EXAMPLE OF SHEAR WALL DESIGN TO EC2 Ref Calculation Output The accompanying figure shows a 6 storey rc structure with 250mm thk shear walls located along Grid 1, 10, A & D. Apart from providing vertical support to suspended slabs from 1st floor to roof, these shear walls provide lateral stability against wind forces in both the North-South & East-West direction. The walls are supported on independent foundation and the ground floor is of non-suspended slab. Given: Floor Slab Roof Qk (kN/m2) 3.0 0.50 Gk (kN/m2) 1.25 1.5 Note: i. Gk from finishes & mech. services, not incl. self wt of slab ii. To include removable partition load of 0.75 kN/m2 in addition to the 2.5 kN/m2 as Qk on slabs iii. Characteristic wind pressure taken as 1.2 kN/m2 uniformly distributed over the entire height of building acting in the N-S direction iv. Characteristic strength of concrete and steel reinforcement taken as 30 N/mm2 and 500 N/mm2 respectively Ref Calculation Output N 1 2 3 4 5 6 Z 7 8 9 10 10000 10000 A Ref. Pt A Cm C 6000 Y 7000 8000 B S 7000 6000 Ref. Pt B 15000 D Shear Wall 9@5000 = 45000 Note: All slabs 175 mm thk All Shear Walls 250 mm thk All Beams 250 x 600 mm All Columns 400 x 400 mm Cm= centre of mass Wind Ref Calculation Output 1.0 Shear Centre Location Y: Typical Cross Section 6@3500 = 21000 By observation the location of the 4 shear walls are non symmetrical about both the Z & Y axis. The second moment of area values (inertia in m4) of walls Grid/1 and Grid/10 about Z direction (discounting the stiffness of walls Grid/A and Grid/D) are: I1y =(0.25 x 203)/12 = 166.7 m4 K1y =(166.7)/(21+1) = 7.58 m3 I10y=(0.25 x 143)/12 = 57.2 m4 K10y=(57.2)/(21+1) = 2.60 m3 Thus the distance of the shear center Cs from the reference point A:Yc = ∑𝑘𝑘𝑘𝑘𝑘𝑘 ∑𝑘𝑘𝑘𝑘 Yc = {(7.58x0.0) + (2.60x45)}/(7.58 + 2.60) = 11.5 m Ecc e = (45/2)-11.5 = 11 m GL A B C D Ref Calculation Shear Centre Location Z: The second moment of area values (inertia in m4) of walls Grid/A and Grid/D about Z direction (discounting the stiffness of walls Grid/1 and Grid/10) are: IAz =(0.25 x 203)/12 = 166.7 m4 KAz =(166.7)/(21+1) = 7.58 m3 IDz=(0.25 x 153)/12 = 70.3 m4 KDz=(70.3)/(21+1) = 3.20 m3 Thus the distance of the shear center Cs from the reference point B:Zc = ∑𝑘𝑘𝑘𝑘𝑘𝑘 ∑𝑘𝑘𝑘𝑘 Zc = {(7.58x0.0) + (3.20x20)}/(7.58 + 3.20) = 5.93 m Ecc e = (20/2)-5.93 = 4.07 m Output Ref Calculation Output N 4 5 Z 7 6 A 6000 Ref. Pt B B Ref. Pt S Y 7000 8000 Cm Ecc e =4070 Cs Mt 10 10000 10000 Yc =11500 9 8 7000 3 Zc =5930 2 1 6000 C Ecc e =11000 D Shear Wall 9@5000 = 45000 +Z Cs= shear centre Cm= centre of mass +Y Wind Ref Calculation Output 2.0 Lateral Load Distribution Lateral Force on wall = 𝑘𝑘 𝑘𝑘 𝑘𝑘 M 𝐹𝐹 + ∑𝑘𝑘 ∑𝑘𝑘𝑘𝑘2 t Where: • F is the total wind load (kN) =1.2x(45x21)= 1134 kN • Mt is the Torsional Moment about respective axis (kNm) = (1134x11.0) = 12 474 kNm • y is the perpendicular distance between the axis of each wall and the centre of rotation about their respective axis (m) Wall ky kz y ky Ky2 Fd Ft F Grid 1 7.58 0 11.5 87.17 1002.46 844.37 -225.57 618.80 Grid 10 2.60 0 33.5 87.10 2917.85 289.63 +225.39 515.02 Grid A 0 7.58 5.93 44.95 266.55 0 -116.32 -116.32 Grid D 0 3.20 14.07 45.02 633.49 0 +116.50 +116.50 ∑10.18 ∑10.78 ∑4820.4 ∑1134 ∑ 0.00 ∑1134 • • Fd = • Ft = 𝑘𝑘 𝐹𝐹 : (Wall @ Grid 1) Fd = (7.58/10.18)x1134 = 844.37 kN ∑𝑘𝑘 𝑘𝑘 𝑘𝑘 M : (Wall @ Grid 1) Ft = (87.17/4820.4)x12474 = 225.57 kN ∑𝑘𝑘𝑘𝑘2 t Ref Calculation Output SUMMARY OF LATERAL LOAD DISTRIBUTION N 3 4 7 8 9 10 Zc =5930 6000 6 20000 Yc =11500 A 5 116.5 kN Cs Cm 6000 C 116.5 kN D 15000 9@5000 = 45000 +Z +Y 1134 kN 515 kN 619 kN 8000 B 14000 2 1 Ref Calculation Output 3.0 Gravity Load Distribution (Wall Grid 1) Actions Gk kN/m2 Qk kN/m2 Roof: Variable 0.5 Metal cladding & trusses 0.75 Suspended ceiling & Services 0.50 ∑ 1.25 ∑ 0.5 Floor Slab: Variable 2.5 Finishes 0.50 Suspended ceiling & Services 0.50 Removable partition Self wt 175mm thk slab 0.75 4.375 ∑ 5.375 ∑ 3.25 Ref Calculation Actions Output Gk kN/m2 Qk kN/m2 Ground Floor Slab: (Ground Bearing) Variable 2.5 Finishes 0.50 Services 0.35 Removable partition Self wt 175mm thk slab Actions 0.75 4.375 ∑ 5.225 ∑ 3.25 Gk kN/m2 Qk kN/m2 Self wt Wall @250mm thk 6.25 Self wt Brick Wall @ 115mm thk 2.60 Wind Load Wk 1.2 Ref Calculation Output 4.0 Load Take Down (Wall Grid 1) Roof Gk:(5/2x20)(1.25) Wall Gk:(3.50x20)(6.25) Qk:(20x0.5)(5/2) Qk kN Gk kN 62.50 25.00 437.50 ∑ 500 ∑500 @above 5th floor 5th FL Gk:(5/2x20)(5.375) Wall Gk:(3.50x20)(6.25) ∑ 25 Qk:(5/2x20)(3.25) 268.75 162.5 437.50 ∑ 706.25 Gk:(5/2x20)(5.375) Wall Gk:(3.50x20)(6.25) ∑ 162.5 ∑1206.25 @above 4th floor 4th FL Qk:(5/2x20)(3.25) 268.75 ∑ 187.5 162.5 437.50 ∑ 706.25 @above 3rd floor ∑ 25 ∑ 162.5 ∑1912.5 ∑ 350 Ref Calculation Output Qk kN Gk kN 3rd FL Gk:(5/2x20)(1.25) Wall Gk:(3.50x20)(6.25) Qk:(20x0.5)(5/2) 62.50 162.5 437.50 ∑ 706.25 ∑2618.75 @above 2nd floor 2nd FL Gk:(5/2x20)(5.375) Wall Gk:(3.50x20)(6.25) ∑ 162.5 Qk:(5/2x20)(3.25) 268.75 162.5 437.50 ∑ 706.25 Gk:(5/2x20)(5.375) Wall Gk:(3.50x20)(6.25) ∑ 162.5 ∑3325 @above 1st floor 1st FL Qk:(5/2x20)(3.25) 268.75 ∑ 675 162.5 437.50 ∑ 706.25 @above Ground floor ∑ 512.5 ∑ 162.5 ∑4031.25 ∑ 837.5 Ref Calculation Output Qk kN Gk kN Grd FL Gk:(1x20)(5.375) Wall Gk:(1.00x20)(6.25) 125.00 Assume 1m width slab to wall as suspended ∑232.50 @above Foundation Qk:(1x20)(3.25) 107.50 65 ∑ 65 ∑4263.75 ∑ 902.50 Ref Calculation 5.0 Summary of Gravity Loads Wall Grid 1 (Ground Floor to 1st Floor) Gk = 4031.5 kN Gk/m = 4031.5/20 = 202 kN/m Qk = an x 837.5 = 0.85 x 837.5 = 712 kN where an = {2+(4-2)0.7}/4 = 0.85 Qk = 712 kN Qk/m = 712/20 = 36 kN/m Output Ref Calculation Output 6@3.5=21m 30 kN/m 6.0 Vertical Loads from Wind Actions: Moments In-Plane From earlier calculation, Wall Grid 1 takes aprox. 55% (619/1134=0.546) of wind load Wk = 55% x 1.2 x 45 = 30 kN/m height @ just above Ground Floor level In Plane Moments := (30 x 21) x {(21/2) + 1} = 7245 kNm/m Using 630 kN Wk = 6M/L2 = 6 (7245)/202 1st Fl = 109 kN/m Grd Fl 1m 1m 20 m Ref Calculation Output 7.0 Effects of Global Imperfections (Notional Horizontal Load) Global imperfections can be represented by forces Hi at floor level where Hi =ɸi(Nb – Na) kN Roof HR 5th Fl ɸ H5 4th Fl H4 3rd Fl H3 2nd Fl 1st Fl Grd Fl 20 m H2 H1 Hi =ɸi(Nb – Na) where ɸi = 1/410 (Table 3.1 pg 17) (Nb – Na) = axial load from each level Ref Calculation Output (Nb – Na) @ each floor Roof Gk:(45x20)(1.25) B/Wall Gk:(45+20)x2(2.6)x0 Qk kN Gk kN Qk:(45x20)(0.5) 1125 450 0 ∑ 1125 ∑1125 (Nb – Na) @Roof 5th FL Gk:(45x20)(5.375) B/Wall Gk:(45+20)x2(2.6)x3.075 ∑ 450 Qk:(45x20)(3.25) 4837.50 2925 1039.50 ∑ 5877 Gk:(45x20)(5.375) B/Wall Gk:(45+20)x2(2.6)x3.075 ∑ 2925 ∑5877 (Nb – Na) @5th floor 4th FL Qk:(45x20)(3.25) 4837.50 ∑ 2925 2925 1039.50 ∑ 5877 (Nb – Na) @4th floor ∑ 450 ∑ 2925 ∑5877 ∑ 2925 Ref Calculation (Nb – Na) @ each floor 3rd FL Gk:(45x20)(5.375) Wall Gk:(45+20)x2(2.6)x3.075 Output Qk kN Gk kN Qk:(45x20)(3.25) 4837.50 2925 1039.50 ∑ 5877 ∑5877 (Nb – Na) @3rd floor 2nd FL Gk:(45x20)(5.375) Wall Gk:(45+20)x2(2.6)x3.075 ∑ 2925 Qk:(45x20)(3.25) 4837.50 2925 1039.50 ∑ 5877 Gk:(45x20)(5.375) Wall Gk:(45+20)x2(2.6)x3.075 ∑ 2925 ∑5877 (Nb – Na) @2nd floor 1st FL Qk:(45x20)(3.25) 4837.50 ∑ 2925 2925 1039.50 ∑ 5877 (Nb – Na) @1st floor ∑ 2925 ∑ 2925 ∑5877 ∑ 2925 Ref Calculation Output Summary of Effects of Global Imperfections (Notional Horizontal Load) Roof 6@3.5=21m ɸ 5th Fl HRGk 14.3 kN HRQk 7.1 kN 4th Fl HRGk 14.3 kN HRQk 7.1 kN 3rd Fl 2nd Fl 1st Fl Grd Fl 20 m HRGk 2.7 kN HRQk 1.1 kN HRGk 14.3 kN HRQk 7.1 kN HRGk 14.3 kN HRQk 7.1 kN Hi =ɸi(Nb – Na) where ɸi = 1/410 (Table 3.1 pg 17) (Nb – Na) = axial load from each level Ex: HRGk = {1/410}{1125} = 2.74 kN HRQk = {1/410}{450} = 1.10 kN Characteristic design moment @ ground floor: MkGk=(2.7x21)+{14.3x(17.5+14+10.5+7+3.5)} = 807.5 kNm MkQk=(1.1x21)+{7.10x(17.5+14+10.5+7+3.5)} = 396.0 kNm HRGk 14.3 kN HRQk 7.1 kN Gk = 0.55x(6x807.5/202) = ±6.7 kN/m Qk = 0.55x(6x396/202) = ±3.3 kN/m Ref Calculation Output 8.0 Design Moments Perpendicular to Wall @ 1st Floor (Transverse Moments) For the purpose of evaluating the transverse moment, slabs of 1000mm width is assumed framing into Wall 1. One Free Joint sub frame is used to evaluate transverse moments. 3500 Kwall upper Stiffness K: EI/L 3.72 x105 Kwall upper= (1000x2503)/12x3500 = 3.72 x105 mm3 Mtupper Gk & Qk 1st Floor 0.5Kslab 0.45 x105 3500+1000 Mtlower Kwall lower 2.89 x105 5000 As Ground floor is non suspended, total height of lower wall taken up to foundation level ie 3500+1000=4500 mm Ref Calculation LC1: Qk as lead action Wk as accompanying action N Ed = 1.35Gk +1.5Qk + 1.05Wk Output LC2: Wk as lead action Qk as accompanying action N Ed = 1.35Gk +1.5Wk + 1.05Qk LC#1=1.35Gk +1.5Qk =1.35(5.375)+1.5(3.25) =12.15 kN/m2 LC#1=1.35Gk +1.05Qk =1.35(5.375)+1.05(3.25) =10.75 kN/m2 FEM = 12.15x52/12 = 25.5 kNm/m width of slab FEM = 10.75x52/12 = 22.5 kNm/m width of slab LC2: 1.35Gk +1.05Qk LC1: 1.35Gk +1.5Qk 10.5 kNm 1st Floor 13.5 kNm Mt upper: =(Kupper /∑K)xFEM =(3.72/7.06)x25.5 =(0.53)x25.5 = 13.5 kNm/m Mt lower: =(Klower /∑K)xFEM =(2.89/7.06)x25.5 =(0.41)x25.5 = 10.5 kNm/m 9.25 kNm 1st Floor 12 kNm Mt upper: =(Kupper /∑K)xFEM =(3.72/7.06)x22.5 =(0.53)x22.5 = 12 kNm/m Mt lower: =(Klower /∑K)xFEM =(2.89/7.06)x22.5 =(0.41)x22.5 = 9.25 kNm/m Ref Calculation LC1: Qk as lead action Wk as accompanying action N Ed = 1.35Gk +1.5Qk + 1.05Wk Output LC2: Wk as lead action Qk as accompanying action N Ed = 1.35Gk +1.5Wk + 1.05Qk LC2: 1.35Gk +1.05Qk LC2: 1.35Gk +1.5Qk 10.5 kNm 1st Floor 9.25 kNm 12 kNm 13.5 kNm 1.05Wk N Ed = 1.35Gk +1.5Qk + 1.05Wk = 1.35(202+6.7)+1.5(36+3.3)+1.05(109) = 455.15 kN/m @ 1st FL to Grd FL 1st Floor 1.5Wk N Ed = 1.35Gk +1.5Wk + 1.05Qk = 1.35(202+6.7)+1.5(109)+1.05(36+3.3) = 486.50 kN/m @ 1st FL to Grd FL Ref Calculation Output LC3: Wk as lead action favourable vertical loads N Ed = 1.0Gk + 1.5Wk T C N Ed = 1.0Gk ± 1.5Wk = 1.0(202+6.7) ± 1.5(109) = 372.2 or 45.20 kN/m…………No Tension Ref Calculation 9.0 Slenderness Check of Wall 1 @Ground Floor to 1st Floor Effective height Lo= 0.85 (4500-175) = 3676.25 mm Thus λ = Lo / (I/A)0.5 = 3676.25/{(1000x2503/12)/(250x1000)} 0.5 λ = 3676.25/72.2 = 51 Output Ref Calculation Output Momen due to imperfections M imp = Ned x (Lo/400) = 486.50 x (3.676/400) = 4.5 kNm/m λ l i m = 20 A.B.C/√n where A = 0.7, B = 1.1 & C = 1.7 – rm rm = M01/M02 = -7.15/15 = -0.48 Therefore C – 1.7 – (-0.48) = 2.18 n = Ned/Ac x fcd = 485.50 x 103/{1000x250x(0.85x30/1.5)} = 0.1142 λ l i m = 20 A.B.C/√n = (20x0.7x1.1x2.18)/√0.1142 = 99 λ < λ l i m ………..Non Slender !! M02 = 10.5 + 4.5 = 15kNm/m Mmin = Ned x 0.02 = 472.25 x 0.02 = 9.75 kNm/m Med = 15 kNm/m………Ned = 486.50 kN/m 0.25x10.5 (partially fixed) Note that Ned obtained from LC2 where as Med is derived from LC1 2.63 kNm/m M01 = 2.63 + 4.5 = 7.15 kNm/m Ref Calculation Output In Summary: Ned = 486.50 kN/m (Gk, Qk, Wk) M02 = 15 kNm/m (Gk, Qk) Transverse Moment 1st Fl - Foundation M01 = 7.15 kNm/m (Gk, Qk) Ref Calculation Output 10.0 Section Design 10.1 Column Design Procedure (Ned 486.5 kN/m & Med 15 kNm/m) Adopt cover to horizontal bars as 30mm, thus cover to main vertical bars = 30 +10+(16/2) where lacer bars taken as 10mm and main vertical bars as 16mm. Effective depth d = 250 - 48 = 202 mm d2 = 48 mm d2 / h = 48 / 250 = 0.192…….use Column Design Chart (d2/h = 0.2) Ned / bhfck = 486.5 x 103 /(1000 x 250 x 30) = 0.065 Med / bh2fck = 15 x 106 / (1000 x 2502 x 30) = 0.008 } As fyk /bh fck = 0 Provide minimum reinf……….. As = 0.002bh = 0.002x100 x250 = 500 mm2/m or 250 mm2/m @ each face cover=48mm Ref Calculation Output 10.2 Walls Subjected to Insignificant Transverse Moment (Axial Load Control) Thus, Asc = {(486.5x103) – (0.43 x 30 x 250)} / (0.67 x 500) = 1443 mm2/m or 722 mm2/m each face….>>250 mm2/m @ each face (The distance between two adjacent vertical bars should not exceed the lesser of either three times the wall thickness or 400 mm…………..ok) Provide: H16-250 (804 mm2/m @ each face) Ref Calculation Output 10.3 Horizontal Reinforcement The minimum area of horizontal reinforcement in walls is the greater of either 25% of vertical reinforcement or 0.001 Ac. However, where crack control is important, early age thermal and shrinkage effects should be considered explicitly. Ashmin = 0.001Ac or 0.25 Asvert = 0.001(1000 x 250) or (0.25 x 1443) = 250 mm2/m (125 mm2/m each face) or 361 mm2/m (181 mm2/m each face) Provide: H10-350 (224 mm2/m @ each face) Ref Calculation Output 11.0 Horizontal Shear Max. design ultimate horizontal shear, VEd = 1.5 x 630 = 945 kN Therefore shear stress vEd = 945x103/(20x103x250) = 0.19 N/mm2 Normal stress due to min permanent action, Ϭcp = Ned / A = (202+6.7)x103 / 250x1000 = 0.83 N/mm2 vrdc = vmin + k1Ϭcp = (0.035k3/2 √fck) + k1Ϭcp where k = 1+√(200/d) =1.99 & k1=0.15 = (0.035x1.993/2 x √30) + (0.15x0.83) = 0.66 N/mm2 > 0.19 N/mm2 ……….OK!! vrdc >> vEd Ref Calculation Output 12.0 Check Wall Stability 30 kN/m 6@3.5=21m Self Wt Component Say base extends 900 mm beyond either end of wall, thus foundation dim taken as 21.80 x 2 x 1 m (LxWxH) 630 kN Grd Fl 1m H A 20 m L= 21.80 m ii) Global Imperfections (Gk): = (2.7x23)+(14.3x(19.5+16+12.5+9+5.5)) = 956 kNm Restoring Moments @ A: ={4263.75 + (0x902.5) + (21.8x2x1x25)} x (21.8/2) = 58,356 kNm 1st Fl 1m Overturning Moments @ A: i) Wind: = 30 x 21 x (21/2 + 2) = 7875 kNm @ULS Overturning Moment: =(1.5x7875) + (1.1x956) = 12,864.5 kNm FoS= 4.0 Restoring Moment: = (0.9x58,356) = 52,520 kNm…>>12,864.5 kNm OK!! Ref Calculation Output H10-350 EF 1st Fl 9H16-175 9H16-175 EF EF H16-250 EF Ground Fl *EF=Each Face