (1 m) 10 3 L 0.75kg gel 1m 3 L = 5.89 kg gel Maximum NO2 adsorbed : p NO2 in feed = 0.010(760 mm Hg) = 7.60 mm Hg m ads = 0.140(7.60) 1.406 kg NO 2 5.89 kg gel 100 kg gel = 0.143 kg NO 2 Average molecular weight of feed : MW = 0.01( MW ) N O2 + 0.99 ( MW ) air = ( 0.01)(46.01) + ( 0.99)(29.0) = 29.17 kg kmol Mass feed rate of NO 2 : m& = 8.00 kg 1 kmol 0.01 kmolNO 2 46.01 kg NO 2 h 29.17 kg kmol kmol NO2 tb = Breakthrough time : = 0.126 kg NO 2 h 0.143 kg NO 2 = 1.13 h = 68 min 0.126 kg NO 2 / h c. The first column would start at time 0 and finish at 1.13 h, and would not be available for another run until (1.13+1.50) = 2.63 h. The second column could start at 1.13 h and finish at 2.26 h. Since the first column would still be in the regeneration stage, a third column would be needed to start at 2.26 h. It would run until 3.39 h, at which time the first column would be available for another run. The first few cycles are shown below on a Gantt chart. Run Regenerate Column 1 0 1.13 2.63 3.39 4.52 6.02 Column 2 1.13 2.26 3.76 4.52 5.65 Column 3 2.26 3.39 6-76 http://librosysolucionarios.net 4.89 5.65 6.78 Let S=sucrose, I=trace impurities, A=activated carbon Add m A (kg A) m S (kg S) mS (kg S) mI (kg I) R (color units / kg S) V (L) m I0 (kg I) R0 (color units / kg S) Come to equilibrium V (L) mA (kg A) mI A (kg I adsorbed) Assume no sucrose is adsorbed • solution volume (V) is not affected by addition of the carbon m a. R(color units/kg S) = kCi (kg I / L) = k I (1) V • k ⇒ ∆R = k ( Ci 0 − Ci ) = ( mI 0 − mI ) V mIA = mI 0 −mI ∆R = kmIA V kmIA / V m ∆R x100% = x100 = 100 IA R0 kmI 0 / V m I0 m Equilibrium adsorption ratio : X i* = I A mA Normalized percentage color removal: % removal of color = υ= m m % removal ( 3) 100 m IA / mI 0 = = 100 IA S m A / mS mA / mS mA mI 0 m mI 0 ⇒ υ = 100X *i S ⇒ X i* = υ mI 0 100 mS ( 1),(5) Freundlich isotherm X i* = K F Ci β ⇒ υ= 100 mS K F mI 0 k β 9.500 9.000 (2) (3) (4) (5) mI 0 R υ = KF ( )β 100mS k R β = K F' R β A plot of ln υ vs. ln R should be linear: slope = β ; ln v 6.101 intercept = lnK'F y = 0.4504x + 8.0718 8.500 8.000 0.000 1.000 2.000 3.000 ln R 6-77 http://librosysolucionarios.net 6.101 (cont’d) ln υ = 0.4504 ln p NO2 + 8.0718 ⇒ υ = e8.0718 R 0.4504 = 3203R 0.4504 ⇒ K F' = 3203, β = 0.4504 b. 100 kg 48% sucrose solution ⇒ m S = 480 kg 95% reduction in color ⇒ R = 0.025(20.0) = 0.50 color units / kg sucrose υ = K F' R β = 3203(0.50) 0.4504 = 2344 % color reduction 97.5 ⇒ 2344 = = ⇒ m A = 20.0 kg carbon m A / mS m A / 480 6-78 http://librosysolucionarios.net CHAPTER SEVEN 7.1 0.80 L 3.5 × 10 4 kJ 0.30 kJ work h L 1 kJ heat 7.2 1 kW 3600 s 1 k J s 2.33 kW 10 3 W 1.341 × 10 −3 hp 1 kW 1h 1W = 2.33 kW ⇒ 2.3 kW = 312 . hp ⇒ 3.1 hp All kinetic energy dissipated by friction mu 2 2 5500 lbm 552 miles2 = 2 h2 = 715 Btu (a) E k = 52802 ft 2 1 2 mile 2 12 h 2 36002 s2 1 lbf 9 .486 × 10 − 4 Btu 32.174 lbm ⋅ ft / s2 0.7376 ft ⋅ lb f (b) 3 ×108 brakings 715 Btu 1 day day braking 24 h 1h 1W −4 3600 s 9.486 × 10 1 MW Btu/s 1 06 W = 2617 MW ⇒ 3000 MW 7.3 (a) Emissions: 1000 sacks Paper ⇒ Plastic ⇒ 2000 sacks 1000 sacks (0.0045 + 0.0146) oz (724 + 905) Btu sack Plastic ⇒ 2000 sacks 1 lbm sack 16 oz sack Energy: Paper ⇒ (0.0510 + 0.0516) oz = 6.41 lb m 1 lbm 16 oz = 2 .39 lb m = 1.63 × 10 6 Btu (185 + 464 ) Btu sack = 1.30 × 10 6 Btu (b) For paper (double for plastic) Materials for 400 sacks Raw Materials Acquisition and Production Sack Production and Use 1000 sacks 7- 1 http://librosysolucionarios.net 400 sacks Disposal 7.3 (cont’d) Emissions: Paper ⇒ 400 sacks Plastic ⇒ 0.0510 oz 1 lb m 1000 sacks + sack 16 oz 800 sacks 0.0045 oz sack 0.0516 oz 1 lb m = 4.5 lb m sack 16 oz ⇒ 30% reduction 1 lb m 2000 sacks + 16 oz 0.0146 oz 1 lb m = 2.05 lb m sack 16 oz ⇒ 14% reduction Energy: Paper ⇒ 400 sacks Plastic ⇒ (c) . 724 Btu sack 800 sacks 3 × 10 8 persons + 185 Btu sack 1000 sacks + 905 Btu = 119 . × 10 6 Btu; 27% reduction sack 2000 sacks 464 Btu = 1.08 × 10 6 Btu; 17% reduction sack 1 sack 1 day 1h person - day 24 h 3600 s 649 Btu 1J 1 MW -4 1 sack 9.486 × 10 Btu 10 6 J / s = 2 ,375 MW Savings for recycling: 0.17 (2 ,375 MW) = 404 MW (d) Cost, toxicity, biodegradability, depletion of nonrenewable resources. 7.4 1 ft 3 (a) Mass flow rate: m &= 3.00 gal min 7.4805 gal Stream velocity: u = 3.00 gal 1728 in 3 Kinetic energy: E k = min 1 ft 3 2 2 b g . g ft b1225 2 2 2 s in 1 1 min 60 s 1 7.4805 gal Π 0.5 mu 2 0.330 lb m = 2 s d (0.792)(62.43) lb m 1 1 ft 1 min 12 in 60 s lb f 2 32.174 lb m ⋅ ft / s2 . × 10 hp I = 140 . × 10 iFGH 01341 .7376 ft ⋅ lb / sJK = 7.70 × 10 −3 ft ⋅ lb f / s −3 −5 f (b) Heat losses in electrical circuits, friction in pump bearings. 7- 2 http://librosysolucionarios.net = 0.330 lb m s = 1.225 ft s = 7.70 × 10 −3 hp ft ⋅ lb f s 7.5 (a) Mass flow rate: m& = 42.0 m π ( 0.07 m ) s 2 103 L 673 K 1 m3 4 mu & 2 127.9 g 1 kg E& k = = 2 2 s 1000 g (b) 130 kPa 1 mol 29 g 273 K 101.3 kPa 22.4 L (STP ) 42.0 2 m 2 1N 1J 2 s 1 kg ⋅ m / s2 N ⋅ m mol = 127.9 g s = 113 J s 127.9 g 1 mol 22.4 L (STP ) 673 K 101.3 kPa 1 m3 4 = 49.32 m s s 29 g 1 mol 273 K 130 kPa 10 3 L π (0.07)2 m2 & 2 127.9 g 1 kg mu E& k = = 2 2 s 1000 g 49.32 2 m 2 s 1N 1J = 1558 . J/s 1 kg ⋅ m / s2 N ⋅ m 2 ∆E& k = E& k (400 o C) - E& k (300 o C) = (155.8 - 113) J / s = 42.8 J / s ⇒ 43 J / s (c) Some of the heat added goes to raise T (and hence U) of the air 7.6 (a) ∆E p = mg∆z = 1 gal 1 ft 3 62.43 lbm 32.174 ft −10 ft 1 lbf = −83.4 ft ⋅ lb f 3 2 7.4805 gal 1 ft s 32.174 lbm ⋅ ft / s2 b g = LMN2FGH 32.174 sft IJK b10 ft gOPQ b g mu 2 (b) E k = − ∆E p ⇒ = mg − ∆z ⇒ u = 2 g − ∆z 2 12 12 = 25.4 2 ft s (c) False 7.7 (a) ∆E& k ⇒ positive When the pressure decreases, the volumetric flow rate increases, and hence the velocity increases. ∆E& ⇒ negative The gas exits at a level below the entrance level. p (b) &= m b g 5 m π 1.5 cm 2 s 2 1 m3 10 4 cm 2 273 K 10 bars 1 kmol 303 K 1.01325 bars 22.4 m 3 STP b g 16.0 kg CH 4 1 kmol = 0.0225 kg s 2 & PoutV&out nRT V& P u (m/s) ⋅ A(m) P = ⇒ out = in ⇒ out = in & & 2 & PinVin nRT Vin Pout uin (m/s) ⋅ A ( m ) Pout P 10 bar ⇒ u out = uin in = 5 ( m s ) = 5.555 m s Pout 9 bar 1 2 ∆E&k = m& (uout − u in2 ) = 0.5(0.0225) kg (5.5552 − 5.000 2 )m 2 s 2 s 1N 1W 1 kg ⋅ m/s 2 2 1 N ⋅ m/s = 0.0659 W & ( zout − zin ) = ∆E& p = mg 0.0225 kg 9.8066 m -200 m s s 1N kg ⋅ m/s = − 44.1 W 7- 3 http://librosysolucionarios.net 1W 2 1 N ⋅ m/s 7.8 ∆E& p = mg & ∆z = 105 m3 103 L 1 kg H2O 981 . m −75 m 1 m3 h 2.778 × 10−7 kW ⋅ h 1J 1 kg ⋅ m / s2 1 N⋅ m s2 1L 1N 1J = −204 . × 10 kW ⋅ h h 4 The maximum energy to be gained equals the potential energy lost by the water, or 2.04 × 10 4 kW ⋅ h h 7.9 24 h 7 days 1 day 1 week = 3.43 × 10 6 kW ⋅ h week (more than sufficient) (b) Q − W = ∆U + ∆E k + ∆E p b g = 0 b no height change g ∆E k = 0 system is stationary ∆E p Q − W = ∆U , Q < 0,W > 0 (c) Q − W = ∆U + ∆E k + ∆E p b g b g Q = 0 adiabatic , W = 0 no moving parts or generated currents ∆E k = 0 system is stationary ∆E p = 0 no height change b b g g ∆U = 0 (d). Q − W = ∆U + ∆E k + ∆E p b g W = 0 no moving parts or generated currents ∆E k = 0 system is stationary ∆E p = 0 no height change Q = ∆U , Q < 0 Even though the system is isothermal, the occurrence of a chemical reaction assures that ∆U ≠ 0 in a non-adiabatic reactor. If the temperature went up in the adiabatic reactor, heat must be transferred from the system to keep T constant, hence Q < 0 . b b g g 7.10 4.00 L, 30 °C, 5.00 bar ⇒ V (L), T (°C), 8.00 bar (a). Closed system: ∆U + ∆E k + ∆E p = Q − W RS∆E |T∆E k p b = 0 b by assumption g = 0 initial / final states stationary g ∆U = Q − W (b) Constant T ⇒ ∆U = 0 ⇒ Q = W = −7.65 L ⋅ bar 8.314 J 0.08314 L ⋅ bar = −765 J (c) Adiabatic ⇒ Q = 0 ⇒ ∆U = −W = 7.65 L ⋅ bar > 0, Tfinal > 30° C 7- 4 http://librosysolucionarios.net transferred from gas to surroundings bg π 3 2 1 m2 = 2.83 × 10 −3 m 2 10 4 cm 2 (a) Downward force on piston: 7.11 A = cm 2 Fd = Patm A + mpiston+weight g = 1 atm 1.01325 × 10 5 N / m2 2.83 × 10 −3 m2 atm + 24.50 kg 9.81 m d s i d Upward force on piston: Fu = APgas = 2.83 × 10 −3 m 2 Pg N m 2 1N 1 kg ⋅ m / s2 2 = 527 N i Equilibrium condition: Fu = Fd ⇒ 2.83 × 10 −3 m2 ⋅ P0 = 527 ⇒ P0 = 1.86 × 10 5 N m 2 = 186 . × 10 5 Pa V0 = 303 K 1.01325 × 105 Pa 0.08206 L ⋅ atm nRT 1.40 g N 2 1 mol N2 = = 0.677 L P0 28.02 g 1.86 × 105 Pa 1 atm mol ⋅ K (b) For any step, ∆U + ∆E k + ∆E p = Q − W ⇒ ∆U = Q − W ∆Ek = 0 ∆E p = 0 Step 1: Q ≈ 0 ⇒ ∆U = −W Step 2: ∆U = Q − W As the gas temperature changes, the pressure remains constant, so that V = nRT Pg must vary. This implies that the piston moves, so that W is not zero. Overall: Tinitial = Tfinal ⇒ ∆U = 0 ⇒ Q − W = 0 In step 1, the gas expands ⇒ W > 0 ⇒ ∆U < 0 ⇒ T decreases b gd i b gb gb g id (c) Downward force Fd = 100 . 101325 . × 10 5 2.83 × 10 −3 + 4 .50 9.81 1 = 331 N (units as in Part (a)) F 331 N = = 116 . × 10 5 N m 2 A 2.83 × 10 − 3 m 2 P 1.86 × 10 5 Pa Since T0 = T f = 30° C , Pf V f = P0V0 ⇒ V f = V0 0 = 0.677 L = 108 . L Pf 116 . × 105 Pa Final gas pressure Pf = b g ∆V 1.08 − 0.677 L Distance traversed by piston = = A b gb g b g 1 m3 103 L 2.83 × 10 −3 m2 = 0142 . m ⇒ W = Fd = 331 N 0.142 m = 47 N ⋅ m = 47 J Since work is done by the gas on its surroundings, W = +47 J ⇒ Q = +47 J Q −W = 0 (heat transferred to gas) 32.00 g 4.684 cm3 103 L 7.12 V$ = = 01499 . L mol mol g 106 cm3 41.64 atm 0.1499 L 8.314 J / (mol ⋅ K) H$ = U$ + PV$ = 1706 J mol + = 2338 J mol mol 0.08206 L ⋅ atm / (mol ⋅ K) 7- 5 http://librosysolucionarios.net 7.13 d i Ref state U$ = 0 ⇒ liquid Bromine @ 300 K, 0.310 bar (a) (b) ∆U$ = U$ final − U$ initial = 0.000 − 28.24 = −28.24 kJ mol d i ∆ H$ = ∆U$ + ∆ PV$ = ∆U$ + P∆V$ (Pressure Constant) ∆ Hˆ = −28.24 kJ mol + b 0.310 bar (0.0516 − 79.94) L gb 8.314 J 1 kJ mol 0.08314 L ⋅ bar 103 J g = −30.7 kJ mol ∆ H = n∆ H$ = 5.00 mol −30.7 kJ / mol = −15358 . kJ ⇒ − 154 kJ b g b g (c) U$ independent of P ⇒ U$ 300 K, 0.205 bar = U$ 300 K , 0.310 bar = 28.24 kJ mol U$ 340 K, Pf = U$ 340 K, 1.33 bar = 29.62 kJ mol d ∆U$ = U$ final − U$ initial i b g E ∆U$ = 29.62 − 28.24 = 1.380 kJ mol $ = P' V' $ ⇒ V'= $ PV $ / P' V$ changes with pressure. At constant temperature ⇒ PV $ (T = 300K, P = 0.205 bar) = (0.310 bar)(79.94 L / mol) = 120.88 L / mol V' 0.205 bar 5.00 L 1 mol n= = 0.0414 mol 120.88 L ∆U = n∆U$ = 0.0414 mol 1.38 kJ / mol = 0.0571 kJ b gb g ∆U + ∆E k + ∆E p = Q − W ⇒ Q = 0.0571 kJ 0 0 0 (d) Some heat is lost to the surroundings; the energy needed to heat the wall of the container is being neglected; internal energy is not completely independent of pressure. 7.14 (a) By definition H$ = U$ + PV$ ; ideal gas PV$ = RT ⇒ H$ = U$ + RT b g bg b g bg bg U$ T , P = U$ T ⇒ H$ T , P = U$ T + RT = H$ T independent of P . cal 50 K cal 1987 (b) ∆ H$ = ∆U$ + R∆T = 3500 + = 3599 cal mol mol mol ⋅ K ∆ H = n∆ H$ = 2.5 mol 3599 cal / mol = 8998 cal ⇒ 9.0 × 10 3 cal b gb 7.15 ∆U + ∆E k + ∆E p = Q − Ws b b g g ∆ E k = 0 no change in m and u ∆ E p = 0 no elevation change Ws = P∆V since energy is transferred from the system to the surroundings g b ∆U = Q − W ⇒ ∆U = Q − P∆V ⇒ Q = ∆U + P∆V = ∆(U + PV ) = ∆H 7- 6 http://librosysolucionarios.net g b b g 7.16. (a) ∆ E k = 0 u1 = u 2 = 0 ∆ E p = 0 no elevation change g ∆P = 0 (the pressure is constant since restraining force is constant, and area is constrant) Ws = P∆V the only work done is expansion work H$ = 34980 + 35.5T (J / mol), V1 = 785 cm3, T1 = 400 K, P = 125 kPa, Q = 83.8 J b . g 125 × 103 Pa 785 cm3 1 m3 PV = = 0.0295 mol RT 8.314 m3 ⋅ Pa / mol ⋅ K 400 K 10 6 cm3 $ -H $ ) = 0.0295 mol 34980 + 35.5T - 34980 - 35.5(400K) (J / mol) Q = ∆H = n(H 2 1 2 n= 83.8 J = 0.0295 35.5T2 - 35.5(400) ⇒ T2 = 480 K nRT 0.0295 mol 8.314 m 3 ⋅ Pa 10 6 cm3 480 K = = 941 cm 3 125 × 105 Pa mol ⋅ K 1 m3 P 125 × 105 N (941- 785)cm3 1 m 3 ii ) W = P∆V = = 19.5 J m2 10 6 cm 3 iii ) Q = ∆U + P∆V ⇒ ∆U = Q − ∆PV = 83.8 J − 19.5 J = 64.3 J i) V = (b) ∆Ep = 0 7.17 (a) "The gas temperature remains constant while the circuit is open." (If heat losses could occur, the temperature would drop during these periods.) (b) ∆U + ∆ E p + ∆ E R = Q& ∆t − W& ∆t ∆ E p = 0, ∆ E k = 0, W& = 0 , U$ ( t = 0) = 0 Q& = 0.90 × 1.4 W 1 J s 1W = 1.26 J s U (J ) = 1.26 t Moles in tank: n = PV RT = 1 atm b 2.10 L 25 + 273 K g 1 mol ⋅ K = 0.0859 mol 0.08206 L ⋅ atm U 1.26 t (J) U$ = = = 14.67 t n 0.0859 mol Thermocouple calibration: T = aE + b T = 0 , E =−0.249 T =100 , E =5 .27 b g b g T ° C = 181 . E mV + 4.51 U$ = 14.67 t 0 440 880 1320 T = 181 . E + 4.51 25 45 65 85 (c) To keep the temperature uniform throughout the chamber. (d) Power losses in electrical lines, heat absorbed by chamber walls. (e) In a closed container, the pressure will increase with increasing temperature. However, at the low pressures of the experiment, the gas is probably close to ideal ⇒ U$ = f T only. Ideality could be tested by repeating experiment at several initial pressures ⇒ same results. bg 7- 7 http://librosysolucionarios.net 7.18 (b) ∆H& + ∆E& k + ∆E& p = Q& − W&s (The system is the liquid stream.) c c h ∆ E& k =0 no change in m and u ∆ E& p =0 no elevation change W& s = 0 no moving parts or generated currents c h ∆ H& = Q& , Q& > 0 h (c) ∆H& + ∆E& k + ∆E& p = Q& − W&s (The system is the water) ∆ H& =0 T a nd P ~ constant ∆ E& k =0 no change in m and u Q& =0 no ∆ T between system and surroundings c c h c h b ∆E& p = −W& s , W& s > 0 for water system g h (d) ∆H& + ∆E& k + ∆E& p = Q& − W&s (The system is the oil) ∆ E& k =0 no velocity change c h ∆H& + ∆ E& p = Q& − W& s Q& < 0 (friction loss); W& s < 0 (pump work). (e) ∆H& + ∆E& k + ∆E& p = Q& − W&s (The system is the reaction mixture) ∆ E& k = ∆ E& p =0 given ∆W& s = 0 no moving parts or generated current c c h ∆ H& = Q& , Q& pos. or neg. depends on reaction 7.19 (a) molar flow: 1.25 m3 273 K 122 kPa min 423 K 101.3 kPa h 1 mol 22.4 L STP b g 103 L = 43.4 mol min 1 m3 ∆ H& + ∆ E& k + ∆ E& p = Q& − W& s ∆ E& k = ∆ E& p =0 given W& s = 0 no moving parts c c h h 43.37 mol 1 min Q& = ∆ H& = n&∆ H$ = min 60s 3640 J kW mol 10 3 J / s = 2.63 kW (b) More information would be needed. The change in kinetic energy would depend on the cross-sectional area of the inlet and outlet pipes, hence the internal diameter of the inlet and outlet pipes would be needed to answer this question. 7- 8 http://librosysolucionarios.net b g 7.20 (a) H$ = 1.04 T ° C − 25 H$ in kJ kg H$ out = 1.04 34.0 − 25 = 9.36 kJ kg H$ = 104 . 30.0 − 25 = 5.20 kJ kg n& (m ol/ s) N2 30 o C in ∆ H$ = 9.36 − 5.20 = 4.16 kJ kg ∆ H& + ∆ E& k + ∆ E& p = Q& − W& s ∆ E& k = ∆ E& p =0 assumed W& s = 0 no moving parts c c h h Q& = ∆ H& = n& ∆ H$ ⇒ n& = P= 11 0 kP a 34 o C Q& =1 .25 k W Q& 1.25 kW kg 1 kJ / s 10 3 g 1 mol = = 10.7 mol s ∆ H& 4.16 kJ kW 1 kg 28.02 g b g 10.7 mol 22.4 L STP ⇒ V& = s mol 303 K 101.3 kPa 273 K 110 kPa = 245.5 L / s ⇒ 246 L s (b) Some heat is lost to the surroundings, some heat is needed to heat the coil, enthalpy is assumed to depend linearly on temperature and to be independent of pressure, errors in measured temperature and in wattmeter reading. U| V| W $ $ 7.21 (a) H$ = aT + b a = H 2 − H 1 = 129.8 − 25.8 = 5.2 ⇒ H$ kJ kg = 5.2 T ° C − 1302 . T2 − T1 50 − 30 $ b = H 1 − aT1 = 258 . − 5.2 30 = −1302 . b gb g b g b g 1302 . H$ = 0 ⇒ Tref = = 25° C 5.2 b g Table B.1 ⇒ S . G. b g bg C 6 H 14 l b 1 m3 = 0.659 ⇒ V$ = = 1.52 × 10 −3 m 3 kg 659 kg g U$ kJ kg = H$ − PV$ = 5.2 T − 1302 . kJ / kg − b 1 atm 1.0132 × 105 N / m2 1.52 × 10 −3 m3 1J 1 kJ 1 atm 1 kg 1 N ⋅ m 103 J g ⇒ U$ kJ kg = 5.2 T − 1304 . (b) Energy balance: Q = ∆U = ∆Ek , ∆E p , W =0 20 kg [(5.2 × 20 - 130.4) - (5.2 × 80 -130.4)] kJ = −6240 kJ 1 kg Average rate of heat removal = 6240 kJ 1 min 5 min 60 s = 20.8 kW 7- 9 http://librosysolucionarios.net 7.22 m& (kg/s) 260°C, 7 bars H$ = 2974 kJ/kg u0 = 0 & (kg/s) m 200°C, 4 bars H$ = 2860 kJ/kg u (m/s) ∆H& + ∆E& k + ∆E& p = Q& − W&s ∆ E& p = Q& = W&s = 0 & 2 mu ∆E& k =− ∆H& ⇒ =− m & H$ out − H$ in 2 d b i g (2) 2974 − 2860 kJ 10 3 N ⋅ m 1 kg ⋅ m / s2 m2 u 2 = 2 H$ in − H$ out = = 2.28 × 10 5 2 ⇒ u = 477 m / s kg 1 kJ 1N s d i 7.23 (a) 5 L/min 5 L/min 100 mm Hg (gauge) 0 mm Hg (gauge) Qin Qout Since there is only one inlet stream and one outlet stream, and m& in = m& out ≡ m& , Eq. (7.4-12) may be written m & & ∆ PV$ + ∆ u 2 + mg & ∆z = Q& − W& s m& ∆U$ + m 2 ∆U$ = 0 (given ) d i d i a f & $ Pout − Pin = V&∆P m& ∆PV$ = mV ∆ u = 0 (assume for incompressible fluid ) 2 ∆z = 0 W& s = 0 (all energy other than flow work included in heat terms ) Q& = Q& in − Q& out V&∆P = Q& in − Q& out b g 5 L 100 − 0 mm Hg 1 atm 8.314 J (b) Flow work: V&∆P = = 66.7 J min min 760 mm Hg 0.08206 liter ⋅ atm 5 ml O2 20.2 J Heat input: Q& in = = 101 J min min 1 ml O 2 Efficiency: V& ∆ P 66.7 J min = ×100% = 66% Q& in 101 J min 7.24 (a) ∆H& + ∆E& k + ∆E& p = Q& − W&s ; ∆E& k , ∆E& p , W& s = 0 ⇒ ∆H& = Q& b b g H$ 400° C, 1 atm = 3278 kJ kg (Table B.7) H$ 100° C, sat' d ⇒ 1 atm = 2676 kJ kg (Table B.5) g 7- 10 http://librosysolucionarios.net 7.24 (cont’d) 100 kg H 2 O(v) / s 100 kg H 2 O(v) / s o o 100 C, saturated 400 C, 1 atm Q& (kW) 100 kg Q& = s b3278 − 2676.0gkJ 10 3 J kg 1 kJ = 6.02 × 10 7 J s (b) ∆U + ∆E k + ∆E p = Q − W ; ∆E k , ∆E p , W = 0 ⇒ ∆U = Q kJ m3 Table B.5 ⇒ Uˆ (100 °C, 1 atm ) = 2507 , Vˆ(100 °C, 1 atm ) = 1.673 = Vˆ ( 400°C, Pfinal ) kg kg Interpolate in Table B.7 to find P at which V̂ =1.673 at 400o C, and then interpolate again to find Û at 400o C and that pressure: 3.11 − 1.673 3 o ˆ Vˆ = 1.673 m /g ⇒ Pfinal = 1.0 + 4.0 = 3.3 bar , U (400 C, 3.3 bar) = 2966 kJ/kg 3.11 − 0.617 ⇒ Q = ∆U = m ∆Uˆ = 100 kg [( 2966 − 2507 ) kJ kg ] 10 3 J kJ = 4.59 × 10 7 J ( ) The difference is the net energy needed to move the fluid through the system (flow work). (The energy change associated with the pressure change in Part (b) is insignif icant.) c bg h H$ bsteam, 20 bars, sat'd g = 2797.2 kJ kg (Table B.6) 7.25 H$ H 2 O l , 20° C = 83.9 kJ kg (Table B.5) m& [kg H 2 O(l) / h] m& [kg H 2 O(v) / h] o 20 C 20 bar (sat'd) Q& = 0.65(813 kW) = 528 kW (a) ∆H& + ∆E& k + ∆E& p = Q& − W&s ; ∆E& k , ∆E& p , W& s = 0 ⇒ ∆H& = Q& ∆H& = m& ∆H$ m& = 528 kW Q& = ∆ H$ b gd b kg 1 kJ / s 3600 s = 701 kg h 2797.2 − 83.9 kJ 1 kW 1 h g i (b) V& = 701 kg h 0.0995 m 3 kg = 69.7 m 3 h sat'd steam @ 20 bar A Table B.6 701 kg / h 10 3 g / kg 485.4 K 0.08314 L ⋅ bar 1 m3 & nRT (c) V& = = = 78.5 m 3 / h P 18.02 g / mol 20 bar mol ⋅ K 103 L The calculation in (b) is more accurate because the steam tables account for the effect of pressure on specific enthalpy (nonideal gas behavior). (d) Most energy released goes to raise the temperature of the combustion products, some is transferred to the boiler tubes and walls, and some is lost to the surroundings. 7- 11 http://librosysolucionarios.net c bg h 7.26 H$ H 2 O l , 24° C, 10 bar = 100.6 kJ kg (Table B.5 for saturated liquid at 24o C; assume H$ independent of P). b g H$ 10 bar, sat'd steam = 27762 . kJ kg (Table B.6) ⇒ ∆ H$ = 2776.2 − 100.6 = 2675.6 kJ kg & [kg H2O(l)/h] m & [kg HO(v)/h] m 2 3 o 24 C, 10 bar 15,000 m /h @10 bar (sat'd) &(kW) Q m& = 15000 m 3 kg 4 0.1943 m 3 = 7.72 × 10 kg h h A b Table 8.6g d i Energy balance ∆E& p , W& s = 0 : ∆H& + ∆E& k = Q& ∆E& k = E&k final − E& k initial ∆E& k = mu & f E& kinitial ≈0 ∆ E& k = E& kfinal d15,000 m hi 7.72 × 10 4 kg 2 = 2 3 2 2 0.15 2 π 4 m 2 h 1 1 h3 1J 1 kg ⋅ m 2 / s2 2 3600 3 s3 A A=π D2 4 = 5.96 × 10 5 J / s 7.72 × 10 4 kg 2675.6 kJ 1h 5.96 × 10 5 J 1 kJ & ∆H$ + ∆E& k = Q& = m + h kg 3600 s s 10 3 J = 57973 kJ s = 5.80 × 10 4 kW 7.27 (a) 228 g/min 25o C 228 g/min T(o C) Q& ( kW) b g Energy balance: Q& = ∆H& ⇒ Q& W = ∆ E& x , ∆ E& p , W&s =0 b g b g T b° C g 25 H$ bJ g g = 0.263Q& bW g 0 228 g 1 min ( H$ out − H$ in) J min 60 s =0 g ⇒ H$ out J g = 0.263Q& W b g (b) H$ = b T − 25 b g 26.4 27.8 29.0 32.4 4.47 9.28 13.4 24 .8 Fit to data by least squares (App. A.1) b= b g ∑ H$ i i bT − 25g ∑ bT − 25g i ⇒ H$ J g = 3.34 T ° C − 25 7.27 (cont’d) 7- 12 http://librosysolucionarios.net i i 2 = 3.34 b g 350 kg 10 3 g 1 min 3.34 40 − 20 J (c) Q& = ∆ H& = min kg 60 s g kW ⋅ s 10 3 J = 390 kW heat input to liquid (d) Heat is absorbed by the pipe, lost through the insulation, lost in the electrical leads. 7.28 m& w [ kg H 2 O(v) / min] 3 bar, sat' d m& w [ kg H 2 O(l) / min] 27 o C Q& ( kW ) m& e [ kg C 2 H 6 / min] o 16 C, 2.5 bar m& e [ kg C 2 H 6 / min] o 93 C, 2.5 bar 3 3 (a) C H mass flow: m& = 795 m 10 L 2.50 bar 2 6 e min m 3 289 K = 2.487 × 103 kg min 1 K - mol 30.01 g 1 kg 0.08314 L - bar mol 1000 g H$ ei = 941 kJ kg , H$ ef = 1073 kJ kg Energy Balance on C 2 H 6 : ∆E& p , W& s = 0, ∆E& k ≅ 0 ⇒ Q& = ∆H& LMb N g OPQ 2.487 × 103 kJ 1 min kJ kg Q& = 2.487 × 103 min 1073 − 941 = = 5.47 × 103 kW min 60 s kg b b g (b) H$ s1 3.00 bar, sat' d vapor = 2724.7 kJ kg (Table B.6) H$ s2 liquid, 27° C = 1131 . kJ kg (Table B.5) g Assume that heat losses to the surroundings are negligible, so that the heat given up by the d condensing steam equals the heat transferred to the ethane 5.47 × 10 3 kW d Energy balance on H 2O: Q& = ∆H& = m & H$ s2 − H$ s1 −5.47 × 10 3 kJ Q& &= ⇒m = s H$ s2 − H$ s1 b gd i i i kg = 2.09 kg s steam 1131 . − 2724.7 kJ b g ⇒ V&s = 2.09 kg / s 0.606 m 3 kg = 1.27 m 3 s A Table B.6 Too low. Extra flow would make up for the heat losses to surroundings. (c) Countercurrent flow Cocurrent (as depicted on the flowchart) would not work, since it would require heat flow from the ethane to the steam over some portion of the exchanger. (Observe the two outlet temperatures) 7- 13 http://librosysolucionarios.net 7.29 250 kg H2 O(v )/min 40 bar, 500°C H$ 1 (kJ/kg) 250 kg/min 5 bar, T 2 (°C), H$ 2(kJ/kg) Turbine Heat exchanger 250 kg/min 5 bar, 500°C H$3 (kJ/kg) Q(kW) W s =1500 kW b b g H 2 O v , 40 bar, 500° C : H$ 1 = 3445 kJ kg (Table B.7) H O v , 5 bar, 500° C : H$ = 3484 kJ kg (Table B.7) 2 g 3 (a) Energy balance on turbine: ∆E& p = 0, Q& = 0, ∆E& k ≅ 0 d i & ∆H& = −W&s ⇒ m& H$ 2 − H$ 1 = −W& s ⇒ H$ 2 = H$ 1 − W&s m = 3445 kJ 1500 kJ − kg s min 60 s 250 kg 1 min = 3085 kJ kg H$ = 3085 kJ kg and P = 5 bars ⇒ T = 310° C (Table B.7) (b) Energy balance on heat exchanger: ∆E& p = 0, W&s = 0, ∆E& k ≅ 0 d i 250 kg Q& = ∆H& = m& H$ 3 − H$ 2 = min b3484 − 3085gkJ 1 min 1 kW = 1663 kW kg 60 s 1 kJ / s (c) Overall energy balance: ∆E& p = 0 , ∆E& k ≅ 0 d i ∆H& = Q& − W& s ⇒ m& s H$ 3 − H$ 1 = Q& − W&s b3484 − 3445g kJ 250 kg Q& = ∆H& + ∆W& s = min kg 1 min 1 kW 1500 kJ 1 kW + 60 s 1 kJ / s s 1 kJ / s = 1663 kW √ b g H Obv , 5 bar, 310° Cg: V$ (d) H 2 O v , 40 bar, 500° C : V$1 = 0.0864 m 3 kg (Table B.7) 2 u1 = u2 = 2 = 0.5318 m 3 kg (Table B.7) 250 kg 1 min 0.0864 m3 min 250 kg min 60 s kg 1 0.5 π 4 m 2 2 min 0.5318 m3 60 s kg 1 0.5 π 4 m 2 2 m& 2 250 kg 1 1 min ∆E& k = u 2 − u12 = 2 min 2 60 s = 0.26 kW << 1500 kW = 183 . ms = 11.3 m s . g b11.3g − b183 2 s 2 2 7- 14 http://librosysolucionarios.net m2 1 kW ⋅ s 1N 1 kg ⋅ m / s 2 10 3 N ⋅ m b g b g kJ 7.30 (a) ∆E& p , ∆E& k , W& s = 0 ⇒ Q& = ∆H& ⇒ −hA Ts − To = −300 kJ h ⇒ 18 . h Ts − To = 300 h (b) Clothed: h = 8 ⇒ To = 13.4° C Ts =34 .2 Nude, immersed: h = 64 ⇒ To = 31.6° C (Assuming Ts remains 34.2°C) Ts = 34.2 (c) The wind raises the effective heat transfer coefficient. (Stagnant air acts as a thermal insulator —i.e., in the absence of wind, h is low.) For a given To , the skin temperature must drop to satisfy the energy balance equation: when Ts drops, you feel cold. 7.31 Basis: 1 kg of 30°C stream 1 kg H2 O(l)@30o C 3 kg H2 O(l)@Tf(o C) 2 kg H2 O(l)@90o C b g b g 1 2 30 o C + 90 o C = 70 o C 3 3 (b) Internal Energy of feeds: U$ 30° C, liq. = 1257 . kJ kg U$ 90° C, liq. = 376.9 kJ kg (Table B.5 - neglecting effect of P on H$ ) (a) T f = b b g g Energy Balance: Q - W = ∆U + ∆E p + ∆E k b g U| V| W Q= W= ∆E = ∆E =0 p k b ∆U = 0 g ⇒ 3U$ f − (1 kg) 125.7 kJ / kg − (2 kg) 376.9 kJ / kg = 0 ⇒ U$ = 293.2 kJ kg ⇒ T = 70.05° C (Table B.5) f Diff.= 7.32 f 70.05 − 70.00 × 100% = 0.07% (Any answer of this magnitude is acceptable). 70.05 . m(kg/h) . kg H2 O( v)/kg 0.85 0.15 kg H2 O( l )/kg 5 bar, saturated, T(oC) P = 5 bars (a) Table B.6 52.5 m3 H2O(v)/h . m(kg/h) 5 bar, T( oC) . Q (kW) T = 1518 . ° C , H$ L = 6401 . kJ kg , H$ V = 27475 . kJ kg 52.5 m3 $ bar, sat'd) = 0.375 m 3 / kg ⇒ m V(5 & = h b gb g 1 kg = 140 kg h 0.375 m 3 (b) H2 O evaporated = 015 . 140 kg h = 21 kg h (Q = energy needed to vaporize this much water) Energy balance:Q& = ∆H& = 21 kg h ( 2747.5 − 640.1) ] kJ 1h 1 kW = 12 kW kg 3600 s 1 kJ s 7- 15 http://librosysolucionarios.net 7.33 (a) P = 5 bar Tsaturation = 1518 . o C . At 75°C the discharge is all liquid Table B.6 (b) Inlet: T=350°C, P=40 bar Outlet: T=75°C, P=5 bar u in = u out = Table B.7 Table B.7 H$ in = 3095 kJ / kg , V$in = 0.0665 m3 / kg H$ out = 314.3 kJ / kg , V$out = 1.03 × 10 -3 m 3 / kg 3 V&in 200 kg 1 min 0.0665 m / kg = = 50.18 m / s min 60 s π (0.075) 2 / 4 m 2 Ain V&out 200 kg 1 min = min 60 s Aout 0.00103 m 3 / kg = 1.75 m / s π (0.05)2 / 4 m 2 m& Energy balance: Q& − W&s ≈ ∆H& + ∆E& k = m & ( H$ 2 − H$ 1 ) + (u 22 − u12 ) 2 200 kg 1 min (314-3095) kJ 200 kg 1 min (1.752 -50.18 2 ) m 2 Q& − W&s = + min 60 s kg 2 min 60 s s2 = −13,460 kW ( ⇒ 13,460 kW transferred from the turbine) 7.34 (a) Assume all heat from stream transferred to oil 4 Q& = 1.00 × 10 kJ 1 min = 167 kJ s min 60 s 100 kg oil/min 135°C m& (kg H 2O(v)/s) 25 bars, sat'd d & H$ out − H$ in Energy balance on H 2O: Q& = ∆H& = m i 100 kg oil/min 185°C m& (kg H2O(l)/s) 25 bars, sat'd ∆E& p , ∆ E& k , W&s = 0 H$ ( l , 25 bar, sat' d ) = 962.0 kJ kg , H$ (v , 25 bar, sat' d ) = 2800.9 kJ kg (Table B.6) m& = Q& H$ out − H$ in = −167 kJ s Time between discharges: (b) Unit Cost of Steam: kg b962.0 − 2800.9g kJ = 0.091 kg s 1200 g 1s 1 kg = 13 s discharge discharge 0.091 kg 10 3 g $1 10 Btu b2800.9 − 83.9g kJ 0.9486 Btu = $2.6 × 10 −3 / kg kg kJ 6 Yearly cost: 1000 traps 0.091 kg stream 0.10 kg last trap ⋅ s kg stream 2.6 × 10 −3$ 3600 s 24 h 360 day kg lost h day year = $7.4 × 10 5 / year 7-16 http://librosysolucionarios.net 7.35 Basis: Given feed rate 200 kg H2 O(v)/h 10 bar, sat’d, H$ = 2776.2 kJ / kg n& 3 [kg H 2 O(v) / h] 10 bar, 250o C, H$ = 2943 kJ / kg n& 2 [ kg H 2 O(v) / h] 10 bar, 300 o C, H$ = 3052 kJ / kg & Q(kJ / h) H$ from Table B.6 (saturated steam) or Table B.7 (superheated steam) Mass balance: 200 + n&2 = n& 3 (1) b g b g b g Energy balance: Q& = ∆H& = n&3 2943 − 200 2776.2 − n&2 3052 , Q& in kJ h & =0 ∆ E& K , ∆ E& p , W (1) (b) Q& = 0 n&2 = 306 kg h , n& 3 = 506 kg h (1),(2 ) ( 2) Q& = 2.25 × 10 4 kJ h (a) n& 3 = 300 kg h n& 2 = 100 kg h (2) 7.36 (a) Tsaturation @ 1.0 bar = 99.6 °C ⇒ T f = 99.6 o C H 2 O (1.0 bar, sat'd) ⇒ H$ l = 417.5 kJ / kg, H$ v = 2675.4 kJ / kg H 2 O (60 bar, 250o C) = 1085.8 kJ / kg Mass balance: mv + ml = 100 kg Energy balance: ∆H& = 0 (1) & , ∆ E& , W& = 0 ∆ E& K , Q p ⇒ mv H$ v + ml H$ l − m1 H$ 1 = mv H$ v + m l H$ l − (100 kg)(1085.8 kJ / kg) = 0 (1,2 ) ml = 70.4 kg, mv = 29.6 kg ⇒ y v = (2) 29.6 kg vapor kg vapor = 0.296 100 kg kg (b) T is unchanged. The temperature will still be the saturation temperature at the given final pressure. The system undergoes expansion, so assuming the same pipe diameter, ∆E&k > 0. yv would be less (less water evaporates) because some of the energy that would have vaporized water instead is converted to kinetic energy. (c) Pf = 39.8 bar (pressure at which the water is still liquid, but has the same enthalpy as the feed) 7-17 http://librosysolucionarios.net 7.36 (cont’d) (d) Since enthalpy does not change, then when Pf ≥ 39 .8 bar the temperature cannot increase, because a higher temperature would increase the enthalpy. Also, when Pf ≥ 39 .8 bar , the product is only liquid ⇒ no evaporation occurs. 0.4 Tf (C) y 0.3 0.2 0.1 0 0 20 40 60 300 250 200 150 100 50 0 80 1 5 10 Pf (bar) 15 20 25 30 36 39.8 60 Pf (bar) 7.37 10 m3 , n moles of steam(v), 275°C, 15 bar ⇒ 10 m3 , n moles of water (v+l), 1.2 bar 10.0 m3 H2 O (v) 10.0 m3 m in (kg) 275 oC, 1.5 , 15bar bar mv [kg H2 O (v)] ml [kg H 2O (l)] Q (a) P=1.2 bar, saturated, 1.2 bar, saturated Table B.6 (b) Total mass of water: min = 10 m3 T2 = 104.8 o C 1 kg = 55 kg 0.1818 m 3 Mass Balance: m v + m l = 55.0 Volume additivity: Vv + Vl = 10.0 m 3 = m v (1.428 m 3 / kg) + m l (0.001048 m 3 / kg) ⇒ mv = 7.0 kg, ml = 48.0 kg condensed (c) Table B.7 ⇒ U$ in = 2739.2 kJ / kg; V$in = 0.1818 m3 / kg R| S| T 3 $ $ Table B.6 ⇒ U l = 439.2 kJ / kg; Vl = 0.001048 m / kg U$ v = 2512.1 kJ / kg; V$v = 1.428 m3 / kg Energy balance: Q = ∆U = mvU$ v + ml U$ l − minU$ in ∆E p ,∆Ek , W = 0 = [( 7.0)(2512.1 kJ / kg) + (48.0)(439.2 ) - 55 kg (2739.2)] kJ = −1.12 × 10 5 kJ 7.38 (a) Assume both liquid and vapor are present in the valve effluent. 1 kg H 2 O( v ) / s 15 bar, Tsat + 1 5 0 o C m& l [ kg H 2 O (l ) / s] m& v [ kg H 2 O( v ) / s] 1.0 bar, saturated 7-18 http://librosysolucionarios.net 7.38 (cont’d) (b) Table B.6 ⇒ Tsat'n (15 bar) = 198.3o C ⇒ Tin = 3483 . oC Table B.7 ⇒ H$ in = H$ ( 348.3o C, 15 bar) ≈ 3149 kJ / kg Table B.6 ⇒ H$ l (1.0 bar, sat'd) = 417.5 kJ / kg; H$ v (1.0 bar, sat'd) = 2675.4 kJ / kg Energy balance: ∆H& = 0 ⇒ m & H$ + m& H$ − m& H$ = 0 l &s =0 ∆E& p ,∆E& k ,Q& , W ⇒m & in H$ in = m & l H$ l + m & v H$ v l v m& v + m& l v in in 3149 kJ / kg = m& l (417.5) + (1 − m& l )(2675.4 ) There is no value of m& l between 0 and 1 that would satisfy this equation. (For any value in this range, the right-hand side would be between 417.5 and 2675.4). The two-phase assumption is therefore incorrect; the effluent must be pure vapor. & in = m& out = 1 m (c) Energy balance ⇒ m & out H$ out = m& in H$ in 3149 kJ / kg = H$ (1 bar, Tout ) Tout ≈ 337o C Table B.7 (This answer is only approximate, since ∆E& k is not zero in this process). 7.39 Basis: 40 lb m min circulation (a) Expansion valve R = Refrigerant 12 40 lb m R(l)/min 40 lb m / min x v lb m R (v ) / lb m 93.3 psig, 86°F H$ = 27.8 Btu/lb m (1 − x v ) lb m R(l ) / lb m H$ v = 77 .8 Btu / lb m , H$ l = 9.6 Btu / lb m Energy balance: ∆E& p , W& s , Q& = 0 , neglect ∆E& k ⇒ ∆H& = bg 40 X v lb m R v min b g bg 77.8 Btu 40 1 − X v lb m R l + lb m min E ∑ n& H$ − ∑ n& H$ i i out 9.6 Btu 40 lb m − min lb m b X v = 0.267 26.7% evaporates i i =0 in 27.8 Btu =0 lb m g (b) Evaporator coil 40 lbm /min 0.267 R( v ) 0.733 R( l ) 11.8 psig, 5°F H$ v = 77.8 Btu/lbm , H$ l = 9.6 Btu/lbm 40 lb m R(v )/min 11.8 psig, 5°F H$ = 77.8 Btu/lbm Energy balance: ∆E& p , W&s = 0, neglect ∆E& k ⇒ Q& = ∆H& 40 lb m Q& = min b gb g bg 77.8 Btu 40 0.267 lb m R v − lb m min b gb g bg 77.8 Btu 40 0.733 lb m R l − lb m min = 2000 Btu min 7-19 http://librosysolucionarios.net 9.6 Btu lb m 7.39 (cont’d) (c) We may analyze the overall process in several ways, each of which leads to the same result. Let us first note that the net rate of heat input to the system is Q& = Q& evaporator − Q& condenser = 2000 − 2500 = −500 Btu min and the compressor work Wc represents the total work done on the system. The system is b g closed (no mass flow in or out). Consider a time interval ∆t min . Since the system is at steady state, the changes ∆U , ∆E k and ∆E p over this time interval all equal zero. The total heat input is Q& ∆t , the work input is W& ∆t , and (Eq. 8.3-4) yields c −500 Btu 1 min 1.341 × 10 −3 hp Q& ∆t − W&c ∆t = 0 ⇒ W&c = Q& = = 11.8 hp min 60 s 9.486 × 10 −4 Btu s 7.40 Basis: Given feed rates n&1 (mol / h) n&C 3 H8 (mol C 3 H 8 / h) n&C 4 H10 (mol C 4 H 10 / h) 227o C 0.2 C3 H 8 0.8 C 4 H 10 0 o C, 1.1 atm n& 2 (mol / h) 0.40 C3 H 8 0.60 C 4 H 10 25 o C, 1.1 atm Q& (kJ / h) Molar flow rates of feed streams: n&1 = 300 L 1.1 atm 1 mol = 14.7 mol h hr 1 atm 22.4 L STP n& 2 = 200 L 273 K 1.1 atm 1 mol hr 298 K 1 atm 22.4 L STP = 9.00 mol h b g b g 14.7 mol 0.20 mol C 3 H 8 9.00 mol 0.40 mol C 3 H 8 + h mol h mol = 6.54 mol C3 H 8 h Total mole balance: n&C 4 H10 = (14.7 + 9 .00 − 6.54 ) mol C 4 H 20 h = 17.16 mol C 4 H 20 h Propane balance ⇒ n&C 3 H8 = Energy balance: ∆E& p , W&s = 0, neglect ∆E& k ⇒ Q& = ∆H& Q& = ∆H& = ∑ N& H$ − ∑ N& H$ i i i out in b0.40 × 9.00g mol C H − 3 h 8 i = 6.54 mol C 3H 8 h b 20.685 kJ 17.16 mol C4 H 10 + mol h g 1.772 kJ 0.60 × 9.00 mol C 4 H10 − mol h ( H$ i = 0 for components of 1st feed stream) 7-20 http://librosysolucionarios.net 27.442 kJ mol 2.394 kJ = 587 kJ h mol 510 m3 273 K 10 3 L 1 mol min 291 K m 3 22.4 L STP b g 7.41 Basis: (a) 1 kmol = 21.4 kmol min 10 3 mol Q& (kJ/min) n. 0 ( kmol/min) 38°C, h r = 97% y 0 ( mol H 2 O(v)/mol ) (1 – x 0) ( mol dry air/ mol) 21.4 kmol/min 18°C, sat'd y 1 ( mol H 2 O(v)/ mol ) (1 – y 1) (mol dry air) . n 2 ( kmol H 2O(l )/ mol) 18°C Inlet condition: yo = hr PH∗2O ( 38°C ) P PH∗2 O (18 °C ) = 0.97 ( 49.692 mm Hg ) = 0.0634 mol H2 O mol 760 mm Hg 15.477 mm Hg = 0.0204 mol H2 O mol P 760 mm Hg Dry air balance: 1 − 0.0634 n& o = 1 − 0.0204 214 . ⇒ n& o = 22.4 kmol min Outlet condition: y1 = b = g b b g g b g Water balance: 0.0634 22.4 = n& 2 + 0.0204 21.4 ⇒ n&2 = 0.98 kmol min 0.98 kmol 18.02 kg = 18 kg / min H 2 O condenses min kmol b g b g (b). Enthaphies: H$ air 38° C = 0.0291 38 − 25 = 0.3783 kJ mol H$ 18° C = 0.0291 18 − 25 = −0.204 kJ mol b air b b b g b g g g g U| || V| || W 2570.8 kJ 1 kg 18.02 g H$ H2 O v , 38° C = = 46.33 kJ mol kg 10 3 g mol 25345 . kJ 1 kg 18.02 g H$ H2 O v , 18° C = = 45.67 kJ mol Table B.5 kg 10 3 g mol 75.5 kJ 1 kg 18.02 g H$ H2 O l , 18° C = = 136 . kJ mol kg 10 3 g mol Energy balance: ∆ E& , W& = 0, ∆E& ≅0 p s gd ib g +b0.0204gd21.4 × 10 ib45.67g + d0.98 × 10 ib136 . g − b1 − 0.0634gd22.4 × 10 ib0.3783g −b0.0634gd22.4 × 10 ib46.33g = −5.67 × 10 kJ min Q& = ∆H& = k ∑ n& H$ − ∑ n& H$ i i i out i b ⇒ Q& = 1 − 0.0204 21.4 × 10 3 −0.204 in 3 3 3 3 4 4 ⇒ 5.67 × 10 kJ 60 min 0.9486 Btu 1 ton cooling = 270 tons of cooling min h kJ 12000 Btu 7-21 http://librosysolucionarios.net 7.42 Basis: 100 mol feed n2 (mol), 63.0°C 0.98 A(v ) 0.02 B(v ) A - Acetone B - Acetic Acid Qc (cal) 0.5n 2 (mol) 0.98 A(l ) 0.02 B(l ) 100 mol, 67.5°C 0.65 A(l ) 0.35 B(l ) 56.8°C n 5 (mol), 98.7°C 0.544 A(v ) 0.456 B(v ) 0.5n 2 (mol) 0.98 A(l ) 0.02 B(l ) n5 (mol), 98.7°C 0.155 A(l ) 0.845 B(l ) Qr (cal) (a) Overall balances: Total moles: 100 = 0.5n 2 + n 5 n 2 = 120 mol A: 0.65 100 = 0.98 0.5n 2 + 0.155n 5 n 5 = 40 mol b g b g b g b g 0.155b40g = 6.2 mol A 0.845b40g = 33.8 mol B Product flow rates: Overhead Bottoms UV W 0.5 120 0.98 = 58.8 mol A 0.5 120 0.02 = 1.2 mol B Overall energy balance: Q = ∆H = ∆ E , W =0 , ∆E ≅ 0 p 2 ∑ n H$ − ∑ n H$ i out x i i i in interpolate in table interpolate in table ↓ ↓ ⇒ Q = 58.8 (0 ) + 1.2 ( 0 ) + 6.2 (1385 ) + 33.8 (1312 ) − 65 ( 354 ) − 35 ( 335 ) = 1.82 × 10 4 cal b g 2b12 . g = 2 .4 mols B (b) Flow through condenser: 2 58.8 = 117.6 mols A Energy balance on condenser: Q c = ∆H ∆E , W = 0 , ∆E ≅ 0 p b 3 k g b g Qc = 117 .6 0 − 7322 + 2.4 0 − 6807 = −8.77 × 10 5 cal heat removed from condenser Assume negligible heat transfer between system & surroundings other than Q c & Q r ( ) Qr = Q −Qc = 1.82× 10 4 − −8.77 ×10 5 = 8.95 × 105 cal heat added to reboiler 7.43 1.96 kg, P1= 10.0 bar, T1 2.96 kg, P 3= 7.0 bar, T3=250o C 1.00 kg, P2= 7.0 bar, T2 Q= 0 7-22 http://librosysolucionarios.net 7.43 (cont’d) (a) T2 = T ( P = 7.0 bar, sat'd steam) = 165.0 o C H$ 3 ( H 2 O(v), P = 7.0 bar, T = 250 o C) = 2954 kJ kg (Table B.7) H$ (H O( v), P = 7.0 bar, sat'd) = 2760 kJ kg ( Table B.6) 2 2 Energy balance ∆E , Q, W , ∆E ≅0 p s k ∆H = 0 = 2.96 H$ 3 − 196 . H$ 1 − 1.0 H$ 2 ⇒ 1.96 H$ 1 = 2 .96 kg(2954 kJ / kg) -1.0 kg(2760 kJ / kg) ⇒ H$ (10.0 bar, T ) = 3053 kJ / kg ⇒ T ≅ 300 o C 1 1 1 (b) The estimate is too low. If heat is being lost the entering steam temperature would have to be higher for the exiting steam to be at the given temperature. 7.44 T1 = T ( P = 3.0 bar, sat' d. ) = 133.5o C (a) Vapor V$l ( P = 3.0 bar, sat' d. ) = 0.001074 m3 / kg V$ ( P = 3.0 bar, sat'd.) = 0.606 m 3 / kg P=3 bar v Liquid 0.001074 m 3 1000 L 165 kg Vl = = 177.2 L kg m3 Vspace = 200.0 L -177.2 L = 22.8 L mv = 22.8 L m=165.0 kg V=200.0 L Pmax=20 bar 1 m3 1 kg = 0.0376 kg 1000 L 0.606 m 3 (b) P = Pmax = 20.0 bar; m total = 165.0 + 0.0376 = 165.04 kg T1 = T ( P = 20.0 bar, sat'd.) = 212.4o C V$l ( P = 20.0 bar, sat' d.) = 0.001177 m3 / kg; V$v ( P = 20.0 bar, sat'd.) = 0.0995 m3 / kg V = m V$ + m V$ ⇒ m V$ + (m − m )V$ total l l v v l l total l v 1 m 3 = m kg (0.001177 m 3 / kg) + (165.04 - m ) kg (0.0995 m 3 / kg) l l 1000 L ⇒ ml = 164.98 kg; mv = 0.06 kg ⇒ 200.0 L Vl = 0.001177 m 3 kg m evaporated = 1000 L 164.98 kg = 194.2 L; m3 V space = 200.0 L - 194.2 L = 5.8 L ( 0.06 - 0.04) kg 1000 g = 20 g kg (c) Energy balance Q = ∆U = U ( P = 20.0 bar, sat'd) − U ( P = 3.0 bar, sat'd) ∆E , W , ∆E ≅ 0 p s k U$ l ( P = 20.0 bar, sat'd.) = 906.2 kJ / kg; U$ v ( P = 20.0 bar, sat'd. ) = 2598.2 kJ / kg U$ ( P = 3.0 bar, sat'd. ) = 561.1 kJ / kg; U$ ( P = 3.0 bar, sat'd.) = 2543 kJ / kg l v Q = 0.06 kg(2598.2 kJ / kg) + 164.98 kg(906.2 kJ / kg) - 0.04 kg(2543 kJ / kg) − 165.0 kg (561.1 kJ / kg) = 5.70 × 10 4 kJ Heat lost to the surroundings, energy needed to heat the walls of the tank 7-23 http://librosysolucionarios.net 7.44 (cont’d) (d) (i) The specific volume of liquid increases with the temperature, hence the same mass of liquid water will occupy more space; (ii) some liquid water vaporizes, and the lower density of vapor leads to a pressure increase; (iii) the head space is smaller as a result of the changes mentioned above. (e) – Using an automatic control system that interrupts the heating at a set value of pressure – A safety valve for pressure overload. – Never leaving a tank under pressure unattended during operations that involve temperature and pressure changes. 7.45 Basis: 1 kg wet steam (a) 1 kg H2 O 20 bars 0.97 kg H2 O(v) 0.03 kg H2 O(l) H$ 1 (kJ/kg) 1 kg H 2 O,(v) 1 atm H$ 2 (kJ/kg) Q=0 b b 1 kg H2 O Tamb , 1 atm U|b V| W g g Q Enthalpies: H$ v , 20 bars, sat'd = 2797 .2 kJ kg Table B.7 H$ l , 20 bars, sat' d = 908.6 kJ kg Energy balance on condenser: ∆H = 0 ⇒ H$ 2 = H$ 1 = 0.97 2797.2 + 0.03 9086 . g b ∆E , ∆E , Q, W =0 p K g b g 3 ⇒ H$ 2 = 2740 kJ / kg Table B.7 T ≈ 132o C (b) As the steam (which is transparent) moves away from the trap, it cools. When it reaches its saturation temperature at 1 atm, it begins to condense, so that T = 100° C . The white plume is a mist formed by liquid droplets. 7.46 Basis: bg 8 oz H 2O l 1 m3 1 quart 1000 kg 32 oz 1057 quarts m3 (For simplicity, we assume the beverage is water) 0.2365 kg H 2O (l) 18°C m (kg H 2O (s)) 32°F (0°C) bg = 0.2365 kg H 2O l (m + 0.2365) (kg H 2O (l)) 4°C Assume P = 1 atm Internal energies (from Table B.5): b g b g b g U$ H 2 O(l ), 18° C = 755 . kJ / kg; U$ H 2 O(l ), 4° C = 16.8 kJ / kg; U$ H 2 O(s), 0° C = -348 kJ / kg b g Energy balance closed system : ⇒ ∆U = ∆E p , ∆E k , Q , W = 0 ∑ n U$ − ∑ n U$ i out i i i =0 in ⇒ (m + 0.2365) kg (16.8 kJ / kg) = 0.2365 kg(75.5 kJ / kg) + m kg (-348 kJ / kg) ⇒ m = 0.038 kg = 38 g ice 7-24 http://librosysolucionarios.net 7.47 (a) When T = 0 o C, H$ = 0, ⇒ Tref = 0 o C (b) Energy Balance-Closed System: ∆U = 0 ∆E , ∆E , Q, W = 0 k p 25 g Fe, 175°C 25 g Fe 1000 g H 2O T f (°C) 1000 g H 2O(l) 20°C d i b d i g b g U Fe T f + U H2 O T f − U Fe 175° C − U H 2 O 20° C, 1 atm = 0 or ∆U Fe + ∆U H2 O = 0 ∆U Fe = d i 25.0 g 4.13 T f − 175 cal 4.184 J = 432 Tf − 175 J g cal e d i j 1.0 L 10 3 g U$ H2 O T f − 83.9 J = 1000 U$ H 2 O T f − 83.9 J 1 L g 5 ⇒ 432T f + 1000U$ H 2 O T f − 1.60 × 10 = f T f = 0 Table B.5 ⇒ ∆U H 2O = d i ⇒ Tf ° C 30 f Tf −2.1 × 10 d i d i j d i 40 4 e +2 .5 × 10 35 4 34 1670 −2612 7-25 http://librosysolucionarios.net Interpolate T f = 34.6° C 7.48 I II H 2 O( v) 760 mm Hg 100°C H 2 O( v) (760 + 50.1) mm Hg Tf ⇒ H 2 O( l), 100 °C ⇒ 1.08 bar sat'd ⇒ Tf = 101.8°C (Table 8.5) H 2 O( l), Tf T0 Tf Energy balance - closed system: ∆E p , ∆ E K , W , Q = 0 ∆U = 0 = mvIIU$ vII + mlIIU$ lII + mbII U$ bII b I 1.01 bar, 100° C 1.044 b g b g b g b g V$l L kg V$v L kg U$ l L kg U$ v L kg − mvI U$ vI − mlIU$ lI − mbI U$ bI v-vapor l -liquid b-block g II b1.08 bar, 101.8° Cg 1046 . 1673 419.0 2506.5 1576 426.6 2508.6 Initial vapor volume: VvI = 20.0 L − 5.0 L − b 50 kg g 1L 8.92 kg bg = 14.4 L H 2 O v bg Initial vapor mass: mvI = 14.4 L 1673 L kg = 8.61 × 10 −3 kg H 2 O v b g = 0.36b101.8g = 36.6 kJ kg bg Initial liquid mass: mlI = 5.0 L 1.044 L kg = 4.79 kg H 2 O l Final energy of bar: U$ bII Assume negligible change in volume & liquid ⇒ VvII = 14.4 L b g bg g b g b Final vapor mass: mvII = 14.4 L 1576 L kg = 9.14 × 10 − 3 kg H 2 O v Initial energy of the bar: U$ bI = d b g b g b gi 1 9.14 × 10 −3 2508.6 + 4.79 426.6 + 50 . 36.6 − 8.61 × 10 −3 25065 . − 4.79 419.0 5.0 kg = 44.1 kJ kg 44.1 kJ / kg (a) Oven Temperature: To = = 122 .5° C 0.36 kJ / kg ⋅o C H 2 O evaporated = mvII − mvI = 9.14 × 10 −3 kg - 8.61 × 10 −3 kg = 5.30 × 10 −4 kg = 0.53 g (b) U$ bI = 44 .1 + 8.3 5.0 = 458 . kJ kg To = 45.8 0.36 = 127.2° C (c) Meshuggeneh forgot to turn the oven on ( To < 100° C ) 7-26 http://librosysolucionarios.net 7.49 (a) Pressure in cylinder = P= 30.0 kg weight of piston + atmospheri c pressure area of piston b100 cmg 1 bmg 9.807 N 400.0 cm 2 2 2 kg 2 10 . bar 10 5 N m 2 + 1 atm 1.013 bar atm = 108 . bar ⇒ Tsat = 1018 . °C Heat required to bring the water and block to the boiling point d b g b gi d b g b Q = ∆U = mw U$ wl 1.08 bar, sat'd − U$ wl l , 20° C + mAl U$ Al Tsat − U$ Al 20° C b426.6 − 83.9gkJ + 3.0 kg gi [0.94 (1018 . − 20) ]kJ = 2630 kJ kg kg 2630 kJ < 3310 kJ ⇒ Sufficient heat for vaporization = 7.0 kg V$ = 1046 . L kg , U$ l = 426.6 kJ kg (b) T f = Tsat = 1018 . ° C . Table B.5 ⇒ $ l Vv = 1576 L kg , U$ v = 2508.6 kJ kg 7.0 kg H 2O(l ) H$ = 426.6 kJ / kg V $ = 1.046 L / kg mv (kg H2 O( v )) 1576 L/kg, 2508.6 kJ/kg T ≡ 101.8°C P ≡ 1.08 bars Q (kJ) 1.046 L/kg, 426.6 kJ/kg m l (kg H 2 O( l)) W (kJ) (Since the Al block stays at the same temperature in this stage of the process, we can ignore it -i.e., U$ in = U$ out ) Water balance: 7.0 = m l + mv (1) Work done by the piston: W = F ∆ z = w piston + Patm A ∆ z = LM w + P OPb A∆ z g = P∆V ⇒ W = b108 . bar g 1576m + 1046 . m − b1.046gb 7.0g L NA Q 8.314 J / mol ⋅ K 1 kJ × = b170.2m + 0.113m − 0.7908gkJ 0.08314 liter - bar / mol ⋅ K 10 J atm v l v 3 l Energy balance: ∆U = Q − W Q ∆U444448 W 6444447 6447 44 8 6444447 444448 ⇒ 25086 . mv + 426.6mL − 426.6 7 = ( 3310 − 2630 ) − (1702 . mv + 0113 . mL − 0.7908) ⇒ 2679mv + 4267 . mL − 3667 = 0 (2) Solving (1) and (2) simultaneously yields m v = 0.302 kg , m l = 6.698 kg bg b gb g Vapor volume = b0.302 kg gb1576 L kgg = 476 L vapor . gL ∆V 7.01 + 476 − b7.0gb1046 Piston displacement: ∆z = = Liquid volume = 6.698 kg 1.046 L kg = 7.01 L liquid 10 3 cm 3 1 = 1190 cm 1 L 400 cm 2 ⇒ All 3310 kJ go into the block before a measurable amount is transferred to the A (c) Tupper b g b g water. Then ∆U AL = Q ⇒ 3.0 kg 0.94 Tu − 20 kJ kg = 3310 ⇒ Tu = 1194° C if melting is neglected. In fact, the bar would melt at 660o C. 7-27 http://librosysolucionarios.net 7.50 1.00 L H 2 O( v ), 25 o C not all the liquid UV Assume is vaporized. Eq. at W T , P . m = kg H O vaporized. m v2 [kg H2 O( v)] = m v1 + me m v1 (kg) f o f e 2 m L2 [kg H 2O( l) ] = m L1 + m e 4.00 L H 2 O(l ), 25 C m L1 (kg) Q=2915 kJ Initial conditions: Table B.5 ⇒ U$ L1 = 104.8 kJ kg , V$L1 = 1.003 L kg P = 0.0317 bar T = 25° C, sat' d ⇒ U$ = 2409.9 kJ kg , V$ = 43,400 L kg b m v1 = 1.00 l v1 −5 g b 43400 l kgg = 2.304 × 10 L1 b kg , m LI = 4.00 l g b1.003 l kgg = 3.988 kg Energy balance: d i d i b g d i d ib ∆U = Q ⇒ 2.304 × 10 −5 + me U$ v T f + 3.988 − me U$ L T f − 2.304 × 10 −5 2409.9 b g − 3.988 (1048 . ) = 2915 kJ d g d i i dEi b 3333 − d2.304 × 10 iU$ − 3.988U$ = ⇒ 2.304 × 10 −5 + me U$ v T f + 3.988 − me U$ v T f = 3333 −5 ⇒ me F GG H U$ v − U$ L v L I J d i b A JK A 5.00 − d2.304 × 10 iV$ − 3.988V$ = (1) g d i V L + Vv = Vtan k ⇒ 2.304 × 10 −5 + m e V$L T f + 3.988 − me V$L T f = 5.00 L kg liters kg −5 ⇒ me b1g − b2g ⇒ f d T i = v b 2g L V$v − V$L 3333 − 2.304 × 10 −5 U$ v T f − 3.988U$ L T f d i d i f d U$ v − U$ L d i i 5.00 − 2.304 × 10 −5 V$v − 3.988V$L − =0 V$ − V$ v L d i Find T ⇒ U$ v , U$ L , V$v , V$L ⇒ f T f Table 8.5 Procedure: Assume T f Tf U$ v U$ L 201.4 25938 . 856.7 198.3 2592.4 842.9 195.0 2590.8 828.5 196.4 25915 . 834 .6 bg Eq 1 bg V$v 123.7 1317 . 140.7 136.9 f d i such that f T f = 0 V$L f 1159 . − 512 . × 10 −2 1154 . −193 . × 10 −2 1149 . 134 . × 10 −2 1151 . −4.03 × 10 − 4 ⇒ T f ≅ 196.4° C, Pf = 14.4 bars me = 2.6 × 10 −3 kg ⇒ 2.6 g evaporated or Eq 2 7-28 http://librosysolucionarios.net g 7.51. Basis: 1 mol feed B = benzene T = toluene nV (mol vapor) y B(mol B(v)/mol) (1 – y B ) (mol T(v)/mol) 1 mol @ 130°C z B (mol B(l)/mol) (1 – z B )(mol T(l)/mol) (a) in equilibrium at T(°C), P(mm Hg) nL (mol liquid) x B(mol B(l)/mol) (1 – x B ) (mol T(l)/mol) 7 variables: ( nV , y B , n L , x B , Q , T , P) –2 equilibrium equations –2 material balances –1 energy balance 2 degrees of freedom. If T and P are fixed, we can calculate nV , y B , n L , x B , and Q. (b) Mass balance: nV + n L = 1 ⇒ nV = 1 − n 2 Benzene balance: z B = nV y B + n L x B (1) (2) bg d i d i C H bv g: dT = 80, H$ = 41.61i , dT = 120, H$ = 45.79 i ⇒ H$ = 01045 . T + 33.25 C H bl g: dT = 0, H$ = 0i , dT = 111, H$ = 18.58i ⇒ H$ = 0.1674 T C H bv g: dT = 89 , H$ = 49.18 i , dT = 111, H$ = 52 .05i ⇒ H$ = 0.1304T + 37 .57 C 6 H 6 l : T = 0, H$ = 0 , T = 80, H$ = 10.85 ⇒ H$ BL = 0.1356 T 6 6 7 8 7 8 BV TL TV Energy balance: ∆E p , Ws = 0, neglect ∆E k Q = ∆H = nV y B H$ BV + nV 1 − y B H$ TV + n L x B H$ BL + n L 1 − x B H$ TL − 1 z B H$ BL TF − 1 1 − zB H$ TL TF b gb Raoult's Law: b g g b g b g bg b g y B P = x B p *B p *B (90o C) = 10[6.89272−1203.531/(90+ 219.888)] = 1021 mmHg pT* (90 o C) = 10[6.95805−1346.773/(90+219.693)] = 406.7 mmHg Adding equations (8) and (9) ⇒ yB = P − p*T p *B − x B p *B P (4) (5) (6) (7) (8) (1 - y B ) P = (1 − x B ) pT* Antoine Equation. For T= 90°C and P=652 mmHg: P = x B p *B + (1 − x B ) pT* ⇒ x B = (3) pT* = = P − p*T p *B − pT* = 652 − 4067 . = 0.399 mol B(l) / mol 1021 - 406.7 0.399(1021 mmHg) = 0.625 mol B(v ) / mol 652 mmHg z B − xB 0.5 − 0.399 = = 0.446 mol vapor y B − x B 0.625 − 0.399 n L = 1 − nV = 1 − 0.446 = 0.554 mol liquid Solving (1) and (2) ⇒ nV = 7-29 http://librosysolucionarios.net (9) 7.51 (cont’d) Substituting (3), (4), (5), and (6) in (7) ⇒ Q = 0.446(0.625)[ 01045 . (90) + 33.25] + 0.446(1 − 0.625)[0.1304( 90) + 37.57 ] + 0.554 (0.399 )[0.1356(90)] + 0.554 (1 − 0.399 )[0.1674( 90)] − 0.5[0.1356(130)] − 0.5[0.1674 (130)] ⇒ Q = 8.14 kJ / mol (c). If P<P min, all the output is vapor. If P>P max, all the output is liquid. (d) At P=652 mmHg it is necessary to add heat to achieve the equilibrium and at P=714 mmHg, it is necessary to release heat to achieve the equilibrium. The higher the pressure, there is more liquid than vapor, and the liquid has a lower enthalpy than the equilibrium vapor: enthalpy out < enthalpy in. zB 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 T 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 P 652 714 582 590 600 610 620 630 640 650 660 670 680 690 700 710 pB 1021 1021 1021 1021 1021 1021 1021 1021 1021 1021 1021 1021 1021 1021 1021 1021 pT 406.7 406.7 406.7 406.7 406.7 406.7 406.7 406.7 406.7 406.7 406.7 406.7 406.7 406.7 406.7 406.7 xB 0.399 0.500 0.285 0.298 0.315 0.331 0.347 0.364 0.380 0.396 0.412 0.429 0.445 0.461 0.477 0.494 yB 0.625 0.715 0.500 0.516 0.535 0.554 0.572 0.589 0.606 0.622 0.638 0.653 0.668 0.682 0.696 0.710 nV 0.446 -0.001 0.998 0.925 0.840 0.758 0.680 0.605 0.532 0.460 0.389 0.318 0.247 0.176 0.103 0.029 (e). Pmax = 714 mmHg, Pmin = 582 mmHg nV vs. P 1 nV 0.8 0.6 0.4 0.2 0 582 632 682 732 P (mm Hg) nV = 0.5 @ P ≅ 640 mmHg 7-30 http://librosysolucionarios.net nL 0.554 1.001 0.002 0.075 0.160 0.242 0.320 0.395 0.468 0.540 0.611 0.682 0.753 0.824 0.897 0.971 Q 8.14 -6.09 26.20 23.8 21.0 18.3 15.8 13.3 10.9 8.60 6.31 4.04 1.78 -0.50 -2.80 -5.14 ∆P ∆u 2 + + g∆z = 0 ρ 2 7.52 (a). Bernoulli equation: d i ∆P 0.977 × 10 −5 − 1.5 × 10 5 Pa 1 N / m 2 = ρ Pa bg m3 1.12 × 10 3 kg = −46.7 m2 s2 g∆z = (9.8066 m / s2 ) 6 m = 58.8 m 2 / s 2 Bernoulli ⇒ ∆u = 46.7 − 58.8 m 2 / s2 ⇒ u 22 = u12 + 2 −12.1 m 2 / s2 2 2 b g b g d i 2 = 5.00 m 2 / s2 − (2)(12.1) m 2 / s2 = 0.800 m 2 / s 2 ⇒ u 2 = 0.894 m / s d i (b). Since the fluid is incompressible, V& m 3 s = π d 12 u1 4 = π d 22 u 2 4 b g ⇒ d1 = d 2 u2 = 6 cm u1 0.894 m s = 2 .54 cm 5.00 m s d d i b g d i b g i A 7.53 (a). V& m 3 s = A1 m 2 u 1 m s = A2 m 2 u 2 m s ⇒ u 2 = u1 1 A2 (b). Bernoulli equation ( ∆z = 0) d ρ u 22 − u 12 ∆ P ∆u 2 + = 0 ⇒ ∆ P = P2 − P1 = − ρ 2 2 A1 =4 A2 u2 = 4u 1 i Multiply both sides by − 1 Substitute u 2 = 16u1 2 2 2 Multiply top and bottom of right - hand side by A1 note V& 2 = A12 u12 P1 − P2 = d i (c) P1 − P2 = ρ Hg − ρ H2 O gh = b g 15ρ H 2 OV& 2 2 A12 ⇒ V& 2 = F GH I JK 2 A12 gh ρ Hg −1 15 ρ H 2O 2 2 π 7.5 cm4 1 m4 V& 2 = 15 108 cm 4 ⇒ V& = 0.044 m 3 s = 44 L s 2 15ρV& 2 2 A12 9.8066 m 38 cm 1m s2 102 cm 7-31 http://librosysolucionarios.net b13.6 − 1g = 1955 . × 10 −3 m6 s2 b g 7.54 (a). Point 1- surface of fluid . P1 = 31 . bar , z1 = +7 m , u1 = 0 m s b g Point 2 - discharge pipe outlet . P2 = 1 atm , z2 = 0 m , u 2 = ? b b =1.013 bar g g ∆ρ 1.013 − 3.1 bar = ρ g∆z = 9.8066 m s2 10 5 N 1 m3 = −263.5 m 2 s 2 m 2 ⋅ bar 0.792 × 10 3 kg −7 m Bernoulli equation ⇒ = −68.6 m 2 s2 ∆u 2 ∆P =− − g ∆z = 263.5 + 68.6 m 2 s2 = 332.1 m 2 s 2 2 ρ b g ∆u 2 = u 22 − 0 2 u 22 = 2 (332.1 m 2 s2 ) = 664.2 m 2 s 2 ⇒ u2 = 25.8 m / s π (1.00 2 ) cm 2 V& = 4 2580 cm 1 L 60 s = 122 L / min 3 3 1 s 10 cm 1 min (b) The friction loss term of Eq. (7.7-2), which was dropped to derive the Bernoulli equation, becomes increasingly significant as the valve is closed. 7.55 Point 1- surface of lake . P1 = 1 atm , z1 = 0 , u1 = 0 bg Point 2 - pipe outlet . P2 = 1 atm , z2 = z ft u2 = V& 95 gal = A min 1 ft 3 1 144 in 2 1 min = 35.3 ft s 2 7.4805 gal π 0.5 × 1.049 in 2 1 ft 2 60 s b bP = P g F = 0.041b2 zg ft ⋅ lb lb Pressure drop: ∆ P ρ = 0 Friction loss: FG L = Z = 2zIJ H sin 30° K Shaft work: 1 g 2 f m = 0.0822 z (ft ⋅ lb f lb m ) W& s -8 hp 0.7376 ft ⋅ lb f / s = m& 1.341 × 10 − 3 hp 1 min 7.4805 gal 1 ft 3 95 gal 1 ft 3 60 s 62.4 lb m 1 min = −333 ft ⋅ lb f lb m Kinetic energy: ∆ u 2 b35.3g 2= 2 2 Potential energy: g ∆z = b g Eq. 7.7 - 2 ⇒ 32.174 ft s2 − 0 2 ft 2 s 2 bg z ft 1 lb f 32.174 lb m ⋅ ft / s2 = 19.4 ft ⋅ lb f lb m b 1 lb f = z ft ⋅ lb f lb m 32.174 lb m ⋅ ft / s 2 g ∆P ∆u 2 −W& s + + g∆z + F = ⇒ 19.4 + z + 0.082 z = 333 ⇒ z = 290 ft & ρ 2 m 7-32 http://librosysolucionarios.net 7.56 Point 1 - surface of reservoir . P1 = 1 atm (assume), u1 = 0 , z1 = 60 m Point 2 - discharge pipe outlet . P2 = 1 atm (assume), u 2 = ? , z2 = 0 ∆P ρ = 0 d h V& A ∆u 2 u22 = = 2 2 2 2 = V& 2 (m6 / s2 ) = 3.376V& 2 g∆z = b g b N ⋅ m kgg π 35 (2) 1 2 2 cm 4 10 8 cm 4 1 N 1 m4 1 kg ⋅ m / s2 9.8066 m −65 m 1N = −637 N ⋅ m kg 2 s 1 kg ⋅ m / s2 s W&s 0.80 × 10 6 W 1 N ⋅ m / s = & W V m3 m & b g 1 m3 = 800 V& N ⋅ m kg 1000 kg d i Mechanical energy balance: neglect F bEq. 7.7 - 2g ∆P ∆u 2 −W&s 800 T + E 127 . m 3 60 s + + g ∆z = ⇒ 3.376V& 2 − 637 = − & ⇒ V& = = 76.2 m 3 min & ρ 2 m V s 1 min Include friction (add F > 0 to left side of equation) ⇒ V& increases. b g 7.57 (a). Point 1: Surface at fluid in storage tank, P1 = 1 atm , u1 = 0 , z1 = H m Point 2 (just within pipe): Entrance to washing machine. P2 = 1 atm , z2 = 0 u2 = 600 L min π 4.0 cm b ∆u 2 u22 ∆P =0; = 2 2 ρ g∆z = 9.807 m s 10 3 cm 3 1 min 1m = 7.96 m s 4 1 L 60 s 100 cm g 7.96 m sg =b 2 2 2 c0 − Hb mgh 2 Bernoulli Equation: 1 J = 31.7 J / kg 1 kg ⋅ m 2 / s2 1 J 1 kg ⋅ m / s2 2 = −9 .807H (J / kg) ∆P ∆u 2 + + g ∆z = 0 ⇒ H = 3.23 m ρ 2 (b). Point 1: Fluid in washing machine. P1 = 1 atm , u1 ≈ 0 , z1 = 0 Point 2: Entrance to storage tank (within pipe). P2 = 1 atm , u 2 = 7.96 m s , z2 = 3.23 m ∆u 2 J J J ∆P =0; = 31.7 ; g∆z = 9.807 3.23 − 0 = 31.7 ; F = 72 2 kg kg kg ρ b g LM N ∆P ∆u 2 Mechanical energy balance: W& s = −m& + + g∆z + F ρ 2 600 L 0.96 kg 1 min ⇒ W&s = − min L 60 s b31.7 + 31.7 + 72g J OP Q 1 kW = −1.30 kW kg 10 3 J s (work applied to the system) Rated Power = 1.30 kW 0.75 = 1.7 kW 7-33 http://librosysolucionarios.net 7.58 Basis: 1000 liters of 95% solution . Assume volume additivity. x i 0.95 0.05 1 l Density of 95% solution: = = + = 0.804 ⇒ ρ = 1.24 kg liter ρ ρ i 1.26 1.00 kg b Eq. 6.1-1g ∑ 1 0.35 0.65 l = + = 0.9278 ⇒ ρ = 1.08 kg liter ρ 126 . 100 . kg 1000 liters 1.24 kg Mass of 95% solution: = 1240 kg liter Density of 35% solution: G = glycerol W = water 1240 kg (1000 L) 0.95 G 0.05 W m 2 (kg) 0.60 G 0.40 W 23 m m1 (kg) 0.35 G 0.65 W 5 cm I.D. UV ⇒ m = 1740 kg 35% solution b gb g b gb g b gb gW m = 2980 kg 60% solution Mass balance: 1240 + m1 = m2 Glycerol balance: 0.95 1240 + 0.35 m1 = 0.60 m2 Volume of 35% solution added = 1740 kg b 1 2 1L = 1610 L 1.08 kg g ⇒ Final solution volume = 1000 + 1610 L = 2610 L Point 1. Surface of fluid in 35% solution storage tank. P1 = 1 atm , u1 = 0 , z1 = 0 Point 2. Exit from discharge pipe. P2 = 1 atm , z2 = 23 m u2 = 1610 L 13 min 1 m3 1 min 1 2 3 10 L 60 s π 2.5 cm 2 b g 10 4 cm 2 = 1.051 m s 1 m2 b g ∆u 2 ∆u 22 1.051 2 m 2 / s 2 1 N ∆P ρ =0, = = = 0.552 N ⋅ m kg 2 2 (2) 1 kg ⋅ m / s 2 g∆z = 9.8066 m s2 Mass flow rate: m& = 23 m 1N = 225.6 N ⋅ m kg , F = 50 J kg = 50 N ⋅ m kg 1 kg ⋅ m / s 2 1740 kg 1 min = 2.23 kg s 13 min 60 s b Mechanical energy balance Eq. 7.7 - 2 LM N g OP Q 2 .23 kg ∆P ∆u 2 W& s = −m& + + g∆z + F = − ρ 2 s b0.552 + 225.6 + 50gN ⋅ m kg = −0.62 kW ⇒ 0.62 kW delivered to fluid by pump. 7-34 http://librosysolucionarios.net 1J 1 kW 1 N ⋅ m 10 3 J s CHAPTER EIGHT 8.1 a. U$ ( T ) = 25.96T + 0.02134 T 2 J / mol U$ ( 0o C) = 0 J / mol U$ (100 o C) = 2809 J / mol b. We can never know the true internal energy. U$ (100 o C) is just the change from U$ ( 0 o C) to U$ (100 o C) . c. Q − W = ∆U + ∆E k + ∆E p $ o C) = 0) Tref = 0o C (since U(0 ∆E k = 0, ∆E p = 0, W = 0 Q = ∆ U = ( 30 . mol )[( 2809 − 0) J / mol] = 8428 J ⇒ 8400 J d. Cv = F ∂U$ I GH ∂T JK ∆U$ = z V$ = dU$ = [ 25.96 + 004268 . T ] J / (mol⋅ o C) dT T2 z F GG H 100 Cv (T ) dT = T1 (2596 . + 0.04268T ) dT = 2596 . T + 004268 . 0 ∆U = ( 30 . mol) ⋅ ∆U$ ( J / mol) T2 2 OP PQ 100 0 I JJ J / mol K = ( 30 . mol) ⋅ [2596 . (100 − 0) + 0.02134(1002 − 0)] (J / mol) = 8428 J ⇒ 8400 J 8.2 a. b g b gb Cv = C p − R ⇒ Cv = 353 . + 0.0291T [ J / (mol⋅° C)] − 8.314 [J / (mol ⋅ K)] 1 K 1° C g ⇒ C v = 27 .0 + 0.0291T [ J / (mol⋅° C)] 100 b. ∆Hˆ = ∫ C p dT = 35.3T ]25 + 0.0291 z Cv dT = 100 25 c. ∆U$ = 100 25 d. 8.3 a. z 100 z 100 C p dT − 25 100 T2 = 2784 J mol 2 25 b gb g RdT = ∆H$ − R∆T = 2784 − 8.314 100 − 25 = 2160 J mol 25 H$ is a state property C v [ kJ / (mol ⋅ o C) ] = 0.0252 + 1547 . × 10 −5 T − 3012 . × 10 −9 T 2 PV ( 2.00 atm)( 3.00 L ) n= = = 0245 . mol RT ( 0.08206[ atm⋅ L / (mol ⋅ K) ]( 298 K) Q1 = n∆U$ 1 = ( 0.245 mol) ⋅ Q2 = n∆U$ 2 = ( 0.245) ⋅ Q3 = n∆U$ 3 = ( 0245 . )⋅ z z z 1000 00252 . dT ( kJ / mol) = 6.02 kJ 25 1000 [ 0.0252 + 1547 . × 10 −5 T ] dT = 7.91 kJ 25 1000 [ 0.0252 + 1547 . × 10 −5 T − 3012 . × 10 −9 T 2 ] dT = 7.67 kJ 25 6.02- 7.67 × 100% = −215% . 7.67 7.91- 7.67 % error in Q2 = × 100% = 313% . 7.67 % error in Q1 = 8- 1 http://librosysolucionarios.net 8.3 (cont’d) b. C p = Cv + R C p [ kJ / (mol⋅ o C)] = ( 0.0252 + 1547 . × 10 −5 T − 3012 . × 10 −9 T 2 ) + 0.008314 = 0.0335 + 1547 . × 10 −5 T − 3.012 × 10 −9 T 2 z T2 Q = ∆ H = n C P dT T1 z 1000 = ( 0.245 mol) ⋅ [ 0.0335 + 1547 . × 10 −5 T − 3012 . × 10 −9 T 2 ] dT [kJ / (mol⋅ o C)] = 9.65 × 10 3 J 25 Piston moves upward (gas expands). c. 8.4 a. b. The difference is the work done on the piston by the gas in the constant pressure process. b g b313 K g = 0.06255 + 23.4 × 10 . [kJ / (mol ⋅ K)] b313g = 01360 b g b40° Cg = 0.07406 + 32.95 × 10 b40g − 25.20 × 10 b40g + 77.57 × 10 b40g dC i dC i −5 p C H l 6 6 −5 p C H v 6 6 −8 − 12 2 3 = 0.08684 [kJ / (mol⋅ o C)] c. . + 1095 . × 10 b313g − 4.891 × 10 b 313 g dC i b g b313 Kg = 001118 d. ∆H$ C H −5 6 e. 8.5 2 p C s 6 b vg = 0.07406T + ∆H$ C b sg = 0.01118 T + −2 = 0.009615 [ kJ / (mol ⋅ K)] 32.95 × 10 −5 2 25.20 × 10−8 3 77.57 × 10−12 4 T − T + T 2 3 4 1.095 × 10− 5 2 T + 4.891 × 10 2 T −1 2 OP PQ OP PQ 300 = 31.71 kJ mol 40 573 = 3.459 kJ / mol 313 H 2 O (v, 100 o C, 1 atm) → H 2 O (v, 350 o C, 100 bar) a. H$ = 2926 kJ kg − 2676 kJ kg = 250 kJ kg b. H$ = z 350 003346 . + 06886 . × 10 −5 T + 0.7604 × 10− 8 T 2 − 3593 . × 10 −12 T 3 dT 100 = 8845 . kJ mol ⇒ 491.4 kJ kg Difference results from assumption in (b) that H$ is independent of P. The numerical difference is ∆H$ for H 2 O v, 350 ° C, 1 atm → H 2 O v, 350° C, 100 bar b 8.6 b. g b g z 80 dC i = 02163 . kJ / (mol⋅ C) ⇒ ∆H$ = [ 0.2163 ] dT = 11.90 kJ / mol o p n− C H (l) 6 14 25 The specific enthalpy of liquid n-hexane at 80o C relative to liquid n-hexane at 25o C is 11.90 kJ/mol c. dC i p n− C H (v) [ kJ / 6 14 ∆H$ = z −5 −8 (mol⋅ C)] = 013744 . + 40.85 × 10 T − 2392 . × 10 T + 57.66 × 10 o 2 −12 T 3 0 [ 0.13744 + 40.85 × 10 −5 T − 23.92 × 10 −8 T 2 + 57.66 × 10− 12 T 3 ] dT = −110.7 kJ / mol 500 The specific enthalpy of hexane vapor at 500o C relative to hexane vapor at 0o C is 110.7 kJ/mol. The specific enthalpy of hexane vapor at 0o C relative to hexane vapor at 500o C is –110.7 kJ/mol. 8- 2 http://librosysolucionarios.net 8.7 b g 181. T ′b° Fg − 32 = 05556 . T ′ b° Fg − 17.78 C b cal mol⋅° Cg = 6.890 + 0.001436 0.5556 T ′ b° Fg − 17 .78 = 6.864 + 0.0007978 T ′b° Fg cal 453.6 mol 1 Btu 1° C C ′ b Btu lb - mole⋅° F g = C = b100 . gC mol ⋅° C 1 lb mole 252 cal 1.8 °F E T °C = p p p b g p drop primes b g C p Btu lb - mole⋅° F = 6.864 + 0.0007978T ° F 8.8 . − 01031 . b01588 g T = 01031 bT g = 01031 . + . + 0000557 . T [kJ / (mol⋅ 100 550 . L 789 g 1 mol F 0.000557 O Q = ∆H = 01031 . T+ T P G s 1 L 46.07 g H 2 Q3 144444244444 dC i p C H CH OH(l) 3 2 o C)] 78 .5 2 20 kJ mol = 941.9 × 7.636 kJ / s = 7193 kW 8.9 a. b g Q& = ∆ H& = 5,000 mol s ⋅ 6444444444444474444444444444 8 z k J mol 200 0.03360 + 1367 . × 10 −5 T − 1607 . × 10−8 T 2 + 6.473 × 10−12 T 3 dT 100 = 17,650 kW b. b gb gb Q = ∆ U = ∆H − ∆ PV = ∆H − nR∆T = 17,650 kJ − 5.0 kmol ⋅ 8.314 [kJ / (kmol ⋅ K)] ⋅ 100 K = 13,490 kJ c. 8.10 a. b. The difference is the flow work done on the gas in the continuous system. Qadditional = heat needed to raise temperature of vessel wall + heat that escapes from wall to surroundings. C p is a constant, i.e. C p is independent of T. Q m∆T Q (16.73- 6.14) kJ 1 L 86.17 g 10 3 J Cp = = = 0.223 kJ / (mol ⋅ K) m∆T (2.00 L)(3.10 K) 659 g 1 mol 1 kJ Q = mC p ∆ T ⇒ C p = Table B.2 ⇒ C p = 0.216 kJ / (mol⋅ o C) = 0.216 kJ / (mol ⋅ K) FG ∂H$ IJ = FG ∂U$ IJ H ∂T K H ∂T K F ∂U$ I = dU$ = F ∂U$ I But since U$ depends only on T, G H ∂T JK dT GH ∂T JK PV$ = RT 8.11 a∂ ∂T f H$ = U$ + PV$ =====> H$ = U$ + RT =====> P p p + R ⇒ Cp = p V$ FG ∂U$ IJ H ∂T K +R p ≡ Cv ⇒ C p = Cv + R 8- 3 http://librosysolucionarios.net g 8.12 a. dC i n= = 754 . kJ / (kmol ⋅ C) =75.4 kJ/(kmol.o C) V = 1230 L , o p H O(l) 2 Vρ 1230 L 1 kg 1 kmol = = 68.3 kmol M 1 L 18 kg zd T2 n⋅ Q Q& = = t b. i Cp H2 O(l) dT T` = t 683 . kmol 75.4 kJ ( 40 − 29) o C 1 h = 1967 . kW 8h 3600 s kmol⋅ o C Q& total = Q& to the surroundings + Q& to water , Q& to the surroundings = 1967 . kW z 40 Q& to water n ⋅ C P( H2 O) dT Q = to water = t = 29 t 68.3 kmol 754 . kJ / (kmol⋅ o C) 11 o C = 5245 . kW 3h 3600 s / h Q& total = 7.212 kW ⇒ E total = 7.212 kW × 3 h = 21.64 kW ⋅ h c. Cost heating up from 29 o C to 40 o C = 21.64 kW ⋅ h × $0.10 / (kW ⋅ h) = $2.16 Costkeeping temperature constant for 13 h = 1.967 kW × 13 h × $0.10/(kW ⋅ h)=$2.56 Costtotal = $2.16 + $2.56 = $4.72 d. If the lid is removed, more heat will be transferred into the surroundings and lost, resulting in higher cost. 8.13 a. ∆H$ N b. ∆H$ H o o 2 (25 C) → N 2 (700 C) 2 (800 c. ∆H$ CO d. ∆H$ O 8.14 a. o F)→ H 2 (77 o F) = H$ N = H$ H o o 2 (300 C)→ CO2 (1250 C) 2 (970 o = H$ O F) →O 2 (0o F) & = 300 kg / min n& = m Q& = n& ⋅ ∆H$ = n& ⋅ z T2 2 (700 2 (77 o o F) = H$ CO 2 (0 o F) C) − H$ N − H$ H 2 (1250 − H$ O o b g = b0 − 5021g = − 5021 Btu / lb - mol − H$ = b 63.06 − 1158 . g = 5148 . kJ mol = b −539 − 6774 g = −7313 Btu / lb- mol 2 (25 2 (800 C) o o C) = 2059 . − 0 = 2059 . kJ mol F) o C O2 (300 C) o 2 (970 F) 300 kg 1 min 1000 g 1 mol = 1785 . mol / s min 60 s 1 kg 28.01 g C p dT T1 z 50 = (178.5 mol / s) ⋅ b [0.02895 + 0.411 × 10 −5 T + 0.3548 × 10 −8 T 2 − 2.22 × 10− 12 T 3 ] dT [kJ / mol] 450 g = (178.5 mol / s) − 12.076 [kJ / mol] = −2,156 kW b. 8.15 a. Q& = n& ⋅ ∆H$ = n& ⋅ H$ (50o C) − H$ (450o C) = (178.5 mol / s)(0.73-12.815[kJ / mol]) = − 2 ,157 kW n& = 250 mol / h 250 mol ( 2676 − 3697 ) kJ 1 kg 1 h 18.02 g Q& = n& ∆H$ = = −1.278 kW h 1 kg 1000 g 3600 s 1 mol i) Q& = n& ∆H$ = n& ⋅ ii) = z T2 T1 Cp dT 250 mol 1 h h 3600 s z 100 600 [0.03346 + 0.6880 × 10−5T + 0.7604 × 10−8 T 2 − 3.593× 10−12 T 3 ] = −1.274 kW 8- 4 http://librosysolucionarios.net 8.15 (cont’d) b g 250 mol Q& = ⋅ 2.54 − 20.91 [kJ / mol] = − 1276 . kW 3600 s Method (i) is most accurate since it is not based on ideal gas assumption. The work done by the water vapor. iii) b. c. 8.16 Assume ideal gas behavior, so that pressure changes do not affect ∆H$ . 200 ft 3 492 o R 12 . atm 1 lb - mol = 0.6125 lb- mole / h o h 537 R 1 atm 359 ft 3 (STP) lb - mole Q& = n& ∆H$ = ( 0.6125 ) ⋅ ( 2993 − 0) [Btu / lb - mole] = 1833 Btu / h h n& = b 8.17 a. 50 kg 1.14 kJ kg⋅° C g b50 −10g° C = 2280 kJ b. (C ) p Na C O 2 3 ≈ 2 (C p ) Na + ( C p)C + 3 ( C p )O = 2 ( 0.026 ) + 0.0075 + 3 ( 0.017 ) = 0.1105 kJ mol ⋅°C b g 50,000 g 0.1105 kJ 1 mol 50 − 10 ° C = 2085 kJ mol ⋅° C 105.99 g 2085 − 2280 % error = × 100% = −8.6% error 2280 8.18 dC i dC i p C H O(l) 6 14 b g b g b g = 6 0.012 + 14 0.018 + 1 0025 . = 0.349 kJ / (mol⋅ C) (Kopp’s Rule) o −5 p C H COCH (l) 3 3 = 01230 . + 18.6 × 10 T kJ (mol⋅° C) Assume ∆Hmix ≅ 0 ↓ CH 3 COCH 3 C pm = ↓ C 6 H 14 O 0.30 ( 0.1230+18.6 × 10 −5T ) kJ 1 mol 0.70 ( 0.349 ) kJ 1 mol + mol ⋅°C 58.08 g mol ⋅°C 102.17 g = [0.003026 + 9.607 ×10−7 T] kJ (g ⋅ °C) 20 ∆Hˆ = ∫ [0.003026 + 9.607 ×10−7 T] dT = −0.07643 kJ g 45 8.19 Assume ideal gas behavior, ∆Hmix ≅ 0 g b g ∆H$ = dC i dT = 10.08 kJ / mol, ∆H$ = dC i dT = 14.49 kJ / mol 2 L1 O F 1000 g IJ FG 1 mol IJ = 433 kJ kg H$ = M b14.49 kJ / mol g + b10.08 kJ / molgP G 3 N3 Q H 1 kg K H 26.68 g K Mw = O2 b 1 2 g 16.04 + 32.00 = 26.68 3 3 mol z 350 25 p O 2 CH4 z 350 25 p CH 4 8- 5 http://librosysolucionarios.net 8.20 1000 m 3 1 min 273 K 1 kmol = 0.6704 kmol s = 670.4 mol / s min 60 s 303 K 22.4 m3 STP Energy balance on air: Table B.8 for ∆ H$ 670.4 mol 0.73 kJ 1 kW Q = ∆ H = n∆H Q= = 489.4 kW s mol 1 kJ s n= b g Solar energy required = Area required = 8.21 489.4 kW heating 1 kW solar energy = 1631 kW 0.3 kW heating 1627 kW 1000 W 1 m2 = 1813 m 2 1 kW 900 W C 3 H 8 + 5O 2 → 3CO 2 + 4H 2 O n& fuel = n& air = 1.35 × 105 SCFH 1 lb - mol lb - mol = 376 h h 359 ft 3 376 lb − mol 5 lb - mol O 2 1 lb - mol air 115 . lb − mol = 103 . × 104 h 1b - mol C3 H 8 0.211b - mol O2 h z T2 Q = ∆H = n& ⋅ C p dT T1 FG H = 1.03 × 104 IJ K lb − mol ⋅ h z 302 [ 002894 . + 0.4147 × 10 −5 T + 0.3191 × 10 −8 T 2 − 1965 . × 10 −12 T 3 ] dT 0 103 . × 104 lb - mol 8.954 kJ 453.593 mol 9.486 × 10 -1 Btu = = 3.97 × 10 7 Btu / h h mol lb - mol kJ 8.22 a. Basis : 100 mol feed (95 mol CH4 and 5 mol C2 H6 ) 7 CH 4 + 2O 2 → CO 2 + 2H 2 O C 2 H 6 + O 2 → 2CO 2 + 3H 2 O 2 nO 2 = 125 . ⋅ LM 95 mol CH MN 4 OP PQ 2 mol O2 5 mol C2 H 6 35 . mol O 2 + = 259.4 mol O 2 1 mol CH 4 1 mol C 2 H 6 Product Gas: CO 2 : 95(1) + 5(2) = 105 mol CO 2 H 2 O: 95(2) + 5(3) = 205 mol H 2 O O 2 : 259.4 - 95(2) - 5(3.5) = 51.9 mol O 2 N 2 : 3.76(259.4) = 975 mol N 2 Energy balance (enthalpies from Table B.8) $ $ ∆H =H − H$ = 18.845 − 42.94 = −24.09 kJ / mol o o CO2 (CO2 , 450 C) $ $ ∆H H 2 O = H (H $ $ ∆H O2 = H (O $ $ ∆H N 2 = H (N 2 O, o 450 C) (CO2 , 900 C) − H$ (H 2, 450 o C) − H$ (O 2, 450o C) $ −H (N 2 O, o 900 C) = 1512 . − 3332 . = −18.20 kJ / mol 2, 900 o C) = 13375 . − 2889 . = −15.51 kJ / mol 2, 900 o C) = 12.695 − 2719 . = −14.49 kJ / mol Q = ∆H = 105(-24.09) + 205(-18.20) + 51.9(-15.51) + 975(-14.49) Q = 21,200 kJ / 100 mol feed 8- 6 http://librosysolucionarios.net 8.22 (cont’d) $ (40 o C) = 167.5 kJ / kg; H$ b. From Table B.5: H liq vap (50 bars) = 2794.2 kJ / kg; $ = n(2794.2 -167.5) = 21200 ⇒ n = 8.07 kg /100 mol feed Q = n ⋅ ∆H c. From part (b), 8.07 kg steam is produced per 100 mol feed n& feed = d. 1250 kg steam 01 . kmol feed 1 h = 4.30 × 10−3 kmol / s h 8.07 kg steam 3600 s 4.30 mol feed 1336.9 mol product gas 8.314 Pa ⋅ m 3 723 K V&product gas = = 341 . m3 / s 5 s 100 mol feed mol ⋅ K 1.01325 × 10 Pa Steam produced from the waste heat boiler is used for heating, power generation, or process application. Without the waste heat boiler, the steam required will have to be produced with additional cost to the plant. Assume ∆Hmix ≅ 0 ⇒ ∆H = ∆H C10 H12 O2 + ∆H C6 H6 8.23 d i Kopp’s rule: C p ∆H C10 H12 O2 = ∆H C6 H6 = C10 H12 O2 e j e = 10(12) + 12(18) + 2( 25) = 386 J mol ⋅ C = 2.35 J g⋅ C o 20.0 L 1021 g 1 kJ 2.35 J ( 71 − 25) o C = 2207 kJ L 10 3 J g⋅ o C 15.0 L 879 g 1 mol ⋅ L 78.11 g z LM N 348 298 o j OP Q [ 0.06255 + 23.4 × 10 −5 T] dT = 1166 kJ ∆H = 2207 + 1166 = 3373 kJ 8.24 a. 100 mol C3 H8 @ 40 o C, 250 kPa 100 mol C3 H8 @ 240 o C, 250 kPa VP 1(m3 ) VP 2(m3 ) mw kg H2 O(v) @ 300 o C, 5.0 bar mw kg H2 O(l, sat‘d) @ 5.0 bar Vw2 (m3 ) b. Vw1 (m3 ) References: H2 O (l, 0.01 o C), C3 H8 (gas, 40 o C) z 240 C3 H8 : H$ in = 0 kJ / mol; H$ out = C pC H dT = 19.36 kJ mol (Cp from Tabl e B.2) 40 3 8 H 2 O : Hˆ in = 3065 kJ/kg (Table B.7); Hˆ out = 640.1 kJ/kg (Table B.6) c. ∆Hˆ C3H 8 = 19.36 kJ/mol, ∆Hˆ w = (640.1 − 3065) kJ/kg = −2425 kJ/kg Q = ∆ H = 100 ∆H$ C 3 H8 + m w ∆H$ w = 0 ⇒ mw = 0.798 kg b g From Table B.7: V$steam 50 . bar, 300 ° C = 0522 . m 3 kg 0.008314 m 3 ⋅ kPa (mol ⋅ K) 313 K V$C3 H8 40° C, 250 kPa = = 0.0104 m 3 mol C 3 H 8 250 kPa b g 0.798 kg steam 0.522 m3 steam 100 mol C3 H 8 1 kg steam 1 mol C3 H8 0.0104 m 3 C 3 H 8 = 0.400 m 3 steam m 3 C 3H 8 d. Q = mw ∆Hˆ w = 0.798 kg × (-2425 kJ/kg)=-1935 kJ e. A lower outlet temperature for propane and a higher outlet temperature for steam. 8- 7 http://librosysolucionarios.net 8.25 a. 5500 L(STP)/min CH 3 OH (v) 65o C n 2 mol/min CH 3 OH (v) 260 o C n 2 (mol/min) mw kg /min H 2 O(l, sat‘d) @ 90o C mw kg /min H 2 O(v, sat‘d) @ 300o C Vw 2 ( m3 /min ) n2 = Vw 1 ( m3 /min ) 5500 L(STP) 1 mol = 245.5 mol CHOH(v)/min 3 min 22.4 L(STP) An energy balance on the unit is then written, using Tables B.5 and B.6 for the specific enthalpies of the outlet and inlet water, respectively, and Table B.2 for the heat capacity of methanol vapor. The only unknown is the flow rate of water, which is calculated to be 1.13 kg H2 O/min. b. kg kJ 1 min 1 kW Q& = 1.13 2373.9 = 44.7 kW min kg 60 sec 1 kJ/s 8.26 a. 100 mol/s (30o C) 0.100 mol H2 O(v)/mol 0.100 mol CO/mol 0.800 mol CO2 /mol n 2 mol/s (30o C) 0.020 mol H2 O(v)/mol y 2 mol (molCO/s CO/mol) (molCO CO (0.980-y 2 ) mol 2/mol) 2 /s m3 kg humid air/s (50o C) m4 kg humid air/s (30 (48o oC) C) H 2O(v) only (0.002 /1.002 ) kg H2 O(v)/kg humid air (1.000 /1.002 ) kg dry air/kg humid air y 4 kg H2 O(v)/kg humid air (1-y 4 ) kg dry air/kg humid air Basis : 100 mol gas mixture/s 5 unknowns: n 2 , m3 , m4 , y2 , y4 – 4 independent material balances, H2 O(v), CO, CO2 , dry air – 1 energy balance equation 0 degrees of freedom (all unknowns may be determined) b. (1) CO balance: (2) CO 2 balance: U|V ⇒ n& (100)(0.800) = n (1 − y ) | W (100)(0.100) = n& 2 y 2 2 2 2 = 9184 . mol / s, x 2 = 0.1089 mol CO / mol 1.000 = m 4 (1 − y 4 ) 1002 . (100)(0.100)(18) 0.002 ( 0.020)(18) (4) H 2 O balance: + m& 3 = 91.84 + m& 4 y 4 1000 1.002 1000 References: CO, CO2 , H2 O(v), air at 25o C ( H$ values from Table B.8 ) substance n& in ( mol / s) n& out ( mol / s) H$ (kJ / mol) (3) Dry air balance: m 3 0.169 0.146 91.84(0.020) 10 0.193 80 H$ out (kJ / mol) 0.169 0.146 0.193 0.847 0.727 m4 y 4 (1000/18 ) m4 (1-y 4 ) (1000 /29 ) 0.779 0.672 in H2 O(v) CO 10 10 CO2 H2 O(v) dry air 80 0.002 1000 m3 ( /1.002 )( /18 ) m3 (1.000 /1.002 ) (1000/29 ) 8- 8 http://librosysolucionarios.net 8.26 (cont’d) (5) Energy balance: FG 0.002 IJ FG 1000IJ (0.847) + m FG 1.000 IJ FG 1000 IJ (0.727) H 1.002 K H 18 K H 1.002 K H 29 K F 1000IJ + m (1 − y )(0.672)FG 1000IJ = 91.84 ( 0.020 )( 0.169) + m y ( 0.779 ) G H 18 K H 29 K 10(0.169) + m 3 3 4 4 4 4 Solve Eqs. (3)–(5) simultaneously ⇒ m3 = 2.55 kg/s, m4 = 2.70 kg/s, y4 = 0.0564 kg H2 O/kg 2.55 kg humid air / s kg humid air = 0.0255 100 mol gas / s mol gas Mole fraction of water : 00564 . kg H2 O c. 8.27 a. =.0963 (1-.0564) kg dry air kmol DA 18 kg H 2 O ⇒ Relative humidity: 29 kg DA 1 kmol H2 O 0.0963 kmol H2 O (1 + 00963 . ) kmol humid air pH 2 O p*H2 O e48 Cj o = = 0.0878 kmol H2 O kmol DA kmol H2 O kmol humid air ( 0.0878)( 760 mm Hg ) × 100% = 79.7% 83.71 mm Hg The membrane must be permeable to water, impermeable to CO, CO2 , O2 , and N2 , and both durable and leakproof at temperatures up to 50o C. y H2 O = b p* 57° C P b g 28.5 m 3 STP h g = 12982 . mm Hg = 0171 . mol H O mol 2 760 mm Hg ↓ 1 mol = 1270 mol h ⇒ 217.2 mol H 2 O h 0.0224 m 3 STP b g . kg H b391 R| 89.5 mol CO h mol dry gas |110.5 mol CO h 1270 − 217 .2 = 1053 =======> S h || 5.3 mol O h T847.6 mol N h given 2 percentages 2 2 1270 mol/h, 620°C 425°C m (kg H2 O( l )/h), 20°C References for enthalpy calculations: e j CO, CO 2 , O 2 , N 2 at 25°C (Table B.8); H 2 O l, 0.01 o C (steam tables) substance CO CO 2 O2 N2 bg H Ob lg H2O v nin 89.5 110.6 5.3 847.6 3.91 m H$ in 18.22 27.60 19.10 18.03 3749 83.9 nout 89.5 110.6 5.3 847.6 H$ out 12.03 17.60 12.54 11.92 3.91 + m 3330 --- 2 8- 9 http://librosysolucionarios.net U| n in mol h V| H$ in kJ mol W UV n in kg h W H$ in kJ kg 2O h g 8.27 (cont’d) ∆H = ∑ n H$ − ∑ n H$ i i i out b. i = 0 ⇒ − 8504 + 3246m = 0 ⇒ m = 2.62 kg h in When cold water contacts hot gas, heat is transferred from the hot gas to the cold water lowering the temperature of the gas (the object of the process) and raising the temperature of the water. b gb g 8.28 2°C, 15% rel. humidity ⇒ pH 2 O = 015 . 5294 . mm Hg = 0.7941 mm Hg dy i H2 O inhaled n& inhaled = b0.7941g b760g = 1.045 ×10 −3 mol H 2 O mol inhaled air 5500 ml 273 K 1 liter 1 mol = 0.2438 mol air inhaled min 3 min 275 K 10 ml 22.4 liters STP Saturation at 37 °C ⇒ y H2 O = b p 37° C * g 760 mm Hg b g = 47.067 = 0.0619 mol H 2 O mol exhaled dry gas 760 0.2438 mol/min 2o C n2 kmol/min 37oC 1.045 x 10-3 H2O 0.999 dry gas 0.0619 H2 O 0.9381 dry gas n 1 mol H2O(l)/min 22o C Mass of dry gas inhaled (and exhaled) = b0.2438 gb0.999gmol dry gas 29.0 g min mol b0.999gb0.2438g = 0.9381 n& Dry gas balance: 2 = 7.063 g min ⇒ n&2 = 0.2596 mols exhaled min . . × 10 j + n& = b0.2596 gb0.0619 g ⇒ n& = 0.0158 mol H O min b02438 ge1045 References for enthalpy calculations: H Ob lg at triple point, dry gas at 2 °C −3 H 2 O balance: 1 1 2 2 substance m& in Dry gas H2O v 7.063 0.00459 0.285 bg H Ob lg 2 Q = ∆H = H$ in 0 2505 92.2 m& out 7.063 0.290 — H$ out 36.75 2569 — m& in g min H$ in J g m& H2 O = 18.02n&H 2O Hˆ H2 O from Table 8.4 Hˆ dry gas = 1.05 ( T − 2 ) ∑ m& H$ − ∑ m& H$ i out i i in i = 966.8 J 60 min 24 hr = 1.39 × 10 6 J day min 1 hr 1 day 8- 10 http://librosysolucionarios.net 8.29 a. bg 75 liters C 2 H 5OH l 789 g 1 mol liter 46.07 g bg = 1284 mol C 2 H 3OH l e j 1 mol = 3054 mol H O b lg 18.01 g ( C p ) C H3 OH = 01031 . + 0557 . × 10 −3 T kJ / (mol⋅ o C) (fitting the two values in Table B.2) bg 55 L H 2 O l 1000 g liter 2 b ( C p ) H2 O = 0.0754 kJ mol⋅° C g 1284 mol C2 H5 OH(l) (70.0oC) 1284 mol C2H5 OH (l) (To C) 3054 mol H2 O(l) (20.0oC) 3054 mol H2O(l) (To C) T T 0 = 1284 ∫ ( 0.1031 + 0.557 × 10 −3 T ) dT + 3054 ∫ ( 0.0754 ) dT 70 Q = ∆ U ≅ ∆ H ( liquids ) ⇒ ⇓ Integrate, solve quadratic equation Q = 0 (adiabatic ) T=44.3 o C b. 1. 2. 3. 4. 5. 6. 7. 25 Heat of mixing could affect the final temperature. Heat loss to the outside (not adiabatic) Heat absorbed by the flask wall & thermometer Evaporation of the liquids will affect the final temperature. Heat capacity of ethanol may not be linear; heat capacity of water may not be constant Mistakes in measured volumes & initial temperatures of feed liquids Thermometer is wrong 8.30 a. 1515 L/s air 500oC, 835 tor, Td p=30 o C 1515 L/s air , 1 atm 110 g/s H2O(v) 110 g/s H2O, T=25oC Let n& 1 (mol / s) be the molar flow rate of dry air in the air stream, and n& 2 (mol / s) be the molar flow rate of H2 O in the air stream. 1515 L 835 mm Hg mol ⋅ K n& 1 + n& 2 = = 262 . mol / s s 773 K 62.36 L ⋅ mm Hg n& 2 p * (30 o C) 31824 . mmHg = y= = = 00381 . mol H 2 O / mol air &n1 + n& 2 Ptotal 835 mmHg ⇒ n& 1 = 252 . mol dry air / s; n& 2 = 10 . mol H 2 O / s 8- 11 http://librosysolucionarios.net 8.30 (cont’d) References: H2 O (l, 25o C), Air (v, 25o C) substances n& in (mol / s) H$ in (kJ / mol) dry air 25.2 H2 O(v) 14.37 z z 1.0 dC i dC i 100 p 25 500 100 H2 O(l) p H2O (l ) H2 O( v ) 6.1 25.2 dT + H$ vap 7.1 z zd zd -- z Cp 25 100 100 0 zd T 25 T dT ∆H = 0 = n& out ⋅ H$ out − n& in ⋅ H$ in z H$ out (kJ / mol) n& out (mol / s) i i Cp Cp i air H2O (l ) H2 O( v ) dT dT + H$ vap dT -- b25.2gFGH dC i dT IJK + b71. gFGH dC i dT + H$ + dC i dTIJK F dC i dT + H$ + dC i dTIJ = 0 −b 25.2gb14.37g − b100 . gG H K T 25 p air z 100 25 p H O( l ) 2 vap z 100 25 p vap H2 O( l ) T 100 p H O( v) 2 500 100 p H2 O( v ) Integrate, solve : T = 139 o C b. 139 139 Q& = − ( 25.2 ) ∫ ( C p )air dT − (1.00 ) ∫ ( C p )H O( v) dT = −290 kW 500 500 2 This heat goes to vaporize the entering liquid water and bring it to the final temperature of 139o C. c. When cold water contacts hot air, heat is transferred from the air to the cold water mist, lowering the temperature of the gas and raising the temperature of the cooling water. 8- 12 http://librosysolucionarios.net 8.31 520 kg NH 3 103 g 1 mol 1h = 8.48 mol NH 3 s h 1 kg 17.03 g 3600 s Basis: 8.48 mol NH 3/s 25°C n 1 (mol air/s) T °C Q = –7 kW n2 (mol/s) 0.100 NH 3 0.900 air 600°C NH 3 balance: 848 . = 0100 . n2 ⇒ n2 = 848 . mol s b gb g Air balance: n1 = 0.900 84.8 = 76.3 mol air s bg References for enthalphy calculations: NH 3 g , air at 25°C NH 3 H$ in = 0.0 . kJ mol dC i dT ⇒ H$ = 2562 Air: C b J mol ⋅° Cg = 28.94 + 0.4147 × 10 T b ° Cg L F T − 25 I OP J × 1 kJ H$ = C dT = M28.94b T − 25g + 0.004147 G H 2 2 JK PQ mol 10 J MN = e2.0735 × 10 T + 0.02894T − 0.7248jb kJ molg H$ out = Cp from 600 25 p NH 3 out Table B.2 −2 p 2 T in 25 3 −6 H$ out = 100 25 2 p 2 Cp dT = 17.39 kJ mol Energy balance: Q = ∆ H = ∑ n i H$ i − ∑ ni H$ i E out in b gb g b gb − b8.48gb 00 . g − b76.3ge 2.0735 × 10 T + 0.02894 T − 07248 . j −7 kJ s = 8.48 mols NH 3 s 25.62 kJ mol + 763 . mols air s 17.39 kJ mol −6 g 2 E 1582 . × 10−4 T 2 + 2.208 T − 1606 = 0 ⇒ T = 693° C (–14,650°C) 8.32 a. Basis: 100 mol/s of natural gas. Let M represent methane, and E for ethane 100 mol/s 0.95 mol M/mol 0.05 mol E/mol Furnace Stack gas (900oC) Stack gas (ToC) n3 n4 n5 n6 n3 n4 n5 n6 mol CO2/s mol H2O/s mol O2/s mol N2/s Heat Exchanger mol CO2/s mol H2O/s mol O2/s mol N2/s air (245oC) 20 % excess air (20oC) n1 mol O2/s n2 mol N2/s n1 mol O2/s n2 mol N2/s CH 4 + 2O 2 → CO2 + 2H 2O b g C 2 H 6 + 7 / 2 O 2 → 2CO2 + 3H 2 O 8- 13 http://librosysolucionarios.net 8.32 (cont’d) 95 mol M 2 mol O2 4.76 mol air 5 mol E 3.5 mol O2 4.76 mol air n&air = 1.2 + s 1 mol M mol O 2 s 1 mol E mol O2 n&air = 1185 mol air/s n&1 = 0.21× 1185 = 249 mol O 2 /s, n&2 = 0.79 ×1185 = 936 mol N 2 /s n&3 = 95 mol M 1 mol CO 2 5 mol E 2 mol CO 2 + = 105 mol CO2 /s s 1 mol M s 1 mol E n&4 = 95 mol M 2 mol H 2 O 5 mol E 3 mol H 2 O + = 205 mol H 2 O/s s 1 mol M s 1 mol E 95 mol M 2 mol O2 5 mol E 3.5 mol O2 + = 41.5 mol O 2 /s s 1 mol M s 1 mol E n&6 = n&2 = 936 mol N 2 /s n&5 = 249 − Energy balance on air: Q& = n&air ∫ o 245 C 20 o C (C ) p air mol air kJ kJ dT = 1185 6.649 = 7879 ⇒ 7879 kW s mol s Energy balance on stack gas: 6 ∑ n& ∫ ( C ) dT Q& = − ∆H = − T i i= 3 −7879 = n&3 900 ∫ (C ) T dT + n&4 p CO 2 900 p i ∫ (C ) T p H O (v ) 2 900 dT + n&5 ∫ (C ) T p O 2 900 dT + n&6 ∫ (C ) T 900 p N 2 dT Substitute for the heat capacities (Table B.2), integrate, solve for T using E-Z Solve⇒ T = 732 C o b. 350 m 3 (STP) mol 1000 L 1 h = 4.34 mol / s h 22.4 L(STP) m 3 3600 s 4.34 mol / s = 0.0434 100 mol / s Q& ′ = 00434 . 7851 = 341 kW Scale factor = b g 8.33 a. b. ∆H$ = b g b g 100 335 . + 4 351 . + 38.4 + 42.0 + 2 367 . + 40.2 439 . = 23100 J mol 3 150 mol 23100 J 1 kW Q = ∆H = n∆H$ = = 3465 kW s mol 1000 J / s 600 0 C p dT = The method of least squares (Equations A1-4 and A1-5) yields (for X = T , y = C p ) b g Cp = 0.0334 + 1732 . × 10 −5 T ° C kJ (mol ⋅° C) ⇒ Q = 150 600 0 0.0334 + 1732 . × 10 −5 T dT = 3474 kW The estimates are exactly identical; in general, (a) would be more reliable, since a linear fit is forced in (b). 8.34 a. e j ln C p = bT 1 2 + ln a ⇒ C p = a exp bT 1 2 , b= ln C p2 C p1 T1 = 71 . , C p1 = 0.329 , = 00473 . T2 − T1 ln a = ln C p1 − b T1 = −14475 . ⇒ a = e −1.4475 U| |V ⇒ C = 0.235 | |W p T2 = 17.3 , C p2 = 0533 . e = 0235 . exp 0.0473T 1 2 8- 14 http://librosysolucionarios.net j 8.34 (cont’d) b. 150 e 0235 . exp 0.0473T 1800 1 20 30 40 2 200 12 .235gb 2g R . T STexpe0473 jdT = b000473 . 12 jLMNT 12 1 − .0473 OP UV QW 150 = −1730 cal g 1800 DIMENSIONS CP(101), NPTS(2) WRITE (6, 1) FORMAT (1H1, 20X'SOLUTION TO PROBLEM 8.37'/) NPTS(1) = 51 NPTS(2) = 101 DO 200K = 1, 2 N = NPTS (K) NM1 = N – 1 NM2 = N – 2 DT = (150.0 – 1800.0)/FLOAT (NM1) T = 1800.0 DO 20 J = 1, N CP (J) = 0.235*EXP(0.0473*SQRT(T)) T = T + DT SUMI = 0.0 DO 30 J = 2, NM1, 2 SUMI = SUMI + CP(J) SUM2 = 0.0 DO 40 J = 3, NM2, 2 SUM2 = SUM2 + CP (J) DH = DT*(CP(1) + 4.0 = SUM1 + 2.0 = SUM2 + CP(N))/3.0 WRITE (6, 2) N, DH FORMAT (1H0, 5XI3, 'bPOINT INTEGRATION bbbDELTA(H)b= ', E11.4,'bCAL/G') CONTINUE STOP END Solution: N = 11 ⇒ ∆H$ = −1731 cal g N = 101 ⇒ ∆H$ = −1731 cal g Simpson's rule with N = 11 thus provides an excellent approximation 8.35 a. U| V| W m& = 175 kg / min 175 kg 1000 g 1 mol 56.9 kJ 1 min M . W. = 62.07 g / mol ⇒ Q& = ∆H = = 2670 kW min kg 62.07 g mol 60 s $ ∆H = 56.9 kJ / mol v b. The product stream will be a mixture of vapor and liquid. c. The product stream will be a supercooled liquid. The stream goes fro m state A to state B as shown in the following phase diagram. P B A T 8- 15 http://librosysolucionarios.net Table B.1 ⇒ Tb = 68.74o C, ∆H$ v (Tb ) = 28.85 kJ / mol Assume: n - hexane vapor is an ideal gas, i.e. ∆H$ is not a function of pressure 8.36 a. bC H g B ∆H$ bC H g 1 ∆H$ 1 = 68 .74 20 200 ∆H$ 2 = 6 14 v, 200o C 2 $ T ∆H v b 14 l, 68.74o C 6 bC H g A ∆H$ b g → b C H g $ ∆H Total → 14 l, 20 o C 6 68.74 14 v, 68.74 o C 6 0.2163 dT = 10.54 kJ / mol 013744 . + 4085 . × 10 −5 T − 2392 . × 10 −8 T 2 + 57.66 × 10−9 T 3 dT ∆H$ 2 = 24.66 kJ / mol ∆H$ Total = ∆H$ 1 + ∆ H$ 2 + ∆ H$ v Tb = 1054 . + 24.66 + 28.85 = 64.05 kJ / mol b g b. ∆H$ = −64.05 kJ / mol c. U$ 200o C, 2 atm = H$ − PV$ e j Assume ideal gas behavior ⇒ PV$ = RT = 393 . kJ / mol U$ = 64.05 − 3.93 = 6012 . kJ / mol 8.37 bg ∆H$ v tb = 40.656 kJ mol Tb = 100.00° C e j B ∆H$ H O e l, 100 Cj H2 O l, 50o C $ 50 o C ∆H v e j → 1 o 2 ∆H$ 1 = 100 C pH 2O e j A ∆H$ H O e v, 100 Cj H 2 O v, 50o C 2 $ 100o C ∆H v e j → o 2 . kJ mol bl g dT = 377 25 ∆H$ 2 = 25 C pH 2O . kJ mol bv g dT = − 169 100 b g B Table B.1 ∆H$ v 50° C = 377 . + 40.656 − 169 . = 42.7 kJ mol Steam table: ( 2547.3 − 104.8 ) kJ kg 18.01 g 1 kg = 44.0 kJ mol 1 mol 1000 g The first value uses physical properties of water at 1 atm (Tables B.1, B.2, and B.8), while the heat of vaporization at 50o C in Table B.5 is for a pressure of 0.1234 bar (0.12 atm). The difference is ? H for liquid water going from 50o C and 0.1234 bar to 50o C and 1 atm plus ? H for water vapor going from 50o C and 1 atm to 50o C and 0.1234 bar. 8.38 n& = 1.75 m3 879 kg 2.0 min 3 m 1 kmol 78.11 kg 103 mol 1 min 1 kmol 60 s = 164.1 mol s b g Tb = 801 . ° C , ∆H$ v Tb = 30765 . kJ mol 8- 16 http://librosysolucionarios.net 8.38 (cont’d) e j → B ∆H$ −∆ µ H C H e v, 80.1 Cj → C 6 H 6 v, 580 o C 1 6 2 v o C6 H 6 6 ∆H$ 1 = 80 .1 C pC 6H 6 e j $ A ∆H el, 80.1 Cj C6 H 6 l, 25 o C o b vg dT = −77.23 kJ mol bl gdT = −7.699 kJ mol 580 ∆H$ 2 = 298 Cp C 6 H6 3531 . d i Q = ∆H = n ∆H$ = b164 .1 mol / sgb−115.7 kJ / mol g = −1.90 x 10 ∆H$ = ∆H$ 1 − ∆H$ v 80.1o C + ∆H$ 2 = −1157 . kJ / mol B −4 kW Antoine 8.39 UV ⇒ y 15% relative saturation W 35° C ( ∆ H$ v ) CCl 4 Table B.1 = 300 . CCl 4 = 0.15 b PV∗ 25° C 1 atm g = 0.15 176.0 mm Hg = 0.0347 mol CCl 760 mm Hg 10 mol 0.0347 mol CCl 4 kJ ⇒ Q = ∆H = mol min mol 4 mol 30.0 kJ = 104 . kJ min mol CCl 4 Time to Saturation 6 kg carbon 0.40 g CCl 4 g carbon 8.40 a. b 1 mol CCl 4 153.84 g CCl 4 g b 1 mol gas 0.0347 mol CCl 4 g CO2 g, 20° C → CO2 s, − 78.4 ° C : ∆H$ = −78.4 20 1 min = 45.0 min 10 mol gas b g dT − ∆Hsub b− 78.4° Cg dC i $ p CO g 2 In the absence of better heat capacity data; we use the formula given in Table B.2 (which is strictly applicable only above 0°C ). − 78 .4 kJ ∆H$ ≈ .03611 + 4.233 × 10−5 T − 2.887 × 10 −8 T 2 + 7.464 × 10 −12 T 3 dT 20 mol z FG IJ H K − 6030 cal 4184 . × 10 −3 kJ = − 28.66 kJ mol mol 1 cal 300 kg CO 2 Q = ∆ H = n∆H$ = h 10 3 g 1 mol 28.66 kJ removed = 195 . × 105 k J h 1 kg 44.01 g mol CO 2 (or 6.23 × 10 7 cal hr or 72.4 kW ) b. According to Figure 6.1-1b, T fusion =-56o C Q& = ∆ H = n& ∆H$ where, ∆H$ = Q& = n& −56 20 LM dC i N dC i p −56 20 p e j dC i dT +∆ H$ e− 56 Cj + dC i dTOPQ CO2 (v) dT +∆H$ v − 56o C + o CO2 (v) v −78. 4 −56 p CO2 (l) −78 .4 −56 p CO2 (l) 8- 17 http://librosysolucionarios.net dT 8.41 a. C p = a + bT U| . + 001765 . T b Kg V| ⇒ C bJ mol ⋅ Kg = 4512 a = 5394 . − b 0.01765gb 500g = 4512 . |W NaCl b s, 300 Kg → NaClb s, 1073 Kg → NaClbl , 1073 Kg L b4512 O J + 30.21 kJ ∆H$ = C dT + ∆H$ b1073 K g = M . + 0.01765T gdT P N Q mol mol b= 5394 . − 50.41 = 0.01765 500 − 300 p z ps 300 = 7.44 × 10 Q = ∆U = n b. z 1073 z m 4 300 103 J 1 kJ J mol b C v dT + ∆U$ m 1073 K 1073 300 1073 g Cv ≈ Cp ∆ U m ≅ ∆H m 200 kg 10 3 g 2.55 × 10 8 J s t= c. 8.42 Q ≈ ∆H = n∆H$ = 1 kg 1 mol 74450 J 58.44 g mol 1 kJ 0.85 × 3000 kJ 103 J = 2.55 × 108 J = 100 s ∆H$ v = 35.98 kJ mol , Tb = 136.2° C = 409.4 K , Pc = 37.0 atm , Tc = 619.7 K (from Table B.1) b gb g b Trouton's rule: ∆H$ v ≈ 0.088Tb = 0.088 409.4 K = 360 . kJ mol 01% . error Chen's rule: LM MN g FG T IJ − 0.0327 + 0.0297 log P OP HT K PQ = 35.7 kJ mol (–0.7% error) ∆H$ ≈ FT I 107 . −G J HT K F 619.7 − 373.2 IJ = 38.2 kJ mol Watson’s correlation : ∆H$ b100° Cg ≈ 3598 . G H 619.7 − 409.4 K Tb 0.0331 v b 10 c c b c 0.38 v 8.43 b g b g Trouton's Rule ⇒ ∆H$ b 200 ° Cg = 0.088 b200+ 273.2 g = 41.6 kJ mol C H Nb l, 25° Cg → C H Nb l, 200° Cg → C H Nbv , 200° Cg C 7 H 2 N : Kopp's Rule ⇒ C p ≈ 7 0.012 + 12 0.018 + 0.033 = 0.333 k J (mol ⋅° C) v 7 12 7 200 ∆Hˆ = 12 7 kJ ∫ C dT + ∆Hˆ ( 200 °C ) ≈ 0.333(200 − 25) mol p v 25 12 + 41.6 kJ = 100 kJ mol mol 8- 18 http://librosysolucionarios.net 8.44 a. b g Antoine equation: Tb ° C = Watson Correction: b. b g F 562.6 − 299.3IJ ∆H$ b261 . ° Cg = 30.765G H 562.6 − 353.1 K 0. 38 = 336 . kJ mol v b g b g Antoine equation: Tb 50 mm Hg = 118 . ° C ; Tb 150 mm Hg = 352 . °C $ ln p2 p1 ∆H v Clausius-Clapeyron: ln p = − + C ⇒ ∆H$ v = − R RT 1 T2 − 1 T1 ∆H$ v = −0.008314 c. 1211.033 − 220.790 = 261 . °C 6.90565 − log 100 R|S T| b U|V W| g C6 H 6 (v, 26.1°C) ∆ H$1 ∆H$ v (80.1°C) C6 H 6 ( l , 80.1°C) ∆ H$2 C6 H 6 (v, 80.1°C) 80 .1 dC i dT = 7.50 kJ mol 26 .1 ∆H$ 2 = g ln 150 50 kJ = 34.3 kJ mol mol ⋅ K 1 3084 . K − 1 285.0 K C6 H 6 ( l , 26.1°C) ∆H$ 1 = b p l 26 .1 dC i dT = −4.90 kJ mol 80.1 b p v g ∆H$ v 261 . ° C = 7.50 + 30.765 − 4.90 = 334 . kJ mol 8.45 a. Tout = 49.3o C. The only temperature at which a pure species can exist as both vapor and liquid at 1 atm is the normal boiling point, which from Table B.1 is 49.3o C for cyclopentane. b. Let n& f , n& v , and n& l denote the molar flow rates of the feed, vapor product, and liquid product streams, respectively. Ideal gas equation of state n& f = 1550 L 273 K s 1 mol 423 K 22.4 L(STP) = 44.66 mol C 5 H 10 (v) / s 55% condensation: n& l = 0550 . ( 44.66 mol / s) = 24.56 mol C 5 H10 ( l) / s Cyclopentane balance ⇒ n& v = ( 44.66 − 24.56) mol C5H 10 / s = 20.10 mol C 5H 10 (v) / s Reference: C5 H10 (l) at 49.3o C n& in (mol/s) H$ in (kJ/mol) n& out (mol/s) H$ out (kJ/mol) C5 H10 (l) — — 24.56 0 C5 H10 (v) 44.66 H$ f 20.10 H$ v Substance Hi = ∆H$ v + z Ti o 49. 3 C C p dT 8- 19 http://librosysolucionarios.net 8.45 (cont’d) Substituting for ∆H$ v from Table B.1 and for C p from Table B.2 ⇒ H$ f = 38.36 kJ / mol, H$ v = 27.30 kJ / mol Energy balance: Q& = 8.46 a. ∑n $ out H out − ∑n $ in H in = −116 . × 10 3 kJ / s = −116 . × 10 3 kW Basis: 100 mol humid air fed n 2 (mol), 20o C, 1 atm Q(kJ) y 2 (mol H2 O/mol), sat’d 1-y 2 (mol dry air/mol) 100 mol y 1 (mol H2 O/mol) 1-y 1 (mol dry air/mol) 50o C, 1 atm, 2o superheat n 3 (mol H2 O(l)) There are five unknowns (n 2 , n 3 , y 1 , y 2 , Q) and five equations (two independent material balances, 2o C superheat, saturation at outlet, energy balance). The problem can be solved. b. 2° C superheat ⇒ y1 = b p∗ 48° C p saturation at outlet ⇒ y2 = g b p∗ 20° C p g b100gb1 − y g = n b1 − y g H O balance: b100gb y g = bn gb y g + n dry air balance: 1 2 1 2 2 2 b c. 2 3 g b g References: Air 25° C , H 2O l, 20° C nin Air 100 ⋅ 1 − y1 H2O v 100 ⋅ y1 H$ 2 − − bg H Obl g 2 H$ 1 = H$ 2 = = H$ in H$ Substance d i d i b g H$ out H$ n in mol n2 ⋅ y2 H$ 4 H$ in kJ mol n3 0 nout b n 2 ⋅ 1 − y2 1 g 3 50 50 C p dT = 0.02894 + 0.4147 × 10−5 T + 0.3191× 10−8 T 2 25 air 25 100 50 Cp dT + ∆ H$ v 100o C + Cp dT 20 100 H 2O(l) H 2 O(v) 100 20 50 100 H$ 3 = 25 H$ 2 = 20 e − 1965 . × 10 −12 T 3 dT d i j 0.0754 dT + 40.656 + 0.03346 + 0.688 × 10−5 T + 0.7604 × 10− 8 T 2 − 3593 . × 10 −12 T 3 dT dC i dT dC i 20 p air 100 p H 2 O(l) e j dT + ∆H$ v 100 o C + 20 100 dC i p H 2O(v) dT 8- 20 http://librosysolucionarios.net 8.46 (cont’d) c. Q = ∆ H = ∑ ni H$ i − ∑ ni H$ i out Vair = in 100 mol 8314 . Pa ⋅ m 3 323 K 5 mol ⋅ K 101325 . × 10 Pa ∑ n H$ − ∑ n H$ i ⇒ d. i i i Q out in = V air 100 mol 8.314 Pa ⋅ m 3 323 K mol ⋅ K 101325 . × 105 Pa 2° C superheat ⇒ y1 = b g p∗ 48° C 8371 . mm Hg = = 0110 . mol H 2 O mol p 760 mm Hg b g p∗ 20° C 17.535 mm Hg = = 0023 . mol H 2O mol p 760 mm Hg saturation at outlet ⇒ y2 = . g = n b1 − 0.023g ⇒ n = 9110 . mol b100gb1 − 0110 890 . mol H O H O balance: b100 gb0110 . g = b 9110 . gb0.023 g + n ⇒ n = dry air balance: 2 2 2 2 3 3 0.018 kg 1 mol = 0160 . kg H2 O condensed Q = ∆ H = ∑ n i H$ i − ∑ ni H$ i = − 4805 . kJ out Vair = 100 mol 8.314 Pa ⋅ m 3 323 K = 2.65 m 3 mol ⋅ K 1.01325 × 105 Pa ⇒ ⇒ e. f. in 0.160 kg H 2 O condensed 2.65 m 3 air fed − 4805 . kJ 3 2.65 m air fed = 0.0604 kg H 2 O condensed / m 3 air fed = −181 kJ / m 3 air fed Solve equations with Maple. Q= 8.47 Basis: −181 kJ 250 m 3 air fed 1 h 1 kW = −12.6 kW h 3600 s 1 kJ / s m 3 air fed 226 m3 273 K 10 3 mol min 309 K 22.415 m 3 STP b g = 8908 mol humid air min . DA = Dry air Q& ( kJ / min) 8908 mol / min y 0 [ mol H 2 O(v) / mol] (1- y 0 ) (mol DA / mol) n& 1 ( mol / min) y1[ mol H 2 O(v) / mol] (1- y1 ) (mol DA / mol) 36 o C, 1 atm, 98% rel. hum. 10 o C, 1 atm, saturated 8- 21 http://librosysolucionarios.net n& 2 [ mol H 2 O(l) / min], 10 o C 8.47 (cont’d) a. Degree of freedom analysis 5 unknowns – (1 relative humidity + 2 material balances + 1 saturation condition at outlet + 1 energy balance) = 0 degrees of freedom. 44.563 mm Hg) = 0.0575 mol H O(v) mol b36B° Cg ⇒ y = 0.98(760 mm Hg Outlet air: y = p (10 C) / P = b9.209 mm Hg g b 760 mm Hgg = 0.0121 mol H O(v) mol Air balance: b1 − 0.0575g(8908 mol / min) = b1 − 00121 . gn& ⇒ n& = 8499 mol / min F mol IJ = 0.0121(8499 mol ) + n& ⇒ n& = 409 mol H O(l) min H O balance: 0.0575G 8908 H min K min References: H Ob l, triple point g, air b 77° Fg Table B.3 b. Inlet air: y0 P = 098 . p *w ∗ 1 0 2 o 2 1 2 1 2 2 2 2 n& in Substance Air bg H Obl g H$ in 8396 0.3198 8396 H2O v 512 462 103 − − 409 2 H$ out n& out −0.4352 n& in mol min 453 H$ in kJ / mol 0.741 Air: H$ from Table B.8 H 2 O: H$ ( kJ / kg) from Table B.5 × (0.018 kg / mol) Energy balance: Q = ∆H = ∑ ni H$ i − out ∑ ni H$ i = −196 . × 105 kJ 60 min 9486 . × 10−4 Btu min in 1h 0.001 kJ 1 ton −12000 Btu h = 930 tons 8.48 Basis: 746.7 m3 outlet gas / h 3 atm 1 kmol b g 1 atm 22.4 m3 STP = 100.0 kmol / h 100 kmol/h at 0°C, 3 atm yout (kmol C 6 H 14( v)/kmol), saturated (1 – yout) (kmol N 2/kmol) n 2 kmols/h nC 6 H 14( v), 0°C nn&11 (kmol/h) at 75°C, 3 atm yin (kmol C 6 H 14( v)/kmol), 90% sat'd (1 – yin) (kmol N 2/kmol) o n&2 [kmol n-CH ( v)/h],0 C 6 14 Antoine: log p∗v = 6.88555 − 1175.817 224.867 + T p∗v (0 °C ) = 45.24 mm Hg, p∗v (75°C) = 920.44 mm Hg 8- 22 http://librosysolucionarios.net b g = 45.24 = 0.0198 kmol C H kmol , P 3b 760 g 0.90 p b75° Cg b0.90gb 920.44g kmol C H = = = 0.363 P 3b 760g kmol yout = yin p∗v 0° C 6 14 ∗ v 6 14 8.48 (cont’d) b g b g N 2 balance: n& 1 1 − 0.363 = 100 1 − 00198 . ⇒ n& 1 = 153.9 kmol h b gb g b gb g bg Percent Condensation: b5389 . kmol h condenseg b 0363 . × 1539 . gb kmol h in feedg × 100% = 96.5% C 6 H 14 balance: 1539 . 0363 . = 100 0.0198 + n& 2 ⇒ n& 2 = 5389 . kmol C 6 H 14 l h References: N2 (25o C), n-C6 H14 (l, 0o C) Substance n H$ n in N2 bg b lg n - C 6 H 14 r n - C 6 H 14 b 98000 in 146 . out 98000 −0.726 55800 44.75 − g − H$ out 2000 33.33 53800 0.0 N 2 : H$ = C p T − 25 , n − C 6 H 14 (v): H$ = z 68 .7 n& in mol h H$ in kJ mol b g C pl dT + ∆ H$ v 68.7 + 0 z T C pv dT 68.7 Energy balance: Q = ∆ H = ( −2.64 × 10 6 kJ h)(1 h / 3600 s) ⇒ −733 kW ∑ n H$ − ∑ n H$ i i out i i in 8.49 Let A denote acetone. Q& ( kW) W& s = − 25.2 kW n& 1 (mol / s) @ − 18o C, 5 atm y1[mol A(v) / mol], sat'd (1 − y 1 )( mol air / mol) 142 L/ s @ 150 o C, 1.3 atm n& 0 ( mol / s) y 0 [mol A(v) / mol], sat'd (1 − y 0 )( mol air / mol) n& 2 [ mol A(l) / s]@−18 o C, 5 atm a. Degree of freedom analysis : 6 unknowns ( n& 0 , n& 1 , n& 2 , y0 , y1 , Q& ) –2 material balances –1 equation of state for feed gas –1 sampling result for feed gas –1 saturation condition at outlet –1 energy balance 0 degrees of freedom 8- 23 http://librosysolucionarios.net b. Ideal gas equation of state Raoult’s law P0V&0 RT0 (1) n& 0 = (2) y1 = p*A ( −18o C) 5 atm (Antoine equation for p *A ) Feed stream analysis (3) y0 FG mol A IJ = H mol K [(4.973 − 4.017) g A][1 mol A /58.05 g] [( 300 . L) P0 / RT0 ] mol feed gas 8.49 (cont’d) Air balance (4) n& 1 = Acetone balance n& 0 (1 − y0 ) (1− y1 ) (5) n& 2 = n& 0 y 0 − n&1 y1 o o Reference states : A(l, –18 C), air(25 C) n&in (mol/s) Substance A(l) − A(v) n&0 y0 air (6) H$ A(v) ( T ) = z (kJ/mol) −18 C o (7) Hˆ a1 z T 56 o C Tab le B.1 ( C p ) A(v) dT Ta ble B.2 H$ air ( T ) from Table B.8 (8) Q& = W& s + c. n&1 (1 − y1 ) ( C p ) A(l) dT + ( ∆H$ v ) A + Table B.2 (kJ/mol) 0 Hˆ A1 n&1 y1 Hˆ a 0 Hˆ out n&2 − Hˆ A0 n&0 (1 − y 0 ) 56 o C n&out (mol/s) Hˆ in ∑ n& out H$ out − ∑ n& (1) ⇒ n&0 = 5.32 mol feed gas/s $ in H in (W& s = −252 . kJ / s) (2) ⇒ y1 = 6.58 × 10 −3 mol A(v)/mol outlet gas (3) ⇒ y 0 = 0.147 mol A(v)/mol feed gas (4) ⇒ n&1 = 4.57 mol outlet gas/s (5) ⇒ n&2 = 0.75 mol A(l)/s (6) ⇒ Hˆ A 0 = 48.1 kJ/mol, Hˆ A1 = 34.0 kJ/mol (7) ⇒ Hˆ a 0 = 3.666 kJ/mol, Hˆ a1 = −1.245 kJ/mol (8) ⇒ Q& = −84.1 kW 8- 24 http://librosysolucionarios.net 8.50 a. b g 3 m π × 35 2 cm 2 1 m2 273 K b273 + 40gK 104 cm 2 s 1 kg ⋅ mol 850 mmHg b g 760 mmHg 22.4 m 3 STP 10 3 mol 1 kg ⋅ mol = 50.3 mol s H = n-hexane 50.3 mol/s, 850 mmHg assume P=850 mmHg n2 mol H(v)/mol, sat’d @ To C n3 mol air/mol n 1 (mols H( l )/s) (90% feed) (60% of of H in feed) x0 mol H/mol (1-x0) mol air/mol 40o C, Tdp =20o C 8.50 (cont’d) Degree-of-freedom analysis 5 unknowns (n 1 , n 2 , n 3 , x0 and T) – 2 independent material balances – 1 saturation condition – 1 60% recovery equation – 1 energy balance 0 degrees of freedom All unknowns can be calculated. b. Antoine equation, Table B.4 dT i dp feed = 25 ° C ⇒ x 0 = b p*H 25° C ⇒ n1 = 60% recovery P 0.600 b g = 151 mm Hg = 0178 . mol H mol 850 mm Hg 50.3 0.178 mols H feed = 5.37 mols H l s s b gb g gb gb g bg bg n2 = 0.400 50.3 0178 . = 358 . mols H v s b gb g Air balance: n3 = 50.3 1 − 0178 . = 413 . mols air s Mole fraction of hexane in outlet gas: bg p*H T n2 3.58 = = ⇒ p*H T = 67.8 mm Hg n2 + n3 3.58 + 41.3 850 mm Hg b g bg Antoine equation: p *H = 67 .8 mm Hg ⇒ T = 7 .8 ° C b g Reference states: C 6 H 14 l, 7.8° C , air (25°C) 8.95 H$ in 37.5 3.58 H$ out 32.7 — — 5.37 0 41.3 0.435 41.3 –0.499 Substance n& in C6 H14 ( v ) C6 H14 (l ) Air n& out n& in mol/s $ H in kJ/mol 8- 25 http://librosysolucionarios.net C6 H14 ( v ) : H$ = z 68 . 74 b g C pl dT + ∆ H$ v 6 8 .74 ° C + 7 .8 z T C pv d T , 68 .7 4 C p from Table B.2 ∆ H$ v from Table B.1 Air: H$ from Table B.8 Energy balance: Q = ∆ H = ∑ n& H$ − ∑ n& H$ i i i out c. u ⋅ A = u'⋅ A '; A = i = −257 kJ s 1 kW cooling in U|V |W π ⋅ D2 1 ; D' = D ⇒ u' = 4 ⋅ u = 12.0 m / s 4 2 8- 26 http://librosysolucionarios.net −1 kJ s = 257 kW 8.51 n& v ( mol / min) @ 65o C, P0 ( atm) y[ mol P(v) / mol], sat'd (1- y) (mol H(v) / mol) 100 mol / s @80o C, 5.0 atm 0.500 mol P(l) / mol 0.500 mol H(l) / mol Q& ( kJ / s) n& l ( mol / min) @ 65o C, P0 ( atm) 0.41 mol P(l) / mol 0.59 mol H(l) / mol a. Degree of freedom analysis 5 unknowns – 2 material balances – 2 equilibrium relations (Raoult’s law) at outlet – 1 energy balance = 0 degrees of freedom Antoine equation (Table B.4) ⇒ p *P ( 65o C) = 1851 mm Hg, p *H ( 65o C) = 675 mm Hg Raoult' s law for pentane and hexane 0.410 p *P (65o C) = yP0 y = 0.656 mol P(v) / mol ⇒ 0.590 p *H ( 65o C) = (1 − y) P0 P0 = 1157 mm Hg (1.52 atm) Total mole balance: 100 mol = n& v + n& l Pentane balance: 50 mole P = 0.656n& v + 0.410n& l Ideal gas equation of state : Vv = Fractional vaporization: f = nv RT 36.6 mol = P0 s ⇒ n& v = 36.6 mol vapor / s n& l = 634 . mol liquid / s 0.08206 L ⋅ atm mol ⋅ K 36.6 mol vapor / s mol vaporized = 0.366 100 mol / s mol fed References: P(l), H(l) at 65 o C H$ in Substance n& in P(v) − P(l) 50 H(v) − H(l) 50 H$ out n& out − 24.0 24.33 2.806 26.0 − 0 12.6 29.05 3.245 37.4 Vapor: H$ ( T ) = Liquid: H$ ( T) = n& in mol s H$ in kJ / mol z z Tb o 65 C 0 C pl dT + ∆H$ v ( Tb ) + z T Tb C pv dT T o 65 C C pl dT Tb and ∆H$ v from Table B.1, C p from Table B.2 Energy balance: Q& = ∑ n& $ out H out − ∑ n& $ in H in = 1040 kW 8- 27 http://librosysolucionarios.net (65 + 273)K 152 . atm = 667 L / s 8.52 a. B=benzene; T=toluene n 2 mol/s 95o C 1320 mol/s 25o C 0.735 mol B/mol 0.265 mol T/mol 0.500 mol B/mol 0.500 mol T/mol n 3 mol/s 95o C 0.425 mol B/mol 0.575 mol T/mol Q UV RS W T Total mole balance: 1320 = n2 + n3 n = 319 mol / s ⇒ 2 Benzene balance: 1320(0.500) = n2 ( 0.735) + n3 ( 0.425) n 3 = 1001 mol / s References: B(l, 25o C), T(l, 25o C) n& in (mol / s) H$ in ( kJ / mol) n& out (mol / s) H$ out ( kJ / mol) Substance B(l) B(v) T(l) T(v) Q= 660 -660 -- ∑ n Hˆ − ∑ n Hˆ i i i out b. 0 -0 -i 425 234 576 85 9.838 39.91 11.78 46.06 = 2.42 × 10 4 kW in e j e j Antoine equation (Table B.4) ⇒ p *B 95o C = 1176 torr , pT* 95o C = 476.9 torr Raoult's law b gb g b g |UV ⇒ P ≠ P' b0.575gb476.9g = b0.265gP ' ⇒ P ' = 1035 torr|W Benzene: 0.425 1176 = 0.735 P ⇒ P = 680 torr Toluene: ⇒ Analyses are inconsistent. Possible reasons: The analyses are wrong; the evaporator had not reached steady state when the samples were taken; the vapor and liquid product streams are not in equilibrium; Raoult’s law is invalid at the system conditions (not likely). bg b gb g b gb g C H Ob lg — C = b 5gb12g + b12gb18g + 25 = 301 J mol Trouton’s rule — Eq. (8.4-3): ∆H = b0109 . gb113 + 273g = 421 . kJ mol Eq. (8.4-5) ⇒ ∆H$ = b0.050 gb52 + 273g = 16.25 k J mol 8.53 Kopp’s rule (Table B.10): C 5 H12 O s — C p = 5 7.5 + 12 9.6 + 17 = 170 J mol 5 12 p v m Basis : 235 m 3 273 K 1 kmol 3 h b g 389 K 22.4 m STP 103 mol 1h 1 kmol 3600 s = 2.05 mol s Neglect enthalpy change for the vapor transition from 116°C to 113°C. b g b g Ob s, 25° Cg b C 5 H 12 O v , 113° C → C 5H 12 O l, 113° C → C 5 H 12 O v, 52° C b g → C 5 H 12 O s, 52° C → C 5 H12 g 8- 28 http://librosysolucionarios.net 8.53 (cont’d) b g b g b gb g b gb g ∆H$ = − ∆H$ v + C pl 52 − 113 − ∆H$ m + C ps 25 − 52 kJ kJ J 1 kJ = −421 . − 16.2 − 301 61 + 170 27 × 3 = −813 . kJ mol mol mol mol 10 J Required heat transfer: Q = ∆H = n∆H$ = 2.05 mol −813 . kJ s 1 kW mol 1 kJ s = −167 kW 8.54 Basis: 100 kg wet film ⇒ a. 95 kg dry film 0.5 kg acetone remain in film 90% A evaporation 5 kg acetone 95 kg DF 5 kg C3 H 6O( l) Tf 1 = 35°C n 1 mol air Ta1 , 1.01 atm 4.5 kg acetone exit in gas phase 95 kg DF 0.5 kg C 3 H 6O( l) Tf 2 n 1 mol air 4.5 kg C3 H 6O( v) (40% sat'd) Ta2 = 49°C, 1.0 atm Antoine equation (Table B.4) ⇒ p *C3 H 6O = 59118 . mm Hg 1 kmol 10 3 mol 58.08 kg kmol 4.5 kg C3 H 6 O ⇒y= b bg = 77.5 mol C 3 H 6O v in exit gas b g g 171.6 mol 22.4 L STP 040 . 59118 . mm Hg 775 . = ⇒ n1 = 775 . + n1 760 mm Hg mol b g b g b 95 kg DF b g L STP kg DF g References: Air 25° C , C 3 H 6O l , 35° C , DF 35° C b. Substance nin H$ in DF 95 0 95 86.1 0 8.6 — — 77.5 32.3 dC i 171.6 0.70 bg Ob vg C 6 H 14 O l C 6 H 14 171.6 Air z Ta1 25 H$ A(v) = zd 86 Cp i l dT + ∆H$ v + 35 nout p air dT zd 49 Cp i dT , v H$ out d 0.129 d T i − 35i 1.33 T f 2 − 35 b f2 ∆H = i i out ⇒ z i g d 25 dC i Ta1 = 120° C ⇒ p z air Ta1 25 dT = dC i z i = 126.4 T f 2 − 35 + 111 . (T f 2 − 35) + 26234 . − 171.6 in Ta1 n in mol H$ in kJ/mol 86 ∑ n H$ − ∑ n H$ i n in kg H$ in kJ/kg H$ DF = C p T − 35 Energy balance c. = 405 . d i 1275 . T f 2 − 35 + 2623.4 p air dT 1716 . d i = 2.78 kJ mol ⇒ T f 2 − 35 ° C = −168 . °C 8- 29 http://librosysolucionarios.net Ta 1 25 dC i p air dT =0 8.54 (cont’d) T&E T&E d. T f 2 = 34° C ⇒ Ta1 = 506° C , T f 2 = 36° C ⇒ Ta1 = 552° C e. 8.55 In an adiabatic system, when a liquid evaporates, the temperature of the remaining condensed phase drops. In this problem, the heat transferred from the air goes to (1) vaporize 90% of the acetone in the feed; (2) raise the temperature of the remaining wet film above what it would be if the process were adiabatic. If the feed air temperature is above about 530 °C, enough heat is transferred to keep the film above its inlet temperature of 35 °C; otherwise, the film temperature drops. b g Tset p = 200 psia ≈ 100° F (Cox chart – Fig. 6.1-4) a. Basis: 3.00 × 10 3 SCF 1 lb - mole = 8.357 lb ⋅ mole h C 3 H 8 h 359 SCF 8.357 lb-mole C3 H8 (v)/h 200 psia, 100o F 8.357 lb-mole C3 H8 (l)/h 200 psia, 100o F Q& m(lb & - mole H 2O(l) / h 70o F m(lb & - mole H 2O(l) / h 85o F The outlet water temperature is 85o F. It must be less than the outlet propane temperature; otherwise, heat would be transferred from the water to the propane near the outlet, causing vaporization rather than condensation of the propane. b. Energy balance on propane: B & = − n& ∆H$ = 8.357 lb − moles −18.77 kJ 0.9486 Btu 453.593 mol = −6.75 × 104 Btu Q& = ∆ H v h h mol kJ 1 lb ⋅ mole Table B.1 Energy balance on cooling water: Assume no heat loss to surroundings. & p ∆T ⇒ m& = Q& = ∆H& = mC 6.75 ×104 Btu lb m ⋅°F 1.0 Btu 15 °F h 8.56 = 4500 lbm cooling water h m& 2 [kg H2 O(v)/h]@100o C, 1 atm o 1000 kg/h, 30 C 0.200 kg solids/kg 0.800 kg H2 O(l)/kg m& 3 (kg/h) @ 100 o C 0.350 kg solids/kg 0.650 kg H2 O(l)/kg m& 1 [ kg H 2 O(v) / h], 1.6 bar, sat'd a. Solids balance: 200 = 0.35m3 b H 2 O balance: 800 = m2 + 0.65 5714 . m& 1 [ kg H 2 O(l) / h], 1.6 bar, sat'd g ⇒ m3 = 571.4 kg h slurry bg ⇒ m2 = 428.6 kg h H 2 O v 8- 30 http://librosysolucionarios.net 8.56 (cont’d) References: Solids (0.01°C), H 2 O (l, 0.01o C) Substance m & in Solids H2O l 200 800 — bg H Ob v g 2 H 2 O , 1.6 bar E.B. Q = ∆H = H$ in 62.85 125.7 — m &1 200 571.4 428.6 m &1 2696.2 ∑ m& Hˆ − ∑ m& Hˆ i i i out H$ out 209.6 419.1 2676 m & out i & ( kg h ) H$ H 2O from steam tables m b H$ kJ kg g 475.4 & 1 = 592 kg steam h = 0 ⇒ 1.315 × 106 − 2221m& 1 = 0 ⇒ m in b. ( 592.0 − 428.6 ) = 163 c. The cost of compressing and reheating the steam vs. the cost of obtaining it externally. 8.57 Basis: 15,000 kg feed/h. kg h additional steam A = acetone, B = acetic acid, C = acetic anhydride Q c (kJ/h) 2 n 1 (kg A(v )/h) n (kg A(l )/h) condenser 1 329 K 303 K 15000 kg/h 0.46 A 0.27 B 0.27 C 348 K, 1 atm n 1 (kg A(l )/h) 303 K still 1% of A in feed n 2 (kg A(l )/h) n 3 (kg B(l )/h) Q r (kJ/h) n 4 (kg C(l )/h) 398 K reboiler a. b gb gb g n& 2 = 001 . 0.46 15,000 kg h = 69 kg A h b gb g Acetic anhydride balance: n& = b 027 . gb15, 000g = 4050 kg h Acetone balance: b 046 . gb15,000g = n + 69 ⇒ n = 6831 kg h ` Acetic acid balance: n& 3 = 0.27 15,000 = 4050 kg B h 4 1 1 ⇓ Distillate product: 6831 kg acetone h 8169 kg h 0.8% acetone Bottoms product: 69 + 4050 + 4050 kg h = 49.6% acetic acid 49.6% acetic anhydride b b. g Energy balance on condenser 8- 31 http://librosysolucionarios.net 8.57 (cont’d) b g b g b C 3 H 6 O v , 329 K → C 3 H 6 O l, 329 K → C 3 H 6 O l, 303 K b z g 303 g C dT = −520.6 + b2.3gb−26g = −580.4 kJ kg b2 × 6831gkg −580.4 kJ = −7.93 × 10 kJ h = ∆H& = n& ∆H$ = ∆H$ = − ∆H$ v 329 K + pl 329 Q& c c. 6 h kg Overall process energy balance Reference states : A(l), B(l), C(l) at 348 K (All H$ m = 0 ) H$ in n& in Substance n& out H$ out b g — 0 6831 –103.5 — 0 69 115.0 A b l, 398 Kg — 0 4050 109.0 B b l, 398 Kg — 0 4050 113 C b l, 398 Kg J C ≈ b 4 × 12g + b 6 × 18g + b 3 × 25g Acetic anhydride (l): mol⋅° C A l, 303 K p n& in kg/h H$ in kJ/kg 1 mol 103 g 1 kJ 102.1 g 1 kg 103 J = 2.3 kJ kg⋅° C $ H T = C p T − 348 (all substances) bg b g Q& = ∆H& ⇒ Q& c + Q& r = ∑ n& H$ − ∑ n& H$ i out i i in i ⇒ Q& r = −Q& c + ∑ n& H$ = e7.93 × 10 i i 6 out A=0 = 813 . × 106 kJ h (We have neglected heat losses from the still.) d. H 2 O (saturated at ≈ 11 bars): ∆H$ v = 1999 kJ kg (Table 8.6) 813 . × 106 kJ h Q& r = n& H2 O ∆H$ v ⇒ n& H 2O = = 4070 kg steam h 1999 kJ kg 8.58 Basis : 5000 kg seawater/h a. S = Salt n 3 (kg H2 O(l )/h @ 4 bars) 2738 kJ/kg 5000 kg/h @ 300 K 0.035 S 0.965 H 2O( l) 113.1 kJ/kg n 5 (kg H2 O(l )/h @ 4 bars) 605 kJ/kg b. S balance on 1st effect: n 4 kg H 2 O(v )/h @ 0.2 bars 2610 kJ/kg n 2 (kg H 2 O(v )/h @ 0.6 bars) 2654 kJ/kg n 1 (kg/h @ 0.6 bars) 0.055 S 0.945 H 2O( l) 360 kJ/kg . gb5000g = 0055 . n& b0035 1 n 3 (kg/h @ 0.2 bars) x (kg S/kg) (1 – x) (kg H2 O(l )/hr) 252 kJ/kg n 2 (kg H 2O(l )/h @ 0.6 bars) 360 kJ/kg ⇒ n& 1 = 3182 kg h Mass balance on 1st effect: 5000 = 3182 + n& 2 ⇒ n& 2 = 1818 kg h 8- 32 http://librosysolucionarios.net j + 2.00 × 105 kJ h 8.58 (cont’d) Energy balance on 1st effect: b gb g b gb g b gb = 2534 kg H Ob v g h g b gb g ∆H& = 0 ⇒ n& 2 2654 + n& 1 360 + n& 5 605 − 2738 − 5000 1131 . =0 n& 5 n&1 = 3182 n&2 =1818 c. 2 Mass balance on 2nd effect: 3182 = n& 3 + n& 4 (1) b∆H = 0g bn gb2610g + bn gb252g + bn gb360 − 2654g − bn gb360g = 0 E n = 3182, n = 1818 Energy balance on 2nd effect: 4 3 2 1 1 2 5.316 × 106 = 252 n3 + 2610n4 (2) Solve (1) and (2) simultaneously: n& 3 = 1267 kg h brine solution bg n& 4 = 1915 kg h H 2 O v b g Production rate of fresh water = n& 2 + n& 4 = 1818 + 1915 = 3733 kg h fresh water b gb g Overall S balance: 0035 . 5000 = 1267 x ⇒ x = 0138 . kg salt kg d. e. The entering steam must be at a higher temperature (and hence a higher saturation pressure) than that of the liquid to be vaporized for the required heat transfer to take place. n 5 (kg H 2 O(v )/h) 2738 kJ/kg 5000 kg/h 0.035 S 0.965 H 2O( l) 113.1 kJ/kg 3733 kg/h H 2 O(v ) @ 0.2 bar 2610 kJ/kg n 1 (kg brine/h @ 0.2 bar 252 kJ/kg Q3 n 5 (kg H 2 O(l )/h) 605 kJ/kg Mass balance: 5000 = 3733 + n& 1 ⇒ n&1 = 1267 kg h d∆H& = 0i b3733gb2610 g + b1267gb252g + n& b605 − 2738g − b5000gb113.1g = 0 ⇒ n& = 4452 kg H O bv g h Energy balance: 5 5 2 Which costs more: the additional 1918 kg/hr fresh steam required for the single-stage process, or the construction and maintenance of the second effect? 8- 33 http://librosysolucionarios.net 8.59 a. b0.035gb5000g = 583 kg h Salt balance: x L7 n& L 7 = x L1n& L1 ⇒ n& L1 = 030 . Fresh water produced: n L 7 − n L1 = 5000 − 583 = 4417 kg fresh water h b. Final result given in Part (d). c. Salt balance on i th effect: b g bx g n& Li x Li = n& L i+ 1 bn& g bx g L i +1 ⇒ x Li = L i +1 n& θ Li L i +1 (1) Energy balance on i th effect: b g e H$ j ∆H& = 0 ⇒ n& vi H$ vi + n& v ⇒ bn& g v L −1 = b g e H$ j + n& H$ − b n& g e H$ j e H$ j − e H$ j L −1 n& vi H$ vi v Li v n& Li Li v i −1 L i −1 + n& Li H$ Li − n& L L i +1 L i −1 b g effect: = b n& g + bn& g ⇒ bn& g Mass balance on i − 1 L −1 L L +1 L L +1 b g e H$ j − n& v L −1 v L −1 =0 (2) i +1 L −1 th L i −1 b g = n& Li − n& v (3) i −1 d. Fresh steam Effect 1 Effect 2 Effect 3 Effect 4 Effect 5 Effect 6 Effect (7) P (bar) 2.0 0.9 0.7 0.5 0.3 0.2 0.1 1.0 T (K) 393.4 369.9 363.2 354.5 342.3 333.3 319.0 300.0 nL (kg/h) --584 1518 2407 3216 3950 4562 5000 xL --0.2997 0.1153 0.0727 0.0544 0.0443 0.0384 0.0350 8- 34 http://librosysolucionarios.net nV (kg/h) 981 934 889 809 734 612 438 --- HL (kJ/kg) 504.7 405.2 376.8 340.6 289.3 251.5 191.8 113.0 HV (kJ/kg) 2706.3 2670.9 2660.1 2646.0 2625.4 2609.9 2584.8 --- 8.60 a. dC i = dC i p p v l b g ≈ dC i = 20 cal (mol⋅° C) ; Cv p v v b − R ≈ 10 − 2 g molcal⋅° C = 8 cal (mol⋅° C) b. n 0 (mol N2 ) n 0 (mol N2 ) o 3.00 L@ 93 C, 1 atm n 2 [mol A(v)] 85o C, P(atm) n 1 (mol A(l) n 3 [mol A(l)] o 85o C, P(atm) 0.70 mL, 93 C n0 = 3.00 L n1 = 70.0 mL b 273 K 1 mol = 0100 . mol N 2 273 + 93 K 22.4 L STP g b g bg 0.90 g 1 mol = 15 . mol A l mL 42 g Energy balance ⇒ ∆U = 0 ⇒ ∑ n U$ − ∑ n U$ i i i out c. i =0 in b g b gb References: N 2 g , A l 85° C, 1 atm g nin U$ in nout U$ out 010 . 398 . 010 . 0 n in mol 15 . 160 n3 0 U$ in cal mol − − n2 20050 Substance N2 Al Av bg bg b g b g b g Ab v, 85° Cg: U$ = 20b 90 − 85g + 20,000 + 10b85 − 90g = 20050 cal mol ∆U = 0 ⇒ n b 20050 g − b010 . gb 398 . g − b15 . gb160 g = 0 ⇒ n = 0.012 mol A evaporate A l, 93° C and N 2 g, 93° C : U$ = Cv 93 − 85 A( v ) v1 0.012 mol A 42 g A ⇒ d. v1 mol A = 051 . g evaporate Ideal gas equation of state P= bn 0 g + n2 RT V = 0.112 mol 3.00 liters b273 + 85gK 0.08206 L ⋅ atm = 1.097 atm mol ⋅ K Raoult’s law b g p ∗A 85° C = y A P = n2 0.012 mol 1097 . atm P= = 0.117 atm 0.112 mol n0 + n2 8- 35 http://librosysolucionarios.net b= 89.3 mmHgg 8.61 (a) i) Expt 1 ⇒ FG mIJ HVK = b 4.4553 − 3.2551gkg = 0.600 kg ⇒ b SG g 2.000 L liquid L b liquid = 0.600 g ii) Expt 2 ⇒ Mass of gas = 3.2571 − 3.2551 kg = 0.0020 kg = 2.0 g Moles of gas = b Molecular weight = 2.0 g iii) Expt. 1 ⇒ n = b liquidg b763 − 500gmm Hg 2.000 L 273 K 363 K 1 mol = 0.0232 mol 22.4 liters STP b g 760 mm Hg g b0.0232 mol g = 86 g mol 2.000 liters 10 3 cm 3 1 liter 0.600 g 1 mol = 14 mol cm 3 86 g Energy balance: The data show that Cv is independent of temperature Q = ∆U = nC v ∆T b g liquid = b g liquid ≡ 24 J mol ⋅ K ⇒ Cv ⇒ Cv Q 800 J = = 24 J mol ⋅ K@ 284.2 K n∆T 14 mols 2.4 K b gb g 800 J = b14 molsgb 2.4 Kg = 24 J mol ⋅ K@331.2 K bg Expt. 2 ⇒ n = 0.0232 mol from ii b vapor g L MN T Cv = a + bT ⇒ Q = 0.0232 T 2 (a + bT ) dT = 0.0232 a ( T2 − T1) + 1 b 2 (T2 − T12 ) 2 b LM OU (3669 . − 363.0 ) P | 2 N Q |V ⇒ a = −4.069 b L O b = 0.05052 1.30 J = 0.0232 Ma(492.7 - 490.0) + (492.7 − 490.0 )P | 2 N Q |W ⇒ bC g (J / mol ⋅ K) = −4.069 + 0.05052 T b Kg 1.30 J = 0.0232 a(366.9 - 363.0) + 2 2 2 2 v vapor iv) Liquid: C p ≈ Cv ≡ 24 J mol ⋅ K Vapor: Assuming ideal gas behavior, C p = Cv + R = Cv + 8.314 J mol ⋅ K b g bg ⇒ C p J mol ⋅ K = 4.245 + 0.05052 T K v) Expt. 3 ⇒ T T T T b g = 315K , p ∗ = 763 − 564 mm Hg = 199 mm Hg = 334K , p ∗ = 401 mm Hg = 354K , p ∗ = 761 mm Hg = 379K , p ∗ = 1521 mm Hg 8-36 http://librosysolucionarios.net O PQ 8.61 (cont’d) Plot p ∗ (log scale) vs. 1 T (linear scale); straight line fit yields −3770 ln p ∗ = + 17.28 or p ∗ = 3196 . × 10 7 exp − 3770 T T K b bg g b g 1 17 .28 − ln 760 = = 2 .824 × 10 − 3 K −1 ⇒ Tb = 354 K A T 3770 Part v b vi) p ∗ = 760 mm Hg ⇒ vii) ∆H$ v = 3770 K ⇒ ∆H$ v = 3770 K 8.314 J mol ⋅ K ⇒ ∆H$ v = 31,300 J mol R PartA v b g b gb g 3.5 L feed 273 K 1 mol = 0.0836 mol s feed gas s 510 K 22.4 l STP Let A denote the drug b g (b) Basis: . 0.0836 mol/s @ 510 K 0.20 A 0.80 N 2 n 1 [mol A(v)/s] n. 2 [mol N 2/s] T(K), saturated with A . Q(kW) n 3 (mols A(l )/s), 90% of A in feed T(K) b gb g 90% condensation: n& = b0.900gb0.200 × 0.0836 g = 0.01505 mol Abl g s n& = b0.100gb0.200 × 0.0836g = 1.67 × 10 mol Abv g s N 2 balance: n&2 = 0.800 0.0836 mol s = 0.0669 mol N 2 s 3 −3 1 Partial pressure of A in outlet gas: pA = b n&1 1.67 × 10 −3 mol P= ( 760 mm Hg) = 18.5 mm Hg = p∗A T n&1 + n& 2 0.0686 mol bg g E Part (a) - (v) 1 17.28 − lnb18.5g = = 3.81 × 10 T −3 K −1 3770 ⇓ T = 262 K bg (c) Reference states: N2 , A l at 262 K substance n&in H$ in n& out H$ out N2 0.0669 7286 0.0669 0 n& in mol s −3 Av 0.0167 37575 1.67 × 10 31686 H$ in J mol Al − − 0.01505 0 bg bg 8-37 http://librosysolucionarios.net 8.61 (cont’d) b g N 2 510 K : H$ N2 (510 K) - H$ N 2 ( 262 K) = H$ N 2 (237o C) - H$ N 2 (−11o C) Table B.8 B = [6.24 - (-1.05)] kJ / mol = 7.286 kJ / mol = 7286 J / mol b g b g A(v, 262K): H$ = C pl Tb − 262 + ∆H$ v 359K + Part (a) results for Tb , C pl , C pv , ∆H$ v 262 Tb Cpv dT L T O H$ = 24b354 − 262g + 31300 + M4.245 + 0.05052 P = 31686 J mol 2 Q N A(v, 510K): H$ = C bT − 262g + ∆H$ b354K g + C dT = 37575 J mol 2 262 354 510 pl b v Tb pv −1060 J s 1 kW cooling Energy balance: Q& = ∆H& = ∑ ni H$ i − ∑ ni H$ i = = 1.06 kW −103 kJ s out in 8.62 a. Basis: 50 kg wet steaks/min D.M. = dry meat m1 (kg H 2 O(v )/min) (96% of H 2 O in feed) 60°C 50 kg/min @ –26°C 0.72 H 2O( s) 0.28 D.M. Q(kW) m2 (kg D.M./min) m3 (kg H 2 O(l )/min) 50°C 96% vaporization: m& 1 = 0.96 0.72 × 50 kg min = 34 .56 kg H 2 O v min b g bg m& = 0.04b0.72 × 50 kg ming = 1.44 kg H O bl g min Dry meat balance: m& = b0.28gb50g = 14.0 kg D.M. min Reference states: Dry meat at −26° C , H Ob l, 0° Cg 3 2 2 2 substance m& in H$ in m & out H$ out dry meat 14.0 0 14.0 105 − − b H 2 O s, − 26° C g 36.0 −390 m & in kg min H$ in kJ kg b g − − 1.44 209 H Obv , 60° Cg − − 34.56 2599 1.38 kJ 76° C Dry meat: H$ b50° Cg = C 50 − b− 26g = = 105 kJ kg kg ⋅ C° H Obs, − 26° Cg: H Obl , 0° Cg → H Obs, 0° Cg → H Obs, − 26° Cg H 2 O l , 50° C 2 p 2 2 2 2 8-38 http://librosysolucionarios.net 8.62 (cont’d) z b g −26 ∆H$ = − ∆H$ m 0° C + C p dT = −6.01 kJ 1 mol 10 3 g 2.17 kJ −26° C = −390 kJ kg 18.02 g 1 kg + kg⋅° C mol A 0 Table B.1 b g b g b b50 − 0g° C H 2 O l, 50° C : H 2 O l , 0° C → H 2 O l , 50° C z 0.0754 kJ 50 $ ∆H = C pdT = mol ° C 1 mol b g b 1000 g 1 kg = 209 kJ kg 18.02 g A Table B.2 0 g g b g b g b H 2 O v , 60° C : H 2 O l , 0° C → H 2 O l , 100° C → H 2 O v , 100° C → H 2O v, 60° C 0.0754 kJ ∆H$ = mol⋅° C b100 − 0g° C A + 40.656 Ad Table B.2 = kJ + mol Table B.1 ∆H$ v 46.830 kJ 1 mol 1000 g mol 18.02 g 1 kg zd 60 100 i Cp i H 2 O(v) A g dT Table B.2 = 2599 kJ kg Energy balance: Q = ∆H = ∑ m H$ − ∑ m H$ i out i i i = 1.06 × 105 kJ 1 min min in 60 s 1 kW 1 kJ s = 1760 kW 8.63 Basis: 20,000 kg/h ic e crystallized. S = solids in juice. W = water . Qf preconcentrate . . m 1 (kg/h) juice m 2 (kg/h) freezer 0.12 solids(S) x 2 (kg S/kg) 0.88 H 2O( l )(W) (1 – x 2) (kg W/kg) 20°C . Slurry(10% ice), –7°C m 5 (kg/h) product filter 20,000 kg W(s )/h 0.45 kg S/kg . m4 kg residue/h 0.55 kg W/kg 0.45 kg S/kg 20,000 kg W(s )/h . 0.55 kg W( l )/kg m 4 (kg/h), 0.45 S, 0.55 W . m 3 (kg/h), 0°C separator 0.45 kg S/kg 20,000 kg W( s )/h 0.45 kg W( l )/kg 20000 10 = ⇒m & 4 = 180000 kg h concentrate leaving freezer &4 m 90 & 1 = 27273 kg h feed m Overall S balance: 012 . m& 1 = 0.45m &5 ⇒ & m5 = 7273 kg h concentrate product &1 = m & 5 + 20000 Overall mass balance: m (a) 10% ice in slurry ⇒ UV W Mass balance on filter: 20000 + m& 4 + m& 5 + 20000 + m& 6 ⇒ & 4 =180000 m m & 5 = 7273 m& 6 = 172730 kg h recycle Mass balance on mixing point: & 2 = 2.000 × 105 kg h preconcentrate 27273 + 172730 = m& 2 ⇒ m 8-39 http://librosysolucionarios.net 8.63 (Cont’d) S balance on mixing point: 0.12 27273 + 0.45 172730 = 2.000 × 10 5 X 2 ⇒ X 2 ⋅ 100% = 40.5% S b gb g b gb g (b) Draw system boundary for every balance to enclose freezer and mixing point (Inputs: fresh feed and recycle streams; output; slurry leaving freezer) bg Refs: S, H2 O l at −7° C & out substance m& in H$ in m H$ out & kg h 12% soln 27273 108 − − m $ 45% soln 172730 28 180000 0 H kJ kg H 2O s − − 20000 −337 b b bg bg b g g b g g b g Solutions : H$ T = 4.00 T − −7 kJ kg Ice: H$ = − ∆H$ m −T ° C ≈ − ∆H$ m 0° C = −6.0095 kJ mol ⇒ −337 kJ kg D Table B.1 −1.452 × 10 7 kJ 1h 1 kW E.B. Q& c = ∆H& = ∑ m & i H$ i − ∑ m & i H$ i = = −4030 kW h 3600 s 1 kJ s out in d 8.64 a. B=n-butane, I=iso-butane, hf=heating fluid. ( C ) = 2.62 kJ / kg⋅o C p hf 24.5 kmol/h @ 10o C, P (bar) 0.35 kmol B(l)/h i 24.5 kmol/h @ 180o C 0.35 kmol B(l)/h Q& ( kW) o m& (kg HF / h), T( C) m& (kg HF / h), 215 o C From the Cox chart (Figure 6.1-4) d i d i p *B 10 o C = 22 psi, pI* 10 o C = 32 psi FG 1.01325 bar IJ = 196 H 14.696 psi K . bar p min = p B + p I = x B p *B + x I p I* = 28.5 psi b. d i $ d i $ d i Hv H1 B l, 10 o C ∆ → B v, 10 o C ∆ → B v, 180 o C d i $ d i $ d Hv H2 I l, 10 o C ∆ → I v, 10 o C ∆ → I v, 180o C i Assume temperature remains constant during vaporization. Assume mixture vaporizes at 10o C i.e. won’t vaporize at respective boiling points as a pure component. 8-40 http://librosysolucionarios.net 8.64 (cont’d) References: B(l, 10o C), I(l, 10o C) substance n& in mol / h H$ in kJ / mol B (l) 8575 0 B (v) --I (l) 15925 0 I (v) --- b z z g b b g g n& out mol / h -8575 -15925 b H$ out kJ / mol -42.21 -41.01 g d H$ i = d∆H$ i + d C i = 42.21 kJ / mol d H$ i = d∆H$ i + dC i = 41.01 kJ / mol ∆H = ∑ n H$ − ∑ n H$ = 8575b42.21g − 15825b41.01g out v B out v I i B p 10 180 I p 10 i out 180 i B I i in ∆H& = 1.015 × 10 6 kJ / h c. d & hf 2.62 kJ / kg⋅o C Q = 1015 . × 10 6 kJ / h = m i b215 − 45g C o m& hf = 2280 kg / h d. . × 10 b2540 kg / hg 2.62 kJ / d kg⋅ Ci b215 − 45g C = 1131 o o 6 kJ / h Heat transfer rate = 1131 . × 10 6 − 1015 . × 10 6 = 116 . × 10 5 kJ / h e. The heat loss leads to a pumping cost for the additional heating fluid and a greater heating cost to raise the additional fluid back to 215o C. f. Adding the insulation reduces the costs given in part (e). The insulation is probably preferable since it is a one-time cost and the other costs continue as long as the process runs. The final decision would depend on how long it would take for the savings to make up for the cost of buying and installing the insulation. 8.65 (a) Basis: 100 g of mixture, SGBenzene=0.879: SG Toluene=0.866 50 g 50 g + = (0.640 + 0.542 ) mol = 1183 . mol 78.11 g / mol 92.13 g / mol 50 g 50 g = + = 114.6 cm 3 3 3 0.879 g / cm 0.866 g / cm n total = Vtotal dx i f C6 H 6 = 0.640 mol C 6H 6 = 0.541 mol C6 H6 mol 1.183 mol Actual feed: 32.5 m 3 106 cm 3 h 1 m 3 1183 . mol mixture 1h 3 114.6 cm mixture 3600 s = 93.19 mol / s T = 90° C ⇒ p ∗C6 H 6 = 1021 mm Hg , pC∗ 7 H8 = 407 mm Hg (from Table 6.1-1) b gb g b gb g Raoult's law: p tot = x C 6 H6 pC∗ 6 H6 + x C7 H8 p ∗C7 H8 = 0.541 1021 + 0.459 407 = 739.2 mmHg 1 atm = 0.973 atm ⇒ P0 > 0.973 atm 760 mmHg 8-41 http://librosysolucionarios.net 8.65 (cont’d) (b) T = 75° C ⇒ pC∗ 6 H6 = 648 mm Hg , pC∗ 7 H8 = 244 mm Hg (from Table 6.1-1) b gb g b gb g Raoult's law ⇒ p tank = xC 6 H6 pC∗ 6 H6 + xC7 H 8 p ∗C7 H 8 = 0.439 648 + 0.561 244 b g = 284 + 137 mm Hg = 421 mmHg ⇒ Ptank = 0.554 atm yC 6 H6 = bg 284 mm Hg = 0.675 mol C6 H 6 v mol 421 mm Hg n v (mol/s), 75°C 0.675 C 6H 6 (v ) 0.554 atm 0.325 C 7H 8 (v ) n L (mol/s), 75°C 0.439 C6 H6 (l ) 0.541 C7H8 (l ) 93.19 mol/s 0.541 C 6H 6 (l ) 0.459 C 7 H 8 (l ) 90°C, P0 atm UV W nv = 40.27 mol vapor s Mole balance: 93.19 = nv + n L ⇒ n L = 52.92 mol liquid s C 6H 6 balance: 0.541 93.19 = 0.675nv + 0.439 n L b gb g bg bg (c) Reference states: C 6H 6 l , C6 H6 l at 75° C Substance n&in H$ in H$ out n& out b g − − 27.18 31.0 n& in mol s C H bl g 50.41 2.16 23.23 0 H$ in kJ mol C H b vg − − 13.09 35.3 C H bl g 42.78 2.64 29.69 0 C H bl , 90° Cg: H$ = b0144 . gb90 − 75g = 2.16 kJ mol C H bl , 90° Cg: H$ = b 0176 . gb90 − 75g = 2.64 kJ mol C H bv , 75° Cg: H$ = b0.144gb801 . − 75g + 30.77 + 0.074 + 0.330 × 10 A C6H6 v 6 6 7 8 7 8 6 6 7 8 6 6 −3 75 b ∆H$ v 80 .1 °C 80.1 g T dT = 31.0 kJ mol b g b gb g C 7 H 8 v , 75° C : H$ = 0.176 110.6 − 75 + 33.47 + 75 110.6 0.0942 + 0.380 × 10 −3 T dT = 35.3 kJ mol Energy balance: Q& = ∆H& = ∑ n& H$ − ∑ n& H$ i out i i in i = 1082 kJ 1 kW = 1082 kW s 1 kJ s (d) The feed composition changed; the chromatographic analysis is wrong; the heating rate changed; the system is not at steady state; Raoult’s law and/or the Antoine equation are only approximations; the vapor and liquid streams are not in equilibr ium. (e) Heat is required to vaporize a liquid and heat is lost from any vessel for which T>Tambient. If insufficient heat is provided to the vessel, the temperature drops. To run the experiment isothermally, a greater heating rate is required. 8-42 http://librosysolucionarios.net 8.66 a. Basis: 1 mol feed/s nV mol vapor/s @ T, P 1 mol/s @ TFo C y mol A/mol (1-y) mol B/mol xF mol A/mol (1-xF) mol B/mol nL mol vapor/s @ T, P vapor and liquid streams in equilibrium x mol A/mol (1-x) mol B/mol bg b g bg x ⋅ p bT g = y ⋅ P = x ⋅ p bTg ⇒ y = Raoult's law ⇒ x ⋅ p ∗A T + 1 − x ⋅ p ∗B T = P ⇒ x = pA bg bT g − p bT g P − p ∗B T p ∗A (1) ∗ B ∗ A ∗ A (2) P Mole balance: 1 = n& L + n&V ⇒ n&V = 1 − n& L (4) b gb g for n v from (4) A balance: x F 1 = y ⋅ n&V + x ⋅ n& L Substitute → n& L = Energy balance: ∆H& = ∑ n& H$ − ∑ n& H$ i i i out in A 6.84471 6.88555 B 1060.79 1175.82 C 231.541 224.867 xF Tf(deg.C) P(mm Hg) HAF(kJ/mol) HBF(kJ/mol) 0.5 110 760 16.6 18.4 0.5 110 1000 16.6 18.4 0.5 150 1000 24.4 27.0 T(deg.C) pA*(mm Hg) pB*(mm Hg) x y nL(mol/s) nV(mol/s) HAL(kJ/mol) HBL(kJ/mol) HAV(kJ/mol) HBV(kJ/mol) DH(kJ/s) 51.8 1262 432 0.395 0.656 0.598 0.402 5.2 5.8 31.4 42.4 -0.01 60.0 1609 573 0.412 0.663 0.649 0.351 6.8 7.6 32.5 43.7 -0.01 62.3 1714 617 0.349 0.598 0.394 0.606 7.3 8.0 32.8 44.1 -0.01 i y − xF y− x (3) =0 (5) b. Tref(deg.C) = 25 Compound n-pentane n-hexane al 0.195 0.216 av 0.115 0.137 8-43 http://librosysolucionarios.net bv 3.41E-04 4.09E-04 Tbp 36.07 68.74 DHv 25.77 28.85 8.66 (cont’d) c. C* C* 1 C* C* C* C* 2 20 25 3 30 PROGRAM FOR PROBLEM 8.66 IMPLICIT REAL (N) READ (5, 1) A1, B1, C1, A2, B2, C2 ANTOINE EQUATION COEFFICIENTS FOR A AND B FORMAT (8F10.4) READ (5, 1) TRA, TRB ABRITARY REFERENCE TEMPERATURES (DEG.C.) FOR A AND B READ (5, 1) CAL, TBPA, DHVA, CAV1, CAV2 READ (5, 1) CBL, TBPB, DHVB, CBV1, CBV2 CP(LIQ, KS/MBL-DEG.C.), NORMAL BOILING POINT (DEG.C), HEAT OF VAPORIZATION (KJ/MOL), COEFFICIENTS OF CP(VAP., KJ/MOL-DEG.C) = CV1 + CV2*T(DEG.C) READ (5, 1) XF, TF, P MOLE FRACTION OF A IN FEED, FEED TEMP.(DEG.C), EVAPORATOR PRESSURE (MMHG) WRITE (6, 2) TF, XF, P FORMAT (1H0, 'FEEDbATb', F6.1, 'bDEG.CbCONTAINSb', F6.3,' bMOLESbA/MOLEbT *OTAL'//1X'EVAPORATOR bPRESSUREb=', E11.4, 'bMMbHG'/) ITER = 0 DT = 0.5 HAF = CAL*(TF – TRA) HBF = CBL*(TF – TRB) F1 = XF*HAF + (1.0 – XF)*HBF F2 = CAL*(TBPA – TRA) + DHVA – CAV1*TBPA – 0.5*CAV2*TBPA**2 F3 = CBL*(TBPB – TRB) + DHVB – CBV1*TBPB – 0.5*CBV2*TBPB**2 T = TF INTER = ITER + 1 IF(ITER – 200) 30, 30, 25 WRITE (6, 3) FORMAT (1H0, 'NO CONVERGENCE') STOP PAV = 10.0** (A1 – B1/(T + C1)) PAV = 10.0** (A2 – B2/(T + C2)) XL = (P – PBV)/(PAV – PBV) XV = XL*PAV/P NL = (XV – XF)/(XV – XL) NV = 1.0 – NL IF (XL.LE.00.OR.XL.GE.1.0.OR.NL.LE.0.0.OR.NL.GE.1.0) GO TO 45 HAL = CAL*(T – TRA) HBL = CBL*(T – TRB) HAV = F2 + CAV1*T + 0.5*CAV2*T**2 HBV = F3 + CBV1*T + 0.5*CBV2*T**2 8-44 http://librosysolucionarios.net 8.66(cont’d) DELH = NL *(XL*HAL + (1.0 – XL)*HBL) + NV*(XV*HAV + (1.0 – XV)*HBV) – F1 WRITE (6, 4) T, NL, NV, DELH 4 FORMAT (1H b, 5X' Tb=', F6.1, 3X' NLb=', F7.4, 3X' NVb=', F7.4, 3X'DELHb =',* E11.4) WRITE (6, 5) PAV, PBV, XL, HAL, HBL, XV, HAV, HBV 5 FORMAT (1H b, 5X' PAV, PBVb=', 2F8.1, 3X' XL, HAL, HBLb=', F7.4, 2E13.4,3X' XV, HAV, HBVb=', F7.4, 2E13.4/) IF (DELH) 50, 50, 40 40 DHOLD = DELH TOLD = T 45 T = T – DT GO TO 20 50 T = (T*DHOLD – TOLD*DELH)/(DHOLD – DELH) PAV = 10.0**(A1 – B1/(T + C1)) PBV = 10.0**(A2 – B2/(T + C2)) XL = (P – PBV)/(PAV – PBV) XV = XL * PAV/P NL = (XV – XF)/(XV – XL) NV = 1.0 – NL WRITE (6, 6) T, NL, XL, NV, XV 6 FORMAT (1H0, 'PROCEDUREbCONVERGED'//3X'EVAPORATORb TEMPERATUREb=', F6. *1//3X' LIQUIDbPRODUCTb--', F6.3, 'bMOLEbCONTAININGb', F6.3, 'bMOLEbA/ *MOLEbTOTAL'//3X' VAPORbPRODUCTb--', F6.3, MOLEbCONTAININGb,' F6.3, *'bMOLEbA/MOLEb TOTAL') STOP END $DATA (Fields of 10 Columns) 6.84471 1060.793 231.541 6.88555 1175.817 224.867 25.0 25.0 0.195 36.07 25.77 0.115 0.000341 0.216 68.74 28.85 0.137 0.000409 0.500 110.0 760.0 Solution: Tevaportor = 52.2° C d i d i n L = 0.552 mol, xC 5H 12 n v = 0.448 mol, x C5 H12 liquid = 0.383 mol C5 H 12 mol liquid vapor = 0.644 mol C5 H 12 mol liquid 8-45 http://librosysolucionarios.net 8.67 Basis: 2500 kmol product 1 kmol condensate = 10,000 kmol h fed to condenser h .25 kmol product . m m& 11(kg/h) , (kg/h)atatT1 T1 1090 kmol/h C3 H8 (v ) 7520 kmol/h i -C 4H10 ( v) 1390 kmol/h n -C 4H10 (v ) saturated vapor at T f, P 1090 kmol/h C 3 H 8 ( l ) 7520 kmol/h i -C H ( l ) P (mm Hg) 1390 kmol/h -C 4H10 ( ) n 4 10 l T out . m1 (kg/h) at 2 T2 (a) Refrigerant: Tout = 0 o C , T1 = T2 = −6o C . Antoine constants C 3H 8 i − C 4H 10 n − C 4 H 10 A 7.58163 6.78866 6.82485 B 1133.65 899.617 943.453 C 283.26 241.942 239.711 Calculate P for Tout = Tbubble pt. P= ∑ x p ( 0°C ) = 0.109( 3797 mm Hg ) + 0.752(1176 mm Hg ) + 0.139( 775 mm Hg) i * i i ⇒ P = 1406 mm Hg Dew pt. T f = Tdp ⇒ f (T f ) = 1 − P ∑ p (T ) = 0 yi i * i trial & error to find T f f Substitute Antoine expressions, use E-Z Solve ⇒ T f = 5.00°C bg bg Refs: C 3H8 l , C 4H10 l at 0 °C, Refrigerant @ –6°C substance C 3H 8 i − C 4H 10 n − C 4 H 10 Refrigerant n&in H$ in n&out 1090 19110 1090 7520 21740 7520 1390 22760 1390 m& 1 0 m& 1 H$ out b g Assume: ∆H$ v Tb , Table B.1 ↓ 0 0 0 n& (kmol/h) H$ (kJ/kmol) 151 m& (kg/h) H$ (kJ/kmol) U| H$ b vapor g = ∆H$ b0° Cg + V C dTbTable B.2g |W 2 z v 4 .95 p 0 UVH$ = ∆H$ W v E.B.: ∆H = ∑ n&i H$ i − ∑ n&i H$ i = 0 ⇒ 151m& 1 − 2.16 × 106 = 0 ⇒ m& 1 = 1.43 × 106 kg h refrigerant out in 8-46 http://librosysolucionarios.net 8.67 (cont’d) (b) Cooling water: Tout = 40° C , T2 = 34 °C , T1 = 25°C P= ∑ x p ( 40°C) = 0.109 (11877 ) + 0.752( 3961) + 0.139( 2831) = 4667 mm Hg i * i i ( ) f Tf = 1 − P bg ∑ ( ) i E-Z Solve yi = 0 ⇒ T f = 45.7° C p*i T f bg bg Refs: C 3H8 l , C 4H10 l @ 40°C, H2 O l @ 25°C. & 1 = 5.74 × 10 6 kg H 2 O / h ∆H& = 0 ⇒ 37 .7m& 1 − 2.17 × 108 = 0 ⇒ m (c) Cost of refrigerant pumping and recompression, cost of cooling water pumping, cost of maintaining system at the higher pressure of Part (b). 8.68 Basis: 100 mol leaving conversion reactor H 2 O(v ) 3.1 bars, sat'd n3 (mol O 2 ) 3.76n 3 (mol N 2 ) H 2 O( l ) 45°C conversion 100 mol, 600°C, 1 atm 145°C 100°C reactor 0.199 mol HCHO/mol n4 (mol H 2 O(v )) 0.0834 mol CH 3OH/mol 0.303 mol N 2/mol n 1 (mol CH 3 OH(l )) n 2 (mol CH3 OH(l )) 0.0083 mol O 2/mol 0.050 mol H 2/mol m w1 (kg H 2 O(l )) m w2 (kg H 2 O(l )) n 8 (mol CH3 OH(l )) 0.356 mol H 2 O( v)/mol 3.1 bars, sat'd 30°C Q(kJ) CH 3 OH(l ), 1 atm, sat'd 2.5n8 (mol CH3 OH) n 6a (mol HCHO) distillation absorption (l ) n 6b (mol CH3 OH(l )) sat'd, 1 atm n 6c (mol H2 O(l )) Product solution 88°C, 1 atm n 7 (mol) 0.37 g HCHO/g ( x 1 mol/min) Absorber off-gas m w3 (kg H 2 O( l )) 0.01 g CH 3OH/g ( x 2mol/min) n5 a (mol N 2 ) 30°C 20oC 0.82 g H 3 O/g (x 3 mol/min) n5 b (mol O 2 ) n5 c (mol H 2 ) n5 d (mol H 2 O(v )), sat'd n5 e (mol HCHO(v )), 200 ppm 27°C, 1 atm a. Strategy C balance on conversion reactor ⇒ n 2 , N 2 balance on conversion reactor ⇒ n 3 H balance on conversion reactor ⇒ n 4 , (O balance on conversion reactor to check consistency) N 2 balance on absorber ⇒ n5a , O 2 balance on absorber ⇒ n5b H 2 balance on absorber ⇒ n5e H 2 O saturation of absorber off - gas ⇒ n5d , n 5b 200 ppm HCHO in absorber off - gas UV W 8-47 http://librosysolucionarios.net 8.68 (cont’d) HCHO balance on absorber ⇒ n6a , CH 3OH balance on absorber ⇒ n6b Wt. fractions of product solution ⇒ x 1 , x 2 , x 3 HCHO balance on distillation column ⇒ n 7 CH 3OH balance on distillation column ⇒ n8 CH 3OH balance on recycle mixing point ⇒ n1 Energy balance on waste heat boiler ⇒ m w1 , E.B. on cooler ⇒ mw2 Energy balance on reboiler ⇒ Q C balance on conversion reactor: n 2 = 19.9 mol HCHO + 8.34 mol CH 3 OH = 28.24 mol CH 3OH N 2 balance on conversion reactor: 3.76n 3 = 30.3 ⇒ n 3 = 8.06 mol O 2 , 3.76 × 8.06 = 30.3 mol N 2 feed H balance on conversion reactor: bg bg bg bg bg bg n 4 2 + 28.24 4 − 19.9 2 + 8.34 4 + 5 2 + 35.6 2 ⇒ n 4 = 20.7 mol H 2O fed O balance: 65.1 mol O in, 65.5 mol O out. Accept (precision error) N 2 balance on absorber: 30.3 = n 5a ⇒ n5a = 30.3 mol N 2 O 2 balance on absorber: 0.83 = n5b ⇒ n5b = 0.83 mol O 2 H 2 balance on absorber: 5.00 = n5c ⇒ n5c = 5.00 mol H 2 H 2 O saturation of off - gas: b g LM N p w* 27° C n5d 26.739 mm Hg yw = = = P 760 mm Hg 30.3 + 0.83 + 5.00 + n5d + n 5e g U| | 200 ppm HCHO in off gas: V| n 200 ⇒ = 2| 36.13 + n + n |W 10 b OP Q ⇒ n5d = 0.03518 3613 . + n5d + n5e 1 solve ⇒ n5d = 1.318 mol H 2 O n5e = 7.49 × 10 −3 mol HCHO 5e 6 5d 5e Moles of absorber off-gas = n5a + n5b + n 5c + n 5e = 37.46 mol off - gas HCHO balance on absorber: 19.9 = n 6a + 7 .49 × 10 −3 ⇒ n 6a − 19.89 mol HCHO CH 3 OH balance on absorber: 8.34 = n 6b ⇒ n 6b = 8.34 mol CH 3OH Product solution U| |V || W %MW Basis-100 g ⇒ 37.0 g HCHO ⇒ 1.232 mol HCHO x 1 = 0.262 mol HCHO mol 1.0 g CH 3 OH ⇒ 0.031 mol CH 3OH ⇒ x 2 = 0.006 mol CH 3OH mol 62.0 g H 2 O ⇒ 3.441 mol H 2 O x 3 = 0.732 mol H 2 O mol 8-48 http://librosysolucionarios.net 8.68 (cont’d) HCHO balance on distillation column (include the condenser + reflux stream within the system for this and the next balance): 19.89 = 0.262 n 7 ⇒ n7 = 75.9 mol product CH 3 OH balance on distillation column: b g 8.34 = 0.006 75.9 + n8 ⇒ n 8 = 7.88 mol CH 3OH CH 3 OH balance on recycle mixing point: n1 + n8 = n2 ⇒ n1 = 28.24 − 7.83 = 20.36 mol CH 3 OH fresh feed Summary of requested material balance results: bg n1 = 20.4 mol CH 3 OH l fresh feed n 2 = 75.9 mol p roduct solution bg n 3 = 7.88 mol CH 3 OH l recycle n 4 = 37.5 mol a bsorber off - gas Waste heat boiler: b g b g bg Refs: HCHO v, 145° C , CH 3 OH v ,145° C ; N 2 , O 2 , H 2 , H 2 O v at 25°C for product b g gas, H 2 O l, triple point for boiler water substance n in H$ in n out H$ out HCHO CH 3OH 19.9 8.34 30.3 0.83 5.0 35.6 22.55 32.02 17.39 18.41 16.81 20.91 19.9 8.34 30.3 0.83 5.0 35.6 0 0 n (mol) 3.51 3.60 H$ (kJ/mol) 3.47 4.09 m w1 566.2 m w1 2726.32 m (kg) H$ (kJ/kg) N2 O2 H2 H2O H2O (boiler) E.B. ∆H = ∑ n H$ − ∑ n H$ i out i i i UVH$ = C dT W U| |VH$ = C bT g T − 25 | |W UVH$ from steam tables W z T p 145 p = 0 ⇒ −1814 + 2160mw1 = 0 ⇒ mw1 = 0.84 kg 3.1 bar steam in 8-49 http://librosysolucionarios.net 8.68 (cont’d) b g Gas cooler: Same refs. as above for product gas, H 2 O l, 30° C for cooling water substance n in H$ in n out H$ out HCHO CH 3OH 19.9 8.34 30.3 0.83 5.0 35.6 0 0 3.51 3.60 3.47 4.09 19.9 8.34 30.3 0.83 5.0 35.6 –1.78 –2.38 2.19 2.24 2.16 2.54 m w2 0 m w2 62.76 N2 O2 H2 H2O H2O (coolant) E.B. ∆H = ∑ n H$ − ∑ n H$ i i i out i n (mol) H$ (kJ/mol) m (kg) H$ (kJ/kg) H$ = 4.184 b g kJ T − 30 ° C kg⋅° C = 0 ⇒ −1581 . + 62 .6mw 2 = 0 ⇒ mw 2 = 2.52 kg cooling water in b gb g Q = −n ∆H$ b1 atm g = − b27.58 molgb35.27 kJ molg Condenser: CH 3OH condensed = n8 + 2.5n8 = 35 . 7.88 = 27 .58 mol CH 3 OH condensed E.B.: b. v = −973 kJ (transferred from condenser) 3.6 × 10 4 tonne / y 10 6 g 1 yr 1d 1 metric ton 350 d 24 h . × 10 b0.37gd 4.286 × 10 i = 1586 ⇒ b0.01gd4.286 × 10 i = 4.286 × 10 b0.62gd 4.286 × 10 i = 2.657 × 10 = 4.286 × 10 6 g h product soln 6 6 g HCHO h ⇒ 5.281 × 10 4 mol HCHO h 6 6 g CH 3 OH h ⇒ 1338 mol CH 3OH h 6 6 g H 2 O h ⇒ 1.475 × 10 5 mol H 2 O h ⇒ 2.016 × 10 5 mol h ⇒ Scale factor = U| V| |W 2.016 × 10 5 mol h = 2657 h −1 75.9 mol 8.69 (a) For 24°C and 50% relative humidity, from Figure 8.4-1, Absolute humidity = 0.0093 kg water / kg DA , Humid volume ≈ 0.856 m 3 / kg DA Specific enthalpy = (48 - 0.2) kJ / kg DA = 47.8 kJ / kg DA , Dew point = 13o C, Twb = 17 o C (b) 24 o C (Tdb ) (c) 13o C (Dew point) (d) Water evaporates, causing your skin temperature to drop. Tskin ≈ 13 o C (Twb ). At 98% R.H. the rate of evaporation would be lower, Tskin would be closer to Tambient , and you would not feel as cold. 8-50 http://librosysolucionarios.net Vroom = 141 ft 3 . DA = dry air. 8.70 mDA = ha = 140 ft 3 lb - mol⋅ o R 29 lb m DA 1 atm = 10.1 lb m DA lb - mol 550 o R 0.7302 ft 3 ⋅ atm 0.205 lb m H 2 O = 0.0203 lb m H 2 O / lb m DA 10.1 lb m DA From the psychrometric chart, Tdb = 90 o F, ha = 0.0903 h r = 67% Tdew point = 77 .3o F 8.71 Tdb = 35° C Tab = 27 ° C 8.72 a. $ = 44.0 − 0.11 ≅ 43.9 Btu / lb DA H m ⇒ h r = 55% He wins Mass of water: hr = 33%, h a = 0.0148 kg H 2 O kg dry air Fig. 8.4-1 Tdb = 40° C, Tdew point = 20° C b. Mass of dry air: m da = c. $ = 14.3 ft 3 / lb DA V m Twb = 80.5 o F ⇒ Twb = 25.5° C 1 m3 2.00 L 1 kg dry air = 2.2 × 10 −3 kg dry air 0.92 m3 ↑ from Fig. 8.4-1 3 10 L 2.2 × 10 −3 kg dry air 0.0148 kg H 2O 10 3 g 1 kg dry air 1 kg = 0.033 g H 2 O b g b g H$ b20° C, saturated g ≈ 57.5 kJ kg dry air (both values from Fig. 8.4-1) 2.2 × 10 kg dry air b57 .5 − 77.4g kJ 10 J ∆H = = −44 J H$ 40° C, 33% relative humidity ≈ 78.0 − 0.65 kJ kg dry air = 77.4 kJ kg dry air −3 3 40→ 20 kg dry air 1 kJ d. Energy balance: closed system n= 2.2 × 10 −3 kg dry air 10 3 g 1 mol 1 kg d i 29 g + 0.033 g H 2 O 1 mol 18 g = 0.078 mol Q = ∆U = n∆U$ = n ∆H$ − R∆T = ∆H − nR∆T = −44 J − 0.078 mol 8.314 J b20 − 40g° C mol ⋅ K 1K 1° C = −31 J(23 J transferred from the air) 8-51 http://librosysolucionarios.net 400 kg 2.44 kg water = 10.0 kg water evaporates / min 97 .56 kg air 10 kg H 2O min (b) ha = = 0.025 kg H2 O kg dry air , Tdb = 50° C 400 kg dry air min 8.73 (a) min Fig. 8.4-1 b g H$ = 116 − 11 . = 115 kJ kg dry air , Twb = 33° C, hr = 32%, Tdew point = 28.5° C (c) Tdb = 10° C , saturated ⇒ ha = 0.0077 kg H 2O kg dry air , H$ = 29.5 kJ kg dry air (d) b0.0250 − 0.0077g kg H O = 6.92 kg H O min condense 400 kg dry air 2 min 2 kg dry air bg References: Dry air at 0° C, H 2O l at 0° C substance m& in m& out H$ in H$ out Air bg H2 O l b 400 115 400 29.5 — — 6.92 42 g b g m& air in kg dry air/min, m& H 2 O in kg/min H$ air in kJ/kg dry air, H$ H 2 O in kJ/kg H2 O l, 0° C → H 2O l , 20° C : H$ = 75.4 Q = ∆H = J 1 mol mol⋅° C 18 g ∑ m& Hˆ − ∑ i i out (e) in b10 − 0g° C 1 kJ 103 g = 42 kJ kg 10 3 J 1 kg −34027.8 kJ 1 min 1 kW m& i Hˆ i = = −565 kW min 60 s 1 kJ/s T>50°C, because the heat required to evaporate the water would be transferred from the air, causing its temperature to drop. To calculate (Tair)in , you would need to know the flow rate, heat capacity and temperature change of the solids. 8.74 a. Outside air: Tdb = 87 ° F , hr = 80% ⇒ ha = 0.0226 lb m H 2 O lb m D.A. , H$ = 455 . − 0.01 = 455 . Btu lb D.A. m Room air: Tdb = 75° F , hr = 40% ⇒ ha = 0.0075 lb m H 2 O lb m D.A. , H$ = 26.2 − 0.02 = 26.2 Btu lb D.A. m Delivered air: Tdb = 55° F , ha = 0.0075 lb m H 2 O lb m D. A. ⇒ H$ = 214 . − 0.02 = 21.4 Btu lb m D.A. , V$ = 13.07 ft 3 lb m D.A. Dry air delivered: 1,000 ft 3 1 lb m D.A. H 2 O condensed: 76.5 lb m D.A. min min 13.07 ft 2 = 76.5 lb m D.A. min b0.0226 − 0.0075g lb m H2O lb m D.A. = 1.2 lb m H 2 O min condensed 8-52 http://librosysolucionarios.net 8.74 (cont’d) The outside air is first cooled to a temperature at which the required amount of water is condensed, and the cold air is then reheated to 55°F. Since ha remains constant in the second step, the condition of the air following the cooling step must lie at the intersection of the ha = 0.0075 line and the saturation curve ⇒ T = 49° F b g References: Same as Fig. 8.4-2 [including H 2 O l, 32° F ] substance m& in H$ in m& out H$ out Air b g H 2 O l, 49° F 76.5 45.5 76.5 21.4 m& air in lb m D.A./min — — 1.2 17.0 H$ in Btu/ lb D.A. air m m& in lb /min, H$ H2 O Q = ∆H = b76.5g 214. − 455. + 1.2(17.0) (Btu) min m H2 O in Btu/ lb m 60 min 1 ton cooling 1h −12 ,000 Btu h = 9.1 tons cooling b. 6 7 (76.5 lb m DA/min) hr = 40%, ha = 0.0075 lb m H 2O/lbm DA o 75F, 26.2 Btu/lb m DA 1 7 (76.5 lb m DA/min) hr = 80%, ha = 0.0226 lb m H 2O/lb m DA Coolerreheater o 87F, 45.5 Btu/lb m DA 76.5 lb m DA/min ha = 0.0075 lbm H 2O/lb m DA o 55F, 21.4 Btu/lbm DA m& H2 O (kg H2 O(l)/min) Q& lab Q& (tons) Water balance on cooler-reheater (system shown as dashed box in flow chart) 1 76.5 7 Lab lb m H 2O 6 lb m DA 0.0226 + ( 76.5 min lbm DA 7 )( 0.0075 ) = (76.5)(0.0075) + m& H O ⇒ m& H2 O = 0.165 kg H2 O condensed/min Energy balance on cooler-reheater References: Same as Fig. 8.4-2 [including H2 O(l, 32o F)] 8-53 http://librosysolucionarios.net 2 m& in Hˆ in 10.93 45.5 65.57 26.2 Substance Fresh air feed Recirculated air feed Delivered air o Condensed water (49 F) Hˆ out — — 21.4 — — 76.5 — — 0.165 17.0 & i Hˆ i − ∑ m& i Hˆ i = Q& = ∆H& = ∑ m out m& out — — in m& DA in lb m dry air/min Hˆ air in Btu/lb m dry air m& H2O ( l ) in lb m /min Hˆ HO(l) in Btu/lb m 2 −575.3 Btu 60 min 1 ton cooling = 2.9 tons min 1h -12,000 Btu/h Percent saved by recirculating = (9.1 tons − 2.9 tons) ×100% = 68% 9.1 tons Once the system reaches steady state, most of the air passing through the conditioner is cooler than the outside air, and (more importantly) much less water must be condensed (only the water in the fresh feed). c. Total recirculation could eventually lead to an unhealthy depletion of oxygen and buildup of carbon dioxide in the laboratory. 8.75 Basis: 1 kg wet chips. DA = dry air, DC = dry chips Outlet air: Tdb =38o C, Twb =29o C m2a (kg DA) m2w [kg H2 O(v)] Inlet air: 11.6 m3 (STP), Tdb =100o C m1a (kg DA) 1 kg wet chips, 19o C 0.40 kg H2 O(l)/kg 0.60 kg DC/kg m3c (kg dry chips) m3w [kg H2 O(l)] T (o C) (a) Dry air: m1a = b g 11.6 m3 STP DA 1 kmol 29.0 kg 3 1 kmol b g 22.4 m STP = 15.02 kg DA = m 2a Outlet air: Fig. 8.4-1 → Hˆ 2 = (95.3 − 0.48) = 94.8 kJ kg D.A. (Tdb = 38°C, Twb = 29°C) ha2 = 0.0223 kg H 2O kg D.A. b g Water in outlet air: m2 w = ha2 m2a = 0.0223 15.02 = 0.335 kg H 2 O (b) H2 O balance: 0.400 kg = 0.335 kg + m3w ⇒ m3w = 0.065 kg H 2O Moisture content of exiting chips: 0.065 kg water × 100% = 9.8%< 15% ∴ meets design specification 0.600 kg dry chips + 0.065 kg water 8-54 http://librosysolucionarios.net 8.75 (cont’d) bg (c) References: Dry air, H 2 O l , dry chips @ 0°C. H$ in substance min Air H2 O l dry chips 15.02 0.400 0.600 bg H$ out mout 100.2 15.02 94.8 mair in kg DA, H$ air in kJ/kg DA 79.5 0.065 4.184T m in kg DC, H$ in in kJ/kg DC 39.9 0.6 2.10T Energy Balance: ∆H = ∑m ˆ out Hout Tdb = 45° C hr = 10% b. Twb = 21.0° C hr = 60% 8.76 a. H 2 O added: 8.77 in = 0 ⇒ −136.8 + 1.532T = 0 ⇒ T = 89.3°C ha = 0.0059 kg H 2 O kg DA Tdb = 26.8° C h a = 0.0142 kg H 2 O kg DA Fig. 8.4-1 15 kg air 1 kg D. A. min 1.0059 kg air 0.92 m 3 2 1 kg D.A. = 12.3 kg D.A. min 12.3 kg D.A. min UV W 2 h a = 0.0050 kg H 2 O kg D.A. saturated Tdb = 45° C Tdew point = 4° C b0.0142 − 0.0059g kg H O = 0.12 kg H O min V$ = 0.92 m 3 kg D.A. , Twb = 22 ° C Fig. 8.4-1 Outlet air: Twb = Tas = 22° C 8.78 a. in Tas = Twb = 210 . °C 11.3 m3 1 kg D.A. Evaporation: ∑ m Hˆ Fig. 8.4 -1 Inlet air: Tdb = 50° C Tdew pt. = 4° C min − ⇒ T = 22° C ha = 0.0165 kg H 2O kg D. A. b0.0165 − 0.0050g kg H O = 0.14 kg H O min 2 kg D.A. bh g a in Fig. 8.4-1 2 = 0.0050 kg H 2 O kg D. A. Twb = 20.4 ° C, V$ = 0.908 m 3 kg D.A. b g Twb = Tas = 20.4° C, saturated ⇒ ha out = 0.0151 kg H 2 O kg D.A. 8-55 http://librosysolucionarios.net 8.78 (cont’d) b. Basis: 1 kg entering sugar (S) solution m1 (kg D.A.) 0.0050 kg H2 O/kg DA m1 (kg D.A.) 0.0151 kg H2 O(v)/kg 1 kg 0.05 kg S/kg 0.95 kg H2 O/kg m2 (kg) 0.20 kg S/kg 0.80 kg H2 O/kg b gb g b g Water balance: bm gb0.0050 g + b1gb 0.95g = bm gb0.0151g + b0.25gb 0.80g Sugar balance: 0.05 1 = 0.20 m2 ⇒ m2 = 0.25 kg 1 1 m1 = 74 kg dry air ⇒ 8.79 A 1 lb mD.A. h a1 (lb mH 2O) T d = 20°F h r = 70% Inlet air (A): Coil bank Outlet air (D): 1 kg D. A. B C 1 lb mD.A. Spray 1 lb mD.A. h a2 (lb mH 2O) chamber h a3 (lb mH 2O) Td = 75°F H2 O UV W Tdb = 20° F hr = 70% V= 0.908 m3 74 kg dry air Fig. 8.4-2 UV W Tdb = 70° F hr = 35% Fig. 8.4-2 a. Inlet of spray chamber (B): = 67 m 3 D 1 lb mD.A. h a3 (lb m H 2O) T d = 70°F h r = 35% Coil bank ha1 ≈ 0.0017 lb m H 2 O lb m D.A. V$ ≈ 12.2 ft 3 lb m D.A. h a3 = 0.0054 lb m H 2 O lb m D.A. UV ⇒ T W ha = 0.0017 lb m H 2 O lb m D.A. Tdb = 75° F wb = 49.5° F The state of the air at (C) must lie on the same adiabatic saturation curve as does the state at (B), or Twb = 49.5° F . Thus, h = 0.0054 lb m H 2 O lb m D.A. Outlet of spray chamber (C): a ⇒ hr = 52% Twb = 49.5° F UV W At point C, Tdb = 58.5° F b. bh a3 g − ha1 lb m H 2O evaporate lb m DA lb m DA = V$A ft 3 inlet air d i b0.0054 − 0.0017 g = 3.0 × 10 12.2 8-56 http://librosysolucionarios.net −4 lb m H 2 O ft 3 air 8.79 (cont’d) (20 - 6.4) Btu / lb m dry air c. QBA = ∆H = H$ B − H$ A ≅ = 1.1 Btu / ft 3 3 12.2 ft / lb m dry air (23 - 20) Btu / lb m dry air QDC = ∆H = H$ D − H$ C ≅ = 0.25 Btu / ft 3 12.2 ft 3 / lb m dry air d. 70% 52% 35% C D A B 58.5 20 70 75 8.80 Basis: 1 kg D.A. a. 1 kg D.A. h a1 (kg H2 O/kg D.A.) Tdb= 40°C, Tab = 18°C 1 kg D.A. ha2 (kg H2 O/kg D.A.) 20°C, m w kg H2 O Tdb = 40° C ⇒ ha1 = 0.0039 kg H 2 O kg D.A. Twb = 18° C Tdb = 20° C Outlet air: ⇒ h a2 = 0.0122 kg H 2O kg D.A. Twb = 18° C adiabatic humidification Inlet air: b b gb g b gb g g b g Overall H 2 O balance: mw + 1 ha1 = 1 h a2 ⇒ m n = 0.0122 − 0.0039 kg H 2 O kg D. A. = 0.0083 kg H 2 O kg D. A. b. 1250 kg/h T=37 o C, h r=50% ma (lb m H2 O/h) T=15 o C, sat’d mc (lb m H2O/h) liquid, 12°C Qc (Btu/h) 8-57 http://librosysolucionarios.net 8.80 (cont’d) Inlet air: Tdb = 37° C hr = 50% Moles dry air: m& a = RSh = 0.0198 kg H O kg DA TH$ = b88.5- 0.5g kJ kg DA = 88.0 kJ kg DA Fig. 8.4-1 ⇒ a1 2 1 1250 kg 1 kg DA h 1.0198 kg Outlet air: Tdb = 15° C, sat'd = 1226 kg DA h RSh = 0.0106 kg H O kg DA TH$ = 42.1 kJ kg DA 1226 kg DA b0.0198 − 0.0106 g kg H O = Fig. 8.4-1 a ⇒ 2 2 Overall water balance ⇒ m &c 2 h kg DA = 11.3 kg H 2 O h withdrawn bg Reference states for enthalpy calculations: H 2 O l , dry air at 0o C. kJ ⇒ H2O ( l , 12°C ): Hˆ = kg ⋅o C Overall system energy balance: (C p )H O2 ( l ) = 4.184 Q& c = ∆H& = ∑ m& H$ − ∑ m& H$ i i out = i ∫ 12 0 C p dT = 50.3 kJ/kg i in LM 11.3 kg H O 50.3 kJ + 1226 kg DA b42.1 − 88g kJ OPFG 1 h IJ FG 1 kW IJ h kg DA QH 3600 s K H 1 kJ / sK N h kg H O 2 2 = −155 . kW ∆H = 8.81 8.82 a. b. 400 mol NH 3 − 78.2 kJ mol NH3 b g b = −31,280 kJ g b g HCl g , 25° C , H 2 O l , 25° C → HCl 25° C, r = 5 . Table B.11 ∆H$ = ∆H$ s 25° C, r = 5 → ∆H$ = −64.05 kJ mol HCl b g HClbaq, r = ∞ g → HClbr = 5g, H Obl g ∆H$ = ∆H$ b25° C, n = 5g − ∆H$ b25° C, n = ∞ g = b −64.05 + 75.14g kJ mol HCl = 11.09 kJ / mol HCl 2 s s 8.83 Basis: 100 mol solution ⇒ 20 mol NaOH, 80 mol H2 O ⇒r= 80 mol H2O mol H2O = 4.00 20 mol NaOH mol NaOH 8-58 http://librosysolucionarios.net 8.83 (cont’d) bg Refs: NaOH(s), H2 O l @25° C H$ in substance nin NaOH s 20.0 0.0 bg H Obl g NaOH br = 4.00g 2 H$ out − − n in mol − − H$ in kJ mol 20.0 − 34.43 ← n in mol NaOH 80.0 0.0 − − b n out g H$ NaOH, r = 4.00 = −34.43 kJ mol NaOH (Table B.11) −688.6 kJ 9.486 × 10 −4 Btu ∆H = ∑ ni H$ i − ∑ ni H$ i = (20)(−34.43) = = −6532 . Btu 10 −3 kJ out in −6532 . Btu 103 g Q= = −132.3 Btu lb m product solution 20.0 40.00 + 80.0 18.01 g 2.20462 lb m b g b g 8.84 Basis: 1 liter solution n H 2SO 4 = mtotal = nH 2O = 1 L 8 g - eq L 1 mol 2 g - eq 1 L 1.230 kg L = 4 mol H 2 SO 4 × 2 1000 mol H 2 O n H 2SO4 = 46.49 mol H 2 O mol H 2 O = 11.6 4 mol H 2 SO 4 mol H 2 SO 4 d i d i d H 2SO 4 aq, r = ∞ ,25 o C → H 2 SO 4 aq, r = 11.6, 25 o C + H 2 O l , 25 o C ∆H$ 1 = ∆H$ s (r = 11.6) − ∆H$ s (r = ∞ ) LMn N H$ bH SO , r = 11.6, 60° Cg = 2 = 4 = 46.5 mol H 2 O 18.02 kg H 2 O n H2 O 2 = 1230 . kg solution b1.230 − 0.392gkg H O ⇒r= FG 0.09808 kg IJ = 0.392 kg H SO H 1 mol K 4 RS T Table B.11 H 2S O4 ∆H 1 = ( −67.6 + 96.19 ) = 28.6 +m z OP Q 60 25 kJ mol H 2 SO 4 C pdT kJ n H2 SO ( mol H 2SO 4 ) 4 4 mol H 2 SO 4 1 4 mol H 2 SO 4 i 28.6 kJ mol H 2 SO 4 + 1.230 kg = 60.9 kJ mol H 2 SO 4 8-59 http://librosysolucionarios.net 3.00 kJ kg⋅° C b60 − 25g° CUV W d i 8.85 2 mol H2SO 4 = 0.30 2.00 + nH 2 O ⇒ n H2 O = 4.67 mol H2 O ⇒ r = a. For this closed constant pressure system, 2 mol H 2SO 4 Q = ∆H = n H2 SO4 ∆H$ s 25° C, r = 2.33 = b b. msolution = g 2 mol H 2SO 4 98.08 g H 2SO 4 mol + b g b280.6 + 150gg −88.6 kJ + 4.67 mol H 2O = 2.33 2 mol H 2SO 4 −44.28 kJ mol H 2SO 4 = −88.6 kJ 4.67 mol H2 O 18.0 g H 2 O mol = 2802 . g ∆H = 0 ⇒ n H2 SO4 ∆H$ s 25° C, r = 2.33 + m 25 C pdT = 0 8.86 a. Basis: T 3.3 J bT − 25g° C g⋅° C 1 kJ 1000 J = 0 ⇒ T = 87° C e j 1 L product solution 1.12 103 g = 1120 g solution L 1 L 8 mol HCl 36.47 g HCl = 292 g HCl L mol HCl 46.0 mol H2O(l, 25°C) 8.0 mol HCl(g , 20°C, 790 mm Hg) 1 L HCl (aq) 1120 g − 292 g = 828 g H 2 O 828 g H 2 O n= mol = 46.0 mol H 2O 18.0 g 46.0 mol H 2O = 575 . mol H 2O mol HCl 8.0 mol HCl Assume all HCl is absorbed Volume of gas: 8 mol 293 K b g = 185 liter bSTP g gas feed L HCl solution 760 mm Hg 22.4 L STP 273 K 790 mm Hg mol b. Ref: 25°C substance H 2O l HCl g HCl n = 5.75 b bg bg g nin H$ in nout 46.0 00 . − 8.0 −015 . − − − 8.0 H$ out − − −59.07 n in mol $ H in kJ mol 8-60 http://librosysolucionarios.net 8.86 (cont’d) b g b g 1 H$ HCl, n = 5.75 = ∆H$ s 25° C, n = 575 . + nHCl = −64.87 kJ mol + e j H$ HCl, 20o C = 20 25 40 mC pdT 25 1120 g 0.66 cal 8 mols g⋅° C b40 − 25g° C 4184 . J kJ cal 103 J 0.02913 − 01341 . × 10 −5 T + 0.9715 × 10−8 T 2 − 4.335 × 10−12 T 3 dT = -0.15 kJ / mol Q = ∆ H = − 471 kJ L product c. e j b Q = 0 = ∆H = 8 H$ − 8 −015 . g b g o 1120 g 0.66 cal T − 25 C 4.184 J 1 kJ −015 . = H$ = − 64.87 + 8 mol g⋅ o C cal 1000 J T = 192 o C 8.87 Basis: Given solution feed rate . n. a (mol air/min) . n1 (mol H 2O( v)/min) saturated @ 50°C, 1 atm na (mol air/min) 200°C, 1.1 bars 150 mol/min solution 0.001 NaOH 0.999 H 2O 25°C . n2 (mol/min) @ 50°C 0.05 NaOH 0.95 H 2O b gb g H O balance: b0.999gb150g = n& + 0.95b3.0g ⇒ n& = 147 mol H O min n& Raoult’s law: y P = P = p b50° Cg = 92.51 mm Hg ⇒ n& n& + n& NaOH balance: 0.001 150 = 0.05n&2 ⇒ n&2 = 3.0 mol min 2 1 H 2O 2 Table B.4 ∗ H 2O 1 1 1 n&1 =147 P = 760 a b g 1061 mol 22.4 L STP V&inlet air = min 1 mol bg 473 K 1.013 bars 273 K 1.1 bars a = 1061 mol air min = 37 ,900 L min bg ∆H$ b25° Cg = −42.47 kJ mol NaOH References for enthalpy calculations: H 2O l , NaOH s , air @ 25° C 999 mol H2 O Table B.11 ⇒ s 1 mol NaOH 95 mol H 2O 19 mol H 2O kJ 5% solution @ 50°C: r = = ⇒ ∆H$ s 25° C = −42 .81 5 mol NaOH mol NaOH mol NaOH 0.1% solution @ 25°C: r = b Solution mass: m= b g b 1 mol NaOH 40.0 g 19 mol H 2 O 18.0 g g solution + = 382 1 mol 1 mol mol NaOH g 50 H$ 50° C = ∆H$ s 25° C + m 25 C pdT = −42.81 g 382 g 4.184 J kJ + mol NaOH mol NaOH 1 g⋅° C b50 − 25g° C 8-61 http://librosysolucionarios.net 1 kJ = −2.85 kJ 10 3 J 8.87 (cont’d) Air @ 200°C: Table B.8 ⇒ H$ = 5.15 kJ mol Air (dry) @ 50°C: Table B.8 ⇒ H$ = 0.73 kJ mol b g 2592 − 104.8 kJ 1 kg 18.0 g H2 O v , 50° C : Table B.5 ⇒ H$ = = 44.81 kJ mol kg 10 3 g 1 mol b g n&in H$ in n&out H$ out 015 . −42.47 0.15 −2.85 n& in mol min − − 147 44 .81 H$ in kJ mol 1061 5.15 1061 0.73 substance NaOH aq H2 O v Dry air b g bg Energy balance: Q& = ∆H& = ∑ ni H$ i − ∑ ni H$ i = 1900 kJ min transferred to unit b neglect ∆E g out n in 8.88 a. Basis: 1 L 4.00 molar H2 SO4 solution (S.G. = 1.231) 4.00 mol H 2 SO 4 1231 − 392.3 = 8387 . g H2 O 1 L 1231 g = 1231 g ⇒ ⇒ = 392.3 g H 2SO 4 L = 46.57 mol H 2 O B.11 ⇒ r = 11.64 mol H 2 O / mol H 2SO 4 Table → ∆H$ s = −67.6 kJ / mol H 2 SO 4 b g b Ref: H 2 O l , 25° C , H 2SO 4 25° C substance H2O l H 2 SO 4 l H 2 SO 4 25° C, n = 11.64 bg bg b b g n in H$ in 46.57 0.0754 T − 25 4.00 0 − − b g g b n out H$ out − − − − 4.00 −67.6 g gb n in mol $ H in kJ mol g Q = ∆H = 0 = 4.00 −67.6 − 46.57 0.0754 T − 25 ⇒ T = −52° C (The water would not be liquid at this temperature ⇒ impossible alternative!) b g b b. Ref: H 2 O l , 25° C , H 2SO 4 25° C substance nin H$ in H2O l nl 0.0754 0 − 25 ns 4.00 bg H O b sg 2 H 2SO 4 ( l ) b H 2 SO 4 25° C, n = 11.64 b g g g n out H$ out − − −6.01 + 0.0754 0 − 25 − − 0 − − b b g g n in mols $ H in kJ mol 4.00 −67.61 ∆H$ m H 2 O, 0° C = 6.01 kJ mol A UV ⇒ n = 1618 . mol liquid H O ∆H = 0 = 4 .00b−67.61g − n b −1885 . g − b46.57 − n gb−7.895gW n = 30.39 mol ice ⇒ 291.4 g H Obl g + 547 .3 g H Obsg@0° C Table B.1 n l + n s = 46.57 l l 2 l 2 8-62 http://librosysolucionarios.net s 2 8.89 P2O 5 + 3H 2O → 2H 3PO 4 B } 2n mol H 3 PO 4 a. wt% P2 O 5 = b g × 100% , n 14196 . mt wt% H 3 PO 4 = B g H3 PO 4 mol b98.00g × 100% mc A g total where n = mol P2 O 5 and mt = total mass . wt% H 3 PO 4 = b g 2 98.00 wt% P 2 O 5 = 1381 . wt% P2O 5 14196 . b. Basis: 1 lb m feed solution 28 wt% P2O 5 ⇒ 38.67 wt% H 3PO 4 m1 (lb m H2 O(v )), T , 3.7 psia 1 lb msolution, 125°F 0.3867 lb mH 3PO 4 0.6133 lb mH 2O m2 (lbm solution),T 0.5800 lb mH 3PO 4/lb 0.4200 lb mH 2O/lb m m H3 PO 4 balance: 0.3867 = 0.5800m2 ⇒ m2 0.667 lb m solution bg Total balance: 1 = m1 + m2 ⇒ m1 = 0.3333 lb m H 2O r bg Evaporation ratio: 0.3333 lb m H 2 O v lb m feed solution c. Condensate: b P = 3.7 psia 0.255 bar g Table B.6 ⇒ Tsat = 654 . o C= 149 o F, Vliq = m& = 100 tons feed day 46.3 lb m V& = min 000102 . m3 353145 . ft 3 / m 3 ft 3 = 0.0163 kg 2.205 lb m / kg lb m H 2O(l) 2000 lb m 1 lb m H 2O 1 ton 1 day (24 × 60) min 3 lb m 0.0163 ft 3 7.4805 gal lb m ft 3 = 46.3 lb m / min = 5.65 gal condensate / min Heat of condensation process: 46.3lbm H2O(v)/min 46.3 lbm H2O(l)/min (149+37)°F, 3.7 psia 149°F, 3.7psia . Q (Btu/min) 8-63 http://librosysolucionarios.net 8.89 (cont’d) R| ||H$ Table B.6 ⇒ S |H$ || T Btu F I lb G JJ = 1141 Btu / lb (186 F = 85.6 C) = (2652 kJ / kg) 0.4303 kJ GH kg K (149 F = 65.4 C) = (274 kJ / kg)b 0.4303 g = 118 Btu / lb o H2 O (v ) o o H2 O (l ) m m o m LM N lb Btu Q& = m & ∆H$ = ( 46.3 m ) (118 − 1141) min lb m OP = −47,360 Btu / min Q ⇒ 4.74 × 10 4 Btu min available at 149 o F bg bg d. Refs: H3 PO 4 l , H 2O l @77° F substance H 3PO 4 28% H 3PO 4 42% H 2O v b g b g bg b min H$ in mout H$ out 1.00 13.95 − − m in lb m $ − − 0.667 34.13 H in Btu lb m − − 0.3333 1099 g H$ H 3 PO 4 , 28% = + g H$ H 3 PO 4 , 42% = + 0.705 Btu lb m ⋅° F 1 lb - mole H 3 PO 3 98.00 lb m H 3 PO 4 b125 − 77g° F = 13.95 Btu lb 0.705 Btu lb m ⋅° F b −5040 Btu lb - mole H 3PO 4 −5040 Btu lb - mole H 3 PO 4 m soln 1 lb - mole H 3PO 4 98.00 lb m H 3 PO 4 b186.7 − 77g° F = 34.13 Btu lb b g b 0.3867 lb m H 3 PO 4 1.00 lb m soln g b m 0.5800 lb m H 3 PO 4 1.00 lb m sol. soln g b g H$ H 2O = H$ 3.7 psia, 186° F − H$ l , 77° F = 2652 − 104.7 kJ kg ⇒ 1096 Btu lb m At 27.6 psia (=1.90 bar), Table B.6 ⇒ ∆H$ v = 2206 kJ / kg = 949 Btu / lb m ∆H = ∑ ni H$ i − ∑ ni H$ i = 375 Btu = m steam ∆H$ v ⇒ m steam = out ⇒ ⇒ in 375 Btu = 0.395 lb m steam 949 Btu / lb m 0.395 lb m steam 100 × 2000 lb m H 3 PO 4 1 day lb m 28% H 3PO 4 24 h day 3292 lb m steam (46.3 × 60) lb m H 2 O evaporated / h = 118 . = 3292 lb m steam / h lb m steam lb m H2 O evaporated 8-64 http://librosysolucionarios.net 8.90 Basis: 200 kg/h feed solution. A = NaC2 H 3O 2 . n1 (kmol H 2O( v)/h) 50°C, 16.9% of H O 2 in feed 200 kg/h @ 60°C . n0 (kmol/h) 0.20 A 0.80 H O 2 Product slurry @ 50°C . n2 (kmol A-3H 2O( v)/h) . n3 (kmol solution/h) 0.154 A 0.896 H 2O Q (kJ/hr) a. Average molecular weight of feed solution: M = 0.200 M A + 0.800 M H 2 O b gb g b gb g = 0.200 82.0 + 0.800 18.0 = 30.8 kg k Molar flow rate of feed: n 0 = 200 kg 1 kmol h 30.8 kg = 6.49 kmol h b gb gb g n b kmol A ⋅ 3 H O g A balance: b0.20gb6.49 kmol hg = bg b. 16.9% evaporation ⇒ n1 = 0.169 0.80 6.49 kmol h = 0.877 kmol H 2 O v h 2 E 1 mole A ⋅ 3 H 2 O h ⇒ n2 + 0.154 n3 = 1.30 b gb 1 mole A 2 g H 2 O balance: 0.80 6.49 kmol h = 0.877 + (1) b n 2 kmol A ⋅ 3 H 2 O g 3 moles H 2 O 1 mole A ⋅ 3 H 2 O h + 0.846n 3 ⇒ 3n 2 + 0.846n 3 = 4.315 bg + 0154 . n3 bg bg b 2g Solve 1 and 2 simultaneously ⇒ n 2 = 113 . kmol A ⋅ 3H 2 O s h n 3 = 1.095 kmol solution h Mass flow rate of crystals bg 1.13 kmol A ⋅ 3H 2 O 136 kg A ⋅ 3H 2 O 154 kg NaC2 H 3O 2 ⋅ 3H 2 O s = h 1 kmol h Mass flow rate of product solution b gb g bg bg bg 200 kg feed 154 kg crystals 0.877 18.0 kg H 2 O v − − = 30 kg solution h h h h c. References for enthalpy calculations: NaC2 H 3O 2 s , H 2 O l @25° C b g z Feed solution: nH$ = n A ∆H$ s 25° C + m b g 60 25 C p dT (form solution at 25° C , heat to 60° C ) 0.20 6.49 kmol A −1.71 × 10 4 kJ 200 kg 3.5 kJ nH$ = + h kmol A hr kg⋅° C 8-65 http://librosysolucionarios.net b60 − 25g° C = 2300 kJ h 8.90 (cont’d) b g z Product solution: nH$ = n A ∆H$ s 25° C + m = b0.154g1.095 kmol A 50 25 −1.71 × 10 4 kJ 30 kg 3.5 kJ + h kg⋅° C kmol A h = −259 kJ h z Crystals: nH$ = n A ∆H$ hydration + m 25 C p dT (hydrate at 25° C , heat to 50° C ) bg 1.13 kmol A ⋅ 3H 2 O s h = −36700 kJ h b LM N g = z 50 25 b neglect ∆E g OP Q C p dT (vaporize at 25° C , heat to 50° C ) b gb i g 4.39 × 10 4 + 32.4 50 − 25 kJ ∑ n H$ − ∑ n H$ i out R b50 − 25g° C −3.66 × 10 4 kJ 154 kg 1.2 kJ + h kg⋅° C kmol 0.877 kmol H 2 O h Energy balance: Q = ∆H = b50 − 25g° C 50 = H 2 O v , 50° C : n∆H = n ∆H$ v + C p dT i i b = 39200 kJ h g b g = −259 − 36700 + 39200 − 2300 kJ h in = −60 kJ h (Transfer heat from unit) U| mL |V ⇒ r = 5.00 mol H O mol H SO 84.2 mL H Oblg 100 . g = 84.2 g H Oblg ⇒ 4.678 mol H Oblg| |W mL 8.91 50 mL H2SO4 1834 . g = 917 . g H2SO4 ⇒ 0.935 mol H2SO4 2 2 2 2 2 Ref: H 2 O , H 2SO 4 @ 25 °C H$ ( H 2 O(l ), 15 o C) = [0.0754 kJ / (mol ⋅o C)](15 − 25) o C = − 0.754 kJ / mol b g (91.7 + 84.2) g 2.43 J kJ H$ H 2 SO 4 , r = 5.00 = −58.03 + mol 0.935 mol H 2 SO 4 g⋅° C = ( −69.46 + 0.457 T )( kJ / mol H 2SO 4 ) substance nin bg H$ in b T − 25g° C H$ out nout 4.678 –0.754 — — n in mol 0.935 0.0 — — H$ in kJ/mol — 0.935 −69.46 + 0.457 T n mol H 3SO 4 H2SO 4 r = 4 .00 — H2 O l H 2SO 4 b g b b g 1 kJ 10 3 J b g b g g Energy Balance: ∆H = 0 = 0.935 −69.46 + 0.457T − 4.678 −0.754 ⇒ T = 144 ° C Conditions: Adiabatic, negligible heat absorbed by the solution container. 8-66 http://librosysolucionarios.net 4 8.92 a. mA (g A) @ TA0 (o C) n A (mol A) n S (mol solution) @ Tmax (o C) mB (g B) @ TB0 (o C) n B (mol B) Refs: A(l), B(l) @ 25 °C substance n in H$ in n out H$ out B n A H$ A n B H$ B — — S — — nA H$ S (J mol A ) A — — n in mol H$ in J / mol mA (g A) m , nB = B M A (g A / mol A) MB Moles of feed materials: n A (mol A) = Enthalpies of feeds and product H$ A = m A C pA ( TA 0 − 25o C), H$ B = m B C pB ( TB 0 − 25o C) r (mol B mol A) = n B n A = H$ S FG J IJ = H mol A K n A mB / M B mA / M A Ln MM 1 (mol A) M M+ MN A ( mol FG J IJ H mol A K F J I × (T )(g soln) × C G H g soln ⋅ C JK A) × ∆ H$ m (r ) ( mA + mB ps max o − 25)( o O PP P C) P PQ 1 ⇒ H$ S = n A ∆ H$ m (r ) + ( m A + m B )C ps (Tmax − 25) nA Energy balance ∆H = n A H$ S − n A H$ A − n B H$ B = 0 bg b g b g mA $ ∆Hm r + (mA + mB )C ps (Tmax − 25) − mA CpA TA0 − 25 − mB CpB TB0 − 25 = 0 MA m m AC pA TA0 − 25 + mB C pB TB0 − 25 − A ∆H$ m r MA ⇒ Tmax = 25 + (mA + mB )Cps ⇒ b g b g bg Conditions for validity: Adiabatic mixing; negligible heat absorbed by the solution container, negligible dependence of heat capacities on temperature between 25o C and TA0 for A, 25o C and TB0 for B, and 25o C and Tmax for the solution. b. m A = 100.0 g M A = 40.00 TA0 = 25° C m B = 2250 . g M B = 18.01 TB 0 = 40° C C pB C ps = 3.35 J (g⋅° C) b g g UV ⇒ r = 5.00 mol H O = 4.18 J (g⋅° C) |W mol NaOH b C pA = ? irrelevant ∆H$ m n = 5.00 = −37,740 J mol A ⇒ Tmax = 125° C 8-67 http://librosysolucionarios.net 2 8.93 Refs: Sulfuric acid and water @ 25 °C b. substance nin H$ in H2 SO4 H2 O H 2SO 4 aq 1 r — M A CpA T0 − 25 M w C pw T0 − 25 — b g b b g g H$ out nout — — 1 — n in mol — H$ in J/mol ∆H$ m r + M A + rM w C ps Ts − 25 (J/mol H2 SO4 ) bg b g b bg b g b g b g = ∆H$ br g + b98 + 18rgC bT − 25g − (98C + 18 rC )bT 1 ⇒ T = 25 + (98C + 18rC )bT − 25g − ∆H$ br g (98 + 18r) C b g g ∆H = 0 = ∆H$ m r + M A + rM w C ps Ts − 25 − M A C pa T0 − 25 − rM w C pw T0 − 25 m ps s s pa pa pw pw 0 0 g − 25 m ps c. H2 O(l) H2 SO4 r 0.5 1 1.5 2 3 4 5 10 25 50 100 Cp (J/mol-K) 75.4 185.6 Cp (J/g-K) 4.2 1.9 Cps 1.58 1.85 1.89 1.94 2.1 2.27 2.43 3.03 3.56 3.84 4 ∆H$ m (r ) -15,730 -28,070 -36,900 -41,920 -48,990 -54,060 -58,030 -67,030 -72,300 -73,340 -73,970 Ts 137.9 174.0 200.2 205.7 197.8 184.0 170.5 121.3 78.0 59.6 50.0 250 Ts 200 150 100 50 0 0.1 1 10 100 r d. Some heat would be lost to the surroundings, leading to a lower final temperature. 8-68 http://librosysolucionarios.net 8.94 a. Ideal gas equation of state n A0 = P0V g / RT0 Total moles of B: n B0 (mol B) = b (1) gd i Vl ( L) × SG B × 1 kg / L 10 3 g / kg (2) M B (g / mol B) Total moles of A: n Ao = n Av + n Al Henry’s Law: r (3) FG mol A(l)IJ = k p H mol B K s A ⇒ b n Al = c 0 + c1T nB 0 g n V RT Av (4) g Solve (3) and (4) for nAl and n Av. b n B0 RT c0 + c1T Vg n Al = g LM1 + n RT bc + c T gOP MN V PQ n = LM1 + n RT bc + c T gOP MN V PQ (5) B0 0 1 g n Av Ao (6) B0 0 1 g Ideal gas equation of state P= n Av RT ( 6) n A 0 RT = Vg Vg + nB 0 RT c0 + c1T b g (7) b g bg Refs: A g , B l @ 298 K substance bg Bb l g A g Solution n eq U$ eq M A CvA T0 − 298 n Av M A CvA T − 298 M B Cv B — — n Al U$ 1 (kJ/mol A) n in U$ in n Ao n B0 — b bT 0 g − 298g — b g b b g n in mol $ U in kJ/mol g 1 U$ 1 = ∆U$ s + n Al M A + n B0 M B Cvs T − 298 n Al E.B.: ∆U = 0 = ∑ n U$ − ∑ n U$ i i out c i i in b g hb g b d− ∆U$ i + bn C + n C gb T − 298g n C + b n M + n M gC gb 0 = n Av CvA + n Al M A + n B M B Cvs T − 298 + n Al ∆U$ s − n AoCvA + nB CvB T0 − 298 ⇒ T = 298 + n Al s Av Ao vA Al vA B A vB B 0 B vs 8-69 http://librosysolucionarios.net g 8.94 (cont’d) b. Vt 20.0 MA 47.0 CvA 0.831 MB 26.0 CvB 3.85 SGB 1.76 Vl 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 T0 300 300 300 300 330 330 330 330 P0 1.0 5.0 10.0 20.0 1.0 5.0 10.0 20.0 Vg 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 nB0 203.1 203.1 203.1 203.1 203.1 203.1 203.1 203.1 nA0 0.691 3.453 6.906 13.811 0.628 3.139 6.278 12.555 c0 c1 0.00154 -1.60E-06 T 301.4 307.0 313.9 327.6 331.3 336.4 342.8 355.3 nA(v) 0.526 2.624 5.234 10.414 0.473 2.359 4.709 9.381 Dus -174000 Cvs 3.80 nA(l) 0.164 0.828 1.671 3.397 0.155 0.779 1.569 3.174 P 0.8 3.9 7.9 16.5 0.8 3.8 7.8 16.1 c. C* REAL R, NB, T0, P0, VG, C, D, DUS, MA, MB, CVA, CVB, CVS REAL NA0, T, DEN, P, NAL, NAV, NUM, TN INTEGER K R = 0.08206 1 READ (5, *) NB IF (NB.LT.0) STOP READ (1, *) T0, P0, VG, C, D, DUS, MA, MB, CVA, CVB, CVS WRITE (6, 900) NA0 = P0 * VG/R/T0 T = 1.1 * T0 K=1 10 DEN = VG/R/T/NB + C + D * T P = NA0/NB/DEN NAL = (C + D * T) * NA0/DEN NAV = VG/R/T/NB * NA0/DEN NUM = NAL * (–DUS) + (NA0 * CVA + NB * CVB) * (TO – 298) DEN = NAV * CVA + (NAL * MA + NB * MB) * CVS TN = 298 + NUM/DEN WRITE (6, 901) T, P, NAV, NAL, TN IF (ABS(T – TN).LT.0.01) GOTO 20 K=K+1 T = TN IF (K.LT.15) GOTO 10 WRITE (6, 902) STOP 20 WRITE (6, 903) GOTO 1 900 FORMAT ('T(assumed) P Nav Nal T(calc.)'/ * ' (K) (atm) (mols) (mols) (K)') 901 FORMAT (F9.2, 2X, F6.3, 2X, F7.3, 2X, F7.3, 2X, F7.3, 2) 902 FORMAT (' *** DID NOT CONVERGE ***') 903 FORMAT ('CONVERGENCE'/) END $ DATA 300 291 10.0 15.0 1.54E–3 –2.6E–6 –74 35.0 18.0 0.0291 0.0754 4.2E–03 8-70 http://librosysolucionarios.net Tcalc 301.4 307.0 313.9 327.6 331.3 336.4 342.8 355.3 8.94 (cont’d) 300 291 35.0 –1 50.0 18.0 Program Output T (assumed) (K) 321.10 296.54 296.57 15.0 0.0291 1.54E–3 0.0754 –2.6E–6 4.2E–03 –74 P (atm) 8.019 7.415 7.416 Nav (mols) 4.579 4.571 4.571 Nal (mols) 1.703 1.711 1.711 T(calc.) (K) 296.542 296.568 296.568 P (atm) 40.093 39.676 39.680 Nav (mols) 22.895 22.885 22.885 Nal (mols) 8.573 8.523 8.523 T(calc.) (K) 316.912 316.942 316.942 Convergence T (assumed) (K) 320.10 316.91 316.94 8.95 350 mL 85% H2 SO 4 ma(g), 60 oF, ρ=1.78 Q=0 30% H2 SO 4 ms(g), T( oF) H2O, Vw(mL), mw(g), 60 oF a. Vw = 350 mL feed 178 . g 0.85(70 / 30) − 0.15 g H 2O added 1 mL water 1 mL feed g feed 1 g water = 1140 mL H 2O b. Fig. 8.5-1 ⇒ Hˆ a ≈ −103 Btu/lb m; Water: Hˆ water ≈ 27 Btu/lb m Mass Balance: mp =mf+mw =(350 mL)(1.78 g/mL)+(1142 mL)(1 g/mL)=623+1142=1765 g Energy Balance: m Hˆ + mw Hˆ w ∆H = 0 = mp Hˆ product − ma Hˆ a − mw Hˆ w ⇒ Hˆ s = f f mp (623)(−103) + (1140)(27) ⇒ Hˆ product = = −18.9 Btu/lb m 1765 c. T (Hˆ = −18.9 Btu/lb m ,30%) ≈ 130o F d. When acid is added slowly to water, the rate of temperature change is slow: few isotherms are crossed on Fig. 8.5-1 when xacid increases by, say, 0.10. On the other hand, a change from xacid=1 to xacid=0.9 can lead to a temperature increase of 200°F or more. 8-71 http://librosysolucionarios.net 8.96 a. 2.30 lb m 15.0 wt% H 2SO 4 $ = −10 Btu / lb @ 77 o F ⇒ H 1 m U| || V| → m ( lb | |W adiabatic mixing 3 m2 (lb m ) 80.0 wt% H 2SO 4 $ = −120 Btu / lb @ 60 o F ⇒ H 2 $ 60.0 wt% H 2SO 4 @ T o F, H 3 U| ⇒ R|m mass balance: 2.30b0.150g + m b0.800g = m (0.600 )VW| S|m T Total mass balance: H 2SO 4 m m) 2.30 + m2 = m3 2 2 3 3 = 5.17 lb m (80%) = 7.47 lb m (60%) b. Adiabatic mixing ⇒ Q = ∆H = 0 . gb −120g = 0 ⇒ H$ b7.47g H$ − b2.30gb −10g − b517 3 3 = −861 . Btu / lb m E Figure 8.5 - 1 T = 140o F c. d i H$ 60 wt%, 77 o F = −130 Btu / lb m d i b gb g Q = m3 H$ 60 wt%, 77 o F − H$ 3 = 7 .475 −130 + 86.1 = −328 Btu d. Add the concentrated solution to the dilute solution . The rate of temperature rise is much lower (isotherms are crossed at a lower rate) when moving from left to right on Figure 8.5-1. 8.97 a. b. x NH 3 = 0.30 Fig. 8.5-2 y NH 3 = 0.96 lb m NH 3 lb m vapor , T = 80° F Basis: 1 lb m system mass ⇒ 0.90 lb m liquid ⇒ 010 . lb m vapor Mass fractions: zNH 3 = b0.27 + 0.096glb m NH 3 1 lb m x NH 3 =0.30 0.27 lb m NH 3 0.63 lb m H 2 O xNH 3 = 0.96 0.096 lb m NH 3 0.004 lb m H 2 O = 0.37 lb m NH 3 lb m 1 − 0.37 = 0.63 lb m H2 O lb m 0.90 lb m liquid −25 Btu 0.10 lb m vapor 670 Btu Enthalpy: H$ = + = 44 Btu lb m 1 lb m 1 lb m liquid 1 lb m 1 lb m vapor 8-72 http://librosysolucionarios.net 8.98 T = 140° F Fig. 8.5-2 Vapor: 80% NH 3 , 20% H 2 O C Liquid: 14% NH 3 , 86% H 2 O A B Basis: 250 g system mass ⇒ mv (g vapor), m L (g liquid) .14 .60 .80 xNH3 Mass Balance: mv + m L = 250 NH3 Balance: 0.80m g + 014 . mL = (0.60)( 250) ⇒ mv = 175 g, mL = 75 g b gb g = b0.14 gb75 g g = 10.5 g NH , 64.5 g H O Liquid Vapor: m NH3 = 0.80 175 g = 140 g NH 3 , 35 g H 2 O Liquid: mNH 3 3 2 8.99 Basis: 200 lb m feed h m& v (lb m h) xv(lb m NH3 (g)/lb m) H$ v ( Btu lb m ) 200 lb m/h 0.70 lb m NH3 (aq)/lb m 0.30 lb m H2 O(l)/lb m m& l (lb m h) H$ f = −50 Btu lb m in equilibrium at 80o F xl [lb m NH3 (aq)/lb m] H$ l ( Btu l b m ) Q& ( Btu h) Figure 8.5-2 ⇒ Mass fraction of NH 3 in vapor: xv = 0.96 lb m NH 3 lb m Mass fraction of NH3 in liquid: x l = 0.30 lb m NH 3 lb m Specific enthalpies: H$ v = 650 Btu lb m , H$ l = −30 Btu lb m UV W & v = 120 lb m h vapor m &l Mass balance: 200 = m& v + m ⇒ & ml = 80 lb m h liquid & v + 0.30m& l Ammonia balance: 0.70 200 = 0.96 m b gb g Energy balance: Neglect ∆E& k . Q& = ∆H& = ∑ m& H$ i out i 120 lb m & f H$ f = −m h = 86,000 650 Btu 80 lb m + lb m h Btu h 8-73 http://librosysolucionarios.net −30 Btu 200 lb m − lb m h −50 Btu lb m CHAPTER NINE 4 NH 3 ( g) + 5O2 ( g) → 4NO(g) + 6H 2O(g) ∆H$ o = −904 .7 kJ / mol 9.1 r a. When 4 g-moles of NH3 (g) and 5 g-moles of O2 (g) at 25°C and 1 atm react to form 4 g-moles of NO(g) and 6 g-moles of water vapor at 25°C and 1 atm, the change in enthalpy is -904.7 kJ. b. Exothermic at 25°C. The reactor must be cooled to keep the temperature constant. The temperature would increase under adiabatic conditions. The energy required to break the molecular bonds of the reactants is less than the energy released when the product bonds are formed. c. 5 2 NH 3 ( g) + O 2 ( g) → 2NO(g) + 3H 2O(g) 2 Reducing the stoichiometric coefficients of a reaction by half reduces the heat of reaction by half. 904.7 ∆H$ ro = − = −452.4 kJ / mol 2 3 5 NO(g) + H 2O(g) → NH 3 ( g) + O 2 ( g) 2 4 Reversing the reaction reverses the sign of the heat of reaction. Also reducing the stoichiometric coefficients to one-fourth reduces the heat of reaction to one-fourth. ( − 904.7) ∆H$ ro = − = +2262 . kJ / mol 4 d. e. & NH3 = 340 g / s m 340 g 1 mol = 20.0 mol / s s 17.03 g $o n& ∆H r 20.0 mol NH 3 −904.7 kJ & = ∆H & = NH3 Q = s 4 mol NH 3 ν NH n& NH 3 = = −4.52 × 10 4 kJ / s 3 The reactor pressure is low enough to have a negligible effect on enthalpy. f. 9.2 Yes. Pure water can only exist as vapor at 1 atm above 100°C, but in a mixture of gases, it can exist as vapor at lower temperatures. C 9 H20 ( l) + 14O2 ( g) → 9CO 2 (g) + 10H2 O(l) ∆H$ o = −6124 kJ / mol r a. b. c. When 1 g-mole of C9 H20 (l) and 14 g-moles of O2 (g) at 25°C and 1 atm react to form 9 g-moles of CO2 (g) and 10 g-moles of water vapor at 25°C and 1 atm, the change in enthalpy is -6124 kJ. Exothermic at 25°C. The reactor must be cooled to keep the temperature constant. The temperature would increase under adiabatic conditions. The energy required to break the molecular bonds of the reactants is less than the energy released when the product bonds are formed. & = Q& = ∆ H $0 n& C9 H 20 ∆ H r ν C 9 H 20 = 25.0 mol C9 H 20 s −6124 kJ 1 mol C 9 H20 1 kW = −153 . × 105 kW 1 kJ / s 9- 1 http://librosysolucionarios.net 9.2 (cont'd) Heat Output = 1.53×105 kW. The reactor pressure is low enough to have a negligible effect on enthalpy. d. C 9 H 20 ( g) + 14O2 ( g) → 9CO 2 (g) +10H 2O(l) ∆H$ o = −6171 kJ / mol (1) C 9 H 20 ( l) + 14O2 (g) → 9CO 2 (g) +10H 2O(l) ∆H$ o = −6124 kJ / mol (2) r r (2) − (1) ⇒ C9 H 20 ( l) → C 9 H 20 (g) ∆H$ o (C H , 25o C) = − 6124 kJ / mol − ( −6171 kJ / mol) = 47 kJ / mol v e. 9.3 a. 9 20 Yes. Pure n-nonane can only exist as vapor at 1 atm above 150.6°C, but in a mixture of gases, it can exist as a vapor at lower temperatures. Exothermic. The reactor will have to be cooled to keep the temperature constant. The temperature would increase under adiabatic conditions. The energy required to break the reactant bonds is less than the energy released when the product bonds are formed. b. b g 192 O bgg → 6CO bgg + 7 H Obgg b1g ∆H$ = ? 19 C H blg + O bgg → 6CO bgg + 7 H Oblg b2g ∆H$ = ∆H$ = −1791 . × 10 Btu lb- mole 2 C H bgg → C H blg b 3g ∆H$ = − e ∆H$ j = −13,550 Btu lb - mole H Ob lg → H Obgg b4g ∆H$ = e ∆H$ j = 18,934 Btu lb - mole . × 10 Btu lb - mole b1g = b2g + b3g + 7 × b4g ⇒ ∆H$ = ∆H$ + ∆H$ + 7 ∆H$ = −1672 C 6H 14 g + 6 14 6 14 2 2 2 6 2 o r 2 2 2 14 2 3 2 v 4 v o r C 2 H14 H2 O Hess's law 6 1 c. m& = 120 lb m / s MO2 =32.0 ⇒ 6 2 3 4 n& = 375 . lb - mole / s. n&O ∆Hˆ ro 3.75 lb-mole/s −1.672 ×106 Btu Q& = ∆H& = 2 = = −6.60 × 105 Btu/s (from reactor ) 9.5 1 lb-mole O 2 v O2 bg bg bg bg bg CaC 2 s + 5H 2O l → CaO s + 2CO 2 g + 5H 2 g , ∆H$ ro = 69.36 kJ kmol 9.4 a. Endothermic. The reactor will have to be heated to keep the temperature constant. The temperature would decrease under adiabatic conditions. The energy required to break the reactant bonds is more than the energy released when the product bonds are formed. b. ∆U$ ro = ∆H$ ro LM − RT M ∑ ν MM N gaseous products = 52.0 kJ mol i − OP kJ 8.314 J ∑ ν PP = 69.36 mol − mol ⋅ K PQ i gaseous reactants 9- 2 http://librosysolucionarios.net 1 kJ 103 J 298 K b7 − 0g 9.4 (cont’d) ∆U$ ro is the change in internal energy when 1 g- mole of CaC2 (s) and 5 g - moles of H 2O(l) at 25o C and 1 atm react to form 1 g - mole of CaO(s), 2 g- moles of CO 2 (g) and 5 g - moles of H 2 (g) at 25o C and 1 atm. c. Q = ∆U = nCaC 2 ∆ U$ ro vCaC 2 = 150 g CaC2 1 mol 52.0 kJ = 121.7 kJ 64.10 g 1 mol CaC2 Heat must be transferred to the reactor. 9.5 a. Given reaction = (1) – (2) Hess's law ⇒ b g ∆ H$ ro = ∆H$ ro1 − ∆H$ ro2 = 1226 − 18, 935 Btu lb- mole = −17 ,709 Btu lb - mole b. Given reaction = (1) – (2) Hess's law ⇒ b g ∆H$ ro = ∆H$ ro1 − ∆ H$ ro2 = −121740 , + 104,040 Btu lb - mole = −17, 700 Btu lb - mole Hess's law 9.6 a. b. 9.7 Reaction (3) = 0.5× (1) − ( 2 ) ⇒ ∆Hˆ r = 0.5 −326.2 o Reactions (1) and (2) are easy to carry out experimentally, but it would be very hard to decompose methanol with only reaction (3) occurring. bg bg bg e a. b. n − C5 H12 g + bg F B I = 2G 90.37 kJ mol J = 180.74 kJ mol GH JK Table B.1 N2 g + O2 g → 2NO g , ∆H$ ro = 2 ∆H$ of j NO(g) bg bg bg ∆H$ = 5e ∆H$ j e j bg e j b g = b5gb −11052 . g + b6gb −285.84g − b −1464 . g kJ mol = −21212 . kJ mol 19 C H blg + O b gg → 6CO b gg + 7H Obgg 2 ˆ ∆H = 6 ( ∆Hˆ ) + 7 ( ∆ Hˆ ) − ( ∆ Hˆ ) ( ) () o r c. kJ kJ kJ − −285.8 = 122.7 mol mol mol 6 o f 11 O 2 g → 5CO g + 6H 2O l 2 + 6 ∆ H$ fo − ∆H$ fo CO(g) 14 2 o r o f n − C5 H12 g H 2O l 2 2 o f CO 2 o f H2 O g C6 H 14 l = ( 6 )( −393.5 ) + 7 ( −241.83 ) − ( −198.8) kJ mol = −3855 kJ mol d. Na 2SO 4 (l) + 4CO( g) → Na 2S( l) + 4CO 2 ( g) ∆H$ o = ∆H$ o + 4 ∆H$ o − ∆H$ o r e j − 4e ∆H$ j e j e j = ( − 3732 . + 6.7) + b 4gb −393.5g − b − 13845 . + 24.3g − 4( − 11052 . f Na 2S( l ) f CO2 (g ) f Na 2S O4 (l ) 9- 3 http://librosysolucionarios.net o f CO(g) kJ mol = − 138.2 kJ mol 9.8 e j = e ∆H$ j ⇒ e ∆H$ j = −385.76 + 52.28 = −333.48 kJ mol e j $ $ ∆H$ = − 276.2 − 92.31 + 33348 . = −3503 . kJ mol b g + e∆H j b g − e∆H j Given reaction = b1g + b2g ⇒ −385.76 − 35.03 = −420.79 kJ mol ∆H$ ro1 = ∆H$ fo a. o r2 C 2 H 2 Cl 4 (l ) o f − ∆H$ fo o f C 2 HCl3 l o f C 2 H4 ( g) o f HCl g C2 H 2 Cl 4 (l ) C2 H 2 Cl 4 (l ) b. c. 9.9 a. b. 300 mol C2 HCl 3 Q& = ∆ H& = h Heat is evolved. e j ∆H$ co = 2 ∆H$ of B = g CO2 ( g ) b e j + ∆H$ fo g b b g − e∆H f jC H b gg $o H2 O l 2 g b 2 kJ kJ = −1299.6 g mol mol 2 − 3935 . + −28584 . − 226.75 d i ( i) ∆H$ ro = ∆H$ fo B Table B.1 = C2 H6 ( g ) d i − ∆H$ fo bg C2 H2 g kJ = −3114 . b −84.67g − b 226.75g mol d i ( ii) ∆H$ ro = ∆H$ co B Table B.1 = d. b 5 C 2 H2 ( g) + O 2 ( g) → 2CO 2 ( g) + H 2O(l) ∆H$ co = −1299.6 kJ mol 2 The enthalpy change when 1 g-mole of C2 H2 (g) and 2.5 g-moles of O2 (g) at 25°C and 1 atm react to form 2 g-moles of CO2 (g) and 1 g-mole of H2 O(l) at 25°C and 1 atm is -1299.6 kJ. Table B.1 c. − 420.79 kJ = −126 . × 105 kJ h = − 35 kW mol C 2 H2 ( g ) d i + 2 ∆H$ co H2 (g ) d − ∆H$ co kJ mol i bg C2H 6 g kJ kJ = −3114 . b −1299.6g + 2( −285.84) − b −1559.9g mol mol (1) ∆H$ co1 = − 1299.6 kJ mol 5 C 2 H2 ( g) + O 2 ( g) → 2CO2 ( g) + H 2 O( l) 2 1 H2 ( g) + O 2 ( g) → H 2 O( l) 2 7 C 2 H6 (g) + O 2 ( g) → 2CO 2 ( g) + 3H 2 O( l) 2 (2) ∆H$ c 2 = − 28584 . kJ mol o (3) ∆H$ co3 = − 1559.9 kJ mol The acetylene dehydrogenation reaction is (1) + 2 × (2) − (3) Hess's law ⇒ ∆ H$ ro = ∆H$ co1 + 2 × ∆H$ co2 − ∆H$ co3 b g = −1299.6 + 2( − 28584 . ) − ( − 1559.9) kJ mol = −3114 . kJ / mol 9- 4 http://librosysolucionarios.net 9.10 bg bg bg ∆H$ ro = −4850 kJ / mol 25 O2 (g) → 8CO 2 g + 9H 2 O g 2 a. C 8H18 l + b. When 1 g-mole of C8 H18 (l) and 12.5 g-moles of O2 (g) at 25°C and 1 atm react to form 8 g-moles of CO2 (g) and 9 g-moles of H2 O(g), the change in enthalpy equals -4850 kJ. Energy balance on reaction system (not including heated water): b g b g ∆E k , ∆E p , W = 0 ⇒ Q = ∆U = n mol C8 H 18 consumed ∆U$ co kJ mol ( Cp ) H 2 O(l) from Table B.2 = 75.4 × 10 −3 kJ / mol.o C −Q = mH2 O ( Cp ) H 2 O(l) ∆T = Q = ∆ U ⇒ − 89.4 kJ = 1 mol 75.4 × 10−3 kJ 21.34° C = 89.4 kJ 18.0 × 10−3 kg mol.o C 1.00 kg 2.01 g C 8H18 consumed 1 mol C8H 18 114.2 g ⇒ ∆U$ co = −5079 kJ mol ∆H$ co = ∆U$ co + RT LM OP MM ∑ ν − ∑ ν PP MN PQ i gaseous products =− 5079 kJ mol + ∆U$ co (kJ) 1 mol C8 H18 i gaseous reactants 8.314 J 1 kJ 298 K b8 + 9 − 12.5g mol ⋅ K 10 J 3 ⇒ ∆Hˆ co = −5068 kJ mol c. % difference = (−5068) −( −4850) ×100 = − 4.3 % −5068 e j b g + 9e∆H$ j b g − e∆H$ j b g ⇒ ( ∆Hˆ ) = 8 ( −393.5) + 9 ( −241.83 ) + 5068 kJ/mol = −256.5 kJ/mol () ∆H$ co = 8 ∆H$ of o ff CO2 g o f H 2O g o f C8 H18 l C 8H18 l There is no practical way to react carbon and hydrogen such that 2,3,3-trimethylpentane is the only product. 9- 5 http://librosysolucionarios.net 9.11 a. bg bg n − C 4H10 g → i − C 4H10 g Basis : 1 mol feed gas 0.930 mol n -C4 H10 (n n- C4H10 )out 0.050 mol i-C4 H10 ( n i-C4H10)out 0.020 mol HCl 0.020 mol HCl 149°C Q(kJ/mol) 149°C (n n-CH4 H10 ) out = 0.930(1 − 0.400) = 0.560 mol (n i-C H4 H10 ) out = 0.050 + 0. 930 × 0.400 = 0.420 mol ξ = (n n-C4 H10 ) out − ( n n-C4 H10 ) in ν n-C e j 4 H 10 b. ∆H$ ro = ∆H$ fo c. References: n − C 4H10 i − C 4 H10 substance e j ⇒ ∆ H$ = −134.5 − b−124.7g bgg, i − C H bgg at 25° C − ∆H$ fo Table B.1 H$ in n in bkJ molg n − C 4 H 10 1 H$ 1 i − C 4 H 10 − − LM MN z B Table B.2 149 25 Cp o r n − C4 H10 4 (mol) H$ 1 = 0.560 − 0.930 = 0.370 mol 1 = kJ mol = −9.8 kJ mol 10 H$ out n out (mol) bkJ molg 0.600 H$ 1 0.400 H$ 2 O kJ dT P PQ mol = 14.29 kJ mol H$ 2 = LM MN z B Table B.2 149 25 C p dT OP kJ . kJ mol PQ mol = 1414 ˆ ro + ∑ ni H ˆ i − ∑ ni Hˆ i ] = 0.370 −9.8 + (1)(14.142 ) − (1)(14.287 ) kJ Q = ∆H = ξ [ ∆ H out in = − 3.68 kJ &= For 325 mol/h fed, Q d. −9.8 kJ 325 mol feed 1h 1 kW = −0.90 kW 1 mol feed h 3600 s 1 kJ/s −3.68 kJ ∆Hˆ r (149 °C ) = = −9.95 kJ/mol 0.370 mol 9- 6 http://librosysolucionarios.net 9.12 a. 1 m3 at 298K, 3.00 torr Products at 1375K, 3.00 torr n 0 (mol) 0.111 mol SiH4 /mol 0.8889 mol O2 /mol n 1 (mol O2 ) n 2 (mo l SiO2 ) n 3 (mol H2 ) SiH 4 ( g) + O 2 ( g) → SiO 2 (s) + 2H 2 ( g) Ideal Gas Equation of state : no = 1 m3 273 K 3.00 torr 298 K 760 torr 1 mol 22.4 × 10-3 m 3 = 0.1614 mol ni = nio + ν iξ SiH4 : 0=0.1111(0.1614 mol) − ξ ⇒ ξ = 0.0179 mol O2 : n1 =0.8889(0.1614 mol) − ξ = 0.1256 mol O 2 SiO2 : n2 = ξ = 0. 0179 mol SiO2 H 2 : n3 =2ξ =0.0358 mol H 2 b. ∆H$ ro = ( ∆H$ fo ) SiO 2 ( s) − ( ∆H$ fo ) SiH 4 (g) = [− 851 − ( −619 . )] kJ mol = −789.1 kJ / mol References : SiH 4 ( g),O2 (g), SiO2 (g), H 2 ( g) at 298 K Substance SiH 4 O2 nin nout Hˆ in Hˆ out (mol h) (kJ mol) (mol h) (kJ mol) 0.0179 0 − − 0.1435 0 0.1256 Hˆ 1 SiO2 − − 0.0179 H2 − − 0.0358 Hˆ 2 Hˆ 3 B Table B.8 O 2 (g,1375K): H$ 1 = H$ O2 (1102 o C) = 3614 . kJ / mol SiO 2 (s,1375K): H$ 2 = z 1375 ( C p ) SiO2 ( s) dT = 79.18 kJ / mol 298 B Table B.8 H 2 (g,1375K): H$ 3 = H$ H 2 (1102o C) = 32.35 kJ / mol c. Q = ∆H = ξ ∆Hˆ ro + ∑ ni Hˆ i − ∑ ni Hˆ i = −7.01 kJ/m 3 feed out −7.01 kJ 27.5 m 3 & Q= m3 h in 1h 1 kW = −0.0536 kW (transferred from reactor) 3600 s 1 kJ/s 9- 7 http://librosysolucionarios.net 9.13 a. bg bg bg bg Fe 2O3 s + 3C s → 2 Fe s + 3CO g , ∆H$ r ( 77 o F) = 2111 . × 105 Btu lb - mole 2000 lb m Fe 1 lb - mole = 3581 . lb - moles Fe produced 55.85 lb m 53.72 lb - moles CO produced 17.9 lb- moles Fe2 O3 fed 53.72 lb - moles C fed Basis : 17.9 lb -moles Fe2 O3 (s) 77° F 35.81 lb-moles Fe (l) 2800° F 53.72 lb -moles C 77° F 53.72 lb-moles CO(g) 570° F Q (Btu/ton Fe) b. bg bg bg Substance b Fe2 O3 s,77° F C s,77° F Fe l,2800° F CO g,570° F b b b g g g g nin nout H$ in H$ out (lb - moles) (Btu lb - mole) (lb - moles) (Btu lb - mole) 17.91 0 − − 5372 . 0 − − − − 3581 . H$ 1 − − 5372 . H$ 2 Fe(l,2800o F): H$ 1 = z 2794 77 dC i b gdT + ∆Hm b 2794° Fg + $ p Fe s CO(g,570 o F): H$ 2 = H$ C O (570o F) c. bg References: Fe 2O3 s , C s , Fe s , CO g at 77° F Q = ∆H = nFe ∆H$ ro + ν Fe z dC i 2800 2794 b gdT = 28400 p Fe l Btu lb - mole = A I 3486 Btu lb - mole F interpolating H from Table B.9K ∑ n H$ − ∑ n H$ i out i i i in . ge 2111 . × 10 j b3581 = + b 3581 . gb28400g + b53.72gb 3486g − 0 = 4.98 × 10 5 d. 2 Effect of any pressure changes on enthalpy are neglected. 6 Btu / ton Fe produced Specific heat of Fe(s) is assumed to vary linearly with temperature from 77°F to 570°F. Specific heat of Fe(l) is assumed to remain constant with temperature. Reaction is complete. No vaporization occurs. 9- 8 http://librosysolucionarios.net 9.14 a. bg C 7 H16 g → C 6H 5CH3 ( g) + 4 H 2 ( g) Basis : 1 mol C7 H16 1 mol C7 H16 1 mol C6 H5 CH3 400°C 4 mol H2 400° C Q (kJ/mol) bg bg References: C s , H 2 g at 25° C b. H$ in substance nin H$ out nout bmolg bkJ molg bmolg bkJ molg C7 H 16 1 H$ 1 − C7 H 8 − − 1 H2 − − 4 − H$ 2 H$ 3 400 ↓ C7 H16 ( g,400°C ): Hˆ 1 = (∆Hˆ fo ) C7 H16 (g) + C p dT 25 = ( − 187.8 +91.0) kJ/mol= −96.8 kJ/mol 0.2427 ∫ b g C 6 H 5CH 3 g,400° C : H$ 2 = ( ∆H$ fo ) C6 H 5CH 3 ( g) + LM MN z B Table B.2 400 25 C p dT OP PQ = (+50 + 60.2) kJ / mol = 110.2 kJ / mol b B Table B.8 g H2 g,400 ° C : H$ 3 = H$ H 2 ( 400 o C) = 1089 . kJ mol c. Q = ∆H = ∑ n Hˆ − ∑ n Hˆ i out i i i in = [(1)(110.2) + (4)(10.89) - (1)(-96.8)] kJ = 251 kJ (transferred to reactor) d. ∆Hˆ r (400o C)= 251 kJ = 251 kJ/mol 1 mol C7 H16 react 9- 9 http://librosysolucionarios.net 9.15 a. bCH g Obgg → CH bgg + H bgg + CObgg 3 2 4 2 Moles charged: (Assume ideal gas) b g = 0.01286 mol bCH g O 2.00 liters 273 K 350 mm Hg 1 mol 3 2 873 K 760 mm Hg 22.4 liters STP b g O decomposed (Clearly x<1 since Let x = fraction CH 3 2 0.01286 mol (CH 3)2 O 600°C, 350 mm Hg Pf < 3P0 ) 0.01286(1 – x ) mol (CH3 )2O 0.01286 x mol CH4 0.01286 x mol H2 0.01286 x mol CO b g 600°C 875 mm Hg b g Total moles in tank at t = 2 h = 0.01286 1 − x + 3 x = 0.01286 1 + 2 x mol Pf V P0V b. n f RT = n0 RT ⇒ nf n0 = Pf P0 ⇒ b 0.01286 1 + 2 x 0.01286 g = 875 ⇒ x = 0.75 ⇒ 75% decomposed 350 References: C ( s ), H 2 ( g ) , O 2 ( g ) at 25 C o substance bCH g Obgg CH b gg H b gg CObgg 3 2 4 2 b g CH 3 nin nout H$ in H$ out (mol) ( kJ / mol) ( mol) (kJ / mol) $ 0.01286 H1 0.25 × 0.01286 H$ 1 − − 0.75 × 0.01286 H$ 2 − − 0.75 × 0.01286 H$ 3 − − 0.75 × 0.01286 H$ O(g,600o C): H$ 1 = ( ∆H$ fo ) b CH 2 g 3 2O + = − 118 kJ mol LM MN 4 z B given 873 298 C p dT OP J 1 kJ . + 62.40 ) kJ / mol PQ mol × 10 J = (−18016 3 600 Table↓ B.2 o ˆ ˆ CH4 (g,600C):H 2 = ( ∆H f )CH 4 + ∫ C p dT = −74.85 + 29.46 = −45.39 kJ mol 25 o B Table B.8 H 2 ( g,600 C): H$ 3 = H$ H2 ( 600o C) = 16.81 kJ mol o Table B.1 Table B.8 Table B.8 B B o o o $ $ $ CO(g,600 C): H4 = ( ∆H f ) C O + H CO (600 C) = − 110.52 + 17.57 kJ mol = −92.95 kJ mol c. For the reaction of parts (a) and (b), the enthalpy change and extent of reaction are : ∆H = ∑ nout Hˆ out − ∑ nin Hˆ in = [ −1.5515 −( −1.5175)] kJ = −0.0340 kJ ξ= (n CH 4 )out − (n CH 4 )in ν CH 4 = 0.75 × 0.01286 mol = 0.009645 mol 1 ∆H = ξ ∆Hˆ r ( 600°C) ⇒ ∆Hˆ r ( 600°C ) = −0.0340 kJ = −3.53 kJ/mol 0.009645 9- 10 http://librosysolucionarios.net 9.15 (cont’d) b g b g ∆U$ r 600° C = ∆H$ r 600° C − RT [ ∑ν i = −3.53 kJ mol − 9.16 ∑ν − gaseous products i ] gaseous reactants (1 + 1 + 1 − 1) 8.314 J 1 kJ 873 K mol ⋅ K 10 3 J = −18.0 kJ mol d. Q = ξ ∆Uˆ r ( 600 °C ) = (0.009645 mol)( − 18.0 kJ/mol) = −0.174 kJ (transferred from reactor) a. 1 SO 2 ( g) + O 2 ( g) → SO3 (g) 2 Basis : 10 3 mol SO3 80.07 kg SO3 l00 kg SO 3 min = 1249 mol SO 3 min n&0 (mol SO2 /min) 1249 mol SO3 /min n& 2 (mol SO2 /min) n&3 (mol O2 /min) 3.76 n&1 (mol N 2 /min) o 450C 100% excess air n&1 (mol O 2 / min) 3.76n&1 (mol N 2 /min) 5 5 0o C o 450C m& w (kg H 2 O(l) /min) m& w (kg H 2 O(l) /min) o 40 C o 25C Assume low enough pressure for H$ to be independent of P. SO 3 balance : b Generation =outputg n& 0 (mol SO 2 fed) 0.65 mol SO 2 react 1 mol SO3 produced mol SO3 = 1249 min 1 mol SO2 fed 1 mol SO 2 react min ⇒ n&0 = 1922 mol SO 2 / min fed 100% excess air: n&1 = 1922 mol SO 2 0.5 mol O2 reqd min 1 mol SO 2 b g b N2 balance : 376 . 1922 = 7227 mol / min in & out g b1 + 1g mol O 2 fed 1 mol O 2 reqd g b2gb1922g + b2gb1922g = b3gb1249g + b2gb673g + 2n& = 1922 mol O 2 min fed b 65% conversion : n&2 = 1922 1 − 0.65 mol s = 673 mol SO2 min out O balance: . b. . Extent of reaction : ξ = 3 ⇒ n&3 = 1298 mol / min out . (n SO2 ) out − ( nS O2 ) in ν SO2 = 673 − 1922 = 1249 mol / min 1 B Table B.1 ∆H$ ro = ( ∆H$ fo )S O3 ( g) − ( ∆ H$ fo ) SO2 ( g) = − 395.18 − ( −296.9) = −99.28 kJ / mol 9- 11 http://librosysolucionarios.net 9.16 (cont’d) bg bg bg bg References : SO 2 g , O 2 g , N 2 g , SO 3 g at 25 o C n& in n& out H$ in H$ out ( mol / min) ( kJ / mol) ( mol / min) ( kJ / mol) 1922 H$ 1 673 H$ 4 1922 H$ 2 1298 H$ 5 7227 H$ 3 7227 H$ 6 − − 1249 H$ 7 Substance SO 2 O2 N2 SO 3 SO 2 (g,450 C) : H$ 1 = o z B Table B.2 450 25 C p dT = 19.62 kJ / mol B Table B.8 O 2 ( g,450 C) = H$ 2 = H$ O2 (450 C) = 1336 . kJ / mol o o B Table B.8 N 2 ( g,450 o C) = H$ 3 = H$ N2 ( 450o C) = 12.69 kJ / mol Out : Table B.2 o SO2 (g,550 C) : Hˆ 4 = ∫ ↓ 550 C p dT = 24.79 kJ/mol 25 B Table B.8 O 2 ( g,550 C) = H$ 5 = H$ O2 (550 C) = 1671 . kJ / mol o o B Table B.8 N2 ( g,550 C) = H$ 6 = H$ N2 ( 550 o C) = 1581 . kJ / mol o SO 3 (g,550 C) : H$ 7 = o Q& = ∆ H& = ξ&∆Hˆ ro + z B Table B.2 550 25 C p dT = 3534 . kJ / mol ∑ n& Hˆ − ∑ n& Hˆ i i out i i in = (1249 )( −98.28 ) + ( 673)( 24.796 ) + (179.8)(16.711) + ( 7227 )(15.808 ) + (1249 )(35.336 ) − (1922 )(19.623 ) − 1922 (13.362 ) − ( 7227 )(12.691) −8.111 × 10 4 kJ 1 min 1 kW = = −1350 kW min 60 s 1 kJ/s c. & Assume system is adiabatic, so that Q& lost from reactor = Q gained by cooling water LM MM A e N j e Q& = ∆ H& = m& w H$ w l, 40o C − H$ w l, 25o C Table B.5 ⇒ 8111 . × 104 d. FG IJ H K A Table B.5 OP jP PQ kJ kg kJ = m& w 167.5 − 104 .8 ⇒ m& w = 1290 kg min cooling water min min kg If elemental species were taken as references, the heats of formation of each molecular species would have to be taken into account in the enthalpy calculations and the heat of reaction term would not have been included in the calculation of ∆H& . 9- 12 http://librosysolucionarios.net bg = e ∆H$ j CO(g) + H 2O v → H2 ( g) + CO 2 (g) , 9.17 ∆H$ ro a. o f Basis : B Table B.1 e − ∆ H$ fo CO2 ( g) j CO(g) e j − ∆H$ fo b g = − 4115 . bg H2 O v kJ mol b g 2.5 m 3 STP product gas h 1000 mol 22.4 m 3 STP = 111.6 mol h nn&33 (mol CO2 /h) nn&44 (mol H 2/h) 111.6 mol/h nn& (mol H 2O(v)/h), sat'd condenser 55 0.40 mol H 2/mol 15°C, 1 atm 0.40 mol CO 2/mol nn&66 (mol H 2O( l )/h) 0.20 mol H 2O( v)/hmol 15°C, 1 atm 500°C n&10 (mol CO/h) 25°C nn&22 (mol H 2 O(v)/h) 150°C reactor Q& rr (kW) Q Q&cc (kW) b gb g = 111.6 b2 gb 0.40 g + b 2gb 0.20g mol h ⇒ n& C balance on reactor : n&1 = 0.40 111.6 mol h = 44.64 mol CO h H balance on reactor : 2 n& 2 Steam theoretically required = % excess steam = 2 bg = 66.96 mol H 2O v h 44.64 mol CO 1 mol H2 O = 44.64 mol H 2O h 1 mol CO b66.96 − 44.64g mol h × 100% = 50% excess steam 44.64 mol h b gb g = b0.40gb111.6 mol hg = 44.64 mol H CO2 balance on condenser : n& 3 = 0.40 111.6 mol h = 44.64 mol CO2 h H 2 balance on condenser: n&4 Saturation of condenser outlet gas: yH 2O = b p∗w 15° C g⇒ b n&5 mol H 2 O h g = 2 h bg 12.788 mm Hg ⇒ n& 5 = 153 . mol H 2O v h 760 mm Hg b gb g H O balance on condenser: b111.6 gb0.20g mol H O h = 1.53 + n& p 44.64 + 44.64 + n&5 mol h 2 2 6 ⇒ n& 6 = 20.8 mol H 2O h condensed = 0.374 kg / h b. Energy balance on condenser o References : H 2 ( g) , CO 2 (g) at 25 C, H 2 O at reference point of steam tables Substance CO 2 ( g) H 2 (g ) H2O v H2O l bg bg n&in n& out H$ in H$ out mol / h kJ / mol mol / h kJ / mol 44.64 H$ 1 44.64 H$ 4 44.64 H$ 2 44.64 H$ 5 22.32 H$ 3 1.53 H$ 6 − − 20.80 H$ 7 Enthalpies for CO2 and H2 from Table B.8 CO 2 (g,500o C) : H$ 1 = H$ CO2 (500o C) = 2134 . kJ / mol 9- 13 http://librosysolucionarios.net 9.17 (cont’d) H 2 (g,500o C) : H$ 2 = H$ H2 (500o C) = 1383 . kJ / mol o H 2O(v,500C) : Hˆ 3 = 3488 kJ 18 kg × = 62.86 kJ mol kg 10 3 mol o CO 2 (g,15C) : Hˆ 4 = Hˆ CO2 (15 o C) = −0.552 kJ/mol H 2 (g,15 o C) : H$ 5 = H$ H 2 (15 o C) = −0.432 kJ / mol FG H IJ K kJ 18.0 kg H 2 O(v,15o C) : H$ 6 = 2529 × = 45.52 kJ mol kg 10 3 mol FG H IJ K kJ 18.0 kg H 2 O(l,15 o C) : H$ 7 = 62.9 × = 113 . kJ mol kg 10 3 mol Q& = ∆H& = ∑ n& H$ − ∑ n& H$ i i i out i = b 49.22 − 2971.8g kJ h in bheat transferred from condenser g c. 1 kW 3600 s 1 kJ s = −0.812 kW Energy balance on reactor : References : H2 ( g) , C(s), O2 (g) at 25° C Substance CO( g) H2 O( v) H2 g CO2 g bg bg n&in n&out H$ in H$ out ( mol / h) ( kJ / mol) ( mol / h) ( kJ / mol) 44.64 H$ 1 − − $ 6696 . H2 22.32 H$ 3 − − 44.64 H$ 4 − − 44.64 H$ 5 CO(g,25 o C) : H$ 1 = (∆H$ fo ) CO Table B.1 = −110.52 kJ / mol H 2 O(v,150 o C) : H$ 2 = ( ∆H$ fo ) H2 O(v) + H$ H 2 O (150o C) Tables B.1, B.8 H 2 O(v,500 o C) : H$ 3 = ( ∆H$ fo ) H 2O(v) + H$ H2 O (500o C) Tables B.1, B.8 H 2 (g,500 o C) : H$ 4 = H$ H 2 (500 o C) Q = ∆H = ∑ n H$ − ∑ n H$ i out i i in i = bheat transferred from reactorg = = −237.56 kJ mol −224.82 kJ mol Table B.8 = 13.83 kJ / mol CO 2 (g,500o C) : H$ 5 = ( ∆H$ of ) CO2 + H$ CO2 (500 o C) d. 1h Tables B.1, B.8 = − 21013.83 − ( −20839.96) kJ h −372.16 kJ / mol 1h 1 kW 3600 s 1 kJ s = −0.0483 kW Benefits Preheating CO ⇒ more heat transferred from reactor (possibly generate additional steam for plant) Cooling CO ⇒ lower cooling cost in condenser. 9- 14 http://librosysolucionarios.net 9.1 8 b. References : FeO(s), CO(g), Fe(s), CO2 ( g) at 25 o C CO Fe 3 − CO2 ∑n H$ out nout ( mol) ( kJ / mol) ( mol) ( kJ / mol) 1.00 0 n1 H$ 1 n0 H$ 0 n2 H$ 2 − − n H$ FeO Q = ξ ∆H$ ro + H$ in nin Substance $ out H out − − ∑n 3 H$ 4 n4 $ in H in ⇒ Q = ξ ∆H$ ro + n1 H$ 1 + n 2 H$ 2 + n 3 H$ 3 + n 4 H$ 4 − n0 H$ 0 (1.00 − n1 ) Fractional Conversion : X = ⇒ n1 = 1 − X 1.00 CO consumed : 1 mol CO (1 − n1 ) mol FeO consumed 1 mol FeO consumed = (1− n1 ) mol CO ⇒ n2 = n0 − (1 − n1 ) = n0 − X Fe produced : n3 = CO 2 produced : n4 = z = (1 − n1 ) mol Fe = X 1 mol CO 2 (1 − n1 ) mol FeO consumed = (1 − n1 ) mol CO 2 = X 1 mol FeO consumed Extent of reaction : ξ = H$ i = (1 − n1) mol FeO consumed 1 mol Fe 1 mol FeO consumed ( nCO ) out − ( nC O ) in ν CO = n2 − n0 1 =X T Cpi dT for i = 0,1,2,3,4 25 H$ 0 = 0.02761 (T0 − 298) + 2.51 × 10 −6 (T0 2 − 2982 ) ⇒ H$ 0 = ( −8.451 + 0.02761 T0 + 2.51 × 10 −6 T02 ) kJ / mol H$ 1 = 0.0528 (T − 298) + 31215 . × 10 −6 (T 2 − 2982 ) + 3188 . × 10 2 (1 / T − 1 / 298 ) ⇒ H$ = ( −17.0814 + 0.0528 T + 3.1215 × 10 −6 T 2 + 3188 . × 10 2 / T ) kJ / mol 1 H$ 2 = (0.02761 (T − 298) + 2.51 × 10 −6 (T 2 − 298 2 ) ⇒ H$ = −8.451 + 0.02761 T + 2 .51 × 10 −6 T 2 ) kJ / mol 2 H$ 3 = 0.01728 (T − 298) + 1335 . × 10 −5 (T 2 − 2982 ) ⇒ H$ 3 = ( −6.335 + 0.01728 T + 1335 . × 10 −5 T 2 ) kJ / mol H$ 4 = 0.04326(T − 298) + 0.573 × 10 −5 ( T 2 − 2982 ) + 8.18 × 10 2 (1 / T − 1 / 298) ⇒ H$ = ( −16.145 + 0.04326 T + 0.573 × 10 −5 T 2 + 8.18 × 10 2 / T ) kJ / mol 4 9-15 http://librosysolucionarios.net 9.18 (cont'd) c. n0 = 2.0 mol CO, T0 = 350 K, T = 550 K, and X = 0.700 mol FeO reacted/mol FeO fed ⇒ n1 = 1 − 0.7 = 0.3, n2 = 2 − 0.7 = 1.3, n3 = 0.7, n4 = 0.7, ξ = 0.7 Summary: Hˆ 0 = 1.520 kJ/mol, Hˆ 1 = 13.48 kJ/mol, Hˆ 2 = 7.494 kJ/mol, Hˆ 3 = 7.207 kJ/mol, Hˆ 4 = 10.87 kJ/mol ∆Hˆ o = −16.48 kJ/mol r Q = (0.7)( −16.48) + (0.3)(13.48) + (1.3)(7.494) + (0.7)(7.207) + (0.7)(10.87) − (2)(1.520) ⇒ Q = 11.86 kJ d. no To 400 400 400 400 400 400 400 400 X T 1 298 1 400 1 500 1 600 1 700 1 800 1 900 1 1000 Xi 1 1 1 1 1 1 1 1 no 1 1 1 1 1 1 1 1 To 298 400 500 600 700 800 900 1000 X 1 1 1 1 1 1 1 1 T 700 700 700 700 700 700 700 700 Xi no To 400 400 400 400 400 400 400 400 400 400 400 X 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 T 500 500 500 500 500 500 500 500 500 500 500 Xi no To 0.5 400 0.6 400 0.8 400 1.0 400 1.2 400 X 0.5 0.5 0.5 0.5 0.5 T 400 400 400 400 400 1 1 1 1 1 1 1 1 1 1 1 n1 n2 n3 n4 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 H0 2.995 2.995 2.995 2.995 2.995 2.995 2.995 2.995 H1 H2 0 5.335 10.737 16.254 21.864 27.555 33.321 39.159 0 2.995 5.982 9.019 12.11 15.24 18.43 21.67 H3 0 2.713 5.643 8.839 12.303 16.033 20.031 24.295 H4 0 0 0 0 0 0 0 0 0 4.121 8.553 13.237 18.113 23.152 28.339 33.663 Q -19.48 -12.64 -5.279 2.601 10.941 19.71 28.895 38.483 n2 n3 n4 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 H0 0 0 0 0 0 0 0 0 0 2.995 5.982 9.019 12.11 15.24 18.43 21.67 H1 21.864 21.864 21.864 21.864 21.864 21.864 21.864 21.864 H2 12.11 12.11 12.11 12.11 12.11 12.11 12.11 12.11 H3 12.303 12.303 12.303 12.303 12.303 12.303 12.303 12.303 H4 18.113 18.113 18.113 18.113 18.113 18.113 18.113 18.113 Q 13.936 10.941 7.954 4.917 1.83 -1.308 -4.495 -7.733 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 n2 n3 n4 1 0 0 0.9 0.1 0.1 0.8 0.2 0.2 0.7 0.3 0.3 0.6 0.4 0.4 0.5 0.5 0.5 0.4 0.6 0.6 0.3 0.7 0.7 0.2 0.8 0.8 0.1 0.9 0.9 0 1 1 H0 2.995 2.995 2.995 2.995 2.995 2.995 2.995 2.995 2.995 2.995 2.995 H1 10.737 10.737 10.737 10.737 10.737 10.737 10.737 10.737 10.737 10.737 10.737 H2 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 H3 5.643 5.643 5.643 5.643 5.643 5.643 5.643 5.643 5.643 5.643 5.643 H4 8.533 8.533 8.533 8.533 8.533 8.533 8.533 8.533 8.533 8.533 8.533 Q 13.72 11.82 9.92 8.02 6.12 4.22 2.32 0.42 -1.48 -3.38 -5.28 Xi 0.5 0.5 0.5 0.5 0.5 n1 0.5 0.5 0.5 0.5 0.5 n2 n3 n4 0 0.5 0.5 0.1 0.5 0.5 0.3 0.5 0.5 0.5 0.5 0.5 0.7 0.5 0.5 H0 2.995 2.995 2.995 2.995 2.995 H1 5.335 5.335 5.335 5.335 5.335 H2 2.995 2.995 2.995 2.995 2.995 H3 2.713 2.713 2.713 2.713 2.713 H4 4.121 4.121 4.121 4.121 4.121 Q -3.653 -3.653 -3.653 -3.653 -3.653 1 1 1 1 1 1 1 1 n1 1 1 1 1 1 1 1 1 n1 9-16 http://librosysolucionarios.net 9.18 (cont'd) 1.4 1.6 1.8 2 9.19 a. 400 400 400 400 0.5 0.5 0.5 0.5 400 400 400 400 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.9 1.1 1.3 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 2.995 2.995 2.995 2.995 5.335 5.335 5.335 5.335 2.995 2.995 2.995 2.995 2.713 2.713 2.713 2.713 4.121 4.121 4.121 4.121 Fermentor capacity : 550,000 gal Solution volume : (0.9 × 550,000) = 495,000 gal R|0.071 lb C H OH / lb solution S| T0.86 lb H O / lb solution m 2 5 m Final reaction mixture : 0.069 lb m (yeast, other species) / lb m solution 2 Mass of tank contents : m 1 ft 3 65.52 lb m = 4335593 lb m 7.4805 gal 1 ft 3 495,000 gal Mass of ethanol produced : 4.336 × 10 6 lb m solution 0.071 lb m C 2 H 5 OH lb m solution ⇒ ⇒ b. 3.078 × 105 lb m C 2 H 5OH = 3.078 ×105 lb m C2 H5 OH 1 lb-mole C 2H 5OH 46.1 lb m C 2 H 5 OH = 6677 lb-mole C2 H 5OH 1 ft 3 C2 H5OH 7.4805 gal 49.67 lb m C 2 H 5 OH 1 ft3 307827 lb m C2 H5 OH = 46,360 gal C2 H 5OH C12 H 22 O11 (s) + 12O2 (g) → 12CO2 (g ) + 11H2 O(l) ∆H$ co = −56491 . kJ / mol o o o o ∆H$ c = 12 ∆H$ f (CO2 ) + 11∆H$ f (H 2O) − ∆H$ f (C12 H 22 O11 ) ⇒ ∆H$ fo (C12 H 22 O11 ) = −2217.14 kJ / mol C12 H 22 O11 (s) + H 2 O(l) → 4C2 H 5OH(l ) + 4CO2 (g) c. ∆H$ ro = 4 ∆H$ fo (C2 H5OH) + 4 ∆H$ fo (CO2 ) − ∆H$ fo (C12 H 22 O11 ) − ∆H$ fo (H 2 O) = − 184.5kJ / mol −1815 . kJ 453.6 mol 0.9486 Btu ⇒ ∆H$ ro = = −7.811 × 104 Btu / lb - mole 1 mol 1 lb - mole 1 kJ Moles of maltose : 4.336 × 10 6 lb m solution 0.071 lb C2 H5 OH 1 lb - mole C 2 H 5OH 1 lb - mole C12 H22O11 1 lb m solution 46.1 lb C2 H 5OH 4 lb - mole C 2 H 5OH = 1669 lb - moles C 12 H 22 O11 ⇒ ξ = nC10 H22 O11 = 1669 lb - moles Q = ξ∆H$ r + mC p (95o F - 85o F) Btu Btu ) + (4.336 × 106 lb m )(0.95 o )(10 o F) lb - mole lb - F 7 = −8.9 × 10 Btu ( heat transferred from reactor) = (1669 lb - moles)( −7.811 × 10 4 d. Brazil has a shortage of natural reserves of petroleum, unlike Venezuela. 9-17 http://librosysolucionarios.net -3.653 -3.653 -3.653 -3.653 9.20 a. 4NH 3 + 5O2 → 4NO + 6H2 O, 3 2NH3 + O2 → N 2 + 3H2 O 2 References: N2 g , H2 g , O2 (g), at 25° C bg bg n& in n& out H$ in H$ out (mol min ) (kJ mol) (mol min) (kJ mol) 100 H$ 1 − − $ 900 H2 − − − − 90 H$ 3 − − 150 H$ 4 − − 716 H$ 5 − − 69 H$ 6 Substance NH 3 Air NO H 2O N2 O2 H$ i = ∆ H$ foi + z T 25 b Cpi dT g NH 3 g, 25° C : H$ 1 = ( ∆H$ fo ) NH 3 b g b g Air g, 150° C : H$ 2 g B = H 2O g, 700° C : H$ 4 b g N 2 g, 700 ° C : H$ 5 b g O 2 g, 700° C : H$ 6 b. Q& = ∆ H& = i = − 46.19 kJ mol 3.67 kJ mol Table B.1, Table B.8 B = z Table B.1,Table B.2 B 700 25 = Cp dT 111.97 kJ mol − 216.91 kJ mol Table B.8 B = 20.59 kJ mol Table B.8 B = 21.86 kJ mol ∑ n& H$ − ∑ n& H$ out B Table B.8 NO g, 700° C : H$ 3 = 90.37 + b Table B.1 i i i = −4890 kJ min × (1 min / 60s) = − 815 . kW in (heat transferred from the reactor) c. If molecular species had been chosen as references for enthalpy calculations, the extents of each reaction would have to be calculated and Equation 9.5-1b used to determine ∆H& . The value of Q& would remain unchanged. 9-18 http://librosysolucionarios.net 9.21 a. Basis : 1 mol feed I=Inert 1 mol at 310°C 0.537 C2 H4 (v) 0.367 H2 0 (v) 0.096 N2 (g) Products at 310°C n 1 (mol C2 H4 (v)) n 2 (mol H2 O(v)) 0.096 mol N2 (g) n 3 (mol C2 H5 OH (v)) n 4 (mol (C2 H5 )2 O) (v)) C 2 H4 ( v) + H 2O(v) ⇔ C2 H 5OH(v) b g 2C2 H 5OH(v) ⇔ C 2 H5 2 O(v) + H 2 O(v) 5% ethylene conversion: . gb 0.05g = 002685 . mol C H consumed b0537 ⇒ n = b0.95gb 0537 . g = 0510 . mol C H 2 4 1 2 4 90% ethanol yield: 0.02685 mol C 2 H 4 consumed 0.9 mol C2 H 5OH n3 = = 0.02417 mol C 2 H5OH 1 mol C 2 H4 C balance : b2gb0.537g = b2gb0.510g + b2gb0.02417g + 4n b O balance : 0.367 = n2 + 0.02417 + 1415 . × 10 af b g b g −3 ⇒ n2 = 0.3414 mol H 2O bg References: C s , H 2 g , O 2 g at 25o C, I g at 310o C substance C 2 H4 H2 O H$ in nin (mol) 0.510 0.3414 2 0 0.096 C 2 H5OH − − 0. 02417 − 5 2 − 1.415 × 10 ∫ 310 C p dT 25 g g C 2 H5OH g, 310 ° C : H$ 3 = ( ∆H$ fo ) C2 H5OH(g) + bC H g Obg, 310°Cg: H$ = e∆H$ j 5 2 o f 4 (C 2 H 5 )O(l) ∑ n H$ − ∑ n H$ i out b. i i ⇒ 25 ( 52.28 + 16.41) = 68.69 kJ mol . kJ mol b−241.83 + 9.93g = −23190 ⇒ Table B.1 Table B.8 . + 24.16g = − 21115 . kJ mol b−23531 310 C pdT ⇒ Table B.1 Table B.2 b i 3 H$ 4 −3 g + ∆H$ v 25° C + = −204.2 kJ mol Energy balance: Q = ∆H = z 0 $ H Table B.1 for ∆Hˆ fo Table B.2 for Cp H2 O g, 310 ° C : H$ 2 = ( ∆H$ fo ) H 2 O(v) + H$ H 2 O(v) ( 310 o C) 2 2 0. 096 C2 H 4 ( g, 310° C ) : Hˆ 1 = (∆Hˆ fo )C2 H4 + b (kJ / mol) H$ 1 H$ I 2 b H$ out nout (mol) (kJ / mol) 0.537 H$ 1 0.367 H$ bC H g O g ⇒ n 4 = 1.415 × 10 −3 mol C 2 H 5 2 O 4 z 310 25 b Cp dT = −272 .8 + 26.05 + 42.52 g =− 1.3 kJ ⇒ 1.3 kJ transferred from reactor mol feed in To suppress the undesired side reaction. Separation of unconsumed reactants from products and recycle of ethylene. 9-19 http://librosysolucionarios.net 9.22 C 6H 5CH3 + O 2 → C 6 H5CHO + H 2O C 6H 5CH3 + 9O 2 → 7CO2 + 4H 2 O Basis : 100 lb-mole of C 6H 5CH3 fed to reactor. Vp (ft3 ) at 379°F, 1 atm n1 (lb-moles C6 H 5 CH3 ) n2 (lb-moles O 2) 3.76n0 (lb-moles N 2 ) n3 (lb-moles C 6H 5 CHO) n4 (lb-moles CO 2 ) n5 (lb-moles H2 O) reactor Q(Btu) 100 lb-moles C 6 H 5CH 3 n0 (lb-moles O 2 ) 3.76n 0 (lb-moles N2 ) 350°F, 1 atm V0 (ft3 ) jacket mw(lb m H 2 O( l )), 80°F mw(lbm H2 O( l )), 105°F Strategy: All material and energy balances will be performed for the assumed basis of 100 lb-mole C 6H 5CH3 . The calculated quantities will then be scaled to the known flow rate of water in b g the product gas 29.3 lb m 4 h . Plan of attack: % excess air ⇒ n0 13% C 6H5CHO formation ⇒ n3 0.5% CO2 formation ⇒ n4 C balance ⇒ n1 Ideal gas equation of state ⇒ V0 Ideal gas equation of state ⇒ Vp E.B. on reactor ⇒ Q E.B. on jacket ⇒ mw Scale V0 , Vp , Q, mw by n&5 actual / n5 basis b g H balance ⇒ n5 O balance ⇒ n2 b g 100% excess air: n0 = 100 lb-moles C6 H 5CH3 b g 1 mole O2 reqd 1 mole C 6H 5CH3 (1 + 1) mole O2 fed = 200 lb-moles O2 1 mole O2 reqd b g N 2 feed & output = 3.76 200 lb - moles N 2 = 752 lb - moles N 2 13% → C6H5CHO ⇒ n3 = 100 lb-moles C6H5CH3 0.13 mole C6H5 CH3 react 1 mole CHCHO form 6 5 1 mole C6 H5 CH3 fed 1 mole C6H5 CH3 react =13 lb-moles C6H5CHO 0.5% → CO2 ⇒ n4 = b100gb0.005glb - moles C H CH 6 5 3 react 7 moles CO2 1 mole C6 H5CH3 = 35 . lb - moles CO2 a100faB7f lb - moles C = 7n + a13fa7f + a3.5fa1f ⇒ n = 86.5 lb - moles C H CH b100gb8glb - moles H = b865. gb8g + b13gb6g + 2n ⇒ n = 150. lb - moles H Obvg b200gb2glb - moles O = 2n + b13gb1g + b35. gb2g + b15gb1g ⇒ n = 182.5 lb- moles O mol C mole C 7H8 C balance: H balance: O balance: 1 1 5 2 6 5 2 2 9-20 http://librosysolucionarios.net 5 2 3 9.22 (cont’d) Ideal gas law − inlet: V0 = b100 + 200 + 752glb - moles b g b350 + 460g R = 6.218 × 10 Ideal gas law – outlet: F 86.5 + 182.5+ = GH C 7 H8 Vp O2 C 7 H8 O CO2 H 2O o 359 ft 3 STP 1 lb - moles 492 R IJ K N2 5 o 13 + 3.5 + 15 + 752 lb - moles 359 ft 3 ft 3 b379 + 460g R = 6.443 × 10 1 lb - mole o 5 492 o R Energy balance on reactor (excluding cooling jacket) bg b g b g b g e References : C s , H 2 g , O 2 g , N 2 g at 25o C 77o F j nin H$ in nout H$ out C 6H 5CH3 100 86.5 O2 200 H$ 1 H$ N2 752 H$ 3 H$ 4 H$ C6 H 5CHO − − 13 CO 2 − − 3.5 H2O − − 15 substance Enthalpies: blb - molesg bBtu lb- moleg blb- molesg bBtu lb - mole g L b g MM MN 182.5 2 752 5 H$ 6 H$ 7 H$ 8 H$ 9 O g PP PQ B 430.28 Btu lb - mole Btu o C 6H 5CH3 ( g,T): H$ T = ∆ H$ fo kJ mol × + 31 T − 77 F 1 kJ mol 1b - mole⋅° F Table B.1 b g b C 6H 5CH3 ( g,350 o F): H$ 1 = 2.998 × 104 Btu lb - mole C 6H 5CH3 ( g,379 o F): H$ 4 = 3.088 × 104 Btu lb - mole bg b g o C6 H 5CHO(g, T): H$ T = −17200 + 31 T − 77 F Btu lb - mole ⇒ H$ 7 = −7.83 × 10 3 Btu lb - mole B Table B.9 e o e o j O 2 g,350 F : H$ 2 = H$ O2 ( 350o F ) = 1972 . × 103 Btu / lb − mole B Table B.9 j N2 g,350 F : H$ 3 = H$ N2 ( 350 o F) = 1911 . × 103 Btu / lb − mole B Table B.9 e j N eg,379 Fj: O 2 g,379 F : H$ 5 = H$ O2 ( 379 F) = 2186 . × 103 Btu / lb − mole o 2 o o B Table B.9 H$ 6 = H$ N 2 ( 379 o F ) = 2.116 × 103 Btu / lb − mole B Table B.1 and B.9 e j H Obg,379 ° Fg: CO 2 g,379 F : H$ 8 = ( ∆H$ of ) CO2 ( g) + H$ CO2 ( 379 o F ) o 2 = − 1664 . × 105 Btu / lb − mole B Table B.1 and B.9 H$ 9 = ( ∆H$ of ) H 2 O( g) + H$ H 2 O ( 379 o F) = 9-21 http://librosysolucionarios.net − 1016 . × 105 Btu / lb − mole ft 3 9.22 (cont’d) Energy Balance : Q = ∆H = ∑ n H$ − ∑ n H$ i i i out i = −2.376 × 106 Btu in Energy balance on cooling jacket: Q = ∆H = m w z 105 80 dC i b g dT p H O l 2 Q = +2 .376 × 10 4 Btu , C p = 1.0 Btu (lb m ⋅ o F) b g 2.376 × 10 6 Btu = mw lb m × 1.0 Scale factor: bn& g bn g 5 actual = 5 basis b g bg Btu o × 105 − 80 F ⇒ m w = 9.504 × 10 4 lb m H 2 O l lb m ⋅° F 29.3 lb m H 2O 1b- mole H 2 O 1 = 0.02711 h −1 4h 18.016 lb m H2 O 15.0 lb - moles H2 O d id i = d6.443 × 10 ft id0.02711 h i = 175 . × 10 b g h b product g V0 = 6.218 × 10 5 ft 3 0.02711 h −1 = 1.69 × 10 4 ft 3 h feed Vp 5 d −1 3 id i id i 4 ft 3 Q = −2 .376 × 10 6 Btu 0.02711 h − 1 = −6 .44 × 10 4 Btu / h d & w = 9.504 × 104 Btu 0.02711 h −1 = m 2577 lb m 1 ft 3 7.4805 gal 1 h = 515 . gal H 2O min h 62.4 lb m 1 ft 3 60 min 9-22 http://librosysolucionarios.net 9.23 a. CaCO3 ( s) → CaO(s) +CO 2 ( g) CaO(s) 900°C CaCO3 (s) 25°C CO2 (g) 900°C Q (kJ) 10.0 kmol CaO(s) produced 1 mol Basis : 1000 kg CaCO3 = = 10.0 kmol CaCO3 ⇒ 10.0 kmol CO 2 ( g) produced 0.100 kg 10.0 kmol CaCO 3( s) fed References: Ca(s), C(s), O2 (g) at 25°C 1000 kg Hˆ in nin Substance (mol) (kJ/mol) (mol) (kJ/mol) Hˆ1 − − − 10 4 Hˆ 4 CaCO3 10 CaO − CO2 − Hˆ out nout 2 − B 10 Hˆ 3 4 Table B.1 CaCO3 ( s, 25 C) : H$ 1 = ( ∆H$ fo ) CaCO 3 ( s) = o z − 1206.9 kJ / mol Table B.1, Table B.2 1173 CaO( s, 900 o C) : H$ 2 = ( ∆H$ fo ) CaO(s) + B = C p dT ( −6356 . + 4854 . ) kJ / mol = −587 .06 kJ / mol 298 Table B.1, Table B.8 CO2 ( g, 900o C) : H$ 3 = ( ∆H$ fo ) C O2 (g) + H$ CO2 ( 900 o C) Energy balance: Q = ∆H = F n H$ − n H$ I = 2.7 × 10 GH ∑ ∑ JK i out b. B = i i ( −3935 . + 42.94) kJ / mol = −350.56 kJ / mol 6 i kJ in Basis : 1000 kg CaCO3 fed ⇒ 10.0 kmol CaCO3 CaCO3 ( s) → CaO(s) + CO2 ( g) 2CO + O2 → 2CO2 10 kmol CaCO3 25 o C Product gas at 900o C 200 kmol at 900o C 0.75 N2 0.020 O2 0.090 CO 0.14 CO2 n 1 [kmol CaO(s)] n 2 (kmol CO2 ) n 3 (kmol N2 ) n 4 (kmol CO) 10 kmol CaCO 3 react ⇒ n1 = 100 . kmol CaO 9-23 http://librosysolucionarios.net 9.23 (cont'd) n2 = ( 014 . )( 200 ) + 10.0 kmol CaCO3 react 1 kmol CO 2 4 kmol O2 react + 1 kmol O 2 2 kmol CO2 = 46 kmol CO2 1 kmol O 2 n3 = ( 075 . )(200) = 150 kmol N2 C balance: (10.0)(1) + (200)(0.09)(1) + (200)(0.14)(1) = 46(1) + n4 (1) ⇒ n4 = 10.0 kmol CO References : Ca(s), C(s), O2 (g), N 2 ( g) at 25o C nin nout Hˆ in Hˆ out Substance (mol) (kJ/mol) (mol) (kJ/mol) CaCO3 10.0 Hˆ 1 − − CaO − − 10 − 587.06 CO2 28 − 350.56 46 − 350.56 ˆ CO 18 H 10 Hˆ 2 O2 4.0 N2 150 CaCO3 (s, 25 C) : Hˆ 1 = o 2 − Hˆ 3 Hˆ 150 4 (∆Hˆ fo )CaCO(s) 3 = − 1206.9 kJ/mol O2 (g, 900 C) : Hˆ 3 = Hˆ O2 (900 C) = N2 (g, 900 C) : Hˆ 4 = Hˆ N2 (900 C) Q = ∆H = o out i i (−110.52 + 27.49) kJ/mol = −83.03 kJ/mol Table B.8 ↓ = 27.19 kJ/mol 6 i kJ in % reduction in heat requirement = c. = 28.89 kJ/mol F n H$ − n H$ I = 0.44 × 10 GH ∑ ∑ JK i Table B.1, Table B.8 ↓ Table B.8 ↓ o o 4 Table B.1 ↓ CO(g, 900 oC) : Hˆ 2 = (∆Hˆ fo ) CO(g) + Hˆ CO (900 o C) o − Hˆ 2.7 × 106 − 0.44 × 106 2.7 × 106 × 100 = 83.8% The hot combustion gases raise the temperature of the limestone, so that less heat from the outside is needed to do so. Additional thermal energy is provided by the combustion of CO. 9-24 http://librosysolucionarios.net 9.24 a. A+B→ C 2C → D + B (1) (2) Basis : 1 mol of feed gas 1.0 mol x AO (mol A/mol) x BO (mol B/mol) x IO (mol I/mol) Fractional conversion: C generated: n0 = fA = n A (mol A) nB (mol B) nC (mol C) n D (mol D) n I (mol I) T (o C) mol A consumed x AO − n A = ⇒ n A = x AO (1 − f A ) mol A feed x AO x A0 (mol A fed) f A (mol A consumed) YC (mol C generated) mol A fed mol A consumed ⇒ nC = x AO f AYC D generated: nD = 0.5 × mol C consumed = (1 2) × (mol A consumed − mol C out) ⇒ n D = (1 2)( x AO f A − nC ) Balance on B: mol B out = mol B in − mol B consumed in (1) + mol B generated in (2) = mol B in − mol A consumed in (1) + mol D generated in (2) ⇒ n B = x BO − x AO f A + n D Balance on I: mol I out = mol I in ⇒ n I = x IO b. Species Formula DHf a A C2H4(v) 52.28 0.04075 B H2O(v) -241.83 0.03346 C C2H5OH(v) -235.31 0.06134 D (C4H10)O(v) -246.75 0.08945 I N2(g) 0 0.02900 Tf 310 Tp 310 Species A B C D I n(in) (mol) 0.537 0.367 0 0 0.096 Q(kJ) = -1.31 xA0 0.537 H(in) (kJ/mol) 68.7 -231.9 -211.2 -204.2 9.4 xB0 0.367 n(out) (mol) 0.510 0.341 0.024 0.001 0.096 b 1.15E-04 6.88E-06 1.57E-04 4.03E-04 2.20E-05 xI0 0.096 c -6.89E-08 7.60E-09 -8.75E-08 -2.24E-07 5.72E-09 fA 0.05 d 1.77E-11 -3.59E-12 1.98E-11 0 -2.87E-12 YC 0.90 H(out) (kJ/mol) 68.7 -231.9 -211.2 -204.2 9.4 o c. For Tf = 125 C, Q = 7.90 kJ . Raising Tp , lowering fA , and raising YC all increase Q. 9-25 http://librosysolucionarios.net 9.25 a. CH 4 ( g) + O2 ( g) → HCHO(g) + H 2O(g) 10 L, 200 kPa n 0 (mol feed gas) at 25°C n 3 (mol HCHO) n 4 (mol H2 O) 0.851 mol CH4 /mol 0.15 mol O2 /mol n 5 (mol CH4 ) T (°C), P(kPa), 10L Q (kJ) Basis : n0 = 200 kPa 1000 Pa 10 L 10 −3 m 3 1 mol K 1 kPa 1L 8.314 m 3 Pa 298 K = 0.8072 mol feed gas mixture 0.8072 mol feed gas mixture ⇒ (0.85)(0.8072) = 0.6861 mol CH 4 , ⇒ (0.15)(0.8072) = 0.1211 mol O 2 CH 4 consumed : 1 mol CH 4 0.1211 mol O 2 fed 1 mol O 2 fed = 0.1211 mol CH 4 ⇒ n 5 = (0.6861 − 01211 . ) mol CH 4 = 0.5650 mol CH 4 HCHO produced : n3 = H2 O produced : n4 = 1 mol HCHO 01211 . mol CH 4 consumed = 01211 . mol HCHO 1 mol CH 4 consumed 1 mol H 2O 01211 . mol CH 4 consumed = 01211 . mol H 2O 1 mol CH 4 consumed Extent of reaction :ξ = ( nO 2 ) out − ( nO 2 ) in ν O2 = 0 − 01211 . 1 = 01211 . mol References : CH4 ( g), O 2 ( g), HCHO(g), H 2O(g), at 25 o C Substance U$ i = z CH4 O2 HCHO H 2O T 25 z nin nout U$ in U$ out mol kJ mol mol kJ mol 0.6861 0 05650 . U$ 1 01211 . 0 − − − − 01211 . U$ 2 − − 01211 . U$ 3 T (Cv ) i dT = ( C p − R ) i dT i = 1,2,3 25 Using ( Cp ) i from Table B.2 and R = 8.314 × 10−3 kJ / mol ⋅ K: U$ 1 = ( 0.02599 T + 2.7345 × 10−5 T 2 + 01220 . × 10− 8 T 3 − 2.75 × 10−12 T 4 − 0.6670) kJ / mol U$ 2 = (0.02597 T + 21340 . × 10−5 T 2 − 21735 . × 10− 12 T 4 − 0.6623) kJ / mol U$ 3 = ( 0.02515 T + 03440 . × 10−5 T 2 + 0.2535 × 10−8 T 3 − 08983 . × 10−12 T 4 − 0.6309) kJ / mol 9-26 http://librosysolucionarios.net 9.25 (cont'd) Q= 100 J 85 s s 1 kJ 1000 J = 8.5 kJ Table B.1 B ∆H$ ro = ( ∆H$ fo ) HCHO + (∆H$ fo ) H2 O − ( ∆H$ fo ) CH4 . ) + (−24183 . ) − (−74.85)g kJ / mol b(−11590 = = −282.88 kJ / mol ∆U$ ro = ∆H$ ro − RT ( ∑ ∑ν ) νi − gaseous products i gaseous reactants = −282.88 kJ / mol − 8.314 J mol K (1 + 1 − 1 − 1) 298 K 1 kJ = −282.88 kJ / mol 10 3 J Energy Balance : Q = ξ∆U$ ro + ∑ (n $ i ) out (U i ) out − ∑ (n $ i ) in (U i ) in = (0.1211)(−28288 . kJ / mol) + 0.5650 U$1 + 01211 . U$ 2 + 01211 . U$ 3 Substitute for U$ 1 through U$ 3 and Q 0 = 0.02088 T + 1845 . × 10 −5 T 2 + 0.09963 × 10 −8 T 3 − 1926 . × 10 −12 T 4 − 4329 . kJ / mol Solve for T using E - Z Solve ⇒ T = 1091o C = 1364 K ⇒ P = nRT / V = 0.8072 mol 8.314 m3 ⋅ Pa 1364 K mol ⋅ K 10 L 1L 10 −3 m3 = 915 × 10 3 Pa = 915 kPa Add heat to raise the reactants to a temperature at which the reaction rate is significant. b. c. 9.26 Side reaction : CH 4 + 2O2 → CO2 + 2H 2O. T would have been higher (more negative heat of reaction for combustion of methane), volume and total moles would be the same, therefore P = nRT / V would be greater. bg C2 H4 g + Basis: 2 mol C 2 H 4 fed to reactor n 6 (mol CO2 ) n 7 (mol H 2O( l )) 25°C Qr (kJ) heat n 1 (mol C 2H 4) n 2 (mol O 2 ) 25°C 2 mol C2 H4 1 mol O2 450°C bg 1 O 2 ( g) → C 2 H 4 O g 2 C 2 H 4 + 3O 2 → 2CO 2 + 2H 2 O a. reactor n 3 (mol C 2H 4) n 4 (mol O 2 ) separation n3 ( mol C 2H 4) process n4 ( mol O 2 ) n5 ( mol C 2 H 4O) n6 ( mol CO2 ) n7 ( mol H2 O) 450°C 25% conversion ⇒ 0.500 mol C 2 H 4 consumed ⇒ n 3 = 1.50 mol C 2 H 4 9-27 http://librosysolucionarios.net n5 (mol C 2H 4O(g )) 25°C 9.26 (cont'd) 70% yield ⇒ n5 = 0.500 mol C 2 H 4 consumed 0.700 mol C 2 H 4 O = 0.350 mol C 2 H 4 O 1 mol C 2 H 4 C balance on reactor: Water formed: n7 = O balance on reactor: . g + b 2gb 0350 . g+n b2gb2g = b2gb150 6 ⇒ n 6 = 0.300 mol CO 2 0.300 mol CO 2 1 mol H 2 O = 0.300 mol H 2 O 1 mol CO 2 2 1 = 2n4 + 0.350 + 2 0.300 + 0300 . ⇒ n4 = 0.375 mol O 2 b gb g Overall C balance: 2n1 = n6 + 2n5 Overall O balance: 2n2 = 2n6 + n7 b gb g = 0300 . + b 2gb0.350 g ⇒ n = 0500 . mol C H + n = b 2gb0.300 g + b 0300 . g + b 0.350g ⇒ n = 0.625 mol O 1 2 5 4 2 Feed stream: 44.4% C2 H 4 , 556% . O2 2 Reactor inlet: 66.7% C 2 H 4 , 333% . O2 Recycle stream: 80.0% C 2 H 4 , 20.0% O2 Reactor outlet: 53.1% C 2 H 4 , 13.3% O2 , 12.4% C 2 H 4 O, 10.6% CO 2 , 10.6% H 2 O Mass of ethylene oxide = b. 0.350 mol C 2 H 4O 44.05 g 1 kg = 00154 . kg 1 mol 10 3 g bg b g b g References for enthalpy calculations :C s , H 2 g , O 2 g at 25° C bg H$ i T = ∆H$ ofi + z z T = ∆H$ 0f + C p dT 25 T +273 298 for C 2 H 4 C p dT for C 2 H 4 O = ∆H$ ofi + H$ i ( table B.8) bg = ∆H$ of for H 2 O l bg for O 2 , CO 2 , H 2 O g Overall Process nin H$ in (mol) ( kJ / mol) C2 H4 0.500 5228 . O2 0625 . 0 C2 H 4 O − − CO2 − − H2O l − − Substance bg Reactor nout H$ out ( mol) ( kJ / mol) − − − − 0350 . −5100 . 0300 . −3935 . 0300 . −28584 . Energy balance on process: Q = ∆H = nin nout H$ in H$ out ( mol) ( kJ / mol) ( mol) ( kJ / mol) C2 H 4 2 7926 . 150 . 79.26 O2 1 1337 . 0375 . 1337 . C2 H 4 O − − 0350 . −1999 . CO2 − − 0300 . −374.66 H2O g − − 0300 . −22672 . substance bg ∑ n H$ − ∑ n H$ i i i out Energy balance on reactor: Q = ∆H = ∑ n H$ − ∑ n H$ i out c. i = − 248 kJ in i i i = − 236 kJ in Scale to 1500 kg C 2 H 4 O day : C 2 H 4 O production for initial basis = (0.350 mol)( ⇒ Scale factor = 44.05 kg 103 mol ) = 0.01542 kg C2 H 4 O 1500 kg day = 9.73 × 104 day −1 0.01542 kg 9-28 http://librosysolucionarios.net 9.26 (cont'd) U| V| b gb W kg je9 .73 × 10 day j = day j 1 day 1 hr In initial basis, fresh feed contains M = 0.500 28.05 g C 2 H 4 mol + 0.625 32.0 g O 2 mol 0.500 mol C 2 H 4 0.625 mol O2 = 34.025 × 10−3 kg e Fresh feed rate = 34.025× 10 −3 Qprocess = b−248 kJge9.73 × 10 Qreactor = b−236 kJge9.73 ×10 4 4 4 −1 day −1 j −1 g b gb 3310 kg day (44.4% C 2 H 4 , 55.6% O 2 ) 1 kW = − 279 kW 24 hr 3600 s 1 kJ s 1 day 1 hr 1 kW = −265 kW 24 hr 3600 s 1 kJ s 9-29 http://librosysolucionarios.net g 9.27 a. 1200 lb m C 9 H12 h Overall process : Basis : 1 lb - mole = 10.0 lb - moles cumene produced h 120 lb m n 1 (lb-moles/h) 0.75 C 3H 6 0.25 C 4H 10 n 3 (lb-moles C 3 H6 /h) n 4 (lb-moles C 4 H10 /h) n 2 (lb-moles C 6 H 6 /h) 10.0 lb-moles C9 H12 /h bg bg bg b Benzene balance: n& 2 = binput =consumptiong = 10.0 lb - moles C 9H12 produced 1 mole C 6 H6 consumed h 1 mole C 9H12 produced 10.0 lb - moles C 6H 6 h 0.75n& 1 = n& 3 + Propylene balance: b input =output+ consumption g 781 . lb m C6 H 6 = 781 lb m C 6H 6 h 1 lb - mole 10.0 lb - moles C 9H12 1 mole C 3H 6 h 1 mole C 9H12 UV ⇒ n& = 16.67 lb - moles h b gW n& = 2.50 lb - moles C H h b0.75gb16.67glb - moles C H 42.08 lb C H feed = ⇒ 0.75n&1 = n& 3 + 10 1 20% C 3H 6 unreacted⇒ n& 3 = 0.20 0.75n&1 Mass flow rate of C3 H6 / C 4 H10 + 3 4 10 Reactor : 6 m 3 6 1 lb - mole 58.12 lb m C 4 H10 = 768 lb m h 1 lb - mole a3 +1fmoles fed to reactor = 40 lb - moles C H 10.0 lb - moles fresh feed h 6 1 mole fresh feed 16.67 lb-moles/h @ 77o F 0.75 C3 H6 0.25 C4 H10 10.0 lb-moles C9 H12 /h 2.50 lb-moles C3 H6 /h 4.17 lb-moles C4 H10 /h 30.0 lb-moles C6 H6 /h 400o F 40.0 lb-moles C6 H6 /h b. 6 h h Overhead from T1 ⇒ 3 3 b0.25gb16.67glb - moles C H Benzene feed rate = g ∆H$ r 77° F = −39520 Btu lb- mole C 3H 6 l + C6 H 6 l → C9 H12 l , .67 lb - moles h UV ⇒ 637.5% C H hW 62.5% C H 2.50 lb - moles C 3H 6 h 4.17 lb- moles C4 H 10 Heat exchanger : Reactor effluent at 400°F 10.0 lb-moles C9H12 /h 2.50 lb-moles C3H6 /h 4.17 lb-moles C4H10 /h 30.0 lb-moles C6H6 /h 200°F 40.0 lb-moles C6H6 /h 77°F T (°F) 9- 30 http://librosysolucionarios.net 3 6 4 10 46.7 lb-moles/h 21.4% C9 H12 5.4% C3 H6 8.9% C4 H10 64.3% C6 H6 6 h 9.27 (cont'd) Energy balance: ∆H = 0 ⇒ ∑ n eH$ i i , out j ∑ n C bT − H$ i , in = i pi out − Tin g =0 i (Assume adiabatic) C 3H 6 LM N 10 lb - moles C 9 H12 h C4 H10 B b gb 120 lb m OPe200 F − 400 Fj + b2.B50gb42.08gb0.57ge200 F − 400 ⋅ FQ 0.40 Btu 1 lb - mole 1bm gb ge o j b A gb o o o gb ge j + 4.17 58.12 0.55 200 o F − 400o F + 30.0 78.11 0.45 200o F − 400o F b A gb C6 H6 in effluent gb ge j + 40.0 78.11 0.45 T − 77o F = 0 ⇒ T = 323° F C6 H6 fed to reactor (Refer to flow chart of Part b: T = 323° F ) References : C 3H 6 l , C 4 H10 l , C6 H 6 l , C 9H 12 l at 77° F b g bg b bg bg g b bg gb gb g H$ i Btu lb - mole = C pi Btu lb m ⋅° F M i lb m lb - mole T − 77 ° F Substance C3 H 6 H$ in n& in n& out H$ out (lb - mole / h) (Btu / lb - mole) (lb - mole / h) (Btu / lb - mole) 12.0 0 2.50 7750 C 4 H 10 4.17 0 4.17 10330 C6 H 6 40.0 8650 30. 0 11350 C9 H 12 − − 10.0 15530 Energy balance on reactor : n& C9 H12 ∆H$ ro Q = ∆H = + n& i H$ i − vC 9 H1 2 out ∑ ∑ n& H$ i i in b10.0gb−39520g + b2.50gb7750g + b417 . gb10330 g + b 30.0gb11350g + b10.0gb15530g b1g −b 40.0gb8650g = −183000 Btu h b heat removalg = 9.28 Basis : a. 100 kg C 8H 8 103 g 1 mol = 960 mol h styrene produced h 1 kg 104.15 g C 8H10 ( g) → C 8H 8 (g) + H 2 ( g) Overall system n 2 (mol H2 /h) Fresh feed n 1 (mol C8H 10/h) 960 mol C8H 8 /h 960 mol C 8H8 1 mol C8 H10 = 960 mol C8 H10 h fresh feed h 1 mol C 8H8 bC 8 H10 balanceg 960 mol C8 H10 1 mol H 2 H 2 balance : n& 2 = = 960 mol H 2 h h 1 mol C8 H10 Fresh feed rate: n&1 = 9- 31 http://librosysolucionarios.net 9.28 (cont'd) Reactor : . n 3 (mol C8H10 /h) n 4 (mol H2O( v )/h) 600°C n5 (mol C8H10 /h) n 4 (mol H2O(v)/s) v 960 (mol C8H8 /s) 960 (mol H2 /s) 560°C Qc (kJ/h) b 0.35n3 mol C8 H 10 react h ⇒ n& 3 = 2740 mol C8 H10 h fed to reactor 35% 1-pass conversion ⇒ a g 1 mol C 8H 8 = 960 mol C8 H 8 h 1 mol C8 H 10 f ⇒ Recycle rate = 2740 − 960 = 1780 mol C 8H10 h recycled Reactor feed mixing point 2740 mol C8H10(v)/h 500oC 2740 mol C8H10(v)/h n4 [mol H2O(v)/h] 600oC n4 [mol H2O(v)/h] 700oC b g Energy balance: ∆H = 2740 ∆H$ C H + n& 4∆ H$ H O = 0 kJ h 8 10 2 bNeglect Q, ∆E g k ∆H$ C8 H10 = ∆H$ H 2O LM OP J 1 kJ 30T gdT × = 28.3 kJ mol MM b111844+20.44 3 P mol ⋅ C 10 J PQ N z 600 Table B.8 ⇒ o 500 P =1 bar = − 39 . kJ mol a2740 fa28.3f + n& a−3.9f = 0 ⇒ n& Ethylbenzene preheater bA g : 4 b. 3 Cp 4 = 1.99 × 10 4 mol H2 O / h bg 960 mol fresh feed 1780 mol recycled 2740 mol EB l + = at 25° C h h h 2740 mol EB v ⇒ at 500° C h 136 500 ∆H$ = C pi dT + ∆H$ v 136° C + C pv dT = 20.2 + 36.0 + 77.7 kJ mol = 133.9 kJ mol bg z a 25 2740 mol C8 H10 Q& A = ∆H& = h Steam generator F : f z a 136 f b 133.9 kJ = 367 . × 10 5 kJ h preheater mol C8 H10 bg 19400 mol h H Ob l, 25° Cg → 19400 mol h H Ob v, 700 ° C, 1 atmg Table B.5 ⇒ H$ bl, 25° Cg = 104.8 kJ kg ; Table B.7 ⇒ H$ b v, 700° C, 1 atm ≈ 1 bar g = 3928 kJ kg 2 2 9- 32 http://librosysolucionarios.net g 9.28 (cont'd) 19400 mol H2 O 18.0 g 1 kg Q& F = ∆ H& = h 1 mol 10 3 g b = 134 . × 10 kJ h steam generator 6 bg a3928 − 104.8fkJ kg g Reactor C : bg bg bg bg References: C 8H 8 v , C8 H10 v , H 2 g , H2 O v at 600° C e j H$ i 560o C = zd 560 600 i C pv i dT for C 8H10 , C8 H8 ≈ H$ (T) for H 2 , H 2 O (interpolating from Table B.8) Substance n& in n& out H$ H$ in C8 H10 out (mol h) (kJ mol) (mol h) (kJ mol) 2740 0 1780 −11.68 H2 O 19900 0 19900 −1.56 C8 H 8 − − 960 −10.86 H2 − − 960 − 119 . Energy balance : 960 mol C 8H 8 produced 124.5 kJ Q& c = ∆H& = + h 1 mol C8 H 8 a = 5.61 × 10 4 kJ h reactor c. i i out i i in This is a poorly designed process as shown. The reactor effluents are cooled to 25o C , and then all but the hydrogen are reheated after separation. Probably less cooling is needed, and in any case provisions for heat exchange should be included in the design. CH 3OH → HCHO + H 2 , 9.29 f ∑ n& H$ − ∑ n& H$ H2 + 1 O2 → H 2O 2 CH 3 OH O2 , N 2 H2 product gas 145°C separation units a. n f (mol/h) at 145°C, 1 atm 0.42 mol CH 3OH/mol 0.58 mol air/mol 0.21 mol O 2/mol air 0.79 mol N 2/mol air n s mol H2 O(v )/h saturated at 145°C reactor reactor product gas, 600°C n 1 (mol CH 3 OH/h) n 2 (mol O 2 /h) waste n 3 (mol N 2 /h) heat n 4 (mol HCHO/h) boiler 0.37 kg HCHO/h n 5 (mol H 2 /h) 0.63 kg H 2O/h n 6 (mol H 2 O/h) mb(kg (kgHHO(l)/h) mb (kg H2 O(v )/h) 2 O(v )/h) m b 2 30°C sat'd at 3.1 bars o 30 C b. In the absence of data to the contrary, we assume that the separation of methanol from formaldehyde is complete. Methanol vaporizer: bg The product stream, which contains 42 mole % CH 3OH v , is saturated at Tm 9- 33 http://librosysolucionarios.net e Cj and 1 atm. o 9.29 (cont'd) b g b gb g b g ym P = pm∗ Tm ⇒ 0.42 760 mmHg = 319 .2 mmHg = pm∗ Tm → p∗m = 319.2 mmHg ⇒ Tm = 44.1 o C Antoine equation c. Moles HCHO formed : = 36 × 106 kg solution 0.37 kg HCHO 1 kmol 1 day kmol HCHO = 52.80 h 350 days 1 kg solution 30.03 kg HCHO 24 h but if all the HCHO is recovered, then this equals n& 4 , or n& 4 = 5280 . kmol HCHO h 70% conversion : 52.80 kmol HCHO 1 kmol CH 3OH react 1 kmol CH 3OH fed 1 kmol feed gas = n& f h 1 kmol HCHO formed 0.70 kmol CH3OH react 0.42 kmol CH 3OH ⇒ n& f = 179.59 kmol h Methanol unreacted: n&1 = b0.42gb179.59gkmol CH OH fed b1 − 0.70g kmol CH OH fed = 22.63 kmol CH OH 3 3 h b 1 kmol CH 3OH fed 3 h gb gb g N 2 balance: n&3 = 179.6 kmol h 058 . 079 . = 82.29 kmol N 2 h Four reactor stream variables remain unknown — n& s , n&2 , n&5 , and n& 6 — and four relations are available — H and O balances, the given H2 content of the product gas (5%), and the energy balance. The solution is tedious but straightforward. H balance: b179.6gb0.42gb4g + 2n =b22.63gb4g + b52.8gb2g + 2n& s 5 + 2 n& 6 ⇒ n& s = n& 5 + n& 6 − 52.80 O balance: (1) . gb1g + b179.6g (0.58)b 0.21gb 2g + n& b179.6gb042 s = ( 22.63)(1) + 2n& 2 + (52.80)(1) + n& 6 ⇒ n& s = 2n& 2 + n& 6 − 4375 . (2) n& 5 = 0.05 ⇒ 19n&5 − n& 2 − n& 6 = 157 .72 22.63 + n& 2 + 82.29 + 5289 . + n& 5 + n& 6 H 2 content: bg b g b g b g References : C s , H 2 g , O 2 g , N 2 g at 25° C H= ∆H$ fo + z Table B.2 T 25 B C pdT or Table B.8 for O 2 , N 2 and H 2 9- 34 http://librosysolucionarios.net (3) 9.29 (cont'd) substance n& in kmol / h n& out H$ in kmol /h kJ / kmol H$ out kJ / kmol CH 3 OH O2 N2 H2O 75.43 21.88 82.29 ns −195220 3620 3510 −237740 22 .63 n2 82.29 n6 −163200 18410 17390 −220920 HCHO H2 − − − − 52.80 n5 −88800 16810 Energy Balance : ∆H = ni H$ i − ni H$ i = 0 ⇒ 18410n2 + 16810n5 − 220920n6 + 237704n s = −7.406 × 10 6 ∑ ∑ out (4) in We now have four equations in four unknowns. Solve using E-Z Solve. n& s = bg 58.8 kmol H 2 O v 18.02 kg h 1 kmol = 1060 kg steam fed h n& 2 = 2.26 kmol O2 h , n& 5 = 1358 . kmol H 2 h , n& 6 = 9800 . kmol H2 O h Summarizing, the product gas component flow rates are 22.63 kmol CH3 OH/h, 2.26 kmol O2 /h, 82.29 kmol N2 /h, 52.80 kmol HCHO/h, 13.58 kmol H2 /h, and 98.02 kmol H2 O/h ⇒ d. 272 kmol h product gas 8% CH 3OH, 0.8% O 2 , 30% N 2 , 19% HCHO, 5% H 2 , 37% H 2 O Energy balance on waste heat boiler. Since we have already calculated specific enthalpies of all components of the product gas at the boiler inlet (at 600°C), and for all but two of them at the boiler outlet (at 145°C), we will use the same reference states for the boiler calculation bg b g b g b g H Ob lg at triple point for boiler water Reference States: C s , H 2 g , O 2 g , N 2 g at 25° C for reactor gas 2 Substance n&i n Hˆ in n& out Hˆ out kmol/h mol CH 3O H 22.63 kJ/kmol −163200 22.63 kJ/mol − 195220 O2 N2 2.26 82.29 18410 17390 2.26 82.29 3620 3510 H2O 98.02 −220920 98.02 − 237730 HCHO H2 52.80 13.58 m& b − 88800 16810 52.80 13.58 m& b − 111350 3550 H2O (kg/h) 125.7 (kJ/kg) (kg/h) 2726.1 (kJ/kg) Energy Balance : ∆H = ∑ n H$ − ∑ n H$ i out b i i in i =0 g ⇒ mb 27261 . − 1257 . − 4.92 × 106 = 0 ⇒ mb = 1892 kg steam h 9- 35 http://librosysolucionarios.net 9.30 a. C 2 H 4 + HCl → C 2 H5Cl bg 1600 kg C 2 H5Cl l h Basis: n 3 (mol HCl( g)/h) n 4 (mol C 2H 4( g)/h) n 5 (mol C 2H 6( g)/h) n 6 (mol C 2H 5Cl( g)/h) 50°C A n 1 (mol HCl( g)/h) 0°C C condenser n 3 (mol HCl( g)/h) n 4 (mol C 2H 4( g)/h) n 5 (mol C 2H 6( g)/h) 0°C [mol Cl(l)/h] n 6 n(mol C C2H2 H5Cl( g)/h) 6 5 reactor B 103 g 1 mol = 24800 mol h C 2 H5Cl 1 kg 64.52 g n 2 (mol/h) at 0°C 0.93 C 2H 4 0.07 C 2H 6 ( n 6 – 24,800) (mol C 2H 5Cl( l)/h) 0°C D 24,800 mol C2 H 5Cl( l )/h Product composition data: (1) ( 2) ( 3) n&3 = 0.015n&1 n&4 = 0.015 ( 0.93n&2 ) = 0.01395 n&2 n&5 = 0.07 n&2 Overall Cl balance : n&1 ( mol HCl h ) 1 mol Cl = ( n&3 ) (1) + ( 24800 )(1) 1 mol HCl ( 4) Solve (4) simultaneously with (1) ⇒ n&1 = 25180 mol h = 25.18 kmol HCl fed/h n&3 = 378 mol HCl ( g ) h Overall C balance : n& 2 ( 0.93 )( 2 ) + n&2 ( 0.07 )( 2 ) = 2n&4 + 2 n&5 + ( 2 )( 24800) From Eqs. (2) and (3) ⇒ 2n&2 0.93 + 0.07 − 0.0139 − 0.07 = ( 2 )( 24800 ) n& 2 = 27070 mol fed h = 27.07 kmol h of Feed B b. c. n&3 = 378 mol HCl h 2.65 kmol / h of Product C n& 4 = 0.01395 ( 27070 ) =378 mol C 2H4 h 14.3% HCl, 14.3% C2 H 4 , 71.4% C 2 H 6 n&5 = 0.07 ( 27070 ) =1895 mol C2 H6 h bg bg bg bg References : C 2 H 4 g , C 2 H 6 g , C 2 H 5 Cl g , HCl g at 0 o C e j z C 2 H4 g, 50o C : H$ = C p dT 50 0 Table B.2 ⇒ 2181 . kJ mol 9- 36 http://librosysolucionarios.net 9-30 (cont’d) 50 o C2 H6 ( g, 50C ) : Hˆ = ∫ C p dT ⇒ 2.512 kJ mol Table B.2 e j HCl g, 50o C : H$ = z 0 Table B.2 50 C pdT 0 e j C H Cleg, 50 Cj: H$ = ⇒ 1.456 kJ mol e j C 2 H5Cl l, 0o C : H$ = − ∆ H$ v 0o C = −24.7 kJ mol 2 o 5 z 50 C pv dT = 2.709 kJ mol 0 n& out Hˆ i n mol/h kJ/mol mol/h HCl 25180 0 378 C2 H 4 25175 0 378 C 2H 6 1895 0 1895 C 2 H 5Cl n&6 − 24800 −24.7 n&6 Energy balance: substance ∆H = 0 ⇒ ⇒ n&in ( )+ n&A ∆Hˆ r 0o C νA Hˆ out kJ/mol 1.456 2.181 2.512 2.709 ∑ n& Hˆ − ∑ n& Hˆ i i i out ( 25180 − 378) mol HCl react h i =0 in −64.5 kJ + (378 )(1.456 ) + ( 378)( 2.181) + (1895)( 2.512 ) 1 mol HCl + 2.627n&6 − ( n&6 − 24800 )( −24.7 ) = 0 ⇒ n&6 = 80732 mol C2H5Cl h in reactor effluent 80732 mol condensed 24800 mol product mol − = 55932 h h h kmol recycled = 55.9 h C2 H 5Cl recycled = d. C p is a linear function of temperature. ∆H$ v is independent of temperature. 100% condensation of ethylbenzene in the heat exchanger is assumed. Heat of mixing and influence of pressure on enthalpy is neglected. Reactor is adiabatic. No C2 H4 or C2 H6 is absorbed in the ethyl chloride product. 9.31 a. 4NH3 (g) + 5O2 (g) à 4NO(g) +6H2 O(g) ∆H$ ro = −904 .7 kJ / mol Basis : 10 mol/s Feed gas n& 3 (mol O2 ) n& 4 (mol NO) 4 mol / s NH3 6 mol / s O 2 n&5 (mol H2 O) Tout Tin = 200 o C 9- 37 http://librosysolucionarios.net 9.31 (cont'd) 5 mol O 2 4 mol NH 3 fed = 5 mol / s ⇒ n& 3 = ( 6 − 1) mol O 2 / s = 1 mol O 2 / 4 mol NH 3 s 4 mol NO produced 4 mol NH 3 fed NO produced : n& 4 = = 4 mol NO / s 4 mol NH 3 s O 2 consumed : H 2 O produced : n& 5 = 6 mol H 2O produced 4 mol NH 3 fed 4 mol NH 3 Extent of reaction : ξ& = b. s ( n& NH 3 ) out − (n& NH3 ) in ν NH 3 = 0 −4 4 = 6 mol H 2 O / s = 1 mol / s Well-insulated reactor, so no heat loss No absorption of heat by container wall Neglect kinetic and potential energy changes; No shaft work No side reactions. References : NH3 ( g), O 2 ( g), NO(g), H2 O(g) at 25o C, 1atm c. Substance NH 3 ( g) O 2 ( g) NO(g) z H$ out n& out ( mol / s) ( kJ / mol) ( mol / s) ( kJ / mol) 4.00 H$ 1 − − $ 6.00 H2 1.00 H$ 3 − − 4.00 H$ 4 − H 2O(g) H$ 1 = H$ in n& in − H$ 5 6.00 Table B.2 200 (C p ) NH 3 dT B = Table B.8 6.74 kJ / mol, H$ 2 = H$ O2 ( 200 o C) B = 5.31 kJ / mol 25 Using (Cp )i from Table B.2 : Hˆ 3 = (0.0291 Tout + 0.5790 ×10−5 Tout 2 − 0.2025 ×10−8 Tout 3 + 0.3278 ×10−12 Tout 4 − 0.7311) kJ/mol Hˆ 4 = (0.0295 Tout + 0.4094 ×10 −5 Tout 2 − 0.0975 ×10−8 Tout 3 + 0.0913 ×10−12 Tout 4 − 0.7400) kJ/mol Hˆ 5 = (0.03346 Tout + 0.3440 ×10−5 Tout 2 + 0.2535 ×10−8 Tout 3 − 0.8983 ×10− 12 Tout 4 − 0.8387) kJ/mol Energy Balance: ∆H& = 0 ∆H& = ξ& ∆H$ ro + 5 ∑ ( ni ) out ( H$ i ) out − i =3 2 ∑ (n $ i ) in ( Hi ) in i =1 ⇒ ∆H& = ξ&∆Hˆ ro + (1.00)Hˆ 3 + (4.00)Hˆ 4 + (6.00)Hˆ 5 − (4.00)Hˆ 1 − (6.00)Hˆ 2 ⇓ o Substitute for ξ& , ∆Hˆ r , and Hˆ1 through Hˆ 6 ∆H& = (0.3479 Tout + 4.28 × 10 −5 Tout 2 + 0.9285 × 10 −8 T out 3 − 4.697 × 10 −12 Tout 4 ) − 972.24 kJ/mol = 0 E-Z Solve ⇒ Tout = 2223 o C 9- 38 http://librosysolucionarios.net 9-31 (cont’d) If only the first term from Table B.2 is used, H$ i = z T (C pi )dT = C pi ( T − 25) 25 d. H$ 1 = 0.03515(200 − 25) = 615 . kJ / mol, H$ 2 = 5.31 kJ / mol, H$ 3 = 0.0291( Tout − 25) , H$ 4 = 00295 . ( Tout − 25) , H$ 5 = 0.03346( Tout − 25) ˆ2 =0 E.B. ∆H& = ξ&∆Hˆ ro + (1.00) Hˆ 3 + (4.00) Hˆ 4 + (6.00)Hˆ 5 − (4.00)Hˆ 1 − (6.00)H ⇓ o Substitute for ξ& (=1 mol/s), ∆Hˆ r ( = − 904.7 kJ/mo l) and Hˆ1 through Hˆ 6 0=0.3479 Tout − 969.86 ⇒ Tout = 2788 o C ⇒ % error= 2788o C − 2223o C × 100 = 25% 2223 o C If the higher temperature were used as the basis, the reactor design would be safer (but more expensive). e. 9.32 Basis : 100 lb m coke fed ⇒ 84 lb m C ⇒ 7.00 lb - moles C fed ⇒ 7.00 lb - moles CO2 fed 7.00 lb-moles CO 2 400°F n1 (lb-moles CO) n2 (lb-moles CO 2) 1830°F n3 lb-moles C( s)/hr 16 lb mash/hr 1830°F 7.00 lb-moles(84 lb )C/hr m 16 lb mash/hr 77°F 585,900 Btu a. bg bg bg e77 Fj = e∆ H$ j b g − 2e∆H$ j b g −393.50 − b 2gb −282 .99g kJ = C s + CO 2 g → 2CO g , ∆H$ ro o o c = 25° C o c CO 2 g CO g 0.9486 Btu 453.6 mols mol 1 kJ 1 lb - mole = 74,210 Btu lb - mole Let x = fractional conversion of C and CO2 : E n1 = b g 7.00x lb - moles C reacted 2 lb - moles CO formed = 14.0 x lb- moles CO 1 lb - mole C reacted b g = 7.00b1 − x g lb- moles Cb sg n2 = 7.00 1 − x lb- moles CO 2 n3 bg bg bg o References for enthalpy calculations: C s , CO2 g , CO g , ash at 77 F ⇒ 3130 Btu lb - mole b g (1830 F) ⇒ 20,880 Btu lb - mole CO bg,1830° Fg: H$ = H$ CObg,1830° Fg: H$ = H$ (1830 F) ⇒ 13,280 Btu lb - mole o CO2 g ,400° F : H$ = H$ CO2 ( 400 F) 2 o CO2 CO o Table B.9 Table B.9 Table B.9 9- 39 http://librosysolucionarios.net 9.32 (cont'd) b b1830 − 77g° F = 420 Btu lb g 0.24 Btu Solid 1830° F : H$ = lb m ⋅ o F m Mass of solids (emerging) = b g 7.00 1 − x lb - moles C 12.0 lb m 1 lb - mole b g + 16 lb m = 100 − 84 x lb m nin nout H$ in H$ out (lb − moles) ( Btu lb - mole) (lb − moles) ( Btu lb- mole) 7.00 3130 7.00 1 − x 20,890 − − 14.0x 13,280 (lbm ) (Btu lbm ) (lb m ) (Btu lbm ) 100 0 100 − 84x 420 substance b g CO2 CO solid Extent of reaction: n CO = ( n CO ) o + ν CO ξ ⇒ 14.0 x = 2ξ ⇒ ξ ( lb - moles) = 7.0 x Energy balance: Q = ∆H = ξ ∆H$ ro + ∑ n H$ − ∑ n H$ i i i out i in a fa f + a14. 0x fa13,280f + a100 − 84 x fa 420f − a 7.00fa3130 f E 585,900 Btu = 7.0 x (lb - moles) 74,210 Btu + 7.00 1 − x 20,880 lb - mole x = 0.801 ⇒ 80.1% conversion b. Advantages of CO. Gases are easier to store and transport than solids, and the product of the combustion is CO2 , which is a much lower environmental hazard than are the products of coke combustion. Disadvantages of CO. It is highly toxic and dangerous if it leaks or is not completely burned, and it has a lower heating value than coke. Also, it costs something to produce it from coke. 9.33 17.1 m3 103 L 273 K 5.00 atm 1 mol = 3497 mol h feed 3 h 1m 298 K 1.00 atm 22.4 L STP CO g + 2H 2 g → CH 3OH g , a f Basis : bg bg e j ∆H$ ro = ∆H$ fo bg CH 3OH g bg e j − ∆H$ fo CO(g) 3497 mol/h 0.333 mol CO/mol 0.667 mol H /mol 2 25°C, 5 atm = −9068 . kJ mol n1 (mol CH 3OH /h) n2 (mol CO/h) n3 (mol H 2/h) 127°C, 5 atm Q = –17.05 kW Let f = fractional conversion of CO (which also equals the fractional conversion of H 2 , since CO and H 2 are fed in stoichiometric proportion). 9- 40 http://librosysolucionarios.net 9.33 (cont’d) CO reacted : = ( 3497 )( 0. 333 ) mol CO feed f ( mol react ) = 1166 f ( mol CO react ) mol feed 1166 f mol CO react 1 mol CH 3OH CH 3OH produced : n&1 = = 1166 f mol CH 3OH h 1 mol CO CO remaining : n& 2 = 1166 1 − f mol CO h H2 a f 1166 f mol CO react remaining : n& = b 3497gb0.667 g mol H fed − = 2332 b1 − f g mol H h Reference states : CO(g), H b gg , CH OHb gg at 25°C 3 2 2 mol H 2 react 1 mol CO react 2 2 Substance CO H2 CH3OH 3 H$ in n& in H$ out n& out bmol hg bkJ molg bmol hg bkJ molg 1166 0 1166a1 − f f H$ 2332 0 2332a1 − f f H$ 1 2 − − H$ 3 1166 f B Table B.8 e o e o j CO g,127 C : H$ 1 = H$ CO (127o C) = 2.99 kJ mol B Table B.8 j H2 g,127 C : H$ 2 = H$ H2 (127o C) = 2.943 kJ mol CH 3OH(g,127 C): H$ 3 = o z B Table B.2 122 C pdT = 5.009 kJ / mol 25 & = ξ& ∆H$ o + Energy balance : Q& = ∆ H r ∑ n& H$ − ∑ n& H$ i i out ⇒ i i in −17.05 kJ 3600 s kJ = (1166 f )( −90.68) + 1166 1 − f s 1h h b g b2.99g . g b kJ hg b g b2.993g + 1166 f b5009 + 2332 1 − f b ⇒ 1102 . × 105 f = 7173 . × 10 4 ⇒ f = 0.651 mol CO or H 2 b g = 1166b1− 0.651g = 406.9 mol h = 2332b1 − 0.651g = 8139 . mol h E g converted mol fed n&1 = 1166 0.651 = 759 .1 mol h n& 2 n& 3 n& tot = 1980 9.34 a. mol 1980 mol ⇒ Vout = h h bg bg bg b g 22.4 L STP 1 mol 400 K 1.00 atm 1 m 3 = 13.0 m 3 h 273 K 5.00 atm 103 L bg CH 4 g + 4S g → CS 2 g + 2 H2 S g , ∆H$ r ( 700 ° C ) = −274 kJ mol Basis : 1 mol of feed 9- 41 http://librosysolucionarios.net 9.34 (cont'd) 1 mol at 700°C 0.20 mol CH /mol Reactor 4 0.80 mol S/mol Q = –41 kJ Product gas at 800°C n 1 (mol CS2) n 2 )(mol H 2S) n 3 (mol CH 4 ) n 4 (mol S (v)) Let f = fractional conversion of CH 4 (which also equals fractional conversion of S, since the species are fed in stoichiometric proportion) Moles CH 4 reacted = 0.20 f , Extent of reaction = ξ (mol) = 0.20 f b g n3 = 0.20 1 − f mol CH 4 n4 = 0.80 mol S fed − b 0.20 f mol CH 4 react g b g 4 mol S react = 080 . 1 − f mol S 1 mol CH 4 react 1 mol CS 2 = 020 . f mol CS2 1 mol CH 4 0.20 f mol CH 4 react 2 mol H 2 S n2 = = 0.40 f mol H 2S 1 mol CH 4 n1 = 0.20 f mol CH 4 react bg References: CH 4 (g), S g , CS 2 (g), H2S(g) at 700°C (temperature at which ∆H$ r is known) H$ in substance nin CH4 S H$ out nout bmolg bkJ molg b molg b kJ molg 0.20 0 0.20b1 − f g H$ 0.80 0 0.80b1 − f g H$ 1 2 CS2 − − 0.20 f H2S − − 0.40 f H$ out = Cpi ( 800 − 700) ⇒ b H$ 3 H$ 4 g CH 4 g, 800 ° C : H$ 1 = 7.14 kJ / mol S g, 800° C : H$ = 3.64 kJ / mol b g b b g g 2 CS2 g, 800° C : H$ 3 = 3.18 kJ / mol H 2S g, 800° C : H$ 4 = 4.48 kJ / mol Energy balance on reactor: Q& = ∆ H& = ξ& ∆H$ r + b. = b gb b1g ∑ n& H$ − ∑ n& H$ i out 020 . f − 274.0 i i i = 41 in kJ s g + 0.20b1− f gb7140 . g + 080 . b1 − f gb 3640 . g + 0.20 f b3180 . g + 0.40 f b 4.480g ⇒ f = 0.800 9- 42 http://librosysolucionarios.net 9.34 (cont'd) 0.04 mol CH4 0.16 mol S(l ) 0.16 mol CS2 0.32 mol H2 S 200°C 0.20 mol CH4 0.80 mol S(l ) 150°C Q (kJ) preheater 0.20 mol CH4 0.80 mol S( g) T (°C) 0.20 mol CH4 0.80 mol S(l ) 700°C 0.04 mol CH4 0.16 mol S(g ) 0.16 mol CS2 0.32 mol H2S 800°C System: Heat exchanger-preheater combination. Assume the heat exchanger is adiabatic, so that the only heat transferred to the system from its surroundings is Q for the preheater. bg References : CH 4 (g), S l , CS 2 (g), H 2S(g) at 200°C Substance nin H$ in nout H$ out 0.20 H$ 1 H$ 0.20 H$ 7 2 0.04 0 6 016 . 0.80 016 . 0.32 0 $ H8 0 0 bmolg bkJ molg bmolg bkJ molg bCH g bCH g Sb lg Sbgg 4 150°, 700 ° 4 800°,200 ° 0.04 H$ 3 H$ 4 H$ 5 H$ 080 . 016 . 016 . 0.32 CS 2 H 2S a f = dC i a T − 200f for Sa lf af F I = dC i G 444.6− 200J + ∆ H$ bT g + dC i b g aT − 444.6f for Sbgg a fH K H$ i = C pi T − 200 for all substances but S p S l p S l c. b b v = 83. 7 kJ mol Tb b p Sg g g b b CH 4 g, 150° C : H$ 1 = − 3.57 kJ / mol CH 4 g, 800 ° C : H$ 2 = 42.84 kJ / mol S l, 150° C : H$ = − 1.47 kJ / mol b g Sb g, 800° Cg: 3 b H$ 4 = 103.83 kJ / mol i out 4 b g g 7 S g, 700° C : H$ 8 = 100.19 kJ / mol b g ∑ n H$ − ∑ n H$ Energy balance: Q kJ = g g CS2 g, 800 ° C : H$ 5 = 19.08 kJ / mol H 2S g, 800° C : H$ 6 = 26.88 kJ / mol CH g, 700 ° C : H$ = 35.7 kJ / mol i i i ⇒ Q = 59 .2 kJ ⇒ 59.2 kJ mol feed in The energy economy might be improved by insulating the reactor better. The reactor effluent will emerge at a higher temperature and transfer more heat to the fresh feed in the first preheater, lowering (and possibly eliminating) the heat requirement in the second preheater. 9- 43 http://librosysolucionarios.net 9.35 Basis : 1 mol C 2 H 6 fed to reactor 1 mol C H 2 6 1273 K, P atm a. n (mols) @ T (K), P atm n C 2H6 (mol C 2H 6) n C 2H4 (mol C 2H 4) n H 2 (mol H 2) C2 H6 ⇔ C2 H4 + H 2 , K p = x C2 H 4 x H 2 P = 7.28 × 106 exp[−17,000 / T ( K)] xC 2 H 6 b Fractional conversion = f mols C 2 H 6 react mol fed U| n = b1 − f gb mol C H g| |V n = f b mol C H g || n = f b mol H g n = 1 + f b mols g |W ξ(mol) = f C2H 6 2 C2H 4 2 H2 6 4 2 Kp = x C 2 H4 e1 − f jK 2 b. P⇒ Kp = p = f 2 g 1 − f mol C2 H 6 x C2 H6 = 1+ f mol f mol C2 H 4 ⇒ x C2 H 4 = 1+ f mol f mol H 2 xH2 = 1 + f mol f x C2 H 4 x H 2 (1) 2 b g P b1− f g b1+ f g 2 1+ f F K I P⇒ f =G H P + K JK = f 2P f2 = P 1− f 1+ f 1− f 2 b 12 gb g b 2g p p bg bg bg References : C 2 H 6 g , C 2 H 4 g , H 2 g at 1273 K Energy balance: ∆H = 0 ⇒ ξ ∆ H$ r 1273 K + ni H$ i − ni H$ i b eH$ j eH$ j i i g ∑ ∑ out b in = 0 inlet temperature = reference temperature in out = z g T 1273 C pi dT ⇓ energy balance b g b f ∆H$ r 1273 K kJ + 1 − f z g dC i T 1273 p dT + f C2H 6 z T 1273 dC i p C2 H4 dT + f rearrange, reverse limits and change signs of integrals 1− f f b g z z dC i dT − dC i dT = b3g dT d4C2i444444444 1444444444 4 3 ∆H$ r 1273K − 1273 z p C H 2 4 T 1273 T p H 2 1273 T p C H 2 6 bg φ T 1− f 1 = φ T ⇒ 1 − f = fφ T ⇒ f = f 1+φ T bg bg b g b 4g 9- 44 http://librosysolucionarios.net z T 1273 dC i p H2 dT = 0 9.35 (cont'd) 145600 − bg φT = zb g 1273 T z bg c. 1273 −3 T 1273 T ⇒ φT = z e26.90 + 4.167 × 10 T jdT b11.35 + 0.1392TgdT 9.419 + 01147 . T dT − 3052 + 36.2T + 0.05943T 2 127240 − 113 . T − 0.0696T 2 F K I = 1 ⇒ F K I − 1 = ψ bT g = 0 GH 1 + K JK 1 + φ bTg GH 1 + K JK 1 + φ bT g φb T g given by expression of Part b. K b T g given by Eq. (1) 12 12 p p p p p d. P (atm) 0.01 0.05 0.1 0.5 1 5 10 T (K) 794 847.4 872.3 932.8 960.3 1026 1055 f 0.518 0.47 0.446 0.388 0.36 0.292 0.261 Kp (atm) 0.0037 0.0141 0.025 0.0886 0.1492 0.4646 0.7283 Phi Psi 0.93152 -0.0001115 1.12964 -0.0002618 1.24028 0.00097743 1.57826 3.41E-05 1.77566 4.69E-05 2.42913 -2.57E-05 2.83692 -7.54E-05 Plot of T vs ln P Plot of f vs. ln P 1100 0.6 0.5 1000 f T(K) 0.4 900 0.3 0.2 800 0.1 0 700 -3 -2 -1 0 1 2 -3 -2 ln P(atm) e. -1 0 ln P(atm) C ** PROGRAM FOR PROBLEM 9-35 WRITE (5, 1) 1 FORMAT ('1', 20X, 'SOLUTION TO PROBLEM 9-35'//) T = 1200.0 TLAST = 0.0 PSIL = 0.0 9- 45 http://librosysolucionarios.net 1 2 9.35 (cont'd) C ** DECREMENT BY 50 DEG. AND LOOK FOR A SIGN IN PSI DO 10I =1, 20 CALL PSICAL (T, PHI, PSI) IF ((PSIL*PSI).LT.0.0) GO TO 40 TLAST = T PSIL = PSI T = T – 50. 10 CONTINUE 40 IF (T.GE.0.0) GO TO 45 WRITE (3, 2) 2 FORMAT (1X, 'T LESS THAN ZERO -- ERROR') STOP C ** APPLY REGULA-FALSI 45 DO 50 I = 1, 20 IF (I.NE.1) T2L = T2 T2 = (T*PSIL-TLAST*PSI)/(PSIL-PSI) IF (ABS(T2-T2L).LT.0.01) GO TO 99 CALL PSICAL (T2, PHIT, PSIT) IF (PSIT.EQ.0) GO TO 99 IF ((PBIT*PBIL).GT.0.0) PSIL = PSIT IF ((PSIT*PSIL).GT.0.0) TLAST = T2 IF ((PSIT*PSI).GT.0.0) PSI = PSIT IF ((PSIT*PSI).GT.0.0) T = T2 50 CONTINUE IF (I.EQ.20) WRITE (3, 3) 3 FORMAT ('0', 'REGULA -FALSI DID NOT CONVERGE IN 20 ITERATIONS') 93 STOP END SUBROUTINE PSICAL (T, PHI, PSI) REAL KF PHI = (3052 + 36.2*T + 36.2*T + 0.05943*T**2)/(127240. – 11.35*T * – 0.0636*T**2) KP = 7.28E6*EXP(-17000./T) FBI = SQRT((KP/ (1. + KP)) – 1./12. + PHI) WRITE (3, 1) T, PSI 1 FORMAT (6X, 'T =', F6.2, 4X, 'PSI =', E11,4) RETURN END OUTPUT: SOLUTION TO PROBLEM 9-35 T = 120000 . PSI = 08226 . E + 00 T = 115000 . T = 110000 . T = 105000 . T = 100000 . T = 950.00 T = 959.80 T = 960.25 T = 960.27 Solution: T = 960.3 K , PSI = 0.7048E + 00 PSI = 05551 . E + 00 PSI = 0.3696E + 00 PSI = 01619 . E + 00 PSI = − 03950 . E − 01 PSI = − 01824 . E − 02 PSI = − 07671 . E − 04 PSI = − 03278 . E − 05 f = 0.360 mol C 2 H 6 reacted mol fed 9- 46 http://librosysolucionarios.net 2CH 4 → C 2 H 2 + 3H 2 C 2 H 2 → 2C(s) + H 2 9.36 a. ? ? ? ? ? ? ? ? ? ? 9- 47 http://librosysolucionarios.net 9.46 a. b g b g b g bg H2 SO4 aq + 2NaOH aq → Na 2SO4 aq + 2H2 O l H 2SO 4 solution:: 4 mol H 2SO 4 1L 75 mL = 0.30 mol H 2SO 4 3 1 L acid soln 10 mL 75 mL 1.23 g mL = 92.25 g, (0.3 mol H 2 SO 4 ) 98.08 g mol = 29.42 g H 2SO 4 75 ml of 4M H 2SO 4 solution ⇒ b gb b g g b b gb g g ⇒ 92.25 − 29.42 g H 2 O ⇒ 62.83 g H 2 O 1 mol 18.02 g = 3.49 mol H 2 O ⇒ r = 3.49 mol H 2 O 0.30 mol H 2 SO 4 = 11.63 mol H 2 O / mol H 2SO 4 e∆H$ j o f soln e j = ∆H$ fo bg H2 SO4 l e j + ∆H$ of Table B.1, Table B.11 b H 2SO 4 aq., r =11. 63 B = g kJ b−811.32 − 67.42g mol = −87874 . kJ mol H 2SO 4 NaOH solution required: 0.30 mol H 2S O 4 2 mol NaOH 1 mol H 2 SO 4 b g 10 3 m L = 50.00 mL NaOH aq 1L 1 L NaOH(aq ) 12 mol NaOH . g mLg = 685 . g b50.00 mLgb137 40 g/ mol NaOH 12 mol NaOH 1L 50 mL = 0 . 60 mol NaOH 24.00 g NaOH 1 L NaOH(aq) 103 mL b g b gb g ⇒ ⇒ 68.5 − 24.00 g H2 O ⇒ 44.5 g H 2O 1 mol 18.02 g = 2.47 mol H 2 O ⇒ r = 2.47 mol H 2O 0.6 mol NaOH = e∆H$ j o f soln e = ∆H$ fo j 4.12 mol H 2 O mol NaOH . g b g + e ∆Hs j NaOHb sgbaq., r =4.12g = b −426.6 − 3510 mol $o NaOH s kJ = −46170 . kJ mol NaOH b g Na 2SO 4 aq : e∆H$ j o f soln e j = ∆H$ fo bg Na 2SO4 s e j + ∆H$ fo b g Na 2SO 4 aq b = −1384.5 − 117 . kJ = −13857 . kJ mol Na SO g mol 2 4 mtotal = total mass of reactants or products = (92.25g H 2SO 4 soln + 68.5g NaOH) = 160.75g = 0.161 kg Extent of reaction: (nH 2S O ) final = ( nH2 SO4 ) fed + ν H2 SO4 ξ ⇒ 0 = 0.30 mol − (1)ξ ⇒ ξ = 0.30 mol 4 Standard heat of reaction ∆H$ ro = ∆H$ of + 2 ∆H$ fo e j b g Na 2SO 4 aq e j b g − e∆H f jH SO b aqg − 2e∆Hf jNaOH baq g H2 O l $o $o 2 4 Energy Balance : Q = ∆H = ξ∆H$ ro + mtotal C p ( T − 25) o C F GH = ( 030 . mol) (1552 . kJ / mol) + (0161 . kg) 4.184 b. Volumes are additive. Heat transferred to and through the container wall is negligible. 9- 55 http://librosysolucionarios.net kJ kg o I (T − 25) C = 0 ⇒ T = 94 C J CK o o 9.47 Basis : 50,000 mol flue gas/h 50,000 mol/h 0.00300 SO2 0.997 N 2 50°C n4 (mol SO2 /h) n5 (mol N 2 /h) 35°C n1 (mol solution/h) 0.100 (NH 4) 2 SO 3 0.900 H 2O( l) 25°C n2 (mol NH4 HSO3 /h) 1.5n2 (mol (NH 4)2 SO3 /h) n3 (mol H 2 O(l )/h) 35°C a fb g & N balance: n = a0.997fb50, 000 mol hg = 49,850 mol N h NH balance: b2gb0100 . gbn& g = n& + b15 . gb2gn& ⇒ n& = 20n& U| n& = 5400 mol h ⇒ S balance: 0100 . n& + b000300 . gb50,000g = 150. + n& + 15. n& V|W n& = 270 mol NH HSO 270 mol NH HSO produced 1 mol H O consumed H O balance: n& = b0900 . gb5400g − h 2 mol NH HSO produced = 4725 mol H Ob lg h 90% SO 2 removal: n& 4 = 0100 . 0.00300 50, 000 mol h = 15.0 mol SO2 h 2 5 2 + 4 1 2 2 1 1 2 4 2 1 2 2 2 4 3 3 h 2 3 4 3 2 Heat of reaction: $ $ − e ∆ H$ j e j b g − e∆H jb g b g − e∆H j = 2b −760g − b −890g − b −29690 . g − b − 28584 . g kJ mol = − 47.3 kJ mol References : N bgg , SO b gg, b NH g SO b aqg , NH HSO b aqg , H Ob lg at 25°C SO eg, 50 Cj: H$ = z dC i dT = 101 . kJ mol ( C from Table B.2) ∆H$ ro = 2 ∆H$ fo 2 e 2 NH4 4 2 o f SO3 aq 2 3 4 o f SO2 ( g ) 3 H 2 O(l) 2 50 o 2 o f NH4 HSO4 aq p j o SO 2 g, 35 C : H$ = 25 35 zd Cp 25 p SO 2 i SO2 dT = 0.40 kJ mol N 2 g, 50 C : H$ = 073 . kJ mol (Table B.8) e j N eg, 35 Cj: o o 2 H$ = 0292 . kJ mol Entering solution: H$ = 0 Effluent solution at 35°C b g m& g h = + 270 mol NH4 HSO 3 h b g 99 g mol 1.5 × 270 mol NH 4 2 SO 3 116 g 4725 mol H 2O 18 g g + = 159 ,000 h 1 mol h h mol 159,000 g 4 J nH & $ = mC p∆ T = h g⋅° C a35 − 25f° C 1 kJ 103 J = 6360 kJ / h Extent of reaction: ( n& NH 4 HSO3 ) out = (n& NH4 HSO3 ) in + ν NH 4 HSO3 ξ& ⇒ 270 mol / h = 0 + 2ξ& ⇒ ξ& = 135 mol / h 9- 56 http://librosysolucionarios.net 9.47 (cont'd) Energy balance: Q& = ∆H& = ξ& ∆H$ ro + ∑n& H$ − ∑ n& H$ i i out Q= + 9.48 a. i SO2 out −47.3 kJ + 15 0.40 + 49,850 0.292 mol 135 mol h effluent solution 6360 bg i in N 2 out a fa f a fa f −22, 000 kJ − a 50,000fa 0.003 fa1.01f − a 49,850fa 0.73f = h bg 1h 1 kW = − 611 . kW 3600 s 1 kJ s bg CH 4 g + 2O2 g → CO2 ( g) + 2H 2O v at 25 °C Table B.1 HHV B B e j − ∆H$ co HHV = 890.36 kJ / mol, LHV = − 2 ∆H$ v H2 O b g = 890.36 − 2 44.01 kJ mol = 802 .34 kJ mol CH 4 bg 7 C 2 H4 g + O2 ( g) → 2CO 2 ( g) + 3H 2O(v) 2 a f a f HHV = 1559.9 kJ / mol, LHV = 1559.9 − 3 44.01 kJ mol = 142787 . kJ mol C 2 H6 bg C 3H 8 g + 5O2 (g) → 3CO2 ( g) + 4H 2O(v) HHV = 2220 .0 kJ / mol, LHV = 2220.0 − 4 44. 01 kJ mol = 2043.96 kJ mol C 3H 8 bHHV g natural gas b gb g b gb g b gb g b gb g b gb = 0.875 890.36 kJ mol + 0.070 1559.9 kJ mol + 0.020 2200.00 kJ mol g = 933 kJ mol b LHV g natural gas b gb = 0.875 802.34 kJ mol + 0.070 1427.87 kJ mol + 0020 . 204396 . kJ mol g = 843 kJ mol b. g I . gFGH molg IJK + b0.070 mol C H gFGH 3007 J mol K g I 1 kg F g IJ + b0035 F + b0.020 mol C H g G 44.09 H mol K . mol N gGH 28.02 mol JK ] × 10 g = 0.01800 kg b 1 mol natural gas ⇒ [ 0.875 mol CH 4 16.04 3 ⇒ c. 9.49 843 kJ mol 2 8 6 2 3 1 mol = 46800 kJ kg 0.01800 kg The enthalpy change when 1 kg of the natural gas at 25o C is burned completely with oxygen at 25o C and the products CO2 (g) and H2 O(v) are brought back to 25o C. B Table B.1 bg C s + O 2 (g) → CO2 ( g), ∆ H$ co e = ∆H$ fo B j CO2 ( g) = −393.5 kJ 1 mol 103 g mol 12.01 g 1 kg Table B.1 bg e S s + O 2 (g) → SO 2 ( g), ∆H$ co = ∆H$ fo j MSO = 32 . 064 2 SO2 B = −296.90 kJ mol B ⇒ − 9261 kJ / kg S Table B.1 bg bg e = − 32,764 kJ kg C 1 H 2 g + O 2 ( g) → H 2 O l , ∆H$ co = ∆H$ fo 2 j M H =1. 008 2 bg H2 O l = −285.84 kJ mol H 2 9- 57 http://librosysolucionarios.net B ⇒ − 141,790 kJ kg H 9.49 (cont'd) a. x0 (kg O) 2 kg H H available for combustion = total H – H in H 2 O ; latter is kg coal 16 kg O FG H Eq. (9.6-3) ⇒ HHV = 32,764 C + 141, 790 H − A in water IJ K O + 9261S 8 This formula does not take into account the heats of formation of the chemical constituents of coal. b. b C = 0. 758 , H = 0. 051 , O = 0. 082 , S = 0. 016 ⇒ HHV 1 kg coal ⇒ φ= c. 0.016 kg S 64 .07 kg SO 2 formed 32. 06 kg S burned g Dulong = 31, 646 kJ kg coal = 0. 0320 kg SO 2 kg coal 0.0320 kg SO 2 kg coal = 101 . × 10−6 kg SO 2 kJ 31,646 kJ kg coal Diluting the stack gas lowers the mole fraction of SO2 , but does not reduce SO2 emission rates. The dilution does not affect the kg SO2 /kJ ratio, so there is nothing to be gained by it. bg b g CH 4 + 2O2 → CO2 + 2H 2O l , HHV = − ∆H$ co = 89036 . kJ mol Table B.1 9.50 bg 7 C 2 H 6 + O2 → 2CO2 + 3H 2O l , HHV = 1559 . 9 kJ mol 2 1 CO + O2 → CO 2 , HHV = 282 . 99 kJ mol 2 2.000 L 273.2K 2323 mm Hg 1 mol Initial moles charged: = 0.25 mol 25 + 273.2 K 760 mm Hg 22 .4 L STP (Assume ideal gas) a f a f Average mol. wt.: ( 4.929 g) (0.25 mol) = 19.72 g / mol c b g b gh MW = 19.72 ⇒ x b16.04 g mol CH g + x b 3007 . g + b1− x − x gb28.01g = 19.72 b1g HHV = 9637 . kJ mol ⇒ x b890.36g + x b1559.9g + b1 − x − x gb 282.99g = 963.7 b 2g Let x1 = mol CH 4 mol gas , x2 = mol C 2 H 6 mol gas ⇒ 1 − x1 − x2 mol CO mol gas 1 4 1 2 2 1 1 2 2 Solving (1) & (2) simultaneously yields x1 = 0.725 mol CH 4 mol, x 2 = 0.188 mol C 2 H 6 mol, 1 − x1 − x 2 = 0.087 mol CO mol 9.51 a. Basis : 1mol/s fuel gas CH 4 (g) + 2O2 (g) → CO 2 (g) + 2H2 O(v), ∆H$ co = −890.36 kJ / mol 7 C 2 H 6 (g) + O2 (g) → 2CO2 (g) + 3H2 O(v), ∆ H$ co = −1559.9 kJ / mol 2 Excess O2 , 25°C n& 2 , mol CO2 n& 3 , mol H 2O n& 4 , mol O2 25°C 1 mol/s fuel gas, 25°C 85% CH4 15% C2 H6 9- 58 http://librosysolucionarios.net 9.51 (cont’d) 1 mol / s fuel gas ⇒ 0.85 mol CH 4 / s , 0.15 mol C 2 H 6 / s Theoretical oxygen = 2 mol O 2 0.85 mol CH 4 1 mol CH 4 s + 3.5 mol O 2 0.15 mol C2 H 6 1 mol C 2 H 6 s = 2.225 mol O 2 / s Assume 10% excess O 2 ⇒ O 2 fed = 1.1 × 2.225 = 2.448 mol O 2 / s b gb g b gb g H balance : 2n& = b0.85gb 4g + b 015 . gb 6g ⇒ n& = 215 . mol H O / s 10% excess O ⇒ n& = b01 . gb2.225g mol O / s = 0.223 mol O / s C balance : n& 2 = 0.85 1 + 015 . 2 ⇒ n& 2 = 115 . mol CO 2 / s 3 3 2 4 2 2 2 Extents of reaction: ξ& 1 = n& CH 4 = 0.85 mol / s, ξ& 2 = n& C2 H 6 = 015 . mol / s bg bg bg bg bg Reference states: CH4 g , C2 H 6 g , N 2 g , O2 g , H 2 O l , CO 2 (g) at 25o C (We will use the values of ∆H$ co given in Table B.1, which are based on H2 O l as a combustion product, and so must choose the liquid as a reference state for water) Substance CH4 C2 H 6 O2 CO2 H 2O v bg e bg n& in n&out H$ in H$ out mol kJ mol mol kJ mol 085 . 0 − − 015 . 0 − − 2.225 0 0.223 0 − − 115 . 0 − − 215 . H1 j H$ 1 = ∆H$ v 25o C = 44.01 kJ / mol Energy Balance : Q& = n& ∆H$ o CH4 b e c j C H4 e + n& C 2 H6 ∆H$ co j C2 H 6 + gb ∑ n& H$ − ∑ n& H$ i out i i i in g b + b 2.15 mol / s H O gb 44.01 kJ / molg = − 896 kW gb = 0.85 mol / s CH 4 −890.36 kJ mol + 0.15 mol / s C 2 H 6 − 1559.9 kJ mol g 2 ⇒ − Q& = 896 kW (transferred from reactor) b. Constant Volume Process. The flowchart and stoichiometry and material balance calculations are the same as in part (a), except that amounts replace flow rates (mol instead of mol/s, etc.) 1 mol fuel gas ⇒ 0.85 mol CH 4 , 0.15 mol C 2 H6 Theoretical oxygen = 2.225 mol O 2 Assume 10% excess O 2 ⇒ O 2 fed = 1.1× 2.225 = 2.448 mol O2 b gb g b gb g H balance : 2n = b 085 . gb 4g + b015 . gb6g ⇒ n 10% excess O ⇒ n = b01 . gb 2.225g mol O C balance : n2 = 0.85 1 + 015 . 2 ⇒ n2 = 115 . mol CO2 3 2 4 3 = 215 . mol H2 O 2 = 0.223 mol O 2 9- 59 http://librosysolucionarios.net 9.51 (cont' d) bg bg bg bg bg Reference states: CH4 g , C2 H 6 g , N 2 g , O2 g , H 2 O l , CO 2 (g) at 25o C For a constant volume process the heat released or absorbed is determined by the internal energy of reaction. nin nout U$ in U$ out Substance mol kJ mol mol kJ mol CH4 085 . 0 − − C2 H 6 O2 CO2 H 2O v e bg 015 . 2.225 − − e j j − 0.223 115 . 215 . 0 0 − − − 0 0 U$ 1 8.314 J U$ 1 = ∆U$ v 25o C = ∆H$ v 25o C − RT = 44.01 kJ / mol − Eq. (9.1-5) ⇒ ∆U$ co = ∆H$ co ∑ν − RT ( i gaseous products e ⇒ ∆U$ co j CH 4 e∆U$ j o c b g = − 890.36 kJ mol − C2 H6 ∑ν − i 1 kJ 298 K mol K 1000 J = 4153 . kJ mol ) gaseous reactants 298 K (1 + 2 − 1 − 2) 8.314 J 1 kJ 3 = − 890.36 kJ mol mol K 10 J 8.314 J 298 K (3 + 2 − 35 . − 1) 1 kJ kJ = − 1559.9 kJ mol − = −156114 . 3 mol mol K 10 J b g Energy balance: e j + n e∆U$ j + ∑ n U$ − ∑ n& U$ = b0.85 mol / s CH gb −890.36 kJ molg + b 015 . mol / s C H gb −156114 . kJ molg + b2.15 mol / s H Ogb 4153 . kJ / mol g = −902 kJ Q = ∆ U = nCH 4 ∆U$ co CH 4 o c C2 H6 C2H 6 i i i out 4 i in 2 6 2 ⇒ −Q = 902 kJ (transferred from reactor) c. 9.52 a. Since the O2 (and N2 if air were used) are at 25°C at both the inlet and outlet of this process, their specific enthalpies or internal energies are zero and their amounts therefore have no effect on the calculated values of ∆H& and ∆ U . n& fuel ( − ∆H$ co ) = W& s − Q& l (Rate of heat release due to combustion = shaft work + rate of heat loss) V& (gal) 28.317 L h = 7.4805 gal 100 hp 0.700 kg 103 g L 1 J/s 1.341 × 10− 3 hp 49 kJ 1 kg 1 kJ 103 J g 3600 s h + 15 × 106 kJ ⇒ V& = 25 . gal / h 298 h b. The work delivered would be less since more of the energy released by combustion would go into heating the exhaust gas. c. Heat loss increases as Ta decreases. Lubricating oil becomes thicker, so more energy goes to overcoming friction. 9- 60 http://librosysolucionarios.net 9.53 a. Energy balance: ∆U = 0 ⇒ a f b n lb m fuel burned b g ∆U$ co (Btu) ga gb lb m b g + mCv Tout − 77° F = 0 f ⇒ 0.00215 ∆U$ co + 4.62 lbm 0.900 Btu lb m ⋅° F 87.06° F − 77.00° F = 0 ⇒ ∆U$ co = −19500 Btu lb m b. The reaction for which we determined ∆ U$ co is 1 lb m oil + aO2 ( g) → bCO2 (g) + cH2 O(v) (1) The higher heating value is ∆H$ r for the reaction 1 lb m oil + aO 2 ( g) → bCO2 ( g) + cH2 O(l) (2) o Eq. (9.1-5) on p. 441 ⇒ ∆H$ co1 = ∆U$ c1 + RT ( b + c − a) $ o + c∆H$ ( H O, 77o F) Eq. (9.6-1) on p. 462 ⇒ − ∆H$ co2 = − ∆H c1 v 2 ( HHV ) ( LHV ) To calculate the higher heating value, we therefore need a = lb - moles of O 2 that react with 1 lb m fuel oil b = lb - moles of CO2 formed when 1 lb m fuel oil is burned c = lb - moles of H 2O formed when 1 lbm fuel oil is burned 9.54 a. bg bg 3 CH 3 OH v + O 2 ( g) → CO 2 ( g) + 2H 2 O l 2 e j ∆H$ ro = ∆H$ co kJ b g = −764 .0 mol CH3 OH v Basis : 1 mol CH 3OH fed and burned Q2 (kJ) 1 mol CH 3OH( l) 25°C, 1.1 atm vaporizer 1 mol CH 3OH( v) 100°C 1 atm Q 1 (kJ) Effluent at 300°C, 1 atm n p (mol dry gas) 0.048 mol CO /mol D.G. 2 0.143 mol O /mol D.G. 2 0.809 mol N /mol D.G. 2 n w (mol H 2O) reactor n 0 (mol O 2) 3.76 n 0 (mol N 2) 100°C Overall C balance: b 1 mol CH 3OH b gb g gb g 1 mol C = n p 0048 . 1 ⇒ n p = 20.83 mol dry gas 1 mol CH3OH N2 balance: 3.76n0 = 2083 . 0.809 ⇒ n0 = 4.482 mol O 2 Theoretical O 2: % excess air = H balance: b1 mol CH OH gb1.5 mol O 3 2 g mol CH 3OH = 15 . mol O 2 (4.482 − 15 . ) mol O 2 × 100% = 200% excess air 15 . mol O2 b1 mol CH OHgb4 mol H 1 mol CH OH g = n b2g ⇒ n 3 3 w w = 2 mol H 2O (An atomic O balance ⇒ 9.96 mol O = 9.96 mol O , so that the results are consistent.) p∗w = d i nw 2 mol H 2 O ×P= × 760 mm Hg = 66.58 mm Hg = pw∗ Tdp nw + n p 2 + 20.83 mol a f 9- 61 http://librosysolucionarios.net Table B.3 ⇒ Tdp = 44.1° C 9.54 (cont'd) b. Energy balance on vaporizer: OP kJ C C dT PP mol = 40.33 kJ A A A Q References : CH OH a v f, N (g), O (g), CO (g), H O alf at 25° C Q1 = ∆H = n∆H$ = 1 mol LM MM N z dT + ∆ H$ v + 64.7 pl 25 Table B.2 z 2 Table B.2 2 H$ in 2 n in (mol) (kJ / mol) 1.00 3.603 CH 3OH N2 16.85 pv 64.7 Table B.1 3 Substance 100 2 H$ out n out (mol) − (kJ / mol) − 2.187 16.85 8.118 4.482 2.235 2.98 8.470 CO 2 − − 1.00 11.578 H 2O − − 2.00 53.58 O2 af H$ T = H$ i for N 2 , O 2 , CO 2 (Table B.8) = ∆H$ v 25o C + H$ i for H2 O v (Eq. 9.6 - 2a on p. 462, Table B.8) = z d af i af T 25 C p dT for CH3OH v (Table B.2) bg (Note: H2 O l was chosen as the reference state since the given value of ∆H$ co presumes liquid water as the product.) Extent of reaction: ( nCH 3OH ) out = ( nCH3 OH ) in + ν CH 3OHξ ⇒ 0 = 1 mol − ξ ⇒ ξ = 1 mol Energy balance on reactor: Q2 = ξ∆H$ co + b gb g b gb g b ∑ n H$ − ∑ n H$ gb i out i g i i in = 1 − 764.0 + 1685 . 8118 . +K− 4.482 2.235 kJ b Table B.1g = −534 kJ ⇒ 534 kJ transferred from reactor 9.55 a. CH 4 + 2O 2 → CO 2 + 2H 2 O 3 CH 4 + O2 → CO + 2H 2 O 2 Basis : 1000 mol CH 4 h fed Q (kJ/s) 1000 mol CH4 /s 25°C Stack gas, 400°C n1 (mol CH4 /s) n2 (mol O2 /s) 3.76n0 (mol N2 /s) n3 (mol CO/s) 10 n3 (mol CO/s) n4 (mol H2 O/s) n0 (mol O2 /s) 3.76n0 (mol N2 /s) 100°C 90% combustion ⇒ n&1 = 0.10 (1000 ) = 100 mol CH 4 s Theoretical O2 required = 2000 mol/s 10% excess O2 ⇒ O 2 fed=1.1(2000 mol/s)=2200 mol/s 9- 62 http://librosysolucionarios.net 9.55 (cont’d) C balance: (1000 mol CH4 s )(1 mol C mol CH 4 ) = (100 )(1) + n&3 (1) + 10 n&3 (1) ⇒ n&3 = 81.8 mol CO s ⇒ 10 n&3 = 818 mol CO2 s H balance: (1000 )( 4 ) = (100 )( 4 ) + 2 n&4 ⇒ n&4 = 1800 mol H 2O O balance: ( 2200 )( 2 ) = 2n&2 + (81.8)(1) + (818 )( 2 ) + (1800 )(1) ⇒ n&2 = 441 mol O2 s s af b g b g b g References :C s , H 2 g , O 2 g , N 2 g at 25o C n&in Hˆ in n&out Hˆ out CH 4 1000 −74.85 100 −57.62 O2 2200 2.24 441 11.72 N2 8272 2.19 8272 11.15 CO − − 81.8 −99.27 CO2 − − 818 −377.2 H2O − − 1800 −228.63 Substance ( mol s ) ( kJ B Table B.1 H$ = ∆H$ fo + z mol ) ( mol s ) ( kJ mol) B Table B.2 T Cp dT for CH 4 25 B Table B.8 = ∆H$ fo + H$ i (T) for others & = ∆H& = Energy balance: Q ∑ n& Hˆ − ∑ n& Hˆ i i out b. (i) (ii) (iii) (iv) 9.56 i i = −5.85 ×105 kJ s ⇒ −5.85 × 105 kW in A (increases) ⇒ −Q& A %XS A ⇒ −Q& B (more energy required to heat additional O and N to 400 C, therefore less energy transferred.) S A ⇒ −Q& A (reaction to form CO2 has a greater heat of combustion and so releases more thermal energy) T A ⇒ −Q& B (more energy required to heat combustion products) Tair 2 2 CO2 CO stack CH 4 + 2O 2 → CO 2 + 2H2 O, C 2 H 6 + 7 O2 → 2CO 2 + 3H2 O 2 Basis : 100 mol stack gas. Assume ideal gas behavior. n1 (mol CH4 ) n2 (mol C2 H6 ) Vf (m3 at 25°C, 1 atm) 100 mol at 800°C, 1 atm 0.0532 mol CO 2/mol 0.0160 mol CO/mol 0.0732 mol O2 /mol 0.1224 mol H 2 O/mol 0.7352 mol N2 /mol n3 (mol O2 ) 3.76n3 (mol N2 ) 200°C, 1 atm 9- 63 http://librosysolucionarios.net o 9.56 (cont’d) a. b gb g C balance: n b1g + n b 2g = b100gb 0.0532gb1g + b100 gb0.0160 gb1g |U n = 372 . mol CH ⇒ V H balance: n b4g + n b 6g = b100gb 01224 . . mol C H gb2g |W n = 160 . + 160 . g mol fuel gas 22.4 LbSTPg 298.2 K 1 m b372 V = = 0130 . m N2 balance: 3.76n3 = 100 0.7352 mol N2 ⇒ n3 = 19.55 mol O2 fed 1 2 1 1 2 2 3 f 1 mol Theoretical O 2 = 3.72 mol CH4 2 3 2 mol O 2 1.60 mol C 2 H 6 3.5 mol O 2 + = 1304 . mol O 2 1 mol CH 4 1 mol C 2 H 6 UV W b19.55 − 13.04gmol O 2 in excess 13.04 mol O 2 required × 100% = 50% excess air bg b g b g b g References : C s , H 2 g , O 2 g , N 2 g at 25° C b. CH 4 nin mol 3.72 H$ in kJ / mol − 74.85 nout mol − H$ out kJ / mol − C2H6 160 . −84.67 − − O2 19.55 5.31 7.32 2535 . N2 7352 . 513 . 7352 . 2386 . CO − − 160 . − 86.39 CO 2 − − 532 . − 3561 . H 2O − − 12.24 −212.78 Substance B Table B.1 H$ = ∆H$ of + z Table B.2, for CH 4 , C2 H6 B T C p dT 25 Table B.8 B = ∆H$ fo + H$ i (T) for O 2 , N 2 , CO, CO2 , H 2O v bg Energy balance: Q = ∆H = ∑ n H$ − ∑ n H$ i out i i in i = 6 273.2 K 103 L 69.9 mole% CH 4 3.72 mol CH 4 ⇒ 301 . mole% C2 H 6 1.60 mol C 2 H 6 Fuel composition: % Excess air: 4 − 2764 kJ 0.130 m 3 fuel = −2.13 × 104 kJ m 3 fuel 9- 64 http://librosysolucionarios.net 9.57 Basis : 50000 lb m coal fed h ⇒ b0.730gb50000glb mC 1b - mole C h 12.01 lbm = 3039 1b - mole C h . gb50000g 101 . = 2327 lb - moles H h (does not include H in water) b0047 . gb50000g 32.07 = 57.7 lb - moles S h b0037 . gb50000g 18.02 = 189 lb - moles H O h b0068 . gb 50000 g = 5900 lb ash h b0118 2 m a. 50,000 lb mcoal/h 3039 lb-moles C/h 2327 lb-moles H/h 57.7 lb-moles S/h 189 lb-moles H O/h 2 5900 lb mash/h 77°F, 1 atm (assume) Stack gas at 600°F, 1 atm (assume) n 2 (lb-moles CO 2/h) n 3 (lb-moles H 2O/h) n 4 (lb-moles SO 2/h) n 5 (lb-moles O 2/h) n 6 (lb-moles N 2/h) m 7(lb mfly ash/h) n1 (lb-moles air/h) 0.210 O 2 0.790 N 2 77°F, 1 atm (assume) m 8(lb mslag/h) at 600°F 0.287 lb mC/lb m 0.016 lb mS/lb m 0.697 lb mash/lb m Feed rate of air : b g O2 required to oxidize carbon C + O2 → CO 2 = 3039 lb - moles C 1 lb - mole O2 h 1 lb - mole C = 3039 lb - moles O 2 h Air fed: n& 1 = 1.5 × 3039 lb- moles O 2 fed 1 mole air h 0.210 mole O 2 = 21710 lb - moles air h b g & 8 = 2540 lb m slag / h 30% ash in coal emerges in slag ⇒ 0.697m& 8 = 0.30 5900 lb m h ⇒ m b g & 7 = 0.700 5900 = 4130 lb m fly ash h ⇒ m b g b gb g C balance: 3039 lb - moles C h = n& 2 + 0.287 2540 12.01 M CO 2 = 44 .01 ⇒ n& 2 = 2978 lb - moles CO 2 h b 131 . × 105 lb m CO 2 h g b gb g H balance: 2327 lb - moles H h + 189 2 = 2n& 3 ⇒ n& 3 = 1352.5 lb - moles H 2 O h M H2 O =18.02 2.44 × 10 4 lb m H 2 O h b g N2 balance: n& 6 = 0.790 21710 lb - moles h = 17150 lb - moles N 2 h b g bg MN = 28 .02 2 481 . × 105 lbm N 2 h b g S balance: 57.7 lb- moles S h = 1 n& 4 + 0016 . 2540 32.06 ⇒ n& 4 = 564 . lb - moles SO 2 h O balance: MSO2 = 64 .2 3620 lb m SO 2 h bb189ggb1g + b0.21gb21710 gb2g = b2978 gb2g + b1352.5gb1g + bb56.4ggb2g + 2b n& g b g b g coal air C O2 eH O j 2 ⇒ n& 5 = 943 lb - moles O 2 h ⇒ 30200 lb m O 2 h 9- 65 http://librosysolucionarios.net S O2 5 O2 9.57 (cont'd) Summary of component mass flow rates Stack gas at 600° F, 1 atm 2978 lb - moles CO 2 h ⇒ 131000 lb m CO2 h 1352.5 lb - moles H 2 O h ⇒ 24400 lb m H 2O h 56.4 lb - moles SO 2 h ⇒ 3620 lb m SO 2 h 943 lb - moles O2 h ⇒ 30200 lb m O 2 h 17150 lb - moles N 2 h ⇒ 48100 lb m N 2 h 674,350 lb m stack gas/h 4130 lb m fly ash h b gb g Check: 50000 + 21710 29 ⇒ b679600g in b in ⇔ 676900 ⇔ 674350 + 2540 g out out (0.4% roundoff error) Total molar flow rate = 22480 lb - moles h at 600° F , 1 atm (excluding fly ash) ⇒V= b. a f 1060° R = 1. 74 × 107 ft 3 h 492 ° R 22480 lb- moles 359 ft 3 STP h 1 lb- mole References: Coal components, air at 77°F ⇒ ∑ ni H$ i = 0 in Stack gas: nH$ = 674350 lbm 7.063 Btu lb - mole ⋅° F 28.02 lbm h 2540 lb m Slag: nH$ = h b600 − 77g° F = 8.90 × 10 1 lb - mole b600 − 77g° F = 2.92 × 10 0.22 Btu lb m ⋅° F b 5 i i i out = 5 × 104 lbm −18 . × 104 Btu h lb m Btu h Btu h g ∑ n H$ − ∑ n H$ Energy balance: Q = ∆H = n coal burned ∆H$ co 77 ° F + 7 i in e j + 8.90 × 107 + 2.92 × 105 Btu h = −8.11 × 108 Btu h Power generated = c. e b035 . ge811 . × 10 j Btu Q$ = −811 . × 108 Btu h ⇒ 8 1W 3600 s 9.486 × 10 h j b5000 lb 1 hr m −4 1 MW Btu s 106 W = 831 . MW g coal h = − 162 . × 104 Btu lbm coal − Q$ 1. 62 × 104 Btu lb m = = 0. 901 HHV 1. 80 × 10 4 Btu lb m Some of the heat of combustion goes to vaporize water and heat the stack gas. d. − Q$ HHV would be closer to 1. Use heat exchange between the entering air and the stack gas. 9- 66 http://librosysolucionarios.net 9.58 b. Basis : 1 mol fuel gas/s n& 0 (mol O 2 s) 3.76n& 0 (mol N 2 s) Stack gas, Ts ( o C) n& O (mol O 2 / s) Ta ( o C) 2 3.76n& 0 (mol N 2 / s) n& CO (mol CO / s) rn& CO (mol CO 2 / s) 1 mol / s @ 25 o C xm (mol CH 4 / mol) n& H2 O (mol H 2 O / s) n& Ar (mol Ar / s) xa (mol Ar / mol) (1 − xm − xa ) (mol C 2 H 6 / mol) CH 4 + 2O 2 → CO 2 + 2H 2 O C2 H6 + 7 2 O 2 → 2CO2 + 3H 2 O Pxs ) 2 xm + 35 . (1 − x m − xa ) 100 x + 2(1 − x m − xa ) C balance: x m + 2(1 − x m − x a ) = (1 + r )n& CO ⇒ n& CO = m (1 + r ) Percent excess air: n& 0 = (1 + H balance: 4 x m + 6(1 − x m − x a ) = 2n& H 2 O ⇒ n& H 2 O = 2 x m + 3(1− x m − x a ) O balance: 2n& 0 = 2n& O 2 + n& C O + 2 r n& CO + n& H2 O ⇒ n& O2 = n& 0 − n& CO (1 + 2r ) / 2 − n& H 2 O / 2 References : C(s), H2 (g), O2 (g), N2 (g) at 25°C Substance nin H$ in nout c. CH 4 C 2 H6 A xm (1 − xm − x A ) xA O2 no N2 CO CO 2 H2 O 376 . no − − − H$ i = ( ∆H$ f ) i + − − xA 0 0 0 H$ 1 H$ nO2 3.76 no nCO r nCO nH 2 O 2 − − − z H$ out − − H$ 3 H$ 4 H$ 5 H$ 6 H$ 7 H$ 8 Ta or Ts Table B.2 B C p,i dT 25 Given : x m = 0.85, x a = 0.05, Px s = 5%, r = 10.0, Ta = 150 o C, Ts = 700o C ⇒ no = 2153 . , nCO = 0.0955, n H2 O = 2.00, nO2 = 01500 . H$ 1 (kJ / mol) = 8.091, H$ 2 = 29.588, H$ 3 = 0.702, H$ 4 = 3.279, H$ 5 = 166.72, H$ 6 = − 8567 . , H$ 7 = − 345.35, H$ 8 = − 433.82 Energy balance: Q& = ∑ n& out H$ out − ∑ n& $ in H in = − 655 kW 9- 67 http://librosysolucionarios.net 9.58 (cont'd) Xa Pxs r Ta Ts Q 1087 996 -905 -813 -722 631 -905 893 -869 -799 682 0 150 150 150 150 150 150 700 700 700 700 700 700 10 10 10 10 10 150 150 150 150 150 700 700 700 700 700 0.1 0.2 0.3 0.4 0.5 5 5 5 5 5 10 10 10 10 10 150 150 150 150 150 700 700 700 700 700 -905 -893 -882 -871 860 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 5 5 5 5 5 5 5 5 5 1 2 3 4 5 10 20 50 100 150 150 150 150 150 150 150 150 150 700 700 700 700 700 700 700 700 700 -722 -796 -834 -856 -871 -905 -924 -936 -941 0.1 0.1 0.1 0.1 0.1 5 5 5 5 5 10 10 10 10 10 25 100 150 200 250 700 700 700 700 700 -852 -883 -905 -926 -948 0.1 0.1 0.1 0.1 0.1 0.1 5 5 5 5 5 5 10 10 10 10 10 10 150 500 150 600 150 700 150 800 150 900 150 1000 -1014 -960 -905 -848 -790 -731 -200 0 0.2 0.4 0.6 0.8 1 1.2 80 100 120 0.4 0.5 -400 Q -600 -800 -1000 -1200 Xm 0 0 200 Q 400 600 -800 1000 20 40 60 Pxs -850 -860 0 0.1 0.2 0.3 0.6 -870 Q -880 -890 -900 -910 x 0 0 20 40 60 80 100 120 200 250 300 800 1000 1200 -200 -400 Q 10 10 10 10 10 10 -600 -800 -1000 r -800 -850 Q 0.0 5 1 0.0 5 1 0.0 5 1 0.0 5 1 0.0 5 1 0.0 5 1 0.1 5 0.1 10 0.1 20 0.1 50 0.1 100 0 50 100 150 -900 -950 -1000 Ta 0 0 200 400 600 -500 Q d. -1000 -1500 9- 68 http://librosysolucionarios.net Ts 9.59 a. Basis: 207.4 liters 273.2 K 1.1 atm s 1 mol b g = 10.0 mols s fuel gas to furnace 278.2 K 1.0 atm 22.4 liters STP H = C6 H14 ; M = CH 4 mw (kg H 2O( l)/s) 25°C Qc (kW) n0 (mol/s) y0 (mol C 6H 14/mol) (1 – y0) (mol CH 4/mol) 60°C, 1.2 atm Tdp = 55°C 10.0 mol/s at 5°C, 1.1 atm y2 (mol C 6H 14/mol) (1 – y2) (mol CH 4/mol) sat'd with C 6H 14 condenser nb (mol C 6H 14( l)/s) Tdp = 55° C ⇒ y 0 P = ⇒ y0 = p αH b55° Cg mw (kg H 2 O( v)/s) 10 bars, sat'd reactor Stack gas at 400°C, 1 atm n3 (mol O 2/s) n4 (mol N 2/s) n5 (mol CO 2/s) n6 (mol H 2O( v)/s) n a (mol air/s) @ 200°C 0.21 mol O /mol 2 0.79 mol N /mol 2 100% excess B Antoine Eq. = 483.3 mm Hg 4833 . mm Hg = 0.530 mol C 6 H 14 mol ⇒ 0.470 mol CH 4 mol 1.2 × 760 mm Hg Saturation at condenser outlet: p ∗H 5° C 5889 . mm Hg y2 = = = 0.070 mol C 6 H 14 mol = 0.93% mol CH 4 mol P 1.1 × 760 mm Hg b g b g b g Methane balance on condenser: n& 0 1 − y0 = 10.0 1 − y2 Hexane balance on condenser: n& 0 y 0 = n& b + 10.0y 2 bg 9.78 mol C6 H14 l Volume of condensate = s y0 =0 .530 n& 0 = 19.78 mol s ⇒ y 2 =0 .070 ⇒ n&0 =19 .78 y 0 =0 .530 y 2 =0 .070 n& b = 9.78 mol C6 H14 s condensed cm 3 1L 3600 s 0.659 g 103 cm 3 1h 86.17 g mol A A Table B.1 Table B.1 = 4600 L C 6 H 14 ( l ) h b. e j e References : CH 4 g, 5o C , C 6H14 l, 5o C Substance CH4 C6 H14 v C 6H 14 l bg bg bg CH 4 g : H$ = j n& in n& out H$ in H$ out (mol / s) (kJ / mol) (mol / s) (kJ / mol) 9.30 1985 . 9.30 0 10.48 41212 . 0.70 32.940 − − 9.78 0 z B Table B.2 T 5 bg C 6H 14 v : H$ = C p dT Condenser energy balance: Q& c = ∆H& = ∑ n& H$ − ∑ n& H$ i out i i i z B Table B.1 Tb 5 C pR dT + ∆H$ v + = −427 kW in 9- 69 http://librosysolucionarios.net B Table B.1 z T Tb Cpv dT 9.59 (cont'd) CH 4 + 2O2 → CO2 + 2H 2 O , C 6 H 14 + 9.30 mol CH 4 s Theoretical O 2: N2 2 4 4 9.5 mol O 2 = 25.3 mol O2 s 1 mol C 6H 14 ⇒ 0.21n& a = 2 × 253 . ⇒ n& a = 240.95 mol air s 2 theor. fed O 2 → 6CO 2 + 7H 2 O 2 mol O 2 0.70 mol C 6H14 + 1 mol CH 4 s b g = 2 × bO g balance: 0.79b 240.95g = n& ⇒ n& 100% excess ⇒ O2 19 = 190.35 mol N 2 s C balance: 9.30 mol CH 4 1 mol C s 1 mol CH4 + 0.70 mol C6 H 14 6 mol C 1 mol C6 H 14 ⇒ n&5 = 13.5 mol CO2 s b n5 mol CO 2 = g 1 mol C 1 mol CO2 H balance: b9.30 mol CH sgb4 mol H mol CH g + b0.70gb14g = n& b2g ⇒ n& = 235. mol H O 1 Since combustion is complete, b O g = bO g = b O g ⇒ n& = 253 . mol O s 2 References : Cb sg , H b gg, O b gg , N b gg at 25° C for reactor side, H Ob lg at triple point for 4 4 6 2 remaining 2 2 6 2 excess 2 2 fed 2 3 2 2 steam side (reference state for steam tables) n& in mol / s 9.30 n& out H$ in kJ / mol mol / s −75553 . − H$ out kJ / mol − C 6 H 14 v 0.70 −170.07 − − O2 506 . 531 . 253 . 1172 . N2 190.35 513 . 190.35 1115 . CO 2 − − 135 . −37715 . H 2O v − − 235 . −228.60 H2 m& w (kg / s) 104.8 Substance CH 4 bg bg Ob boiler waterg Table B.1 and B.2 B = bg H$ T z m& w ( kg / s) 2776.2 T ∆H$ fo + C p dT for CH4 , C 6H 14 25 Table B.1 and B.8 B = bg bg ∆H$ fo + H$ i T for O2 , N 2 , CO2 , H 2 O v Energy balance on reactor (assume adiabatic): ∆H& = ∑ n& H$ − ∑ n& H$ i out i i i b g = 0 ⇒ − 8468 + m& w 2776.2 − 104 .8 = 0 ⇒ m& w = 3.2 kg steam s in 9- 70 http://librosysolucionarios.net 9.60 a. CH 4 + 2O 2 → CO 2 + 2 H 2 O Basis: 450 kmol CH 4 fed h n a ( kmol air / h)@25 o C Stack gas@300 o C n& 1 (kmol CO2 / h) n& 2 (kmol H 2 O / h) n& 3 (kmol O 2 / h) n& 4 (kmol N 2 / h) 0.21 kmol O 2 / kmol 0.79 kmol N 2 / kmol 450 kmol CH 4 / h @ 25 o C Q& ( kJ / h) m& w [kg H 2 O(l) / h] m& w [kg H 2 O(v) / h] o 17 bar, 250 o C 25 C 450 kmol CH 4 h Air fed: n& a = 2 kmol O 2 req' d 1.2 kmol O 2 fed 1 kmol air 1 kmol CH 4 1 kmol O 2 req'd 0.21 kmol O 2 = 5143 kmol air h 450 kmol / h CH 4 react ⇒ n&1 = 450 kmol CO 2 h , n& 2 = 900 kmol H 2 O h b ge j N 2 balance: n& 4 = 0.79 5143 . × 10 6 mol h = 4060 kmol N 2 h Molecular O2 balance: b gb g mol Oh fed − 450 kmolhCH y = 00805 . 450 kmol CO h U | . 900 kmol H O h| |V ⇒ y = 0161 y = 0.726 4060 kmol N h | | y = 0.0322 180 kmol O h | W n& 3 = 0.21 5143 2 4 react 2 mol O2 = 180 kmol O 2 h 1 mol CH 4 CO2 2 2 H2 O 2 N2 2 O2 5590 kmol / h Mean heat capacity of stack gas Cp = ∑y C i pi b gb g b gb g b gb g b gb g = 0.0805 0.0423 + 0.161 0.0343 + 0.726 0.0297 + 0.0322 0.0312 o = 0.0315 kJ mol ⋅ C Energy balance on furnace (combustion side only) bg bg bg bg bg References: CH 4 g , CO 2 g , O 2 g , N 2 g , H 2 O l at 25o C n& in H$ in n& out H$ out Substance (kmol / h) (kJ / kmol) (kJ / h) CH 4 450 0 − Air 5143 0 − Stack gas − − H& p Extent of reaction: ξ& = n& CH4 = 450 kmol / h 9- 71 http://librosysolucionarios.net 9.60 (cont’d) H& p = n& 2 ( ∆H$ v ) H o 2 O(25 C) + n& stack gas ( C p ) stack gas (Tstack gas − 25o C) 3 5590 kmol 103 mol = 180 kmol H 2 O 10 mol 44.01 kJ + h 1 kmol mol h 1 kmol 7 = 5.63 × 10 kJ / h Q& = ∆ H& = ξ& ( ∆H$ co ) CH 4 + ∑ n H$ − ∑ n H$ i i = i i kJ I FG 450 kmol IJ FG 1000 mol IJ FG −89036 . × 10 H h K H kmol K H . mol JK + 563 out 0.0315 kJ (300- 25)o C mol ⋅ o C in 7 kJ kJ = −3.44 × 108 h h Energy balance on steam boiler LM FG IJ OP LMb2914 − 105g kJ OP kg Q N H KQN Table B.7 Table B.6 kJ kg Q& = m& w ∆H$ w ⇒ + 3.44 × 108 = m& w h h 5 ⇒ m& w = 123 . × 10 kg steam / h b. n a (mol air/h) at Ta (°C) Stack gas n 1 (mol CO 2/h) n 1 (mol CO 2/h) air 45 kmol CH 4 /h n 2 (mol H 2O/h) n 2 (mol H 2O/h) furnace 25°C n 3 (mol O 2/h) n 3 (mol O 2/h) preheater n 4 (mol N 2/h) n 4 (mol N 2/h) 300°C 150°C mw (kg H 2O/h) mw (kg H 2O/h) Liquid, 25°C vapor, 17 bars n a (mol air/h) at 25°C 250°C 0.21 O 2 0.79 N 2 E.B. on overall process: The material balances and the energy balance are identical to those of part (a), except that the stack gas exits at 150o C instead of 300o C. b g b g b g b g bg b g H O alf at triple point (steam table reference) (steam tube side) References: CH 4 g , CO 2 g , O 2 g , N 2 g , H 2 O l at 25 o C furnace side 2 Substance n& in (kmol / h) H$ in (kJ / kmol) n& out H$ out (kJ / h) CH 4 Air Stack gas 450 5143 − 0 0 − − − H& p H 2O H& p = n& 2 ( ∆H$ v ) H o 2 O(25 C) m& w ( kg / h) 105 kJ / kg m& w ( kg / h) 2914 kJ / kg + n& stack gas ( C p ) stack gas (Tstack gas − 25o C) 3 5590 kmol 103 mol = 180 kmol H 2 O 10 mol 44.01 kJ + h 1 kmol mol h 1 kmol 7 = 2.99 × 10 kJ / h 9- 72 http://librosysolucionarios.net 0.0315 kJ (150- 25)o C mol ⋅ o C 9.60 (cont’d) ∆H& = ξ& ( ∆ H$ co ) CH 4 + ∑ n H$ − ∑ n H$ i i i i =0 FG 450 kmol IJ FG 1000 mol IJ FG −890.36 kJ IJ + 2.99 × 10 kJ H h K H kmol K H mol K h L kg I O L kJ O F + Mm& G J P Mb 2914 − 105g P = 0 ⇒ m = 1.32 × 10 kg steam / h kg Q N H h KQN Energy balance on preheater: ∆H& = d ∆H& i + d ∆H& i = 0 b∆H g = nC ∆T = 5590 kmol 10 mol 0.0315 kJ b150 − 300g C = −2.64 ×10 out in ⇒ 7 5 w w stack gas air o 3 stack gas b−∆H g stack gas p b g = ∆H h c. mol ⋅ C kJ h 7 kJ = na H$ air ( Ta ) ⇒ H$ air ( Ta ) = 2.64 × 10 kJ / h 1 3kmol = 5.133 5143 kmol / h 10 mol mol air H$ air = 5133 . kJ / mol 1 kmol 7 o Table B.8 Ta = 199 o C ∑n The energy balance on the furnace includes the term − $ in H in . If the air is preheated and the stack gas temperature remains the same, this term and hence Q& become more negative, meaning that more heat is transferred to the boiler water and more steam is produced. The stack gas is a logical heating medium since it is available at a high temperature and costs nothing. 9.61 Basis: 40000 kg coal h ⇒ . × 40000g kg C b076 h Assume coal enters at 25°C 103 g 1 mol C = 2.531 × 106 mol C h 1 kg 12.01 g . × 4000g kg H h e10 101 . j = 198 . × 10 b005 . × 4000 gkg O h e10 16.0j = 2.00 × 10 b008 . × 40000 g = 4400 kg ash h b011 3 6 3 5 mol H h mol O h 4400 kg ash/h, 450°C Q to steam 40,000 kg coal/h 2.531 ×10 6 mol C/h 1.98 ×10 6 mol H/h 2.00 ×10 5 mol O/h 4400 kg ash/h 25°C Flue gas at 260°C n3 (mol dry gas/h) 0.078 mol CO 2 /mol D.G. 0.012 mol CO/mol D.G. 0.114 mol O 2/mol D.G. 0.796 mol N 2/mol D.G. n4 (mol H2 O/h) furnace air at 30°C, 1 atm, hr = 30% n1 (mol O2 /h) 3.76n1 (mol N2 /h) n2 (mol H2 O/h) preheater Preheated air at Ta (°C) a. Cooled flue gas at 150°C n3 (mol dry gas/h) 0.078 CO 2 0.012 CO 0.114 O 2 0.796 N 2 n4 (mol H2 O/h) Overall system balances C balance: 2.531 × 106 = 0.078n 3 + 0.012 n3 ⇒ n3 = 2.812 × 107 mol h dry flue gas b ge j b ge N 2 balance: 376 . n1 = 0.796 2.812 × 10 7 ⇒ n1 = 5.95 × 106 mol O 2 h 376 . 595 . × 10 6 = 224 × 10 mol N 2 h 7 9- 73 http://librosysolucionarios.net j 9.61 (cont'd) 30% relative humidity (inlet air): y H2 O P = 030 . p ∗H2 O b30° Cg ⇒ 595 . × 10 B Table B.3 n& 2 6 + 2.24 × 10 7 + n2 . mm Hgg b760 mm Hgg = 0.300 b31824 ⇒ n& 2 = 3.61× 105 mol H 2 O h Volumetric flow rate of inlet air: e b g j 5.95 × 106 + 224 × 10 7 + 361 . × 105 mol V& = h Air/fuel ratio: 22.4 liters STP 1 m3 1 mol 10 3 liters = 6.43 × 105 SCMH 643 . × 105 m 3 air h = 161 . SCM air kg coal 40000 kg coal h e j H balance: 1.98 × 10 6 mol H h + 2 3.61 × 10 5 mol H h = 2n& 4 ⇒ n& 4 = 1.351 × 10 6 mol H 2 O h 144424443 1444 424444 3 H in coal H 2 O content of stack gas = b. H in water vapor 1.357 × 106 mol H 2 O h e1.357 × 10 j + 2.812 × 107 mol h 6 × 100% = 4.6% H 2 O Energy balance on stack gas in preheater bg References : CO 2 , CO, O 2 , N 2 , H 2 O v at 25o C Substance CO 2 CO O2 N2 H 2O nin mol h 2.193 × 10 6 0.337 × 106 3.706 × 10 6 22.38 × 106 1.357 × 10 6 H$ in kJ mol 4.942 3669 3758 3655 4266 H$ i (T ) from Table B.8 for inlet Q= ∑ n H$ − ∑ n H$ i i out i i nout mol h 2.193 × 106 0.337 × 10 6 3.206 × 106 72.38 × 10 6 1.351× 106 H$ i (T ) = b z H$ out kJ mol 9.738 6.961 7193 . 6918 . 8135 Table B.2 B Cp dT for outlet g = − 1.01 × 108 kJ h Heat transferred from stack gas in Air preheating 1.01 ×10 8 kJ/hr 2.83 ×10 7 mol dry air/h 3.61 ×10 5 mol H 2O/h 30°C 2.83 ×10 7 mol dry air/h 3.61 ×10 5 mol H 2O/h Ta (°C) (We assume preheater is adiabatic, so that Qstack gas = −Qair ) Energy balance on air: Q = ∆ H ⇒ 101 . × 108 kJ hr = ∑ z Ta z Ta ni ( C p ) i dT = 30 Table B.2 z T Table B.2 a B B ndry air ( C p ) dry air dT + n H2 O ( C p ) H 2 O dT 30 9- 74 http://librosysolucionarios.net 30 9.61 (cont'd) ⇒ 101 . × 10 8 = 8.31 × 105 ( Ta − 30) + 59.92( Ta2 − 302 ) + 0.031( Ta3 − 30 3 ) − 142 . × 10 −5 ( Ta4 − 304 ) o ⇒ Ta = 150 C c. 4400 kg ash/h at 450°C 40,000 kg coal/h 25°C Flue gas at 260°C 2193× 106 mol CO 2 /h 0.337 ×10 6 mol CO/h 3.206 × 106 mol O2 /h 22.38 × 106 mol N2 /h 1.351 × 106 mol H2 O( v)/h 5.95 ×10 6 mol O2 /h 2.24 ×10 7 mol N2 /h 3.61 ×10 5 mol H2 O( v)/h 150°C(= 149.8°C) m (kg H2 O(l )/h) 50°C m (kg H 2 O(v )/h) 30 bars, sat'd bg References for energy balance on furnace: CO 2 , CO, O 2 , N 2 , H 2 O l , coal at 25° C bg (Must choose H 2 O l since we are given the higher heating value of the coal.) substance nin H$ in nout H$ out Coal 40000 0 − − n kg h Ash − − 4400 412.25 H$ kJ kg O2 595 . × 10 6 3.758 3.206 × 10 6 7193 . N2 2.24 × 10 6 3.655 2.24 × 10 7 6.918 n mol h 6 $ CO 2 − − 2193 . × 10 9.738 H kJ mol 6 CO − − 0.337 × 10 6.961 H2O 3.61 × 105 4828 . 1351 . × 10 6 5214 . (Furnace only — exclude boiler water) b b b b g g g g Heat transferred from furnace Q = ncoal ∆H$ io + ∑ n H$ − ∑ n H$ i FG H = 4 × 10 4 kg h = − 876 . × 10 i i i IJ FG −2.5 × 10 kJ IJ + FG 2.74 ×10 KH kg K G H out 8 in 4 3 − 122 . × 10 8 A H$ of preheated air I kJ JJ kg K kJ h 8 8 Heat transferred to boiler water: 0.60(8.76x10 kJ/h) = 5.25x10 kJ/h b g FGH IJK H$ cH Oblg, 30b, sat'dh − H$ eH Oblg, 50 Cj L O kJ ⇒ m& = 2.02 × 10 kg steam h kJ h = m& M2802 .3 − 209.3P MN A A PQ kg kg & Energy balance on boiler: Q& kJ h = m h ⇒ 525 . × 108 2 2 5 Table B.6 Table B.5 9- 75 http://librosysolucionarios.net o 9.62 CO + O 2 → CO 2 , ∆H$ co = −282.99 kJ mol 1 Basis : 1 mol CO burned. 2 1 mol CO n 0 mol O2 3.76n 0 mol N2 25°C a. 1 mol CO2 (n 0 – 0.5) mol O2 3.76n 0 mol N2 1400°C b g 1 mol CO react 0.5 mol O2 = n0 − 0.5 1 mol CO References: CO, CO2 , O2 , N2 at 25o C n in nout H$ in H$ out Substance mol mol kJ mol kJ mol Oxygen in product gas: n1 = n0 mol O2 fed − b g b CO O2 N2 CO 2 1 n0 3.76n0 − g b g b 0 0 0 − − n0 − 0.5 376 . n0 1 g − H$ 1 H$ 2 H$ 3 B b g B N bg,1400 ° Cg: H$ = H$ (1400 C) = 44.51 kJ mol B CO bg,1400 ° Cg: H$ = H$ (1400 C) = 7189 . kJ mol Table B.8 O 2 g,1400° C : H$ 1 = H$ O2 (1400 C) = 47.07 kJ mol o Table B.8 2 2 o N2 Table B.8 2 3 o CO 2 E.B.: ∆H = nCO ∆H$ co + ∑n H$ − ∑ n H$ i i i out in b gb ⇒ n0 = 1094 . mol O2 i b g b g = −282.99 + 47.07 n0 − 0.5 + 44.51 3.76n0 + 7189 . =0 g Theoretical O 2 = 1 mol CO 0.5 mol O2 mol CO = 0500 . mol O 2 1094 . mol fed − 0.500 mol reqd. × 100% = 119% excess oxygen 0.500 mol Increase %XS air ⇒ Ta d would decrease, since the heat liberated by combustion would go into heating a larger quantity of gas (i.e., the additional N 2 and unconsumed O 2 ). Excess oxygen: b. 9.63 a. Basis : 100 mol natural gas ⇒ 82 mol CH 4 , 18 mol C2 H 6 CH 4 (g) + 2O2 (g) → CO 2 (g) + 2H2 O(v), ∆H$ co = −890.36 kJ / mol 7 C 2 H 6 (g) + O2 (g) → 2CO2 (g) + 3H2 O(v), ∆ H$ co = −1559.9 kJ / mol 2 82 mol CH4 18 mol C2 H6 298 K Stack gas at T(°C) n 2 (mol CO2 ) n 3 (mol H2 O (v)) n 4 (mol O2 ) n 5 (mol N2 ) n 0 (mol air) at 423 K 0.21 O2 (20% XS) 0.79 N2 9- 76 http://librosysolucionarios.net 9.63 (cont’d) Theoretical oxygen = Air fed : n1 = 2 mol O 2 1 mol CH 4 82 mol CH4 1.2 × 227 mol O 2 + 3.5 mol O 2 1 mol C 2 H6 18 mol C2 H 6 = 227 mol O 2 1 mol air = 129714 . mol air 0.21 mol O 2 b gb g b gb g = b 82.00gb4g + b1800 . gb 6g ⇒ n C balance : n2 = 82.00 1 + 18.00 2 ⇒ n2 = 118.00 mol CO 2 H balance : 2n3 3 = 21800 . mol H 2 O b gb g 20% excess air, complete combustion ⇒ n4 = 0.2 227 mol O2 = 4540 . mol O 2 b gb g N 2 balance : n5 = 079 . 129714 . = 1024 .63 mol N 2 Extents of reaction: ξ1 = nCH4 = 82 mol, ξ1 = nC 2 H 6 = 18 mol bg bg bg bg bg Reference states: CH 4 g , C 2H 6 g , N 2 g , O2 g , H 2 O l at 298 K (We will use the values of ∆H$ co given in Table B.1, which are based on H2 O l as a combustion product, and so must choose the liquid as a reference state for water.) bg b g bg H$ i T = C pi T − 298 K for all species but water b g b g = ∆H$ v,H2 O 298 K + C p, H2 O T − 298 K for water Substance nin mol H$ in kJ mol CH 4 C2H6 O2 N2 CO 2 H 2O v 82.00 18.00 272.40 1024.63 − − 0 414 . 3.91 − − bg H$ out kJ mol n out mol − − − − 4540 . 0.0331 T − 298 1024.63 00313 . T − 298 11800 . 0.0500 T − 298 218.00 44.013 + 0.0385 T − 298 b b b b g g g g Energy balance : ∆H = 0 e ξ 1 ∆H$ co b j CH 4 e + ξ 2 ∆H$ co j C2H 6 + ∑ n H$ − ∑ n H$ i i out i i =0 in gb g b gb b gb g b gb g b gb g b + b 218.00gb 44.01g − ( 272 .40)( 414 . ) − (1024 .63)(3.91) = 0 g gb ⇒ 82.00 mol CH 4 −890.36 kJ mol + 1800 . mol C 2 H 6 −1559.90 kJ mol + 45.40 00331 . + 1024.63 0.0313 + 118 .00 0.0500 + 218.00 0.0385 T − 298 b. gb g Solving for T using E - Z Solve ⇒ T = 2317 K Increase % excess air ⇒ Tout decreases. (Heat of combustion has more gas to heat) % methane increases ⇒ Tout might decrease. (lower heat of combustion, but heat released goes into heating fewer moles of gas.) 9- 77 http://librosysolucionarios.net bg bg bg af C 3 H 6 O g + 4O 2 g → 3CO2 g + 3H 2 O l , ∆H$ io = −1821.4 kJ mol 9.64 Basis : b g 1410 m 3 STP feed gas 103 mol min 22.4 m 3 STP 1 min = 1049 mol s feed gas 60 s b g Stochiometric proportion: b g 1 mol C3H 6O ⇒ 4 mol O 2 ⇒ 4 × 3.76 = 15.04 mol N2 ⇒ 1+ 4 + 1504 . = 2004 . mol yC 3 H 6 O = 1 mol C 3 H 6 O mol C 3H 6O 4 = 0. 0499 , yO 2 = = 0.1996 mol O 2 mol 20.04 mol mol 20. 04 Preheat Feed gas 1049 mol/s 0.0499 C 3H 6O 0.1996 O O22 0.1496 0.7505 N 2 T f (°C), 150 mm Hg Rel. satn = 12.2% a. Cooling Feed gas 562°C Product gas n 1 (mol CO2 /s) n 2 (mol H 2 O/s) n 3 (mol N 2 /s) T a (°C) Q1 (kW) Product gas 350°C Q2 (kW) d i Relative saturation = 12.2% ⇒ yC 3 H6 O P = 0122 . p∗C3 H 6O T f ⇒ p∗ = b. Reaction . b00499 gb1500 mm Hgg = 61352 . mm Hg Table B.4 0.122 T f = 50.0o C b gb g b1049gb0.1996g = 209.4 mol O s b1049gb0.7505g = 787.3 mol N s n = b52.34gb 3g = 157.0 mol CO s U 14.25 mole% CO | ⇒ Product contains n = b52.34gb3g = 157.0 mol H O sV ⇒ 14.25% H O |W 71.5% N n = 787.3 mol N s References : C H Ob gg, O , N , H Oblg , CO at 25 C Feed contains 1049 mol s 0.0499 C3 H 6O mol = 52.34 mol C 3H 6O s 2 2 1 2 2 2 3 2 2 3 2 6 2 n&in Substance 2 Hˆ in (mols) (kJ/mol) 2 o 2 n&out Hˆ out (mols) (kJ/mol) o Ta (562 C) 52.34 67.66 − − O2 N2 209.4 787.3 17.72 17.18 − 787.3 − 0.032 ( Ta − 25) CO 2 − − 157.0 H2 O − − 157.0 C3 H 6O 2 0.052 ( Ta − 25) 44.013 + 0.040( Ta − 25 ) d i H$ H2 O = ∆H$ v 25 o C + H$ H2 O ( T) Energy balance on reactor: ∆H = nC 3H 6O ∆H$ co + ∑ n H$ − ∑ n H$ i out ⇒ (5234 mol s ) − 1821.1 i i i b g = 0 kJ s in kJ 4 + 39.638 (Ta − 25 ) + 157.0 ( 44.013 ) − 2.078 × 10 = 0 ⇒ Ta = 2780 °C mol 9- 78 http://librosysolucionarios.net 9.64 (cont'd) c. bg Preheating step: References: C 3H 6 g , O 2 , N 2 at 25° C n& in H$ in n& out H$ out Substance ( mol / s) (kJ / mol) (mol / s) ( kJ / mol) (50 o C) (562 o C) C 3H 6O 52.34 315 . 52.34 67.66 O2 209.4 0826 . 209.4 17.72 N2 787 .3 0.775 787 .3 16.65 E.B. ⇒ Q& 1 = ∑ n& H$ − ∑ n& H$ i i i out i = 194 . × 104 kW in af Cooling step. References: CO2 (g), H2 O v , N2 (g) at 25 o C nin H$ in nout H$ out Substance ( mol) (kJ / mol) (mol) (kJ / mol) e2871 Cj e350 Cj o CO 2 H 2O N2 E.B. ⇒ Q 2 = 157.0 157.0 787 .3 142 .3 10815 . 88.23 ∑ n& H$ − ∑ n& H$ i i out i i o 157.0 157.0 787.3 16.25 12.35 1008 . = −9.64 × 104 kW in Exchange heat between the reactor feed and product gases. 9.65 a. Basis : 1 mol C5 H12 (l) C 5H12 (l) + 8O 2 (g) → 5CO2 (g) + 6H 2 O(v), 1 mol C5 H12 (l) n 2 (mol CO2 ) n 3 (mol H2 O (v)) n 4 (mol O2 ) Tad(o C) n 0 (mol O2 ) , 75°C 30% excess Theoretical oxygen = ∆H$ co = −3509.5 kJ / mol 1 mol C5 H12 8 mol O 2 = 8 mol O 2 1 mol C 5H12 30% excess ⇒ n0 = 13 . × 8 = 10.4 mol O 2 b gb g = b1gb12g ⇒ n C balance: n2 = 1 5 ⇒ n2 = 5 mol CO2 H balance: 2n3 3 = 6 mol H 2O b gb g 30% excess O2 , complete combustion ⇒ n4 = 0.3 8 mol O2 = 2.4 mol O 2 bg b g bg Reference states: C5H 12 l , O2 g , H 2 O l , CO 2 (g) at 25o C (We will use the values of ∆H$ c0 given in Table B.1, which are based on H2 O l as a combustion product, and so must choose the liquid as a reference state for water) 9- 79 http://librosysolucionarios.net bg 9.65 (cont'd) substance C5H 12 O2 CO2 H 2O H$ in kJ mol 0 H$ 1 − − nin mol 100 . 10.40 − − H$ i = z nout H$ out mol kJ mol − − 2.40 H$ 2 500 . H$ 3 6.00 H$ 4 T i = 2,3 ( C p ) i dT 25 e j z T = ∆H$ v 25o C + ( C p ) H2 O(v) dT for H 2 O(v) 25 Table B.8 B H$ 1 = H$ O 2 ( 75o C) = 148 . kJ / mol Substituting (C p ) i from Table B.2 : kJ H$ 2 = (0.0291 Tad + 0.579 × 10 −5 Tad 2 − 0.2025 × 10 −8 Tad 3 + 0.3278 × 10 −12 Tad 4 − 0.7311) mol kJ H$ 3 = ( 0.03611 Tad + 2.1165 × 10 −5 Tad 2 − 0.9623 × 10 −8 Tad 3 + 1.866 × 10 −12 Tad 4 − 0.9158 ) mol kJ 2 3 4 H$ 4 = 4401 . + ( 003346 . Tad + 03440 . × 10 −5 Tad + 02535 . × 10 −8 Tad − 08983 . × 10−12 Tad − 0838 . ) mol kJ 2 3 4 ⇒ H$ 4 = 4317 . + (0.03346 Tad + 03440 . × 10 −5 Tad + 0.2535 × 10 −8 Tad − 08983 . × 10 −12 Tad ) mol Energy balance :∆H = 0 e nC5 H12 ∆H$ co j C5 H 12 ( l) + ∑ n H$ − ∑ n H$ i out i i i =0 in (1 mol C5H12 )( − 35095 . kJ / mol) + ( 2.40) H$ 2 + (5.00) H$ 3 + ( 6.00) H$ 4 − (10.40)( H$ 1) = 0 $ through H $ Substitute for H 1 4 ∆H& = (04512 . Tad + 14036 . × 10−5 Tad 2 − 3777 . × 10−8 Tad 3 + 4727 . × 10 −12 Tad 4 ) − 3272.20 kJ / mol = 0 ⇒ f (Tad ) = −3272 .20 + 04512 . Tad + 14.036 × 10−5 Tad 2 − 3777 . × 10−8 Tad 3 + 4727 . × 10 −12 Tad 4 = 0 Check : −3272.20 4727 . × 10 −12 = −6.922 × 1014 Solving for Tad using E - Z Solve ⇒ Tad = 4414o C b. Terms 1 2 3 Tad % Error 7252 64.3% 3481 –21.1% 3938 –10.8% 9- 80 http://librosysolucionarios.net 9.65 (cont’d) c. d. T 7252 5634 4680 4426 4414 f(T) 6.05E+03 1.73E+03 3.10E+02 1.41E+01 3.11E-02 f'(T) Tnew 3.74 5634 1.82 4680 1.22 4426 1.11 4414 1.11 4414 The polynomial formulas are only applicable for T ≤ 1500°C 9.66 5.5 L/s at 25°C, 1.1 atm n& 1 (mol CH4 /s) n&3 (mol O2 /s) 3.76 n&2 (mol N2 /s) n&4 (mol CO2 /s) 25% excess air n&2 (mol O2 /s) Adiabatic Reactor 3.76 n&2 (mol N2 /s) n& 4 (mol CO2 /s) n&5 (mol H2 O/s) 150°C, 1.1 atm T(°C), 1.05 atm 2CH 4 + 2O 2 → CO2 + 2H 2O Fuel feed rate : = 550 . L 273 K 1.1 atm mol = 0.247mol CH 4 / s s 298 K 1.0 atm 22.4 L(STP) Theoretical O 2 = 2 × 0.247 = 0.494 mol O 2 / s 25% excess air ⇒ n& 2 = 1.25( 0.494) = 0.6175 mol O 2 / s , ⇒ 3.76 × 0.6175 = 2.32 mol N 2 / s Complete combustion ⇒ ξ& = n1 = 0.247 mol / s, n& 4 = 0.247 mol CO 2 / s, n& 5 = 0.494 mol H 2 O / s n& 3 = 0.6175 mol O2 fed / s − 0.494 mol consumed / s = 0.124 mol O 2 / s References: CH 4, O ,2N , 2C O , 2H O2( l ) a t 2 5o C Substance n&in n&out Hˆ in Hˆ out (mol/s) (kJ/mol) (mol/s) (kJ/mol) CH 4 0.247 O2 0.6175 − − Hˆ N2 2.32 0 ˆ H1 Hˆ CO 2 − − 0.247 Hˆ 4 Hˆ H 2O − − 0.497 Hˆ 6 H$ 1 = H$ (O 2, 150o C) Table B.8 H$ 2 = H$ ( N 2, 150 o C) Table B.8 2 0.124 2.32 3 5 3.78 kJ / mol 366 . kJ / mol ( ∆ H$ co ) CH 4 = −890 .36 kJ / mol H$ i = z T C pi dT , i = 3 − 5 25 9- 81 http://librosysolucionarios.net 9.66 (cont'd) H$ b = ( ∆ H$ v ) H z T 2 O(25 o C) + ( C p ) H 2 O(v) dT 25 a. Energy Balance ∆H& = ξ& ( ∆H$ o ) c CH 4 + ∑ n& $ out H out − ∑ n& $ in H in =0 $ ) Table B.2 for C p i ( T ), ( ∆H v H O = 44 .01 kJ / mol 2 0.247 ( − 890.36) + 0494 . (44.01) + 0.0963( T − 25) + 174 . × 10 −5 (T 2 − 252 ) + 0305 . × 10 −8 ( T 3 − 253 ) −161 . × 10 −12 ( T 4 − 25 4 ) − 0.6175( 378 . ) − 2.32( 366 . )=0 ⇒ −211.4 + 0.0963Tad + 1.74 × 10 −5 Tad 2 + 0.305 × 10 −8 Tad 3 − 1.61 × 10 −12 Tad 4 = 0 ⇒ T = 1832o C b. In product gas, T = 1832 o C, P = 1.05× 760 = 798 mmHg 0.494 mol/s y H2 O = = 0.155 mol H 2O/mol (0.124 + 2.32 + 0.247 + 0.494) mol/s Raoult's law: y H2O P = pH* 2O (Tdp ) ⇒ pH* 2O = (0.155)(798) = 124 mmHg Table B.3 ⇒T dp = 56 o C Degrees of superheat = 1832o C − 56o C = 1776o C superheat 9.67 a. CH 4 ( l) + 2O 2 ( g) → CO 2 (g) + 2H 2O(v) Basis : 1 mol CH 4 2 mol O 2 = 2.00 mol O2 1 mol CH 4 30 % excess air ⇒ 130 . ( 2.00) = 2.60 mol O 2 , ⇒ 3.76 × 2.60 = 9.78 mol N 2 Theoretical oxygen = 1 mol CH4 1 mol CH4 2.60 mol O2 9.78 mol N2 25° C, 4.00 atm n 2 (mol CO2 ) n 3 (mol H2 O) n 4 (mol O2 ) Complete combustion ⇒ n2 = 1.00 mol CO2 , n3 = 2.00 mol H 2 O 2.00 mol O 2 consumed ⇒ n4 = ( 2.60 − 2.00) mol O 2 = 0.60 mol O 2 Internal energy of reaction: Eq. (9.1-5) ⇒ ∆U$ co = ∆H$ co − RT F I GG ∑ ν − ∑ ν JJ GH JK i gaseous products e ⇒ ∆U$ co U$ = z j CH 4 T 25 FG H = − 890.36 Ideal Gas ( Cv )dT ⇒ z IJ K i gaseous reactants kJ 8.314 J 298 K (1 + 2 − 1 − 2) 1 kJ kJ − = −890.36 3 mol K 10 J mol mol T ( C p − Rg ) dT 25 If C p is independent of T ⇒ U$ = ( C p − Rg )( T − 25o C) 9- 82 http://librosysolucionarios.net 9.67 (cont’d) b. bg bg bg bg Reference states: CH 4 g , N 2 g , O 2 g , H 2O l , CO2 (g) at 25 o C (We will use the values of ∆H$ c0 given in Table B.1, which are based on H2 O l as a combustion product, and so must choose the liquid as a reference state for water.) Substance CH4 O2 N2 CO2 H 2O v bg nin U$ in mol kJ mol 100 . 0 2.60 0 9.78 0 − − − − bg nout U$ out mol kJ mol − − 0.60 U$ 1 9.78 U$ 2 100 . U$ 3 2.00 U$ 4 Part a B U$ i = ( C p − Rg )( T − 25) for all species except H 2 O(v) = ∆U$ v 25 o C + ( C p − Rg )(T − 25) = ∆H$ v 25o C − Rg Tref + (C p − Rg )( T − 25) for H 2 O(v) e j e j Substituting given values of ( C p ) i and R g = 8.314 × 10 −3 kJ / mol yields U$ 1 = (0.033 − 8.314 × 10− 3 )( T − 25) kJ / mol = ( 002469 . T − 0.6172) kJ / mol U$ 2 = ( 0.032 − 8.314 × 10 −3 )(T − 25) kJ / mol = ( 0.02369 T − 0.5922) kJ / mol U$ 3 = ( 0.052 − 8.314 × 10−3 )(T − 25) kJ / mol = ( 004369 . T − 10922 . ) kJ / mol LM N FG H OP Q IJ K kJ kJ kJ U$ 4 = 44.01 − 8.314 × 10 −3 (298 K) + ( 0.040 − 8.314 × 10 −3 )( T − 25) mol mol ⋅ K mol kJ kJ kJ ⇒ U$ 4 = 4153 . + ( 0.052 − 8314 . × 10 −3 )( T − 25) = ( 0.03167 T − 40.74) mol mol mol Energy Balance e j + ∑ n U$ − ∑ n U$ = 0 ⇒ Q = (100 . ) b −890.36 kJ / molg + ( 0.60)U$ + (9.87)U$ Q = nCH 4 ∆U$ co CH 4 i i out i i in 1 2 + (100 . )U$ 3 + ( 2.00)U$ 4 = 0 Substituting U$ 1 through U$ 4 0.3557 T − 81619 . = 0 ⇒ T = 2295 o C Ideal Gas Equation of State ⇒ c. FG H IJ K Pf Tf ( 2295 + 273) K = ⇒ Pf = × 4.00 atm = 34.5 atm Pi Ti (25 + 273) K – Heat loss to and through reactor wall – Tank would expand at high temperatures and pressures 9- 83 http://librosysolucionarios.net 9.68 b. 1 mol natural gas yCH4 (mol CH 4 / mol) nCO2 (mol CO 2 ) yC2 H6 (mol C 2 H 6 / mol) nH2 O (mol H 2O) yC3 H8 (mol C3 H 8 / mol) nN 2 (mol N 2 ) nO2 mol O 2 ) Humid air n a (mol air) y wo (mol H2 0(v)/mol) (1-y wo ) (mol dry air/mol) 0.21 mol O2 /mol DA 0.79 mol N2 /mol DA Basis : 1 g-mole natural gas CH 4 (g) + 2O2 (g) → CO 2 (g) + H 2 O(v) 7 C 2 H6 (g) + O2 (g) → 2CO2 (g) + 3H 2O(v) 2 C 3H 8 (g) + 5O 2 (g) → 3CO2 (g) + 4H 2O(v) Theoretical oxygen : 2 mol O2 1 mol CH 4 y CH4 (mol CH4 ) + 3.5 mol O2 1 mol C2 H6 = ( 2 yCH4 + 35 . yC2 H 6 + 5 yC3 H8 ) FG H Excess oxygen: 0.21na (1 − y wo ) = 1 + FG H ⇒ na = 1 + IJ K yC2 H6 (mol C2 H6 ) + 5 mol O2 yC 3H8 (mol C3H8 ) 1 mol C3H 8 IJ K Pxs ( 2 y CH4 + 3.5y C 2 H6 + 5 y C 3H 8 ) mol O 2 100 Pxs 1 ( 2 y CH4 + 35 . y C 2 H6 + 5 y C 3 H8 ) mol air 100 0.21(1− y w 0 ) Feed components ( nO 2 ) in = 021 . na (1 − y wo ), ( n N2 ) in = 0.79na (1 − y wo ), (n H2 O ) in = na y wo N 2 in product gas: nN2 = ( nN 2 ) in mol N 2 CO2 in product gas : nCO2 = 1 mol CO2 nCH4 (mol CH4 ) 2 mol CO2 nC2H6 (mol C2 H6 ) 3 mol CO2 nC3 H8 (mol C3 H8 ) + + 1 mol CH4 1 mol C2H 6 1 mol C3H8 = (nCH4 + 2nC2H6 + 3nC3H8 ) mol CO2 H 2 O in product gas : nH2 O = 1 mol H2O nCH4 (mol CH4 ) 3 mol H 2O nC2 H6 (mol C2 H 6 ) 4 mol O2 nC3 H8 (mol C3H 8 ) + + 1 mol CH 4 1 mol C2 H 6 1 mol C3H 8 = [2nCH4 + 3nC2H6 + 4nC3H8 + na (1- ywo )] mol H 2O O 2 in product gas : nO2 = Pxs ( 2 nCH 4 + 35 . n C2 H 6 + 5 nC 3H 8 ) mol O 2 100 9- 84 http://librosysolucionarios.net 9.68 (cont’d) c. References : C(s), H 2 ( g) at 25o C z T $ H ( T) = ( ∆ H of ) CH 4 + ( C p ) CH4 dT CH 4 25 Using ( ∆ Hfo )CH4 from Table B.1 and ( C p )CH4 from Table B.2 H$ CH (T) = −7485 . kJ / mol+ 4 F GG H z I JJ K T (0.03431+5.469 × 10−5 T + 03661 . × 10−8T 2 − 1100 . × 10−12 T 3 ) dT kJ / mol 25 ⇒ H$ CH (T ) = [ −7572 . + 3.431 × 10 −2 T + 2.734 × 10 −5 T 2 + 0122 . × 10 −8 T 3 − 2.75× 10 −12 T 4 ] kJ / mol 4 nin mol n1 n2 n3 n4 n5 n6 − Substance CH 4 C2H6 C3H8 O2 N2 CO 2 H 2O 7 ∆H = nout H$ out H$ in kJ / mol mol kJ / mol H$ 1 − − H$ 2 − − $ H3 − − H$ 4 n7 H$ 7 H$ 5 n8 H$ 8 − n9 H$ 9 − n10 H$ 10 6 ∑(n ) i out ( H i ) out − i= 4 ∑ (n ) i in ( H i ) in i =1 H$ i = ai + bi T + ci T 2 + di T 3 + ei T 4 6 3 ∑ (n ) = i in ( Hi ) in i =1 ∑ (n ) 6 $ i in Hi (Tf )+ i =1 ∑ (n ) $ i in Hi (Ta ) i =4 7 ⇒ ∆H = 3 ∑ ( ni ) out (ai + bi T + ci T 2 + di T 3 + ei T 4 ) out − i =4 7 ⇒ ∆H = 7 ∑(n ) i out a i + i =1 i out bi T + i =4 3 − $ ∑ (n ) ∑ (n ) i out ci T ) − i in H i ( Tf 2 i =1 6 i =1 ∑ (n ) ∑ i =1 7 7 ∑(n ) ( ni ) in H$ i ( Tf ) − + ∑ (n ) i out d i T i =1 $ i in H i (Ta ) i =4 = α 0 + α 1T + α 2T 2 + α 3T 3 + α 4 T 4 7 where α 0 = ∑ 3 (ni ) out ai − i =1 ∑ ( ni ) in H$ i ( Tf ) − i =1 7 α1 = ∑(n ) $ i in Hi ( Ta ) i =4 7 ∑ ( ni ) out bi α2 = i =1 ∑ (n ) i out ci i =1 7 α3= 6 7 ∑ (n ) i out d i i =1 α4 = ∑ (n ) i out ei i =1 . 9- 85 http://librosysolucionarios.net 6 ∑(n ) $ i in Hi ( Ta ) i =4 7 3 + ∑ (n ) i out ei T i =1 4 9.68 (cont’d) d. Run 1 yCH4 0.75 yC2H6 0.21 yC3H8 0.04 Tf 40 Ta 150 Pxs 25 ywo 0.0306 nO2i 3.04 nN2 11.44 nH2Oi 0.46 HCH4 -74.3 HC2H6 -83.9 HC3H8 -102.7 HO2i 3.6 HN2i 3.8 HH2Oi -237.6 nCO2 1.29 nH2O 2.75 nO2 0.61 nN2 11.44 Tad 1743.1 alph0 -1052 alph1 0.4892 alph2 0.0001 alph3 -3.00E -08 alph4 3.00E-12 Delta H 3.00E-07 Species CH4 C2H6 C3H8 O2 N2 H20 CO2 a -75.72 -85.95 -105.6 -0.731 -0.728 -242.7 -394.4 Run 2 0.86 0.1 0.04 40 150 25 0.0306 2.84 10.67 0.43 -74.3 -83.9 -102.7 3.6 3.8 -237.6 1.18 2.61 0.57 10.67 1737.7 -978.9 0.4567 1.00E-04 -3.00E -08 3.00E-12 9.00E-06 Run 3 0.75 0.21 0.04 150 150 25 0.0306 3.04 11.44 0.46 -70 -77 -93 3.6 3.8 -237.6 1.29 2.75 0.61 11.44 1750.7 -1057 0.4892 0.0001 -3.00E -08 3.00E-12 -4.00E -07 Run 4 0.75 0.21 0.04 40 250 25 0.0306 3.04 11.44 0.46 -74.3 -83.9 -102.7 6.6 6.9 -234.1 1.29 2.75 0.61 11.44 1812.1 -1099 0.4892 0.0001 -3.00E -08 3.00E-12 -1.00E -04 Run 5 0.75 0.21 0.04 40 150 100 0.0306 4.87 18.31 0.73 -74.3 -83.9 -102.7 3.6 3.8 -237.6 1.29 3.02 2.44 18.31 1237.5 -1093 0.7512 0.0001 -4.00E -08 4.00E-12 -1.00E -05 b x 10^2 3.431 4.937 6.803 2.9 2.91 3.346 3.611 c x 10^5 2.734 6.96 11.3 0.11 0.579 0.344 2.117 d x 10^8 0.122 -1.939 -4.37 0.191 -0.203 0.254 -0.962 e x 10^12 -2.75 1.82 7.928 -0.718 0.328 -0.898 1.866 9- 86 http://librosysolucionarios.net Run 6 0.75 0.21 0.04 40 150 25 0.1 3.04 11.44 1.61 -74.3 -83.9 -102.7 3.6 3.8 -237.6 1.29 3.9 0.61 11.44 1633.6 -1058 0.5278 0.0001 -2.00E -08 2.00E-12 6.00E-04 9.69 n14 (mol CH4 /h) 25°C Preheaters Absorber off-gas n 8 (mol H 2/h) n 12 (mol N 2/h) 0.988 n 9 (mol CO/h) 0.950 n 6 (mol CH4 /h) 0.006 n 7 (mol C 2H 2/h) n 13 (mol C(s )/h) Converter converter product quench T ad (°C) Feed gas, 650°C n 14 (mol CH 4 /h) 0.96n 15 (mol O2 /h) 0.04n 15 (mol N2 /h) 0.917 n1 (mol DMF/h) Lean solvent Converter product 38°C filter absorber n 6 (mol CH4 /h) n 7 (mol C 2H 2/h) n 8 (mol H 2 /h) n 9 (mol CO/h) n 10 (mol CO 2 /h) n 11 (mol H 2 O/h) n 12 (mol N 2/h) n 13 (mol C(s )/h) n15 (mol/h) 0.96 mol O2 /mol 0.04 mol N2 /mol 25°C Basis: 5000 kg/h Product gas n1 (mol/h) 0.991 mol C2 H2 ( g)/mol 0.00059 mol H2 O/mol 0.00841 mol CO2 /mol n 6 (mol CH4 /h) n 7 (mol C 2H 2/h) n 8 (mol H 2/h) n 9 (mol CO/h) n 10 (mol CO2 /h) n 11 (mol H 2O/h) n 12 (mol N 2/h) Rich solvent n 1 (mol/h) 0.0155 mol C2 H2 /mol 0.0063 mol CO2 /mol 0.00055 mol CO/mol 0.00055 mol CH4 /mol 0.0596 mol H2 O/mol 0.917 mol DMF/mol Average M.W. of product gas: b g b g b stripper Stripper off-gas n 2 (mol CO/h) n 3 (mol CH4 /h) n 4 (mol H 2O(v )/h) n 5 (mol CO2 /h) g M = 0.991 2604 . + 0.00059 18016 . + 000841 . 44.01 = 2619 . g mol Molar flow rate of p roduct gas: n0 = 5000 kg 103 g 1 mol 1 day = 7955 mol h day 1 kg 26.19 g 24 h Material balances -- plan of attack (refer to flow chart): Stripper balances: C 2 H 2 ⇒ n1 , CO ⇒ n2 , CH 4 ⇒ n3 , H 2O ⇒ n4 , CO2 ⇒ n5 Absorber balances: CH 4 ⇒ n6 , C 2 H2 ⇒ n7 , CO ⇒ n9 , CO2 ⇒ n10 , H2 O ⇒ n11 RS5.67% soot formationUV ⇒ n Tconverter C balance W 13 , n14 , converter H balance ⇒ n8 Converter O balance ⇒ n15 , converter N 2 balance ⇒ n12 Stripper balances: b g C 2 H 2: 0.0155n1 = 0991 . 7955 mol h ⇒ n1 = 5086 . × 105 mol h b ge j CH : b0.00055ge5086 . × 10 j = n ⇒ n = 79.7 mol CH h H O: b0.0596 ge5086 . × 10 j = n + b0.00059gb7955g ⇒ n = 30308 mol H O h CO : b 0.0068ge 5086 . × 10 j = n + b 0.00841gb 7955g ⇒ n = 3392 mol CO h CO: 0.00055 5.086 × 105 = n2 ⇒ n2 = 79.7 mol CO h 5 4 3 3 4 5 2 4 4 2 5 2 Absorber balances 5 b 5 ge j CH 4 : n6 = 0.950n6 + 0.00055 5086 . × 105 = n6 ⇒ 5595 mol CH 4 h 9- 87 http://librosysolucionarios.net 2 9.69 (cont'd) b ge j CO: n = 0.988 n + b0.00055ge5.086 × 10 j ⇒ n = 23311 mol CO h CO : n = b 0.0068ge 5086 . × 10 j = 3458 mol CO h H O: n = b 0.0596ge5.086 × 10 j = 30313 mol H O h n = b0.0567gn (mol CH ) 1 mol C Soot formation: ⇒ n = 0.0567n b1g h 1 mol CH C 2 H2 : n7 = 0.0155 5.086 × 105 + 0.006 n7 ⇒ n7 = 7931 mol C2 H 2 h 5 9 9 9 5 2 10 2 5 2 11 2 13 14 4 13 14 4 Converter C balance: b gb g b gb g b gb g b gb g n14 = 5595 mol CH 4 h 1 mol C mol CH 4 + 7931 2 + 23311 1 + 3458 1 + n13 ⇒ n14 = n13 + 48226 b2g bg = b5595gb 4g + b 7931gb2g + 2n + b30313gb 2g Solve (1) & (2) simultaneously ⇒ n13 = 2899 mol C s h , n14 = 51120 mol CH 4 h Converter H balance: 51120 mol CH 4 h 4 mol H 1 mol Ch4 CH 4 C2H 2 H2 O H2 8 ⇒ n8 = 52816 mol H2 h b0.96n gb2g = 23311 hmol CO Converter O balance: 15 1 mol O 1 mol CO b C O2 gb g b H 2O gb g + 3458 2 + 30313 1 ⇒ n15 = 31531 mol h b gb g Converter N 2 balance: 0.04 31531 n12 ⇒ n12 = 1261 mol N 2 h a. Feed stream flow rates VC H4 = VO 2 = b. 51120 mol CH 4 h b 31531 mol O 2 + N 2 h Gas feed to absorber 5595 mol 7931 mol 23311 mol 3458 mol 30313 mol 52816 mol 1261 mol b g 0.0244 m 3 STP = 1145 SCMH CH 4 1 mol g b g b g 0.0244 m 3 STP = 706 SCMH O 2 + N 2 1 mol U || || V| || |W CH 4 h C2 H2 h CO h CO 2 h 4.5 mole% CH 4 , 6.4 % C 2 H 2 , 18.7% CO , H 2 O h ⇒ 125 kmol h , 2.8% CO 2 , 24.3% H 2 O , 42.4% H 2 , 1.0% N 2 H2 h N2 h 1.2469 × 10 5 mol h Absorber off-gas 52816 mol H 2 h 1261 mol N 2 h 23031 mol CO h 64.1 mole% H 2 , 1.5% N 2 , 27.9% CO, 5315 mol CH 4 h ⇒ 82.5 kmol h, 6.4% CH , 0.06% C H 4 2 2 41.6 mol C 2 H 2 h 8.2471× 104 U| || V| | mol h|W 9- 88 http://librosysolucionarios.net 9.69 (cont'd) Stripper off-gas 279.7 mol CO h 279.7 mol CH 4 h 30308 mol H 2 O h ⇒ 34.3 kmol h, 0.82% CO, 0.82% CH 4 , 88.5% H 2 O, 9.9% CO2 3392 mol CO h 3.4259 × 10 4 U| |V || mol h W mol I F 1 kmol I FG JG J = 466 kmol DMF h H h K H 10 mol K b0.991gb7955g mol C H in product gas = 0154 mol C H = . c. DMF recirculation rate = 0.917 5.086 × 105 d. Overall product yield 3 2 2 2 51120 mol CH 4 in feed h 2 mol CH 4 The theoretical maximum yield would be obtained if only the reaction 2CH 4 → C 2 H2 + 3H2 occurred, the reaction went to completion, and all the C 2 H2 formed were recovered in the product gas. This yield is (1 mol C2 H2 /2 mol CH4 ) = 0.500 mol C2 H2 /2 mol CH4 . The ratio of the actual yield to the theoretical yield is 0.154/0.500 = 0.308. e. Methane preheater Q& CH 4 = ∆H& = n& 14 z Table B.2 650 B d i Cp 25 dT = CH4 51120 mol 32824 J 1h 1 kJ = 466 kW h mol 3601 s 103 J Oxygen preheater Table B.8 Table B.8 B B Q& O2 = ∆H& = 0.96n&15 H$ ( O 2 ,650o C) + 0.04n& 15 H$ ( N 2 ,650 o C) FG H kJ OF 1 h I IJ LMb0.96 × 20135 . + 0.04 × 18.99g PG J = 176 kW KN mol ⋅ C QH 3600 s K Cb sg , H b gg, O b gg , N b gg at 25° C n& H$ b 650° Cg n& H$ bT g = 31531 f. References : Substance mol h o 2 in CH 4 51120 O2 30270 2 in 2 out −42.026 5595 20.125 − 1261 − 74.85 + z − out Ta 25 z z z z z z z Ta C p dT N2 1261 C2 H2 − − 7931 H2 − − 52816 CO − − 23311 −110.52 + C p dT CO 2 − − 3458 H 2O − − 30313 −24183 . + C p dT Cs − − 2899 bg 18.988 out 35 C p dT +226.75 Ta 25 C p dT C p dT −393.5 + C p dT C p dT 9- 89 http://librosysolucionarios.net b g H$ b kJ molg n mol h 9.69 (cont’d) z T H$ i = ∆H$ i0 + C pidT kJ mol ∑ n& H$ i i = − 1575 . × 10 6 kJ h i = −9.888 × 106 kJ h + in ∑ n& H$ i 25 kJ mol ⋅° C out z LM5595dC i + 1261dC i + 7931dC i N O 1 kJ +52816d C i + 23311d C i +3458d C i + 3013d C i b g PQ 10 J dT + dC i b g × 101 kJJ dT z p Tout p 25 p H2 p CH4 p CO p N2 p CO2 H2 O v C 3 H2 3 Tad + 273 298 p C s 3 We will apply the heat capacity formulas of Table B.2, recognizing that we will probably push at least some of them above their upper temperature limits ∑ n& H$ i i out + ∑ n& H$ i i z Tad +273 298 z . − 5.9885 × 10 e3902 + 12185 F 32.411+ 0.031744 T − 14179 . × 10 I GH JKdT T = −9.888 × 106 kJ h + Tad 25 −4 j T 2 − 10162 . × 10 −7 T 3 dT 6 2 = −1.000 × 107 + 3943 Ta + 0.6251Ta2 − 1.996 × 10 −4 Ta3 − 2.5405 × 10−8 Ta4 + out Energy balance: ∆H& = ∑ n& H$ − ∑ n& H$ i out i i i =0 in b g ⇒ f Tc = −8.485 × 10 6 + 3943Tc + 0.6251Tc2 − 1996 . × 10 −4 Tc3 − 2.5405 × 10 −8 Tc4 + E-Z Solve 1.418 × 106 Ta + 273 Tc = 2032 o C. 9- 90 http://librosysolucionarios.net 1.418 × 10 6 =0 Tc + 273 9.70 a. m& 1[kg W(v)/d] W = H2 O 1 0 0o C o 24 ,000 kg sludge / d, 22 C 0.35 solids, 0.65 W(l) DRYER F Q&2 & 2 (kg conc. sludge/d), 100o C m INCINERATOR Waste gas 0.75 solids, 0.25 W(l) & 3 [kg W(v)/d] m 4B, sat'd C & 3 [kg W(l)/d] m m& 3 [kg W(l)/d] Q&3 (kJ / d) BOILER 4B, sat'd o 20C D m& 4 (kg oil/d) 0.87 C 0.10 H 0.0084 S 0.0216 ash & 6 (kg gas/d) m 110oC 0.90 kmol CH4 /kmol 0.10 kmol C2 H6 / kmol Q&4 (kJ / d) Q&1 Stack gas CO 2 , H2 O(v) o 125 C SO2 O 2, N 2 ash m & 7 (kg air/d) 25 oC Q& 0 (kJ/d) E m& 5 (kg air/d) 2 5o C 9-90 http://librosysolucionarios.net 9.70 (cont'd) Solids balance on dryer: &2 ⇒ m & 2 = 11200 kg/d ⇒ F :11.2 tonnes concentrated sludge/d 0.35 × 24,000 kg/d = 0.75 m Mass balance on dryer: 24,000 = m& 1 + 11200 ⇒ m& 1 = 12,800 kg/d Energy balance on sludge side of dryer: References : H 2O(l,22o C), Solids(22o C) m& in Substance Hˆ in (kg d) (kJ kg) m& out Hˆ out (kg d) (kJ kg) 8400 Hˆ 1 Solids 8400 0 HO(l) 2 15600 0 2800 H 2 O(v) − − 12800 Hˆ 2 Hˆ 3 Hˆ 1 = 2.5(100 − 22) = 195.0 kJ/kg Hˆ = (419.1 − 92.2) = 326.9 kJ/kg 2 Hˆ 3 = (2676− 92.2) = 2584 kJ/kg ( Hˆ from Table B.5) water Q& 2 = ∑ m& H$ − ∑ m& H$ ⇒ Q& i i out Q& steam i i 2 = 356 . × 107 kJ day in 356 . × 107 = = 647 . × 107 kJ / d ⇒ Q& 3 = 2.91 × 107 kJ / d 055 . Energy balance on steam side of dryer: ∆ Hˆ v for HO(sat'd, ) 2 6.47 × 107 ↓ kJ 1 tonne kJ kg & 3 × 2133 3 =m ⇒ m& 3 = 30.3 tonnes boiler feedwater/d d d kg 10 kg Energy balance on steam side of boiler: Q1 = ( 30300 kg kJ )( 2737.6 − 83.9) = 8.04 × 107 kJ / d d kg 62% efficiency ⇒ Fuel heating value needed = &4 = ⇒m 8.04 × 107 = 13 . × 108 kJ / d 0.62 1.30 × 10 8 kJ/d = 3458 kg/d ⇒ D :3.5 tonnes fuel oil/day 3.75 × 10 4 kJ/kg Air feed to boiler furnace: C + O 2 → CO 2 , 4H + O2 → 2H 2 O, ( nO2 )theo = 3458 S + O2 → SO 2 kg kgC 1 kmol C 1 kmol O 2 1 1 1 1 )( )( )+(0.10)( )( ) + (0.0084)( )( ) (0.87 d kg 12 kg 1 kmol C 1 4 32 1 = 338 kmol O2 /d 9- 91 http://librosysolucionarios.net 9.70 (cont’d) Air fed (25% excess)=1.25(4.76 ⇒ 2011 kmol 29 kg 1 tonne kmol 103 kg d kmol air kmol O2 kmol air )(338 ) = 2011 kmol O2 d d ⇒ E :58.3 tonnes air to boiler/d Energy balance on boiler air preheater: 2011 kmol 103 mol kJ Table B.8 ⇒ Hˆ a i r , 1 2o5 C = 2.93 ⇒ Q& 0 = d 1 kmol mol 2.93 kJ kJ = 5.89 × 10 6 mol d Supplementary fuel for incinerator: 11.2 tonne sludge 195 SCM 1 kmol n&6 = = 97.5kmol d d tonne 22.4 SCM MWgas = 0.90 MWCH 4 + 010 . MWC 2 H6 = ( 0.90)(16) + ( 010 . )(30) = 17.4 kg kmol m& gas = (97.5 kmol kg )(17.4 ) ⇒ G :1.7 tonne natural gas/d d kmol Air feed to incinerator: CH 4 + 2O 2 → CO2 + 2H2 O, C2 H 6 + 7 O2 → 2CO2 + 3H 2O 2 11200 kg conc. sludge (air)th for sludge: (air)t h for gas: 97.5 d kmol d 0.90 0.75 kg solids 1 kg conc. sludge kmol CH 4 kmol × 2 kmol O2 kmol CH 4 19000 kJ 2.5 SCM air 1 kmol 1 kg solids 4 22.4 SCM 10 kJ = 1781 kmol air d 4.76 kmol air kmol air = 997.8 1 kmol O d 2 + (0.10)(3.5) kmol air kmol air = 5558 d d 5558 kmol air 29 kg air 1 tonne tonnes incinerator air ⇒ ⇒ H :161 d 1 kmol 103 kg d 100% XS: n&7 = 2(1781 + 997.8) Energy balance on incinerator air preheater 5558 kmol 103 mol 2.486 kJ kJ kJ Table B.8 ⇒ Hˆ a i r , 1 1o0 C = 2.486 ⇒ Q& 4 = = 1.38 ×107 d 1 kmol mol mol d b. Cost of fuel oil, natural gas, fuel oil and air preheating, pumping and compression, piping, utilities, operating personnel, instrumentation and control, environmental monitoring. Lowering environmental hazard might justify lack of profit. c. Put hot product gases from boiler and/or incinerator through heat exchangers to preheat both air streams. Make use of steam from dryer. d. Sulfur dioxide, possibly NO2 , fly ash in boiler stack gas, volatile toxic and odorous compounds in gas effluents from dryer and incinerator. 9- 92 http://librosysolucionarios.net CHAPTER TEN 10.1 b. Assume no combustion n 1 (mol gas),T1 (°C) x 1 (mol CH4 /mol) x 2 (mol C2 H6 /mol) 1 – x 1 –x 2 (mol C3 H8 /mol) n 3 (mol), 200°C y 1 (mol CH4 /mol) y 2 (mol C2 H6 /mol) y 3 (mol C3 H8 /mol) 1 – y 1 –y 2 –y 3 (mol air/mol) n 2 (mol air), T2 (°C) Q (kJ) 11 variables bn , n , n , x , x , y , y , y , T , T , Q g b4 material balances and 1 energy balanceg 1 −5 relations 6 degrees of freedom 2 3 1 2 1 2 3 1 l 2 A feasible set of design variables: n1 , n 2 , x1 , x2 , T1 , T2 q Calculate n 3 from total mole balance, y1 , y 2 , and y 3 from component balances, Q from energy balance. l An infeasible set: n1 , n 2 , n 3 , x1 , x 2 , T1 q Specifying n1 and n 2 determines n 3 (from a total mole balance) c. n 2 (mol gas), T 2 , P y 2 (mol C 6H 14/mol) 1 – y 2 (mol N 2/mol) n 1 (mol gas), T 1 , P y 1 (mol C 6H 14/mol) 1 – y 1 (mol N 2/mol) n 3 (mol C 6H 14( )/mol), l T2, P Q (kJ) b d g n1 , n 2 , n 3 , y1 , y 2 , T1 , T2 , Q, P 9 variables −4 relations 2 material, 1 energy, and 1 equilibrium: y 2 P = PC*6 H14 T2 5 degrees of freedom l A feasible set: n , y1 , T1 , P, n3 b gi q Calculate n 2 from total balance, y 2 from C 6 H 14 balance, T2 from Raoult’s law: b g [ y2 P = PC∗6H 4 T2 ], Q from energy balance l An infeasible set: n 2 , y 2 , n 3 , P, T2 q Once y 2 and P are specified, T2 is determined from Raoult’s law 10- 1 http://librosysolucionarios.net b g 10.2 10 variables n 1 , n 2 , n 3 , n4 , x1 , x 2 , x 3 , x 4 , T , P −2 material balances −2 equilibrium relations: [ x 3 P = x 4 PB* T , 1 − x 3 P = 1 − x 4 PC* T ] 6 degrees of freedom bgb g b l a. A straightforward set: n1 , n 3 , n4 , x1 , x 4 , T g bg q Calculate n 2 from total material balance, P from sum of Raoult's laws: bg b g bg P = x 4 p ∗B T + 1 − x 4 Pc∗ T x 3 from Raoult's law, x 2 from B balance l b. An iterative set: n1 , n 2 , n 3 , x1 , x 2 , x3 q Calculate n 4 from total mole balance, x 4 from B balance. Guess P, calculate T from Raoult's law for B, P from Raoult’s law for C, iterate until pressure checks. l q c. An impossible set: n1 , n 2 , n 3 , n4 , T , P Once n1 , n 2 , and n 3 are specified, a total mole balance determines n 4 . bg bg bg bg 10.3 2BaSO 4 s + 4C s → 2BaS s + 4CO2 g a. 100 kg ore, T 0 (K) xb (kg BaSO 4/kg) n 1 (kg C) n 2 (kg BaS) n 3 (kg CO 2) n 4 (kg other solids) T f (K) n 0 (kg coal), T 0 (K) xc (kg C/kg) P ex (% excess coal) Q (kJ) d i 11 variables n0 , n1 , n 2 , n 3 , n4 , x b , x c , T0 , Tf , Q, Pex −5 material balances C, BaS, CO 2 , BaSO 4 , other solids b g −1 energy balance +1 reaction −1 relation defining Pex in terms of n0 , x b , and x c 5 degrees of freedom n b. Design set: x b , x c , T0 , T f , Pe x s Calculate n 0 from x b , x c , and Pex ; n1 through n 4 from material balances, Q from energy balance 10- 2 http://librosysolucionarios.net 10.3 (cont’d) l q c. Design set: x B , xc , T0 , n 2 , Q Specifying x B determines n 2 ⇒ impossible design set. l q d. Design set: x B , xc , T0 , Pex , Q Calculate n 2 from x B , n 3 from x B n 0 from x B , x c and Pex n1 from C material balance, n 4 from total material balance T f from energy balance (trial-and-error probably required) 10.4 2C 2 H 5OH + O 2 → 2CH 3CHO + 2H 2 O 2CH 3COH + O 2 → 2CH 3CHOOH n f (mol solution), T 0 x ef (mol EtOH/mol) 1 – x ef (mol H 2O/mol) n e (mol EtOH), T n ah (mol CH 3CHO) n ea (mol CH 3COOH) n w (mol H 2O) n ax (mol O 2) n n (mol N 2) n w (mol air), Pxs , T 0 0.79 n air (mol N 2) 0.21 n air (mol O 2) (Pxs = % excess air) a. Q (kJ) d 13 variables n f , naw , ne , n eh , n ea , n w , nex , n 0 , x ef , T0 , T , Q, Pxs −6 material balances i −1 energy balance −1 relation between Pxs , n f , x ef , and nair +2 reactions 7 degrees of freedom n s b. Design set: n f , x ef , Pxs , n e , n ah , T0 , T Calculate n air from n f , x ef and Pxs ; n n from N 2 balance; n aa and n w from n f , x ef , ne , n ah and material balances; n ex from O atomic balance; Q from energy balance n c. Design set: n f , x ef , T0 , n air , Q, ne , n w s Calculate Pxs from n f , x ef and n air ; n’s from material balances; T from energy balance (generally nonlinear in T) l q d. Design set: n air , n n , K . Once n air is specified, an N 2 balance fixes n n 10- 3 http://librosysolucionarios.net 10.5 a. n 1 (mol CO) n 2 (mol H2 ) reactor n 3 (mol C3 H6 ) n 4 (mol C3 H6 ) n 5 (mol CO) n 6 (mol H2 ) n 7 (mol C7 H8 O) n 8 (mol C4 H7 OH) n 9 (kg catalyst) Flash tank n 10 (kg catalyst) n 11(mol C3 H6 ) n 16(mol C3 H6 ) n 12(mol CO) n 17(mol CO) n 13(mol H2 ) Separation n 18(mol H2 ) n 14(mol C7 H8 O) n 15(mol C4 H7 OH) n 19(mol C7 H8 O) n 20(mol C4 H7 OH) n 21(mol H2 ) Hydrogenator n 22(mol H2 ) n 20(mol C4 H7 OH) b g b g b g b g Reactor: 10 variables n1 − n 16 −6 material balances +2 reactions 6 degrees of freedom Flash Tank: 12 variables n 4 − n15 −6 material balances 6 degrees of freedom Separation: 10 variables n11 − n 20 −5 material balances 5 degrees of freedom Hydrogenator: 5 variables n19 − n 23 −3 material balances +1 reaction 3 degrees of freedom Process: 20 Local degrees of freedom −14 ties 6 overall degrees of freedom The last answer is what one gets by observing that 14 variables were counted two times each in summing the local degrees of freedom. However, one relation also was counted twice: the catalyst material balances on the reactor and flash tank are each n 9 = n10 . We must therefore add one degree of freedom to compensate for having subtracted the same relation twice, to finally obtain 7 overall degrees of freedom (A student who gets this one has done very well indeed!) b. The catalyst circulation rate is not included in any equations other than the catalyst balance (n 9 = n 10). It may therefore not be determined unless either n 9 or n 10 is specified. 10- 4 http://librosysolucionarios.net b 10.6 n − C 4 H10 → i − C 4 H 10 n − B = i − B n 1 (mol n-B) mixer n 2 (mol n-B) n 3 (mol i-B) g reactor n 4 (mol n-B) n 5 (mol i-B) still n 6 (mol) x 6 (mol n-B/mol) (1 – x )6 (mol i-B/mol) n r (mol) x r (mol n-B/mol) (1 – x )r (mol i-B/mol) a. Mixer: b 5 variables n1 , n2 , n3 , n r , x r −2 material balances 3 degrees of freedom b g g Reactor: 4 variables n 2 , n 3 , n 3 , n5 −2 material balances +1 reaction 3 degrees of freedom Still: 6 variables n 4 , n5 , n 6 , x 6 , n r , x r −2 material balances 4 degrees of freedom Process: 10 Local degrees of freedom − 6 ties 4 overall degrees of freedom b g b. n1 = 100 mol n − C4 H 10 , x 6 = 0.115 mol n − C 4 H 10 mol , x r = 0.85 mol n − C 4 H 10 mol b gb g b gb g b gb g 100 mol n - B fed − b100gb0.115g mol n - B unreacted Overall conversion = × 100% = 88.5% Overall C balance: 100 4 = n6 0.115 4 + 0.885 4 mol C ⇒ n 6 = 100 mol overhead 100 mol n - B fed Mixer n-B balance: 100 + 0.85nT = n 2 b1g b1g 35% S.P. conversion: n 4 = 0.65n 2 ⇒ n 4 = 65 + 0.5525n r Still n – B balance: b 2g b b2g gb g n 4 = n6 x6 + n r xr ⇒ 65 + 0.5525n r = 0.115 100 + 0.85n r ⇒ n r = 17983 . mol b mol recycle . g b100 mol fresh feed g = 179 mol fresh feed Recycle ratio = 179 .83 mol recycle 10- 5 http://librosysolucionarios.net 10.6 (cont’d) c. nr n 2 = 100 + 0.85n r n 3 = n r 1 − 0.85 n 4 = 0.65n 2 n 5 = n2 + n 3 − n4 b g UV ⇒ n + 0.85n W n n 4 + n5 = n 6 + n r n 4 = 0115 . n6 Error: d. r k =1 k =2 k=3 100.0 185.0 132.3 151.5 212.5 228.8 15.0 19.85 22.73 120.25 1381 . 148.7 79.75 94.21 102 .8 6 = r = 67.69 132.3 80.76 88.55 1515 . 163.0 179.83 − 163.0 × 100 = 9.3% error 17983 . w= 1515 . − 132.3 = 0.595 132.3 − 100.0 q= 0.595 = −1470 . 0.595 − 1 b g c b ghb g n rb g = −1.470 132.3 + 1 − −1.470 1515 . = 179.8 3 Error: 179.8 − 1798 . × 100 = < 0.1% error 179.8 e. Successive substitution, Iteration 32: n r = 179.8319 à n r = 179.8319 Wegstein, Iteration 3: n r = 179.8319 à n r = 179.8319 S1 10.7 SF Split S2 a. 1 2 3 4 5 6 7 8 A X1 = B C 0.6 Molar flow rates (mol/h) SF S1 nA 85.5 51.3 nB 52.5 31.5 nC 12.0 7.2 nD 0.0 0.0 T(deg.C) 315 315 D S2 34.2 21.0 4.8 0.0 315 Formula in C4: = $B$1*B4 Formula in D4: = B4-C4 10- 6 http://librosysolucionarios.net 10.7 (cont’d) b.C **CHAPTER 10 -- PROBLEM 7 DIMENSION SF(8), S1(8), S2(8) FLOW = 150. N=3 SF(1) = 0.35*FLOW SF(2) = 0.57*FLOW SF(3) = 0.08*FLOW SF(8) = 315. X1 = 0.60 CALL SPLIT (SF, S1, S2, X1, N) WRITE (6, 900)' STREAM 1', S1(1), S1(2), S1(3), S1(B) WRITE (6, 900)' STREAM 2', S2(1), S2(2), S2(3), S2(B) 900 FORMAT (A10, F8.2,' mols/h n-octane', /, *10X, F8.2,' mols/h iso-octane', /, * *10X, F8.2,' mols/h inerts', /, 10X, F8.2,' K') END C C C 100 SUBROUTINE SPLIT SUBROUTINE SPLIT (SF, S1, S2, X1, N) DIMENSION SF(8), S1(8), S2(8) D0 100 J = 1, N S1(J) = X1*SF(J) S2(J) = SF(J) – S1(J) S1(8) = SF (8) S2(8) = SF (8) RETURN END Program Output: Stream 1 3150 . mols h n-octane 51.30 mols h iso-octane 7.20 mols h inerts 315.00 K Stream 2 21.00 mols h n-octane 34.20 mols h iso-octane 4.80 mols h inerts 315.00 K 10- 7 http://librosysolucionarios.net 10.8 a. Let Bz = benzene, Tl = toluene Antoine equations: p*Bz = 106.90565−1211.033/( T +220.790) (=1350.491) pTl* = 106.95334−1343 .943/( T +219.377 ) (= 556.3212) Raoult's law: x Bz = ( P − p*Tl ) / ( p*Bz - p*Tl ) (= 0.307) , yBz = x Bz p *Bz / P ( = 0518 . ) Total mole balance: 100 = nv + nl Benzene balance: 40 = yBz nv + x Bz nl ⇒ nv = UV W 40 − 100x Bz (= 44.13) , nl = 100 − nv (= 55.87) y Bz − xBz Fractional benzene vaporization: f B = nv y Bz / 40 (= 0.571) Fractional toluene vaporization: f T = nv (1 − y Bz ) / 60 (= 0.354) The specific enthalpies are calculated by integrating heat capacities and (for vapors) adding the heat of vaporization. Q = ∑ n out H$ out − ∑ n in H$ in (= 1097.9) b. Once the spreadsheet has been prepared, the goalseek tool can be used to determine the bubble-point temperature (find the temperature for which n v=0) and the dew-point temperature (find the temperature for which n l =0). The solutions are Tbp = 96.9 o C, Tdp = 103.2 o C c. C **CHAPTER 10 PROBLEM B DIMENSION SF(3), SL(3), SV(3) DATA A1, B1, C1/6.90565, 1211.033, 220.790/ DATA A2, B2, C2/6.95334, 1343.943, 219.377/ DATA CP1, CP2, HV1, HV2/ 0.160, 0.190, 30.765, 33.47/ COMMON A1, B1, C1, A2, B2, C2, CP1, CP2, NV1, NV2 FLOW = 1.0 SF(1) = 0.30*FLOW SF(2) = 0.70*FLOW T = 363.0 P = 512.0 CALL FLASH2 (SF, SL, SV, T, P, Q) WRITE (6, 900) 'Liquid Stream', SL(1), SL(2), SL(3) WRITE (6, 900) 'Vapor Stream', SV(1), SV(2), SV(3) 900 FORMAT (A15, F7.4,' mol/s Benzene',/, * 15X, F7.4, mol/s Toluene',/, * 15X, F7.2, 'K') WRITE (6, 901) Q 10- 8 http://librosysolucionarios.net 10.8 (cont’d) 901 FORMAT ('Heat Required', F7.2,' kW') END C C C C C C SUBROUTINE FLASN2 (SF, SL, SV, T, P, Q) REAL NF, NL, NV DIMESION SF(3), SL(3), SV(3) COMMON A1, B1, C1, C2, CP1, CP2, NV1, NV2 Vapor Pressure PV1 = 10.**(A1 – B1/(T – 273.15 + C1)) PV2 = 10.**(A2 – B2/(T – 273.15 + C2)) Product fractions XL1 = (P – PV2)/(PV1 – PVS) XV1 = XL1*PM/P Feed Variables NF = SF(1) + SF(2) XF1 = SF(1)/NF Product flows NL = NF*(XF1 – XV1)/(XL1 – XV1) NV = NF – NL SL(1) = XL1*NL SL(2) = NL – SL(1) SY(1) = XY1*NY SY(2) = NV – SY(1) SL(3) = T SV(3) = T Energy Balance Q = CP1*SF(1)*SF(1) + CP2*SF(2) Q = Q*(T – SF(3)) + (NV1*XV1 + HV2*(1 – XV1))*NV RETURN END b1g XF b I g∗ NF = XLb I g∗ NL + XV b I g∗ NV I = 1,2Kn − 1 b2 g Energy Balance: Q = bT − TF g∗ ∑ CPb I g∗ c XLb I g∗ NL + XV b I g∗ NV h 10.9 a. Mass Balance: NF = NL + NV N I=1 bg N b g b3g + NV ∗ ∑ HV I ∗ XV 1 I =1 b g ∑ XLb I g N−1 where: XL N = 1 − I =1 N bg b g XV N = 1 − ∑ XV b I g N −1 I =1 b g b 4g Raoult’s law: P = ∑ XL I ∗ PV I I =1 10- 9 http://librosysolucionarios.net 10.9 (cont’d) bg b g b g I = 1,2,K N − 1 b5g where: PV b I g = 10∗∗ d Ab I g − Bb I g cCb I g + T hi I = 1,2,K N − 1 3 + 3b N − 1g + N + 4 variables b NF , NL , NV , XF ( I ), XL( I ), XV ( I ), PV ( I ), TF , T , P , Qg XV I ∗ P = XL I ∗ PV I − N mass balance −1 energy balances − N equilibrium relations − N Antoine equations N + 3 degrees of freedom m b gr Design Set TF , T , P, NF , XF I Eliminate NL form (2) using (1) Eliminate XV(I) form (2) using (5) Solve (2) for XL(I) XL I = XF I ∗ NF NF + NV ∗ PV I bg bg c b g P − 1hi b6g d Sum (6) over I to Eliminate XL(I) b g N b g d NF + NV ∗c PV b I g P − 1hi = 0 b7g f NV = −1 + NF ∗ ∑ XF I I =1 Use Newton's Method to solve (7) for NV Calulate NL from (1) XL(I) from (2) XV(I) from (5) Q from (3) b. C **CHAPTER 10 - - PROBLEM 9 DIMENSION SF(8), SL(8), SV(8) DIMENSION A(7), B(7), C(7), CP(7), HV(7) COMMON A, B, C, CP, NV DATA A/6.85221, 6.87776, 6.402040, 0., 0., 0., 0./ DATA B/1064.63, 1171.530, 1268.115, 0., 0., 0., 0./ DATA C/232.00, 224.366, 216.900, 0., 0., 0., 0./ DATA CP/0.188, 0.216, 0.213, 0., 0., 0., 0./ DATA NV/25.77, 28.85, 31.69, 0., 0., 0., 0./ FLOW = 1.0 N*3 SF(1) = 0.348*FLOW SF(2) = 0.300*FLOW SF(3) = 0.352*FLOW SF(4) = 363 SL(4) = 338 SV(4) = 338 P*611 CALL FLASHN (SF, SL, SV, N, P, Q) WRITE (6, 900)' Liquid Stream', (SL(I), I = 1, N + 1) WRITE (6, 900)' Vapor Stream', (SV(I), I = 1, N + 1) 10- 10 http://librosysolucionarios.net 10.9 (cont’d) 900 901 C C 100 200 C 300 C 500 400 900 C FORMAT (A15, F7.4,' mols/s n-pentane', /, *15X, F7.4,' mols/s n-hexane', /, * *15X, F7.4,' mols/s n-hephane', /, 15X, F7.2,' K') WRITE (6, 901) Q FORMAT ('Heat Required', F7.2, 'kW') END SUBROUTINE FLASHIN (SF, SL, SV, N, P, Q) REAL NF, NL, NV, NVP DIMENSION SF(8), SL(8), SV(8) DIMENSION XF(7), XL(7), XV(7), PV(7) DIMENSION A(7), B(7), C(7), CP(7), HV(7) COMMON A, B, C, CP, HV TOL = 1,5 – 6 Feed Variables NF = 0. DO 100 I = 1, N NF = NF + SF(I) DO 200 I = 1, N XF(I) = SF(I)/NF TF = SF (N + 1) T = SL (N + 1) TC = T – 273.15 Vapor Pressures DO 300 I = 1, N PV(I) = 10.**(A(I) – B(I)/(TC + C(I))) Find NV -- Initial Guess = NF/2 NVP = NF/2 DO 400 ITER = 1, 10 NV = NVP F = –1. FP = 0. DO 500 I = 1, N PPM1 = PV(I)/P – 1. F = F + NF*XF(I)/(NF + NV*PPM1) FP = FP – PPM1*XF(I)/(NF + NV*PPM1)**2. NVP = NV – F/FP IF (ABS((NVP – NV)/NVP).LT.TOL) GOTO 600 CONTINUE WRITE (6, 900) FORMAT ('FLASHN did not converge on NV') STOP Other Variables 10- 11 http://librosysolucionarios.net 10.9 (cont’d) 600 700 800 NL = NF – NVP DO 700 I = 1, N XL(I) = XF(I)*NF/(NF + NV**(PV(I)/P – 1)) SL(I) = XL(I)*NL XV(I) = XL(I)*PV(I)/P SV(I) = SF(I) – SL(I) Q1 = 0. Q2 = 0. DO 800 I = 1, N Q1 = Q1 + CP(I)*SF(I) Q2 = Q2 + HV(I)*XV(I) Q = Q1*(T – TF) + Q2*NVP RETURN END Program Output: Liquid Stream 0.0563 mols 0.1000 mols 0.2011 mols 338.00 K Vapor Stream 0.2944 mols 0.2000 mols 0.1509 mols 338.00 K Heat Required 13.01 kW s n-pentane s n-hexane s n-heptane s n-pentane s n-hexane s n-heptane 10.10 a. Q& (kW) n&v (mol / s) x v ( mol A(v) / mol) 1 − x v ( mol B(g) / mol) T (K), P (mm Hg) n& F (mol / s) x F (mol A(v) / mol) 1 − x F (mol B(g) / mol) TF (K), P(mm Hg) n& l (mol A(l) / s) 10- 12 http://librosysolucionarios.net 10.10 (cont’d) 10 variables ( n& F , x F , TF , P , n& v , x v , T , n&l , p *,A , Q& ) –2 material balances –1 Antoine equation –1 Raoult’s law –1 energy balance 5degrees of freedom b. References: A(l), B(g) at 25oC Substance n& in H$ in A(l) — — A(v) n& F x F B(g) n& F (1 − x F ) H$ 1 H$ 2 n& out n& l n& v x v n& v (1 − x v ) H$ out H$ 3 H$ 4 H$ 5 Given n& F and x F (or n& AF and n& BF ), TF , P, y c (fractional condensation), Fractional condensation ⇒ n& l = y c n& F x F Mole balance ⇒ n& v = n& F − n&l A balance ⇒ x v = (n& F x F − n& l ) / n& v Raoult's law ⇒ p *A = x v P B −C A − log 10 p *A Enthalpies: H$ 1 = ∆H$ v + C pv ( TF − 25), H$ 2 = C pg (TF − 25), H$ 3 = C pl (T − 25), Antoine' s equation ⇒ T = H$ 4 = ∆H$ v + C pv ( T − 25), H$ 5 = C pg (T − 25) Energy balance: Q = ∑ n& out H$ out − ∑ n& in H$ in c. nAF 0.704 nV 0.3664 Cpv 0.050 nBF 0.296 xV 0.1921 Cpg 0.030 nF 1.00 A 7.87863 H1 37.02 xF 0.704 B 1473.11 H2 1.05 TF 333 C 230 H3 0.2183 P 760 pA* 146.0 H4 35.41 yc 0.90 T 300.8 H5 0.0839 nL 0.6336 Cpl 0.078 Q –23.7 Greater fractional methanol condensation (yc) ⇒ lower temperature (T). (yc = 0.10 ⇒ T = 328oC.) 10- 13 http://librosysolucionarios.net 10.10 (cont’d) e. C **CHAPTER 10 -- PROBLEM 10 DIMENSION SF(3), SV(3), SL(2) COMMON A, B, C, CPL, HV, CPV, CPG DATA A, B, C / 7.87863, 1473.11, 230.0/ DATA CPL, HV, CPV, CPG,/ 0.078, 35.27, 0.050, 0.029/ FLOW = 1.0 SF(1) = 0.704*FLOW SF(2) = FLOW – SF(1) YC = 0.90 P = 1. SF(3) = 333. CALL CNDNS (SF, SV, SL, P, YC, Q) WRITE (6, 900) SV(3) WRITE (6, 401) 'Vapor Stream', SV(1), SV(2) WRITE (6, 401) 'Liquid Stream', SL(1) WRITE (6, 902)Q 900 FORMAT ('Condenser Temperature', F7.2,' K') 901 FORMAT (A15, F7.3,' 'mols/s Methyl Alcohol', /, *15X, F7.3, 'mols/s air') 902 FORMAT ('Heat Removal Rate', F7.2,' kW') END C SUBROUTINE CNDNS (SF, SV, SL, P, YC, Q) REAL NF, NL, NV DIMENSION SF(3), SV(3), SL(2) COMMON A, B, C, CPL, HV, CPV, CPG C Inlet Stream Variables NF = SF(1) + SF(2) TF = SF(3) XF = SF(1)/NF C Solve Equations NL = YC * XF * NF NV = NF - NL XV = (XF*NF - NL)/NV PV = P * XV * 760. T = B/(A - LOG(N)/LOG (10.)) - C T = T + 273.15 Q = ((CPV * XV + CPG * (1 - XY)) * NV + CPL * NL) * (T - TF) - NL * HV C Output Variables SL(1) = NL S2(2) = T SV(1) = XV*NV SV(2) = NV - SV(1) SV(3) = T RETURN END 10- 14 http://librosysolucionarios.net 10.11 η1 A1 + η 2 A2 + η 3 A3 +K η m Am = 0 a. Extent of reaction equations: b g b g SPb I g = SF b I g + NU b I g∗ ξ I = 1,2,K N ξ = −[ SF IX ∗ X ] NU IX Energy Balance: Reference states are molecular species at 298K. b g TP = SPb N + 1g = ∑ HF b I g∗ NU b I g TF = SF N + 1 ∆H$ r N I =1 b g bg bg bg bg Q = ξ ∗ ∆H$ r + TP − 298 ∗ ∑ SP I ∗ CP I − (TF − 298)∗ ∑ SF I ∗ CP I N I =1 N I =1 b. C 3 H 8 + 5O 2 → 3CO 2 + 4H 2 O Subscripts: 1 = C3H8, 2 = O2, 3 = N2, 4 = CO2, 5 = H2O 270 m 3 mol ⋅ K 1 atm 273K 0.08206 liter ⋅ atm h b 3.348 mol C3 H 8 1.2 5 mol O 2 sec mol C3H 8 1000 liter m 3 g = 20.09 mol O h 3600 s 2 = 3.348 mol C 3 H 8 s [=SF(1)] s [= SF(2)] ⇒ 7554 . mol N 2 s [= SF(3)] X C3 H8 = 0.90 ⇒ n& C3 H8 = 010 . (3.348) = 0.3348 mol C 3 H 8 / s in product gas [= SP(1)] b g b g ξ = −[ SF IX ∗ X ] NU IX Nu nin (SF) X Xi nout (SP) Cp Tin Hin Tout Hout HF DHr Q = –(3.348 mol/s)(0.90)/(–1) = 3.013 mol/s 1-C3H8 -1 3.348 2-O2 -5 20.09 3-N2 0 75.54 4-CO2 5-H2O(v) 3 4 0.3348 0.1431 5.024 0.033 75.54 0.0308 9.0396 0.0495 12.0528 0.0375 17.9 4.1 3.9 6.2 4.7 107.6 -103.8 24.8 0 23.2 0 37.2 -393.5 28.2 -241.83 0.90 3.01 423 1050 -2044 -4006 For the given conditions, Q = −4006 kJ / s . As Tstack increases, more heat goes into the stack gas so less is transferred out of the reactor: that is, Q becomes less negative. 10- 15 http://librosysolucionarios.net 10.11 (cont’d) C **CHAPTER 10 PROBLEM 11 DIMENSION SF(8), SP(8), CP(7), HF(7) REAL NU(7) DATA NU/–1., –5, 0., 3., 4., 0., 0./ DATA CP/0.1431, 0.0330, 0.0308, 0.0495, 0.0375, 0., 0./ DATA HF/–103.8, 0., 0., –393.5, –241.83, 0., 0./ COMMON CP, HF SF(1) = 3.348 SF(2) = 20.09 SF(3) = 75.54 SF(4) = 0. SF(5) = 0. SF(6) = 423. SP(6) = 1050. IX = 1 X = 0.90 N=5 CALL REACTS (SF, SP, NU, N, X, IX, Q) WRITE (6, 900) (SP(I), I = 1, N + 1), Q 900 FORMAT ('Product Stream', F7.3, ' mols/s propane', /, *15X, F7.3,' mols/s oxygen', /, * *15X, F7.3,' mols/s nitrogen', /, *15X, F7.3,' mols/s carbon dioxide', /, *15X, F7.3,' mols/s water', /, *15X, F7.2,'K', /, Heat required', F8.2, 'kW') END C SUBROUTINE REACTS (SF, SP, NU, N, X, IX, Q) DIMENSION SF(8), SP(8), CP(7), HF(7) REAL NU(7) COMMON CP, HF C Extent of Reaction EXT = –SF(IX)*X/NU(IX) C Solve Material Balances DO 100 I = 1, N 100 SP(I) = SF(I) + EXT = NU(I) C Heat of Reaction HR = 0 DO 200 I = 1, N 200 HR = HR + NF(I)*NU(I) C Product Enthalpy (ref * inlet) HP = 0. DO 300 I = 1, N 10- 16 http://librosysolucionarios.net 10.11 (cont’d) 300 10.12 HP = HP + SP(I)*CP(I) HP = HP + (SP(N + 1) – SF (N + 1)) Q = EXT * HR + HP RETURN END a. Extent of reaction equations: ξ = − SF IX ∗ X NU IX b g b g SPb I g = SF b I g + NU b I g∗ ξ I = 1, N Energy Balance: Reference states are molecular species at feed stream temperature. N bg bg N bg Q = ∆H = ξ∆H$ r + ∑ n out H$ out = 0 ⇒ 0 = ξ ∑ NU I HF I + ∑ SP I i =1 I =1 T bg CP I dT Tfeed CP(I) = ACP(I) + BCP(I)*T + CCP(I)*T 2 + DCP(I)*T 3 bg bg N bg f T = ξ ∗ ∑ NU I * HF I + AP∗ (T − Tfeed ) + I =1 + N BP 2 ∗ (T 2 − Tfeed ) 2 CP DP 3 4 ∗ ( T 3 − Tfeed )+ ∗ (T 4 − Tfeed ) =0 3 4 bg bg where: AP = ∑ SP I ∗ ACP I , and similarly for BP, CP, & DP I =1 Use goalseek to solve f (T ) = 0 for T [= SP(N+1)] b. 2CO + O 2 → 2CO 2 Temporary basis: 2 mol CO fed b 2 mol CO 1.25 1 mol O2 2 mol CO g = 1.25 mol O 2 ⇒ 4.70 mol N 2 ⇒ Total moles fed = (2.00 + 1.25 + 4.70) mol = 7.95 mol Scale to given basis: (23.0 kmol 1 h 10 3 mol SF (1) = 1.607 mol CO fed s )( )( ) h 3600 s 1 kmol = 0.8036 ⇒ SF (2 ) = 1.004 mol O fed s 2 7.95 mol SF ( 3) = 3.777 mol N 2 fed s 10- 17 http://librosysolucionarios.net 10.12 (cont’d) Solution to Problem 10.12 Nu nin (SF) X Xi nout (SP) ACP BCP CCP DCP AP BP CP DP Tfeed DHF DHr T f(T) 1-CO -2 1.607 2-O2 -1 1.004 3-N2 0 3.777 4-CO2 2 0 0.45 0.36 0.88385 0.02895 4.11E-06 3.55E-09 -2.22E-12 0.642425 3.777 0.72315 0.0291 0.029 0.03611 1.16E-05 2.20E-06 4.23E-05 -6.08E-09 5.72E-09 -2.89E-08 1.31E-12 -2.87E-12 7.46E-12 0.1799 5.00E-05 -2.90E-11 -6.57E-12 650 -110.52 0 0 -393.5 -566 1560 -4.7E-08 The adiabatic reaction temperature is 1560 o C . As X increases, T increases. (The reaction is exothermic, so more reaction means more heat released.) d. C **CHAPTER 10 -- PROBLEM 12 DIMENSION SF(8), SP(B), NU(7), ACP(7), BCP(7), CCP(7), DCP(7), HF(7) COMMON ACP, BCP, CCP, DCP, NF DATA NU / –2., –1., 0., 2., 0., 0., 0./ DATA ACP/ 28.95E-3, 29.10E-3, 29.00E-3, 36.11E-3, 0., 0., 0./ DATA BCP/ 0.4110E-5, 1.158E-5, 0.2199E-5, 4.233E-6, 0., 0., 0./ DATA CCP/ 0.3548E-B, –0.6076E-8, 0.5723E-8, –2.887E-8, 0., 0., 0./ DATA DCP/ –2.220 E-12, 1.311E-12, –2.871E-12, 7.464E-12, 0., 0., 0./ DATA HF / –110.52, 0., 0., –393.5, 0., 0., 0./ SF(1) = 1.607 SF(2) = 1.004 SF(3) = 3.777 SF(4) = 0. SF(5) = 650. IX = 1 X = 0.45 N=4 CALL REACTAD (SF, SP, NU, N, X, IX) WRITE (6, 900) (SP(I), I = 1, N + 1) 10- 18 http://librosysolucionarios.net 10.12 (cont’d) 900 C C C 100 C 200 C 300 C 400 900 FORMAT ('Product Stream', F7.3, ' mols/s carbon monoxide', /, *15X, F7.3, 'mols/s oxygen', /. * *15X, F7.3, 'mols/s nitrogen', /. *15X, F7.3, 'mols/s carbon dioxide', /, 15X, F7.2, 'C') END SUBROUTINE REACTAD (SF, SP, NU, N, X, IX) DIMENSION SF(8), SP(8), NU(7), ACP(7), BCP(7), CCP(7), DCP(7), HF(7) COMMON ACP, BCP, CCP, DCP, NF TOL = 1.E-6 Extent of Reaction EXT = –SF(IX)*X/NU(IX) Solve Material Balances DO 100 I = 1, N SP(I) = SF(I) + EXT*NU(I) Heat of Reaction HR = 0 DO 200 I = 1, N HR = HR + HF(I) * NU(I) HR = HR * EXT Product Heat Capacity AP = 0. BP = 0. CP = 0. DP = 0. DO 300 I = 1, N AP = AP + SP(I)*ACP(I) BP = BP + BP(I)*BCP(I) CP = CP + SP(I)*CCP(I) DP = DP + SP(I)*DCP(I) Find T TIN = SF (N + 1) TP = TIN D0 400 ITER = 1, 10 T = TP F = HR FP = 0. F = F +T*(AP + T*(BP/2. + T*(CP/3. + T*DP/4.))) *–TIN*(AP + TIN*(BP/2. + TIN*(CP/3. + TIN*DP/4.))) FP = FP + AP + T *(BP + T*(CP + T*DP)) TP = T – F/FP IF(ABS((TP – T)/T).LT.TOL) GOTO 500 CONTINUE WRITE (6, 900) FORMAT ('REACTED did not converge') STOP 10- 19 http://librosysolucionarios.net 10.12 (cont’d) 500 SP(N + 1) = T RETURN END Program Output: 0.884 mol/s carbon monoxide 0.642 mol/s oxygen 3.777 mol/s nitrogen 0.723 mol/s carbon dioxide T = 1560.43 C 10- 20 http://librosysolucionarios.net 10.13 37.5 mol C2H4O a. Separator 50 mol C2H4 50 mol O2 208.3333 mol C2H4 50 mol O2 Reactor 166.6667 18.75 37.5 8.333333 8.333333 mol C2H4 mol O2 mol C2H4O mol CO2 mol H2O 8.333333 18.75 8.333333 8.333333 mol C2H4 mol O2 mol CO2 mol H2O Xsp = 0.2 Ysp = 0.9 158.3333 mol C2H4 (Ra) 158.3333 mol C2H4 (Rc) Rc-Ra = 0 Procedure: Assume Ra, perform balances on mixing point, then reactor, then separator. Rc is recalculated recycle rate. Use goalseek to find the value of Ra that drives (Rc-Ra) to zero. b. Xsp 0.2 0.2 0.3 0.3 Ysp 0.72 1 0.75333 1 Yo 0.6 0.833 0.674 0.896 no 158.33 158.33 99.25 99.25 The second reaction consumes six times more oxygen per mole of ethylene consumed. The lower the single pass ethylene oxide yield, the more oxygen is consumed in the second reaction. At a certain yield for a specified ethylene conversion, all the oxygen in the feed is consumed. A yield lower than this value would be physically impossible. 21 http://librosysolucionarios.net 10.14C C C 100 110 200 C 300 400 500 900 **CHAPTER 10 -- PROBLEM 14 DIMENSION XA(3), XC(3) N=2 EPS = 0.001 KMAX = 20 IPR = 1 XA(1) = 2.0 XA(2) = 2.0 CALL CONVG (XA, XC, N, KMAX, EPS, IPR) END SUBROUTINE FUNCGEN(N, XA, XC) DIMENSION XA(3), XC(3) XC(1) = 0.5*(3. – XA(2) + (XA(1) + XA(2))**0.5 XC(2) = 4. – 5./(XA(1) + XA(2)) RETURN END SUBROUTINE CONVG (XA, XC, N, KMAX, EPS, IPR) DIMENSION XA(3), XC(3), XAH(3), XCM(3) K=1 CALL FUNCGEN (N, XA, XC) IF (IPR.EQ.1) CALL IPRNT (K, XA, XC, N) DO 100 I = 1, N XAM(I) = XA(I) XA(I) = XC(I) XCM(I) = XC(I) K = K +1 CALL FUNCGEN (N, XA, XC) IF (IPR.EQ.1) CALL IPRNT (K, XA, XC, N) D0 200 I = 1, N IF (ABS ((XA(I) - XC(I))/XC(I)).GE.EPS) GOTO 300 CONTINUE Convergence RETURN IF(K.EQ.KMAX) GOTO 500 DO 400 I = 1, N W = (XC(I) – XCM(I))/(XA(I) – XAM(I)) Q = W/(W – 1.) IF (Q.GT.0.5) Q = 0.5 IF (Q.LT.–5) Q = –5. XCM(I) = XC(I) XAM(I) = XA(I) XA(I) = Q = XAM(I) + (1. – Q)*XCM(I) GOTO 110 WRITE (6, 900) FORMAT (' CONVG did not converge') STOP END 10- 22 http://librosysolucionarios.net Elementary Principles of Chemical Processes 23 10.14 (cont’d) C SUBROUTINE IPRNT (K, XA, XC, N) DIMENSION XA(3), XC(3) IF (K.EQ.1) WRITE (6, 400) IF (K.NE.1) WRITE (6, *) DO 100 I = 1, N 100 WRITE (6, 901) K, I, XA(I), XC(I) RETURN 900 FORMAT (' K Var Assumed Calculated') 901 FORMAT (I4, I4, 2E15.6) END Program Output: K Var Assumed Calculated 1 1 0.200000E + 01 0.150000E + 01 1 2 0.200000E + 01 0.275000E + 01 2 1 0.150000E + 01 0.115578E + 01 2 2 0.275000E + 01 0.282353E + 01 3 1 0.395135E + 00 0.482384E + 00 3 2 0.283152E + 01 0.245041E + 01 8 1 0.113575E + 01 0.113289E + 01 8 2 0.269023E + 01 0.269315E + 01 4 1 0.113199E + 01 0.113180E + 01 9 2 0.269186E + 01 0.269241E + 01 M 10- 23 http://librosysolucionarios.net CHAPTER ELEVEN 11.1 a. The peroxide mass fraction in the effluent liquid equals that in the tank contents, which is: xp = Mp M Therefore, the leakage rate of hydrogen peroxide is m& 1 M p / M b. Balance on mass: Accumulation = input – output E dM & 0 − m& 1 =m dt t = 0, M = M 0 (mass in tank when leakage begins) Balance on H 2O 2: Accumulation = input – output – consumption E dM p dt = m& 0 x p 0 − m& 1 FG M IJ − kM H MK p p t = 0, M p = M p0 11.2 a. Balance on H3 PO4 : Accumulation = input Density of H3 PO4 : ρ = 1834 . g / ml . Molecular weight of H3 PO4 : M = 9800 . g / mol . Accumulation = Input = (kmol / min) dt 20.0 L 1000 ml 1.834 g min E dn p dt dn p L ml mol 1 kmol 98.00 g 1000 mol = 0.3743 kmol / min = 0.3743 t = 0, n p0 = 150 × 0.05 = 7.5 kmol np b. t dn p = 03743 . dt ⇒ n p = 75 . + 0.3743t (kmol H3PO 4 in tank ) 7 .5 xp = c. 0 np 015 . = n = np n0 + n p − n p0 = 7.5 + 0.3743t 150 + 0.3743t kmol H 3PO 4 kmol 7.5 + 03743 . t ⇒ t = 471 . min 150 + 03743 . t 11-1 http://librosysolucionarios.net 11.3 a. b g b g b g bg & w = 750 & t = 5, m & w = 1000 ⇒ m & w kg h = 750 + 50 t h m& w = a + bt t = 0, m Balance on methanol: Accumulation = Input – Output M = kg CH3OH in tank b g dM = m& f − m& w = 1200 kg h − 750 + 50t kg h dt E b dM = 450 − 50t kg h dt t = 0, M = 750 kg M b. dM = 750 E t g b450 − 50t gdt 0 M − 750 = 450t − 25t 2 E M = 750 + 450 t − 25t 2 Check the solution in two ways: (1) t = 0, M = 750 kg ⇒ satisfies the initial condition; (2) c. dM = 450 − 50t dt ⇒ reproduces the mass balance. dM = 0 ⇒ t = 450 50 = 9 h ⇒ M = 750 + 450( 9) − 25( 9)2 = 2775 kg (maximum) dt M = 0 = 750 + 450t − 25t 2 t= d. −450 ± b450g + 4b25gb750g ⇒ t = –1.54 h, 19.54 h 2b −25g 2 3.40 m 3 103 liter 0.792 kg 1 m3 1 liter = 2693 kg (capacity of tank) M = 2693 = 750 + 450t − 25t 2 t= −450 ± b450g + 4b25gb750 − 2693g ⇒ t = 719 . h ,1081 . h 2b −25g 2 Expressions for M(t) are: R|750 + 450t - 25t b0 ≤ t ≤ 719 . and 1081 . ≤ t ≤ 1954 . g (tank is filling or draining) M(t) = S2693 ( 719 . ≤ t ≤ 10.81) (tank is overflowing) ||T0 (19.54 ≤ t ≤ 2054 . ) (tank is empty, draining 2 as fast as methanol is fed to it) 11-2 http://librosysolucionarios.net 11.3 (cont’d) 3000 2500 M(kg) 2000 1500 1000 500 0 0 5 10 15 20 t(h) 11.4 a. Air initially in tank: N 0 = 10.0 ft 3 492° R 1 lb - mole = 0.0258 lb - mole 532° R 359 ft 3 STP b g Air in tank after 15 s: Pf V P0V = N f RT N0 RT ⇒ N f = N0 Rate of addition: n& = b. Pf P0 = 0.0258 lb - mole 114.7 psia 14.7 psia = 0.2013 lb - mole . − 0.0258g lb - mole air b02013 = 0.0117 lb - mole air s 15 s Balance on air in tank: Accumulation = input b g dN = 0.0117 lb - moles s ; t = 0 , N = 0.0258 lb - mole dt N c. Integrate balance: t b dN = n& dt ⇒ N = 0.0258 + 0.0117t lb - mole air 0 .0258 0 Check the solution in two ways: (1) t = 0, N = 0.0258 lb - mole ⇒ satisfies the initial condition dN ( 2) = 0.0117 lb - moleair / s ⇒ reproduces the mass balance dt d. b gb g t = 120 s ⇒ N = 0.0258 + 0.0117 120 = 143 . lb - moles air b g O 2 in tank = 0.21 143 . = 030 . lb - mole O 2 11-3 http://librosysolucionarios.net g 11.5 a. Since the temperature and pressure of the gas are constant, a volume balance on the gas is equivalent to a mole balance (conversion factors cancel). Accumulation = input − output ⇒ dV 540 m = dt h 3 ( 1h − ν& m 3 min 60 min w ) t = 0, V = 3.00 × 10 3 m 3 ( t = 0 corresponds to 8:00 AM ) V t ∫ ( ) ∫ 3.00×10 3 b. t dV = (9.00 −ν&w ) dt ⇒ V m 3 = 3.00 × 10 3 + 9.00t − ν&w dt t in minutes ∫ 0 0 b g Let ν& w i = tabulated value of ν& w at t = 10 i − 1 240 ν& w dt ≅ 0 LM MN OP PQ i = 1, 2, K , 25 b g b g 24 24 10 10 ν& w1 + ν& w 25 + 4 ∑ ν& w i + 2 ∑ ν& w i = 114 . + 98 . + 4 1246 . + 2 113.4 3 3 i =2 , 4 , K i = 3, 5, K = 2488 m 3 b g V = 300 . × 103 + 9.00 240 − 2488 = 2672 m 3 c. Measure the height of the float roof (proportional to volume). The feed rate decreased, or the withdrawal rate increased between data points, or the storage tank has a leak, or Simpson’s rule introduced an error. d. REAL VW(25), T, V, V0, H INTEGER I DATA V0, H/3.0E3, 10./ READ (5, *) (VW(I), I = 1, 25) V= V0 T=0. WRITE (6, 1) WRITE (6, 2) T, V DO 10 I = 2, 25 T = H * (I – 1) V = V + 9.00 * H – 0.5 * H * (VW(I – 1) + VW(I)) WRITE (6, 2) T, V 10 CONTINUE 1 FORMAT ('TIME (MIN) VOLUME (CUBIC METERS)') 2 FORMAT (F8.2, 7X, F6.0) END $DATA 11.4 11.9 12.1 11.8 11.5 11.3 M Results: TIME (MIN) 0.00 10.00 20.00 M VOLUME (CUBIC M ETERS) 3000. 2974. 2944. M 230.00 240.00 2683. 2674. Vtrapezoid = 2674 m 3 ; VSimpson = 2672 m 3 ; 2674 − 2672 × 100% = 0.07% 2672 Simpson’s rule is more accurate. 11-4 http://librosysolucionarios.net a. b. b g bg ν& out L min = kV L ⇒ ν& out = 0.200V ν& out = 20.0 L min ⇒ Vs = 100 L V = 300 ν& out = 60 Balance on water: Accumulation = input – output (L/min). (Balance volume directly since density is constant) dV = 20.0 − 0200 . V dt t = 0, V = 300 c. dV = 0 = 200 − 0200 . Vs ⇒ Vs = 100 L dt The plot of V vs. t begins at (t=0, V=300). When t=0, the slope (dV/dt) is 200 . − 0.200(300) = −40.0. As t increases, V decreases. ⇒ dV / dt = 20.0 − 0.200V becomes less negative, approaches zero as t → ∞ . The curve is therefore concave up. V 11.6 t V d. t dV = dt 20.0 − 0.200V 0 300 ⇒− FG H IJ K 1 20.0 − 0.200V ln =t 0.200 − 40.0 b g b ⇒ −0.5 + 0.005V = exp − 0.200t ⇒ V = 100.0 + 200.0 exp −0.200t b g b g V = 101 . 100 = 101 L 1% from steady state ⇒ b g 101 = 100 + 200 exp − 0.200t ⇒ t = b ln 1 200 −0.200 g = 26.5 min 11-5 http://librosysolucionarios.net g 11.7 a. A plot of D (log scale) vs. t (rectangular scale) yields a straight line through the points ( t = 1 week, D = 2385 kg week ) and ( t = 6 weeks, D = 755 kg week ). ln D = bt + ln a ⇔ D = ae bt b= b g ln D2 D1 ln 755 2385 = = − 0230 . t 2 − t1 6−1 b g b gb g ln a = ln D1 − bt1 = ln 2385 + 0.230 1 = 8.007 ⇒ a = e 8. 007 = 3000 E D = 3000e −0.230 t b. Inventory balance: Accumulation = –output b dI = −3000 e −0.230t kg week dt t = 0, I = 18,000 kg I t dI = −3000e −0.230 t dt ⇒ I − 18,000 = 18, 000 11.8 g 0 c. t = ∞ ⇒ I = 4957 kg a. Total moles in room: N = 1100 m3 Molar throughput rate: n& = 3000 −0.230t e 0.230 273 K t 0 ⇒ I = 4957 + 13,043e −0.230 t 103 mol b g = 45,440 mol 295 K 22.4 m 3 STP 700 m 3 min 273 K 103 mol b g = 28,920 mol min 295 K 22.4 m3 STP SO 2 balance ( t = 0 is the instant after the SO 2 is released into the room): b gb g N mol x mol SO 2 mol = mol SO2 in room Accumulation = –output. b g d dx & Nx = − nx ⇒ = −0.6364x N =45, 440 dt dt n& = 28 ,920 t = 0, x = b. 15 . mol SO 2 = 330 . × 10−5 mol SO2 mol 45, 440 mol The plot of x vs. t begins at (t=0, x=3.30×10-5 ). When t=0, the slope (dx/dt) is − 06364 . × 330 . × 10 −5 = − 210 . × 10 −5. As t increases, x decreases.⇒ dx dt = −0.6364x becomes less negative, approaches zero as t → ∞ . The curve is therefore concave up. 11-6 http://librosysolucionarios.net x 11.8 (cont’d) 0 t c. Separate variables and integrate the balance equation: x t 3.30 ×10 −5 dx x = − 06364 . dt ⇒ ln = − 06364 . t ⇒ x = 330 . × 10−5 e −0. 6364t −5 x 0 330 . × 10 Check the solution in two ways: (1) t = 0, x = 3.30 × 10-5 mol SO2 / mol ⇒ satisfies the initial condition; dx (2) = −0.6364 × 330 . × 10−5 e− 0.6364 t = −0.6364x ⇒ reproduces the mass balance. dt d. e. CS O2 = 45,440 moles 1100 m 3 i) t = 2 min ⇒ CSO2 ii) x = 10 −6 ⇒ t = x mol SO2 1 m 3 = 4131 . × 10−2 x = 13632 . × 10−6 e −0.6364t mol SO2 / L mol 103 L mol SO2 = 382 . × 10−7 liter e ln 10 −6 3.30 × 10−5 −0.6364 j = 55. min The room air composition may not be uniform, so the actual concentration of the SO2 in parts of the room may still be higher than the safe level. Also, “safe” is on the average; someone would be particularly sensitive to SO2 . 11-7 http://librosysolucionarios.net 11.9 a. Balance on CO: Accumulation=-output N ( mol) x ( mol CO / mol) = total moles of CO in the laboratory Pν& p kmol Molar flow rate of entering and leaving gas: n& ( )= h RT & P ν kmol kmol CO p Rate at which CO leaves: n& ( )x = x h kmol RT CO balance: Accumulation = -output Pν& p d( Nx ) dx P =− x⇒ =− ν& p x dt RT dt NRT FG H FG H E PV = NRT IJ K IJ K ν& p dx =− x dt V kmol CO kmol t = 0, x = 0.01 ν& p r dx V =− dt ⇒ tr = − ln 100 x x V 0 ν& p 0 .01 x b. c. t b g V = 350 m 3 350 tr = − ln 100 × 35 × 10 −6 = 283 . hrs 700 e d. j The room air composition may not be uniform, so the actual concentration of CO in parts of the room may still be higher than the safe level. Also, “safe” is on the average; someone could be particularly sensitive to CO. Precautionary steps: Purge the laboratory longer than the calculated purge time. Use a CO detector to measure the real concentration of CO in the laboratory and make sure it is lower than the safe level everywhere in the laboratory. 11.10 a. Total mass balance: Accumulation = input – output b g dM & kg min = 0 ⇒∴ M is a constant = 200 kg = m& − m dt b. Sodium nitrate balance: Accumulation = - output x = mass fraction of NaNO3 b g = −xm& bkg ming dt E d xM & dx m m& =− x=− x dt M 200 t = 0, x = 90 200 = 0.45 11-8 http://librosysolucionarios.net 11.10 (cont’d) c. 0.45 m& = 50 kg / min m& = 100 kg / min x m& = 200 kg / min 0 t(min) & dx m =− x < 0 , x decreases when t increases dt 200 dx becomes less negative until x reaches 0; dt Each curve is concave up and approaches x = 0 as t → ∞; dx & increases ⇒ m becomes more negative ⇒ x decreases faster. dt FG H t dx m& & x m& mt =− dt ⇒ ln =− t ⇒ x = 0.45 exp − 0 . 45 200 200 x M 0 .45 0 x d. IJ K Check the solution: (1) t = 0, x = 0.45 ⇒ satisfies the initial condition; & dx m& mt m& (2) = −0.45 × exp(− )= − x ⇒ satisfies the mass balance. dt 200 200 200 0.45 0.4 & = 50 kg / min m 0.35 m& = 100 kg / min 0.3 & = 200 kg / min m x 0.25 0.2 0.15 0.1 0.05 0 0 5 10 15 20 25 t(min) e. d i m& = 100 kg min ⇒ t = − 2 ln x f 0.45 90% ⇒ x f = 0.045 ⇒ t = 4.6 min 99% ⇒ x f = 0.0045 ⇒ t = 9.2 min 99.9% ⇒ x f = 0.00045 ⇒ t = 138 . min 11-9 http://librosysolucionarios.net 11.11 a. e je Mass of tracer in tank: V m 3 C kg m 3 j Tracer balance: Accumulation = –output. If perfectly mixed, C out = C tank = C b g = −ν& C bkg ming dC ν& =− C dt V m t = 0, C = 0 V V is constant d VC dt b. z C m0 V c. dC =− C z FG H IJ K FG IJ H K m ν& C ν& t ν& t dt ⇒ ln = − ⇒ C = 0 exp − 0V m0 V V V V t Plot C (log scale) vs t (rect. scale) on semilog paper: Data lie on straight line (verifying assumption e j e j of perfect mixing) through t = 1, C = 0223 . × 10 −3 & t = 2, C = 0.050 × 10 −3 . − b E V = e30 m 11.12 a. g ν& ln 0.050 0.223 = = −1.495 min −1 V 2 −1 3 min j e1.495 min j = 201. m −1 3 In tent at any time, P=14.7 psia, V=40.0 ft 3 , T=68°F=528°R 14.7 psia PV ⇒N= = m(liquid) = ft 3 ⋅ psia RT 10.73 lb - mole ⋅ o R b. 40.0 ft 3 528 o R = 01038 . lb - mole Molar throughout rate: n& in = n& out = n& = 60 ft 3 min 492° R 16.0 psia 528° R 14.7 psia Moles of O2 in tank= N(lb - mole) × 1 lb - mole = 01695 . lb - mole min 359 ft 3 STP FG lb - mole O IJ H lb - mole K b g 2 Balance on O2 : Accumulation = input – output b g = 0.35n& − xn& ⇒ 0.1038 dx = 0.1695b0.35 − xg ⇒ dxdt = 1.63b0.35 − xg d Nx dt c. z dt z t = 0, x = 0.21 b g t 0.35 − x dx = 163 . dt ⇒ − ln = 163 . t 0. 21 0.35 − x 0 0.35 − 021 . x b g 035 . −x = e −1.63t ⇒ x = 0.35 − 014 . e −1.63t 014 . 1 0.35 − 0.27 x = 0.27 ⇒ t = − ln = 0.343 min ( or 20.6 s) 1.63 0.35 − 0.21 ⇒ LM FG N H IJ OP KQ 11-10 http://librosysolucionarios.net 11.13 a. b gb Mass of is otope at any time = V liters C mg isotope liter g Balance on isotope: Accumulation = –consumption FG IJ b g H K b g dC = − kC dt t = 0, C = C0 Cancel V d mg VC = − kC V L dt L⋅ s Separate variables and integrate z z C C0 dC = C FG C IJ = −kt ⇒ t = − lnbC C g k HC K − lnb 0.5g ln 2 = ⇒t = t − kdt ⇒ ln 0 0 C = 0.5C0 ⇒ t1 2 b. 12 k t 1 2 = 2.6 hr ⇒ k = C = 0.01C0 0 k ln 2 = 0267 . hr − 1 2.6 hr t=-ln(C/C0)/k t= b g = 17.2 hr − ln 0.01 0.267 11.14 A → products a. Mole balance on A: Accumulation = –consumption b g = −kC V d C AV A dt bV constant; cancelsg t = 0, C A = C A0 ⇒ b. z CA dC A = CA0 C A z t 0 − kdt ⇒ ln FG C IJ = −kt ⇒ C HC K A A b g = C A0 exp − kt A0 Plot C A (log scale) vs. t (rect. scale) on semilog paper. The data fall on a straight line (verifies b g b g assumption of first-order) through t = 213 . , C A = 00262 . & t = 120.0, C A = 0.0185 . ln C A = − kt + ln C A0 −k = b ln 0.0185 00262 . 120.0 − 213 . g = −353 . × 10 −3 min −1 ⇒ k = 35 . × 10 −3 min −1 11.15 2 A → 2 B + C a. Mole balance on A: Accumulation = –consumption b g = −kC V d C AV 2 A dt bV constant; cancelsg t = 0, C A = C A0 ⇒ z CA dC A CA0 C 2A = z t 0 − kdt ⇒ − LM N 1 1 1 + = − kt ⇒ C A = + kt C A C A0 C A0 11-11 http://librosysolucionarios.net OP Q −1 11.15 (cont’d) b. C A = 0.5C A0 ⇒ − n A = 0.5n A0 b = b0.5n 1 1 1 n P RT + = − kt1 2 ⇒ t1 2 = ; but C A0 = A0 = 0 ⇒ t1 2 = 0.5C A0 C A0 kC A0 V RT kP0 gb g mol A react.gb1 mol C 2 mol A react.g = 0.25n n B = 0.5n A0 mol A react. 2 mol B 2 mol A react. = 05 . n A0 nC A0 total moles = 125 . n A0 ⇒ P1 2 = 125 . c. A0 n A0 RT = 125 . P0 V Plot t1 2 vs. 1 P0 on rectangular paper. Data fall on straight line (verifying 2nd order d i d decomposition) through t1 2 = 1060, 1 P0 = 1 0135 . & t1 2 = 209 , 1 P0 = 1 0.683 RT 1060 − 209 = = 1432 . s ⋅ atm k 1 0135 . − 1 0683 . Slope: ⇒k = d. t1 2 = . L ⋅ atm mol ⋅ Kg b1015 Kgb008206 = 0582 . L mol ⋅ s 143.2 s ⋅ atm F GH FG IJ H K I JK t1 2 P0 RT E 1 E 1 exp ⇒ ln = ln + k 0 P0 RT RT k0 R T Plot t1 2 P0 RT (log scale) vs. 1 T (rect. scale) on semilog paper. bg bg t1 2 s , P0 = 1 atm, R = 0.08206 L ⋅ atm / (mol ⋅ K) , T K d i Data fall on straight line through t1 2 P0 RT = 74.0, 1 T = 1 900 & dt i RT = 0.6383, 1 T = 1 1050 1 2 P0 b g R=8.314 J/ (mol ·K) E ln 0.6383 74.0 = = 29,940 K R 1 1050 − 1 900 ln e. b E = 2.49 × 105 J mol g 1 29,940 12 = ln 06383 . − = − 28.96 ⇒ k 0 = 3.79 × 10 L (mol ⋅ s) k0 1050 FG H T = 980 K ⇒ k = k 0 exp − C A0 = b IJ K E = 0.204 L (mol ⋅ s) RT 070 . 120 . atm g . × 10 b0.08206 L ⋅ atm mol ⋅ Kgb980 Kg = 1045 −2 mol L 90% conversion LM N OP Q LM N 1 1 1 1 1 1 − = − − 3 k C A C A0 0.204 1.045 × 10 1.045 × 10 −2 = 4222 s = 70.4 min C A = 0.10C A0 ⇒ t = 11-12 http://librosysolucionarios.net OP Q i 11.16 A → B a. Mole balance on A: Accumulation = –consumption(V constant) dC A kC =− 1 A dt 1+ k2C A t = 0, C A = C A0 z b. CA 1 + k 2C A C A0 k1 C A dC A = b z t − dt ⇒ 0 g b g b g C k k C 1 1 ln A + 2 C A − C A0 = −t ⇒ t = 2 C A0 − C A − ln A k 1 C A 0 k1 k1 k1 C A 0 b Plot t C A − C A0 vs. ln C A / C A0 g bC A0 g − C A on rectangular paper: x 44 y 64 47 8 647 48 ln C C t 1 k A A0 =− + 2 k1 C A 0 − C A k1 C A0 − C A b g ; b g slope 1 FG H intercept y1 IJ FG K H x1 y2 x2 IJ K Data fall on straight line through 116.28, − 02111 . & 130.01, −0.2496 − 1 13001 . − 116.28 = = − 356.62 ⇒ k1 = 2.80 × 10 −3 L (mol ⋅ s) k 1 −0.2496 − −0.2111 b g b g k2 = 130.01 + 356.62 − 02496 . = 4100 . ⇒ k 2 = 0115 . L mol k1 11.17 CO + Cl 2 ⇒ COCl 2 a. 3.00 L 273 K 1 mol b g = 0.12035 mol gas . molg 3.00 L = 0.02407 mol L CO U bC g = 0.60b012035 |Vinitial concentrations . molg 3.00 L = 0.01605 mol L Cl | dC i = 0.40b012035 W C bt g = 0.02407 − C bt g U |V Since 1 mol COCl formed requires 1 mol of each reactant C b t g = 0.01605 − C bt g | W 303.8 K 22.4 L STP CO i Cl 2 i 2 CO p Cl 2 p 2 b. Mole balance on Phosgene: Accumulation = generation d i= d VC p dt c. d1 + 586. C Cl 2 dC p V=3.00 L 875 . CCO C Cl 2 + 34.3C p i dt 2 = d id 2.92 0.02407 − C p 0.01605 − C p . − 24.3C i d1941 p t = 0, C p = 0 b g Cl 2 limiting; 75% conversion ⇒ C p = 075 . 0.01605 = 0.01204 mol L t= 1 2.92 z . − 24.3C i d1941 dC d0.02407 − C id0.01605 − C i 2 0 .01204 0 p p p p 11-13 http://librosysolucionarios.net 2 i 11.17 (cont’d) d. 11.18 a. REAL F(51), SUM1, SUM2, SIMP INTEGER I, J, NPD(3), N, NM1, NM2 DATA NPD/5, 21, 51/ FN(C) = (1.441 – 24.3 * C) ** 2/(0.02407 – C)/(0.01605 – C) DO 10 I = 1, 3 N = NPD(I) NM1 = N – 1 NM2 = N – 2 DO 20 J = 1, N C = 0.01204 * FLOAT(J – 1)/FLOAT(NM1) F(J) = FN(C) 20 CONTINUE SUM1 = 0. DO 30 J = 2, NM1, 2 SUM = SUM1 + F(S) 30 CONTINUE SUM2 = 0. DO 40 J = 3, NM2, 2 SUM2 = SUM2 + F(J) 40 CONTINUE SIMP = 0.01204/FLOAT(NM1)/3.0 * (F(1) + F(N) + 4.0 * SUM1 + 2.0 * SUM2) T = SIMP/2.92 WRITE (6, 1) N, T 10 CONTINUE 1 FORMAT (I4, 'POINTS —', 2X, F7.1, 'MINUTES') END RESULTS 5 POINTS — 91.0 MINUTES 21 POINTS — 90.4 MINUTES 51 POINTS — 90.4 MINUTES t = 904 . minutes e j e Moles of CO2 in liquid phase at any time = V cm 3 C A mols cm 3 j Balance on CO 2 in liquid phase: Accumulation = input b g e d VC A = kS C *A − C A dt FjG mols IJ ⇒ dCdt = kSV eC H s K t = 0, C = 0 A * A −CA j ÷V A Separate variables and integrate. Since p A = y A P is constant, C *A = p A H is also a constant. z dC A CA 0 C *A ⇒ ln −CA = C *A − C A C *A 1− C A C *A z t 0 e kS dt ⇒ − ln C *A − C A V =− j CA C A =0 = kS t V kS expb g C A t ⇒ 1 − * = e − kSt V ⇒ C A = C *A 1 − e − kSt V V CA e 11-14 http://librosysolucionarios.net j 11.18 (cont’d) b. LM MN V C ln 1 − A* kS CA t=− OP PQ V = 5 L = 5000 cm 3 , k = 0.020 cm s , S = 785 . cm 2 , C A = 0.62 × 10 − 3 mol / cm 3 a fa f d9230 atm⋅ cm moli = 0.65 × 10 mol cm e5000 cm j lnF1 − 0.62 × 10 I = 9800 s ⇒ 2.7 hr t=− G J . cm sge785 . cm j H 0.65 × 10 K b002 C *A = y A P H = 0.30 20 atm −3 3 3 3 −3 −3 2 (We assume, in the absence of more information, that the gas-liquid interfacial surface area equals the cross sectional area of the tank. If the liquid is well agitated, S may in fact be much greater than this value, leading to a significantly lower t than that to be calculated) 11.19 A → B a. Total Mass Balance: Accumulation = input dM d ( ρV ) = = ρv& dt dt E dV = v& dt t = 0, V = 0 A Balance: Accumulation = input – consumption dN A = C A0v& − ( kC A )V C =N /V A A dt dN A = C Ao v& − kN A dt t = 0, N A = 0 b. c. Steady State: z z z V t 0 0 dV = NA 0 ⇒− dN A C v& = 0 ⇒ N A = A0 dt k & ⇒ V = vt & vdt dN A = C A0 v& − kN A z t dt 0 FG H IJ K C v& = 1 − exp b − kt g k C v& − kN A C v& − kN A 1 ln A0 = t ⇒ A0 = e − kt k C A0 v& C A0 v& ⇒ NA CA = A0 t → ∞⇒ NA = C A0 v& k N A C A0[1 − exp( − kt )] = V kt 11-15 http://librosysolucionarios.net 11.19 (cont’d) When the feed rate of A equals the rate at which A reacts, NA reaches a steady value. NA would never reach the steady value in a real reactor. The reasons are: & ⇒ t → ∞, V → ∞. (1) In our calculation, V = vt But in a real reactor, the volume is limited by the reactor volume; (2) The steady value can only be reached at t → ∞. In a real reactor, the reaction time is finite. d. lim C A = lim t →∞ t →∞ C A0 [1 − exp(− kt )] C = lim A0 = 0 t →∞ kt kt From part c, t → ∞ , N A → a finite number, V → ∞ ⇒ C A = 11.20 a. MCv NA →0 V dT & & = Q −W dt M = (3.00 L) (100 . kg / L) = 300 . kg Cv = C p = ( 0.0754 kJ / mol ⋅ o C)(1 mol / 0.018 kg) = 4.184 kJ / kg ⋅ o C W& = 0 dT = 0.0797Q& (kJ / s) dt t = 0, T = 18 o C z z 100o C b. dT = o 18 C c. 11.21 a. 240 s 0 0.0797 Q& dt ⇒ Q& = 100 − 18 kJ = 4.287 = 4.29 kW 240 × 0.0797 s Stove output is much greater. Only a small fraction of energy goes to heat the water. Some energy heats the kettle. Some energy is lost to the surroundings (air). Energy balance: MCv dT & & = Q −W dt M = 20.0 kg C v ≈ C p = ( 0.0754 kJ / mol ⋅ o C)(1 mol / 0.0180 kg) = 4.184 kJ / (kg ⋅o C) Q& = 0.97 (2.50) = 2.425 kJ s a f W& = 0 b g dT = 0.0290 ° C s , t = 0 , T = 25° C dt The other 3% of the energy is used to heat the vessel or is lost to the surroundings. z z T b. t dT = o 25 C c. bg 00290 . dt ⇒ T = 25° C + 0.0290t s 0 b g T = 100° C ⇒ t = 100 − 25 0.0290 = 2585 s ⇒ 43.1 min No, since the vessel is closed, the pressure will be greater than 1 atm (the pressure at the normal boiling point). 11-16 http://librosysolucionarios.net 11.22 a. Energy balance on the bar MCv b dTb & & = Q − W = −UA Tb − Tw dt g B Table B.1 e 3 M = 60 cm je7.7 g cm j = 462 g 3 Cv = 0.46 kJ (kg ⋅° C), Tw = 25° C 2 U = 0.050 J (min ⋅ cm ⋅° C) a fa f a fa f a fa f A = 2 2 3 + 2 10 + 3 10 cm2 = 112 cm 2 b gb dTb = −0.02635 Tb − 25 ° C min dt g t = 0, Tb = 95° C d i dTb = 0 = −0.02635 Tbf − 25 ⇒ Tbf = 25° C dt b. 95 85 75 Tb(o C) 65 55 45 35 25 15 5 0 t Tb c. t dTb = −0.02635dt T − 25 0 95 b FG T − 25 IJ = −002635 H 95 − 25K . t ⇒ T b tg = 25 + 70 exp b −0.02635t g ⇒ ln b b Check the solution in three ways: (1) t = 0, Tb = 25 + 70 = 95o C ⇒ satisfies the initial condition; dTb (2) = −70 × 0.02635e −0. 02635 t = − 002635 . ( Tb − 25) ⇒ reproduces the mass balance; dt (3) t → ∞ , Tb = 25o C ⇒ confirms the steady state condition. Tb = 30° C ⇒ t = 100 min 11-17 http://librosysolucionarios.net 11.23 12.0 kg/min 25o C 12.0 kg/min T (o C) Q (kJ/min) = UA (Tsteam-T) a. Energy Balance: MCv b g b dT & p 25 − T + UA Tsteam − T = mC dt g M = 760 kg m& = 12 .0 kg min dT / dt = 150 . − 0.0224T ( o C min), t = 0, T = 25o C Cv ≈ Cp = 2.30 kJ (min ⋅° C) UA = 11.5 kJ (min ⋅° C) a f Tsteam sat'd; 7.5bars = 167.8° C b. Steady State: dT = 0 = 150 . − 0.0224 Ts ⇒ Ts = 67° C dt T(o C) 67 25 0 t Tf c. FG H IJ K dT 1 150 . − 0.0224T 150 . − 094 . exp( −0.0224t ) = dt ⇒ t = − ln ⇒T = 150 . − 00224 . T 0 00224 . 0.94 0.0224 25 t t = 40 min. ⇒ T = 498 . °C d. U changed. Let x = (UA) new . The differential equation becomes: dT = 0.3947 + 0.096x − ( 0.01579 + 5.721x ) T dt z 55 25 dT = 0.3947 + 0.096x − ( 0.01579 + 5721 . × 10−4 x )T ⇒ − z 40 dt 0 L 0.3947 + 0.096 x − e 0.01579 + 5721 . × 10 x j × 55 O PP = 40 lnM x M 0.3947 + 0.096x − e0.01579 + 5721 . × 10 x × 25 j MN PQ −4 1 0.01579 + 5.721 × 10−4 −4 ⇒ x = 14.27 kJ / (min⋅o C) ∆U ∆(UA) 1427 . − 115 . = = × 100% = 241% . U initial (UA) initial 115 . 11-18 http://librosysolucionarios.net 11.24 a. Energy balance: MCv dT & & = Q −W dt W& = 0, Cv = 1.77 J g ⋅° C M = 350 g, Q& = 40.2W = 40.2 J s b gU|V ⇒ T = 20 + 0.0649tbsg |W T = 40° C ⇒ t = 308 s ⇒ 51. min dT = 0.0649 ° C s dt t = 0, T = 20° C b. The benzene temperature will continue to rise until it reaches Tb = 801 . ° C ; thereafter the heat input will serve to vaporize benzene isothermally. 801 . − 20 Time to reach Tb neglect evaporation : t = = 926 s 0.0649 Time remaining: 40 minutes 60 s min − 926 s = 1474 s b g b b gb g gb g Evaporation: ∆H$ v = 30.765 kJ mol 1 mol 78.11 g 1000 J kJ = 393 J g b gb b g Evaporation rate = 40.2 J s / 393 J g = 0102 . g s gb g Benzene remaining = 350 g − 0102 . g s 1474 s = 200 g c. 11.25 a. 1. Used a dirty flask. Chemicals remaining in the flask could react with benzene. Use a clean flask. 2. Put an open flask on the burner. Benzene vaporizes⇒ toxicity, fire hazard. Use a covered container or work under a hood. 3. Left the burner unattended. 4. Looked down into the flask with the boiling chemicals. Damage eyes. Wear goggles. 5. Rubbed his eyes with his hand. Wash with water. 6. Picked up flask with bare hands. Use lab gloves. 7. Put hot flask on partner’s homework. Fire hazard. Moles of air in room: n = 60 m3 273 K 1 kg - mole = 2.58 kg - moles 283 K 22.4 m 3 STP dT & & Energy balance on room air: nCv = Q −W dt Q& = m& ∆H$ H O, 3bars, sat'd − 30.0 T − T W& = 0 nCv s b g v b g 2 b dT = m& s∆ H$ v − 30.0 T − T0 dt 0 g g N = 2.58 kg - moles Cv = 20.8 kJ (kg- mole⋅° C) ∆H$ = 2163 kJ kg from Table B.6 b v b g T0 = 0° C b dT = 40.3m& s − 0.559T ° C hr dt g t = 0, T = 10° C (Note: a real process of this type would involve air escaping from the room and a constant pressure being maintained. We simplify the analysis by assuming n is constant.) 11-19 http://librosysolucionarios.net 11.25 (cont’d) b. 0559 . T 40.3 & s − 0.559T = 0 ⇒ m& s = At steady-state, dT dt = 0 ⇒ 40.3m T = 24° C ⇒ m& s = 0.333 kg hr c. Separate variables and integrate the balance equation: dT = 40.3m& s − 0.559T Tf 10 t 0 dT 23 dt 10 13.4 − 0.559T m& s = 0.333 E T f = 23 ° C t =− 11.26 a. =t LM MN b b g OP = 4.8 hr g PQ 13.4 − 0559 . 23 1 ln 0559 . 134 . − 0.559 10 bt = 0 to t = 20 ming 250 kg 4.00 kJ b 60 − 20g° C Q = ∆U = MC ∆T = = 400 . × 10 Integral energy balance v 4 kJ kg⋅° C 4.00 × 104 kJ 1 min 1 kW Required power input: Q& = = 333 . kW 20 min 60 s 1 kJ s b. Differential energy balance: MCv dT = Q& dt bg dT = 0.001Q& t dt M = 250 kg Cv = 4 .00 kJ kg ⋅° C T Integrate: t t 0 0 t = 0, T = 20° C & dT = 0001 . Q& dT ⇒ T = 20o C + Qdt 20 o C Evaluate the integral by Simpson's Rule (Appendix A.3) b 600 s 0 b g & = 30 33 + 4 33 + 35 + 39 + 44 + 50 + 58 + 66 + 75 + 85 + 95 Qdt 3 g + 2 34 + 37 + 41 + 47 + 54 + 62 + 70 + 80 + 90 + 100 = 34830 kJ b g jb e g ⇒ T 600 s = 20o C + 0.001 oC / kJ 34830 kJ = 54.8° C c. b g 10 kW Past 600 s, Q& = 100 + t − 600 s = t 6 60 s LM & = 20 + 0001 & + T = 20 + 0.001 Qdt . MM Qdt MM 123 N F t − 600 I ⇒ t bsg = 0001 . ⇒ T = 548 . + 6 GH 6 2 JK z z z t 0 t 0 600 34830 2 2 OP t P dt 6 P PP Q 600 b 12000 T − 248 . g T = 85° C ⇒ t = 850 s = 14 min, 10 s ⇒ explosion at 10:14 + 10 s 11-20 http://librosysolucionarios.net 11.27 a. Total Mass Balance: Accumulation=Input– Output E ρ=constant dM tot d( ρV) &o ⇒ = m& i − m = 800 . ρ − 4.00ρ dt dt dV = 4.00 L / s dt t = 0, V0 = 400 L KCl Balance: dM KCl d( CV ) & o, KCl ⇒ = m& i , KCl − m = 100 . × 8.00 − 400 . C dt dt dC 8 − 8C dV dt = 4 = dC dV dt V ⇒V +C = 8 − 4C dt dt t = 0, C 0 = 0 g / L Accumulation=Input-Output⇒ b. (i)The plot of V vs. t begins at (t=0, V=400). The slope (=dV/dt) is 4 (a positive constant). V increases linearly with increasing t until V reaches 2000. Then the tank begins to overflow and V stays constant at 2000. V 2000 400 0 t (ii) The plot of C vs. t begins at (t=0, C=0). When t=0, the slope (=dC/dt) is (8-0)/400=0.02. As t increases, C increases and V increases (or stays constant)⇒ dC/dt=(8-8C)/V becomes less positive, approaches zero as t→ ∞. The curve is therefore concave down. C 1 0 t c. dV = 4⇒ dt V t dV = 4 dt ⇒ V = 400 + 4t 400 0 11-21 http://librosysolucionarios.net 11.27 (cont’d) dC 8 − 8C dC 1− C = = V = 400 + 4 t dt V dt 50 + 05 .t C dC t dt C t = ⇒ − ln(1 − C) 0 = 2 ln( 50 + 0.5t ) 0 0 1− C 0 50 + 0.5t 50 + 0.5t ⇒ ln(1 - C)-1 = 2 ln = ln(1 + 0.01t )2 50 1 1 ⇒ = (1+ 0.01t ) 2 ⇒ C = 1 − 1- C (1+ 0.01t ) 2 When the tank overflows, V = 400 + 4t = 2000 ⇒ t = 400 s 1 C = 1= 0.96 g / L 2 1+ 0.01 × 400 b g 11.28 a. Salt Balance on the 1st tank: Accumulation=-Output E d(C S1V1 ) dC v& = − CS1v& ⇒ S1 = − CS1 = −0.08CS1 dt dt V1 CS1( 0) = 1500 500 = 3 g / L Salt Balance on the 2nd tank: Accumulation=Input-Output E d(C S2V2 ) dCS2 v& = CS1v& − CS 2v& ⇒ = ( CS1 − CS 2 ) = 0.08( CS1 − CS 2 ) dt dt V2 CS 2 ( 0 ) = 0 g / L Salt Balance on the 3rd tank: Accumulation=Input-Output E d(C S3V3 ) dC v& = CS 2v& − CS 3v& ⇒ S3 = ( CS 2 − CS 3 ) = 0.04( CS 2 − CS 3 ) dt dt V3 CS 3 ( 0 ) = 0 g / L b. C S1, C S2, C S3 3 CS1 CS2 CS3 0 t 11-22 http://librosysolucionarios.net 11.28 (cont’d) The plot of CS1 vs. t begins at (t=0, CS1 =3). When t=0, the slope (=dCS1 /dt) is −0.08 × 3 = −0.24 . As t increases, CS1 decreases ⇒ dCS1 /dt=-0.08CS1 becomes less negative, approaches zero as t→ ∞. The curve is therefore concave up. The plot of CS2 vs. t begins at (t=0, CS2 =0). When t=0, the slope (=dCS2 /dt) is 0.08( 3 − 0) = 0.24 . As t increases, CS2 increases, CS1 decreases (CS2 < CS1 )⇒ d CS2 /dt =0.08(CS1 -CS2 ) becomes less positive until dCS2 /dt changes to negative (CS2 > CS1 ). Then CS2 decreases with increasing t as well as CS1 . Finally dCS2 /dt approaches zero as t→∞. Therefore, CS2 increases until it reaches a maximum value, then it decreases. The plot of CS3 vs. t begins at (t=0, CS3 =0). When t=0, the slope (=dCS3 /dt) is 0.04 (0 − 0) = 0 . As t increases, CS2 increases (CS3 < CS2 )⇒ d CS3 /dt =0.04(CS2 -CS3 ) becomes positive ⇒ CS2 increases with increasing t until dCS3 /dt changes to negative (CS3 > CS1 ). Finally dCS3 /dt approaches zero as t→∞. Therefore, CS3 increases until it reaches a maximum value then it decreases. c. 3 CS1 , CS2 , CS3 (g/L) 2.5 2 CS1 1.5 CS2 1 CS3 0.5 0 0 20 40 60 80 100 120 140 160 t (s) 11.29 a. (i) Rate of generation of B in the 1st reaction: rB1 = 2 r1 = 0.2 CA (ii) Rate of consumption of B in the 2nd reaction: −rB2 = r2 = 0.2CB2 b. Mole Balance on A: Accumulation=-Consumption E d( C AV ) dC = −01 . C AV ⇒ A = −01 . CA dt dt t = 0, C A0 = 100 . mol / L Mole Balance on B: Accumulation= Generation-Consumption E d ( CB V ) dC = 0.2CAV − 0.2CB2V ⇒ B = 0.2CA − 0.2CB2 dt dt t = 0, CB0 = 0 mol / L 11-23 http://librosysolucionarios.net 11.29 (cont’d) c. 2 C A, CB, CC CC 1 CB CA 0 t The plot of CA vs. t begins at (t=0, CA =1). When t=0, the slope (=dCA /dt) is −01 . × 1 = −01 . . As t increases, CA decreases ⇒ dCA /dt=-0.1CA becomes less negative, approaches zero as t→∞. CA →0 as t→∞. The curve is therefore concave up. The plot of CB vs. t begins at (t=0, CB =0). When t=0, the slope (=dCB/dt) is 0.2 (1 − 0) = 0.2 . As t increases, CB increases, CA decreases ( C 2B < CA )⇒ d CB/dt =0.2(CA - C 2B ) becomes less positive until dCB/dt changes to negative ( C 2B > CA ). Then CB decreases with increasing t as well as CA . Finally dCB/dt approaches zero as t→∞. Therefore, CB increases first until it reaches a maximum value, then it decreases. CB→0 as t→∞. The plot of CC vs. t begins at (t=0, CC =0). When t=0, the slope (=dCC/dt) is 0.2 ( 0) = 0 . As t increases, CB increases ⇒ dCc/dt =0.2 C 2B becomes positive also increases with increasing t ⇒ CC increases faster until CB decreases with increasing t ⇒ dCc/dt =0.2 C 2B becomes less positive, approaches zero as t→∞ so CC increases more slowly. Finally CC→2 as t→∞. The curve is therefore S-shaped. CA, CB , CC (mol/L) d. 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 CC CB CA 0 10 20 30 40 50 t (s) 11-24 http://librosysolucionarios.net 11.30 a. When x =1, y =1 . y= ax x =1, y=1 a ⇒ 1= ⇒ a =1+ b x +b 1+ b pC5 H12 = yP = xp *C5 H12 ( 46o C) ⇒ y = b. Raoult’s Law: p *C5 H12 ( 46 o C ) = 10 Antoine Equation: ⇒ y= xp *C5 H12 ( 46o C ) P = (6 .85221− 1064 .63 ) 46 + 232. 00 xp *C5 H12 ( 46o C ) P = 1053 mm Hg 0.7 × 1053 = 0.970 760 0.70a R| y = ax x=0.70, y=0.970 0970 . . = LL (1) |Ra = 1078 ⇒S 0.70 + b S| x + b TFrom part (a), a = 1+ bLLLLLLLLLLL(2) |Tb = 0.078 c. Mole Balance on Residual Liquid: Accumulation=-Output E dN L = − n&V dt t = 0, N L = 100 mol Balance on Pentane: Accumu lation=-Output E d( N L x ) dN L dx ax = − n&V y ⇒ x + NL = − n&V dt dt dt x+b dN L / dt = − n&V E FG H dx n& ax =− V −x dt NL x + b IJ K t = 0, x = 0.70 d. Energy Balance: Consumption=Input E ) n&V ∆H vap = Q& ) ∆H vap =27.0 kJ/mol t = 0, N L = 100 mol From part (c), dN L = − n& V dt n&V Q& 27.0 = & NL Qt 100 27.0 n&V = b Q& 270 . kJ / mol N L = 100 − n&V t = 100 − Substitute this expression into the equation for dx/dt from part (c): 11-25 http://librosysolucionarios.net g & Qt 27.0 11.30 (cont’d) FG H IJ K FG H IJ K & 270 dx n& ax Q . ax =− V −x = − −x & dt NL x + b Qt x+b 100 27.0 x(0) = 0.70 e. 1 0.9 0.8 y (Q=1.5 kJ/s) 0.7 x, y 0.6 x (Q=1.5 kJ/s) 0.5 0.4 x (Q=3 kJ/s) y (Q=3 kJ/s) 0.3 0.2 0.1 0 0 200 400 600 800 1000 1200 1400 1600 1800 t(s) f. The mole fractions of pentane in the vapor product and residual liquid continuously decrease over a run. The initial and final mole fraction of pentane in the vapor are 0.970 and 0, respectively. The higher the heating rate, the faster x and y decrease. 11-26 http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net CHAPTER THIRTEEN Problem 13.1 Methanol Production Rate 430,000 metric tons/year 51,114 kg/h 1,597 kmol/h Process stoichiometry: CH4 + H20 ---> CH30H + H2 So that the required feed rates (with given assumptions) are CH4 Feed Rate = Steam Feed Rate = Problem 1,597 kmol/h 1,597 kmol/h cubic meters/min 13.2 1 P = r.h. = (pH20/p*H20 p*H20 = 0.0424 pH20 = 0.02968 yH20 0.029292 Basis: 1 mole of component moles N2 0.79 0.21 02 0.030176 Water Total 1.03 component N2 02 Total Basis: atm @ 30C) x 100% = bar bar 70% dry air (79 mole% N2, 21 mole% 02) Mw mass mole frac 28 22.12 32 6.72 0.0293 18 0.54 29.38 1.0000 moles Mw 0.79 0.21 1.00 mass 22.12 6.72 . 28.84 Difference in avg molecular weight is due to presence of water; the difference is slight. 1 km01 of CH4 burned flow rate of air/km01 Problem 596 standard 28,75lkg/h 28 32 nat gas burned 13.3 Composition of effluent gas from burners mole frac mass frac Component km01 kg 3.2 0.0103 02 0.100 0.0088 N2 7.900 0.6990 221.2 0.7139 44.0 0.1420 co2 1.000 0.0885 0.1337 H20 2.302 0.2037 41.4 1.0000 309.8 1.0000 total 11.302 p*H20 @ 150C = 4.74 bar < pH20 Therefore, there is no condensation in cooling the exhaust gases to 15OC, which means the effluent gas and stack gas have the same composition. Volumetric flow rate effluent gas stack gas density of air = density of stack gas = specific gravity = 1,143 m3/kmol CH4 burned 392 m3/kmol CH4 burned 1.1471 kg/m3 0.7899 kg/m3 1 0.6886 relative to ambient air 13-1 http://librosysolucionarios.net I Problem 13.4 Reformer Temperature Reformer Temperature Reformer Pressure Equilibrium Temperature 855 1128 15.8 1128 C K atm K 1.6 Mpa CH4 + Hz0 ---> CO + 3Hz Production rates CH4 H20 CO CO2 H2 feed rate CH4 x (1 - fractional conversion) feed rate H20 - fractional conversion x feed rate CH4 fractional conversion x feed rate CH4 feed rate CO2 feed rate + 3 x feed rate CH4 x fractional conversion (a) methane:steam of 3:l Stoichiometric Feed I (kmol/h)( 1600 4800 0 0 0 6400 Table: CH4 H20 co co2 H2 Total (kmol/h) 170 3,370 1,430 0 4,291 9,261 574.3668 KP~ Ratio1 574.366846 fractional conversion of CH4* = = Product MolFrac (kg/h) 0.0183 2,716 0.3639 60,655 0.1544 40,047 0.0000 0 0.4633 8,582 1.0000 112,000 MassFrac 0.0242 0.5416 0.3576 0.0000 0.0766 1.0000 lO"(-(11,769/T(K))+l3.1927) ( (Yco x YH2A3) / (YCH4 x YH20) 6.8939 -3.57E-07 Converge* = ((Kpl/Ratiol)-1)lOO * the Goal Seek tool is used to adjust the fractional conversion until Converge is close to zero Methane Conversion = ) p2 1 Product Flow Rate =-I (b) methane:steam of 1:l Stoichiometric Table: Feed I (kmol/h)l 1600 1600 0 0 0 3200 CH4 H20 co co2 H2 Total fractional 574.3668 Kpl Ratio1 1653.61852 conversion of CH4 = (kmol/h) 471 471 1,129 0 3,387 5,458 Product MolFrac (kg/h) MassFrac 0.0863 7,538 0.1386 0.0863 8,480 0.1559 0.5810 0.2068 31,608 0.0000 0 0.0000 0.6205 6,773 0.1245 54.400 1.0000 1.0000 = lO"(-(11,769/T(K))+l3.1927) = ( kc0 x YH2A3) x YH20) Jp 2 0.7055 -65.266061Converge = ((Kpl/Ratiol)-1)lOO Methane Conversion --I-[ Product Flow Rate =' / (YCH4 5,458 kmol/h 54,400 kg/h 13-2 http://librosysolucionarios.net Problem 13.4 (cont'd) methane:steam of 2:l Stoichiometric Table: CH4 H20 co co2 H2 Total Feed I (kmol/h)l, 1600 3200 0 0 0 4800 Product (kmol/h) MolFrac MassFrac (kg/h) 0.0476 248 0.0330 3,960 1,848 0.2462 33,256 0.3997 0.1802 37,869 0.4552 1,352 0 0.0000 0 .o.oooo 4,057 0.5406 8,115 0.0975 7,505 1.0000 83,200 1.0000 574.3668 = lO"(-(11,769/T(K))+l3.1927) Kpl Ratio1 874.51201 = ( (ycO x YH2^3) / (YCH4 x YH20) )p2 fractional conversion of CH4 = 0.84529344 -34.321446 Converge = ((Kpl/Ratiol)-I)100 Methane Conversion =1 Product Flow Rate = methane:steam of Stoichiometric 7,505 kmol/h 83,200 kg/h 4:l Table: CH4 H20 co co2 H2 Total Feed I (kmol/h)l 1600 6400 0 0 0 8000 Product MassFrac (kmol/h) MolFrac (kg/h) 0.0147 130 0.0118 2,074 4,930 0.4506 88,733 0.6302 1,470 0.1344 41,171 0.2924 0.0000 0 0.0000 0 0.4032 8,822 0.0627 4,411 10,941 1.0000 140,800 1.0000 = 574.3668 lO"(-(11,769/T(K))+l3.1927) Kpl = Ratio1 411.494126 ( (Yco x YH2^3) / (YCH4 x YH~o) jp2 fractional conversion of CH4 = 0.91899524 39.5808125 Converge = ((Kpl/Ratiol)-I)100 Methane Conversion = 1 Product Flow Rate =I[ Summary Moles Steam:Mole CH4 1 2 3 4 Methane H2 Conversion Produced 6,773 70.6% 84.5% 8,115 89.4% 8,582 91.9% 8,822 13-3 http://librosysolucionarios.net H2:CO 3.0000 3.0000 3.0000 3.0000 Problem 13.5 Reformer Temperature Reformer Temperature Reformer Pressure Equilibrium Temperature Production 1 855 1128 15.79 1128 C K atm K 1.6 Mpa CH, + Hz0 ---> CO + 3H, CO f Hz0 ---> COz f H, rates CH4 feed rate CH4 x (1 - fractional conversion) H20 feed rate H20 - fractional conversion x feed rate CH4 - production rate of CO2 co fractional conversion x feed rate CH4 - production rate of CO2 co2 feed rate CO2 + production rate of CO2 H2 feed rate + 3 x feed rate CH4 x fractional conversion + production rate of CO2 methane:steam of 3:l Stoichiometric Feed I (kmol/h)[ CH4 1600 H20 4800 co 0 co2 0 H2 0 Total 6400 (kmol/h) 176 3,156 1,205 219 4,492 9,249 Product MolFrac (kg/h) 0.0190 2,811 0.3413 56,814 0.1303 33,740 0.0237 9,650 0.4857 8,985 1.0000 112,000 MassFrac 0.0251 0.5073 0.3013 0.0862 0.0802 1.0000 574.4 = lO"(-(11,769/T(K))+l3.1927) Kpl Ratio1 574.4 = ( (Yco x YHZh3) / (YCHQ x YH20) )P2 0.2590 = 10"(1,197.8/T(K)-1.6485) KP~ 0.2590 = Ratio2 (Y co2 x YtI2) / (Yco x YH20) fractional conversion of CH4* 0.89021022 Converge 1" -4.3538E-05 = ((Kpl/Ratiol)-1)*100 moles of CO2 formed** 219.322711 = ((Kp2/Ratio2)-l)*lOO Converge 2"" -0.00028801 * Use Goal Seek tool to adjust CH4 conversion so that Converge 1 goes to zero. ** Use Goal Seek tool to adjust CO2 formation so that Converge 2 goes to zero. CH4 Conv = CH4 to CO = -1 Product Flow Rate =mI CO with water-gas shift reaction:CO without water-gas shift reaction = 184.381 13-4 http://librosysolucionarios.net Problem 13.5 (cont'd) methane:steam of 1:l Stoichiometric Feed I (Iunol/h)l CH4 1600 H20 1600 co 0 co2 0 H2 0 Total 3200 *(kmol/h) 482 445 1,082 37 3,392 5,437 Product MolFrac (kg/h) 0.0886 7,706 0.0818 8,007 0.1990 30,286 0.0068 1,617 0.6239 6,784 1.0000 54,400 MassFrac 0.1416 0.1472 0.5567 0.0297 0.1247 1.0000 = KP~ 574.4 lO"(-(11,769/T(K))+l3.1927) = Ratio1 1662.1 ( (Yco x Y,2^3 11 (YCH4 x YH20) ) p2 = KP~ 0.2590 10A(1,197.8/T(K)-1.6485) = Ratio2 0.2590 (Y co2 x Y,,) / (Yco x YIi20) fractional conversion of CH4* 0.69900166 Converge 1" -65.4436238 = ((Kpl/Ratiol)-1)*100 moles of CO2 formed** 36.7477842 Converge 2** -5.79043-05 = ((Kp2/Ratio2)-I)*100 CH4 Conv = CH4 to CO = Product Flow Rate =I1 methane:steam of 2:l Stoichiometric Feed I (kmol/h)l CH4 1600 3200 H20 co 0 0 co2 H2 0 Total 4800 (kmol/h) 257 1,726 1,213 130 4,160 7,487 = 574.4 Kpl = 876.6 Ratio1 = 0.2590 KP~ = Ratio2 0.2590 fractional conversion of CH4* Converge l* -34.4757385 moles of CO2 formed** Converge 2** -1.52263-05 5:;4: g;Fh Product MolFrac (kg/h) 0.0343 4,108 0.2306 31,074 0.1620 33,961 0.0174 5,737 0.5557 8,320 1.0000 83,200 MassFrac 0.0494 0.3735 0.4082 0.0690 0.1000 1.0000 lO^(-(11,769/T(K))+13.1927) ( (yco x ~~2~3) 1 (YcH4 x YHZO) ) P2 10"(1,197.8/T(K)-1.6485) (Yco2 x YH2) / (Yco x YH20) 0.83954105 = ((Kpl/Ratiol)-I)*100 130.381595 = ((Kp2/Ratio2)-l)*lOO CH4 Conv = CH4 to CO = Product Flow Rate -Im[ 13-5 http://librosysolucionarios.net Problem 13.5 (cont'd) methane:steam of 4:l Stoichiometric Feed (kmol/h) CH4 H20 co co2 H2 Total 1600 6400 0 0 0 8000 I 1 ,(kmol/h) 133 4,634 1,169 299 4,700 10,934 Product MolFrac (kg/h) 0.0122 2,126 0.4238 83,418 0.1069 32,722 0.0273 13,134 0.4298 9,400 140,800 1.0000 MassFrac 0.0151 0.5925 0.2324 0.0933 0.0668 1.0000 574.4 = lO"(-(11,769/T(K))+l3.1927) Kpl Ratio1 410.9 = ( (Yco x ~~2~x1 ! (YCH4 x YH20) ) p2 0.2590 = 10"(1,197.8/T(K)-1.6485) Kp2 Ratio2 0.2590 = (Y co2 x YH2) / (Yco x YH20) fractional conversion of CH4* 0.91695885 Converge 1* 39.77214561 = ((Kpl/Ratiol)-l)*lOO moles of CO2 formed** 298.507525 Converge 2** -l.O4E-05 = ((Kp2/Ratio2)-l)*lOO CH4 Conv = CH4 to CO = Product Flow Rate =mI Moles Methane H2 H2:CO Steam:Mole CH4 Conversion Production Production CO:H2 1 69.9% 3,392 3.1359 0.3188883 84.0% 4,160 3.4300 0.2915462 2 91.7% 4,492 3.7280 0.2682379 3 4,700 4.0217 0.2486487 4 89.0% 13-6 http://librosysolucionarios.net Problem 13.6 Reformer Reformer Temperature Temperature Pressure 855 C 1128 K ,15.79 atm 1.6 MPa Production rates CH4 feed rate CH4 x (1 - fractional conversion) H20 feed rate H20 - fractional conversion x feed rate CH4 - production rate of CO2 CO fractional conversion x feed rate CH4 - production rate of CO2 CO2 feed rate CO2 + production rate of CO2 H2 feed rate + 3 x feed rate CH4 x fractional conversion + production rate of CO2 Stoichiometric Table: COMPONENT FEED PRODUCT MolFrac CH4 1600 176 0.0190 4800 H20 3,156 0.3413 co 0 1,205 0.1303 co2 0 219 0.0237 H2 0 4,492 0.4857 Total 6400 9,249 1.0000 574.4 = Kpl 574.4 = Ratio1 0.2590 = Kp2 Ratio2 0.2590 = fractional conversion of CH4* Converge 1* -4.35353-05 moles of CO2 formed** Converge 2** -0.00028798 Reformer Reformer Pressure Stoichiometric CH4 H20 co co2 H2 Total T T lO"(-(11,769/T(K))+l3.1927) ( (Yco x Y,,^3) / (YCHI x YHZO) )P2 10"(1,197.8/T(K)-1.6485) (Y CO2 x YH2) / (YCO x YH20) 0.8902102 ((Kpl/Ratiol)-l)*lOO 219.=32271 = ((Kp2/Ratio2)-l)*lOO 750 c 1023 K 15.79 atm 1.6 MPa Table: FEED 1600 4800 0 0 0 6400 PRODUCT 576 3,510 759 266 3,338 8,448 MOLFRAC 0.0681 0.4155 0.0898 0.0314 0.3951 Kpl 48.79 Ratio1 48.79 Kp2 0.3329 Ratio2 0.3329 fractional conversion of CH4* 0.64015 Converge 1" - 6 . 4 5 1 9 3 - 0 5 = moles of CO2 formed** 265.59039 Converge 2** 0.000608333 = 13-7 http://librosysolucionarios.net nCO/nCH4 nH2/nCH4 nCO/nC02 0.474156 2.086444 2.856465 ((Kpl/Ratiol)-l)*lOO ((Kp2/Ratio2)-1)*100 Problem 13.6 (cont'd) Reformer Reformer Stoichiometric Temperature Temperature Pressure 800 C 1073 K .15.79 atm 1.6 MPa Table: FEED 1600 4800 0 0 0 6400 CH4 H20 co co2 H2 Total PRODUCT 357 3,312 999 244 3,975 8,887 MOLFRAC 0.0401 0.3727 0.1124 0.0275 0.4472 Kpl 167.6 Ratio1 167.6 Kp2 0.2936 Ratio2 0.2936 fractional conversion of CH4* 0.7771058 Converge l* 0.000238464 ((Kpl/Ratiol)-l)*lOO moles of CO2 formed** 244: 4398 Converge 2** -2.48073-05 = ((Kp2/Ratio2)-l)*lOO Reformer Reformer Stoichiometric CH4 H20 co co2 H2 Total Temperature Temperature Pressure 900 c 1173 K 15.79 atm 1.6 MPa Table: FEED 1600 4800 0 0 0 6400 PRODUCT 88 3,086 1,311 201 4,738 9,424 MOLFRAC 0.0093 0.3275 0.1391 0.0214 0.5027 1.0000 Kpl 1443.6 Ratio1 1443.6 KP~ 0.2359 Ratio2 0.2359 fractional conversion of CH4* 0.9451022 Converge l* -4.1853-05 = moles of CO2 formed** 201.39252 Converge 2"" -0.00020159 = 13-8 http://librosysolucionarios.net ((Kpl/Ratiol)-I)*100 ((Kp2/Ratio2)-l)*lOO Problem 13.6 (cont'd) Reformer Reformer Stoichiometric Temperature Temperature Pressure 950 c ' 1223 K 15.79 atm 1.6 MPa Table: FEED 1600 4800 0 0 0 6400 CH4 H20 co co2 H2 Total PRODUCT 39 3,054 1,377 185 4,869 9,523 MOLFRAC 0.0040 0.3207 0.1445 0.0194 0.5113 1.0000 Kpl 3712.3 Ratio1 3712.3 KP~ 0.2142 Ratio2 0.2142 fractional conversion of CH4* 0.9759079 Converge l* 0.000662212 = moles of CO2 formed** 184.93694 Converge 2** -2.0226E-05 = 1.60 MPa T (Cl nCO/nCH4 nH2/nCH4 nCO/nCO2 750 0.474 2.086 2.856 800 0.624 2.484 4.087 855 0.753 2.808 5.494 13-9 http://librosysolucionarios.net ((Kpl/Ratiol)-l)*lOO ((Kp2/Ratio2)-l)*lOO 900 0.819 2.961 6.509 950 0.860 3.043 7.443 Problem 13.6 (cont'd) Reformer Reformer Temperature Temperature Pressure 855 C 1128 K *11.84 atm 1.2 MPa Production rates CH4 feed rate CH4 x (1 - fractional conversion) H20 feed rate H20 - fractional conversion x feed rate CH4 - production rate of Co2 CO fractional conversion x feed rate CH4 - production rate of CO2 CO2 feed rate CO2 + production rate of CO2 H2 feed rate + 3 x feed rate CH4 x fractional conversion + production rate of CO2 Stoichiometric Table: COMPONENT FEED PRODUCT MolFrac CH4 1600 116 0.0124 H20 4800 3,098 0.3307 co 0 1,266 0.1352 co2 0 218 0.0232 H2 0 4,670 0.4985 6400 9,368 Total 1.0000 574.4 = Kpl Ratio1 574.4 = 0.2590 = Kp2 Ratio2 0.2590 = fractional conversion of CH4* Converge 1* 5.08455E-05 moles of CO2 formed** Converge 2** -4.7046E-05 Reformer T Pressure Stoichiometric CH4 H20 co co2 H2 Total lO"(-(11,769/T(K))+13.1927) ( (Yco x YH2&3) / (YCH4 x YH20) )P2 10"(1,197.8/T(K)-1.6485) (Y CO2 x yi-12) / (YCO x YH20) 0.9275941 ((Kpl/Ratiol)-1)*100 217.=65358 = ((Kp2/Ratio2)-1)*100 1023 K 11.84 atm 1.2 MPa Table: FEED 1600 4800 0 0 0 6400 PRODUCT 472 3,405 861 267 3,651 8,656 MOLFRAC 0.0545 0.3934 0.0994 0.0309 0.4218 KP~ 48.79 Ratio1 48.79 0.3329 KP~ 0.3329 Ratio2 fractional conversion of CH4* 0.7049568 Converge 1* -0.00022618 moles of CO2 formed** 267 .=23789 Converge 2** 0.000779089 = 13-10 http://librosysolucionarios.net nCO/nCH4 0.537933 nH2/nCH4 2.281894 3.2207 nCO/nCO2 ((Kpl/Ratiol)-l)*lOO ((Kp2/Ratio2)-l)*lOO Problem 13.6 (cont'd) Reformer Temperature Reformer Temperature Pressure Stoichiometric 800 c 1073 K *11.84 atm Table: FEED 1600 4800 0 0 0 6400 CH4 H20 co co2 H2 Total PRODUCT 265 3,221 1,092 243 4,249 9,071 MOLFRW 0.0292 0.3551 0.1204 0.0268 0.4685 KP~ 167.6 Ratio1 167.6 KP~ 0.2936 Ratio2 0.2936 fractional conversion of CH4* 0.8346471 Converge 1* -0.00043805 moles of CO2 formed** 243.14362 Converge 2** -2.3364E-05 = Reformer Temperature Reformer Temperature Pressure Stoichiometric CH4 H20 co co2 H2 Total 1.2 MPa 900 c 1173 K 11.84 atm ((Kpl/Ratiol)-l)*lOO ((Kp2/Ratio2)-l)*lOO 1.2 MPa Table: FEED 1600 4800 0 0 0 6400 PRODUCT 54 3,054 1,346 200 4,839 9,492 MOLFRAC 0.0057 0.3217 0.1418 0.0211 0.5098 1.0000 KP~ 1443.6 Ratio1 1443.6 Kp2 0.2359 Ratio2 0.2359 fractional conversion of CH4* 0.966348 Converge l* -0.00083839 = moles of CO2 formed** 200.31077 Converge 2** -2.46013-05 = 13-11 http://librosysolucionarios.net ((Kpl/Ratiol)-l)*lOO ((Kp2/Ratio2)-l)*lOO http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net http://librosysolucionarios.net