Toronto Metropolitan University DEPARTMENT OF ECONOMICS ECN 801 Principles of Engineering Economics TIME: 2 HOURS DATE: Spring/Summer 2024 1. MARR = 6%. You purchase an annual coupon bond for $8418.17. The bond’s face value is $10,000 and the coupon rate is 7%. You receive your first annual coupon payment immediately aGer you purchase the bond, and there are 15 years unIl the bond matures. Find the IRR of the bond (to the closest integer). a) 6% b) 7% c) 8% d) 9% e) 10% f) None of the above Solution: P = 0 = -8418.17 + 700 + 700(P/A,i*,15) + 10,000(P/F,i*,15) i* = 10% 2. MARR = 6%. There are two 10-year projects under consideraIon that each provide a required service. Project A has a first cost of $7044. There are no maintenance costs for the first 2 years. AGer two years, the maintenance costs are $2000 a year for 8 years. Project B has a first cost of 4715 and also has no maintenance costs for the first 2 years. The maintenance costs aGer that are $2500 each year for 8 years. You need to choose only one of these projects. Find the incremental IRR (to the closest integer). A) 6% B) 7% C) 8% D) 9% E) 10% F) None of the above Solu4on: Incremental Project A – B has t=0 cash flow of -7044 – (-4715) = -2329, and cash flows of +500 from t= 3 to t = 10. PW(A – B) = -2329 + 500(P/A,i*,10)(P/F,i*,2) = 0 for i* = 9% 3. MARR = 6%. Suppose that you take on a consulIng project that involves an up-front receipt of $2000 for work to be delivered. You then provide $3000 of labour services in the first year and $3000 of labour services in the second year. In the final year you receive the balance owing which is $4266.43. Find the precise ERR of the project (to the closest integer). Note, the precise ERR is between 6% and 12%. A) 6% B) 7% C) 8% D) 9% E) 10% F) None of the above Solu4on: 2000(1.06) – 3000 = -880 PW = 0 = -880 – 3000/(1+ie*) + 4266.32/(1+ie*)2 ie* = 8% 4. MARR = 6%. Suppose that you take on a consulIng project that involves an up-front receipt of $2000 for work to be delivered. You then provide $3000 of labour services in the first year and $3000 of labour services in the second year. In the final year you receive the balance owing which is $4266.43. Find the approximated ERR of the project (to the closest integer). Note, the approximated ERR is between 6% and 12%. A) 6% B) 7% C) 8% D) 9% E) 10% F) None of the above Solu4on: F = 2000(1.06)3 + 4266.43 = 3000(1+iea*)2 + 3000(1+iea*) iea*=7% 5. MARR = 6%. Suppose you purchase an industrial card printer for $30,000 and sell it 8 years aGer for $2000. The O&M in the first year is $1000, increasing by 6% each year. You expect to print 5000 cards in the first year, increasing by 500 cards each year thereaGer. Find the levelized cost within 2 cents. a) 89 cents b) 91 cents c) 95 cents d) 99 cents e) None of the above Solu4on: 0 = -30k + 2k(P/F,6%,8) – 1000 (P/A,6%,6%,8)+ PBE*[5k + 500(A/G,6%,8)](P/A,6%,8) P = $0.89 The following information pertains to questions 6 and 7: Salvador Industries bought land and built its plant 20 years ago. The depreciation on the building is calculated using the declining balance method and a depreciation rate of 15%, with a life of 25 years, and a salvage value of $125,000. Land is not depreciated. The depreciation for the equipment, all of which was purchased at the same time the plant was constructed, is calculated using straight-line approach with salvage value of $75,000. Salvador currently has two outstanding loans: one due at the end of this year, on December 31,2020, and another one for which the next payment is due in four years. The value of Retained Earnings is $1,559,596. The values of balance sheet entries should be calculated as correct to the nearest dollar. MARR = 6%. 6. What is the value of Total LiabiliIes and Owner’s Equity? _________________ Answer: BV20 of Building = 224,000(0.85)20 = 8682 BV20 of Equipment: 460k – 20(460k – 75k)/25 = 152,000 Current Assets = 344k + 2860k + 2002k +162k = 5,368,000 LT Assets Assets = 8682 + 152,000 + 525,000 = 685,682 Total Assets = 5,368,000 + 685,682 = 6,053,682 Total L + OE = 6,053,682 7. What is the Current Ratio (correct to two decimal places)? _____________________ Answer: Total Owner’s Equity = Common Shares + Retained Earnings = 1,880,000 + 1,559,596 = 3,439,596 Total Liabilities = Total Assets – Total OE = 6,053,682 – 3,439,596 = 2,614,086 Total L-T Liabilities = 1,220,323 + 323,000 =1,543,000 Total Current Liabilities = Total – LT Liabilities = 2,614,086– 1,543,000 = 1,071,086 Current Ratio = Current Assets / Current Liabilities = 5,368,000/1,071,086 = 5.01 The following information pertains to questions 8 through 11: 8. MARR = 6%. You purchase a machine for $40,000. The market value of the machine depreciates at 20% per year afterward. There are no operating costs in the Mirst year, but after that the cost in the second year is $1000, doubling each year thereafter. There is also a one-time repair cost of $12,000 in the 4th year. Find the value of EAC5. EAC5 = _____________ Solu4on: EAC5 = 40k(A/P,6%,5) – 40k(0.8)5 (A/F,6%,5) + [1k/(1.06)2 +2k/(1.06)3 + [4k + 12k]/(1.06)4 + 8k/(1.06)5](A/P,6%,5) = 12,208.60 9. Find EAC*. EAC* = ___________ Solu4on: EAC2 = 40k(A/P,6%,2) – 40k(0.8)2 (A/F,6%,2) + [1k/(1.06)2] (A/P,6%,2) = 9875.78 EAC3 = 40k(A/P,6%,3) – 40k(0.8)3 (A/F,6%,3) + [1k/(1.06)2 +2k/(1.06)3](A/P,6%,3) = 9492.60 EAC4 = 40k(A/P,6%,4) – 40k(0.8)4 (A/F,6%,4) + [1k/(1.06)2 +2k/(1.06)3 + [4k + 12k]/(1.06)4](A/P,6%,4) = 12,197.28 Therefore EAC* = 9492.60 10. MARR = 6%. You purchased a machine 3 years ago for $40,000. The market value of the machine depreciates at 20% per year aGerward. There were no operaIng costs in the first year, but aGer that the cost in the second year was $1000, doubling each year thereaGer. There is also a one-Ime repair cost of $12,000 in the 4th year. Find the Marginal Cost of keeping the asset for this coming year (its fourth year). The new asset has a first cost of $20,000. The resale value of the new asset falls by 10% each year, and annual O&M costs are 10k in the first year, increasing by 20% each year. All the costs and the resale market value informaIon that you esImated when you first purchased the asset are sIll valid. Find the marginal cost of keeping the defender for one year. MC4 = _______________ Solu4on: MC4 = 40k(0.83)(1.06) + (4k + 12k) – 40k(0.84) = 21,324.8 11. MARR = 6%. You purchased a machine 3 years ago for $40,000. The market value of the machine depreciates at 20% per year. There were no operaIng costs in the asset's first year, but aGer that the cost in the second year was $1000, doubling each year thereaGer. There is also a one-Ime repair cost of $12,000 in the 4th year. Now that the asset is 3 years old, you are considering replacing the asset with a new machine that has become available. find the economic life of the defender going forward. N* = _____ Solu4on: EAC1 = MC4 = 40k(0.83)(1.06) + (4k + 12k) – 40k(0.84) = 21,324.8 EAC2 = 40k(0.83)(A/P,6%,2) – 40k(0.85)(A/F,6%,2) + (16k/1.06 + 8k/(1.062)](A/P,6%,2) = 16,924.43 EAC3 = 40k(0.83)(A/P,6%,3) – 40k(0.86)(A/F,6%,3) + (16k/1.06 + 8k/(1.062) + 16k/(1.063)](A/P,6%,3) = 17,704.44 Therefore N*= 2 and EAC* = 16,924.43 12. MARR = 6%. A new industrial spindle has recently become available. You are considering this new asset to replace your current spindle. The new spindle has a first cost of $20,000. Its resale value is expected to fall by 10% each year, and annual O&M costs are projected to be 10k in the first year, increasing by 20% each year thereaGer. Find the asset’s equivalent annual cost at its economic life. (within $100). A) 12,600 B) 12,800 C) 13,000 D) 13,200 E) None of the above Solu4on: Challenger sa4sfies one-year principle: EAC* = 20k(1.06) – 20k(0.9) + 10k = 13,200 at N*=1 Verify: EAC2 = 20k(A/P,6%,2) – 20K(0.92)(A/F,6%,2) + [10K/1.06 + 12K(1.062)](A/P,6%,2) = 14,015.61 > 13,200 Compound Interest Factors for Discrete Compounding, Discrete Cash Flows i 5 6% 473 Discrete Compounding, Discrete Cash Flows Single Payment Uniform Series Compound Amount Factor Present Worth Factor Sinking Fund Factor Uniform Series Factor Capital Recovery Factor Series Present Worth Factor Arithmetic Gradient Series Factor N (F/P,i,N) (P/F,i,N) (A/F,i,N) (F/A,i,N) (A/P,i,N) (P/A,i,N) (A/G,i,N) 1 2 3 4 5 1.0600 1.1236 1.1910 1.2625 1.3382 0.94340 0.89000 0.83962 0.79209 0.74726 1.0000 0.48544 0.31411 0.22859 0.17740 1.0000 2.0600 3.1836 4.3746 5.6371 1.0600 0.54544 0.37411 0.28859 0.23740 0.94340 1.8334 2.6730 3.4651 4.2124 0.00000 0.48544 0.96118 1.4272 1.8836 6 7 8 9 10 1.4185 1.5036 1.5938 1.6895 1.7908 0.70496 0.66506 0.62741 0.59190 0.55839 0.14336 0.11914 0.10104 0.08702 0.07587 6.9753 8.3938 9.8975 11.491 13.181 0.20336 0.17914 0.16104 0.14702 0.13587 4.9173 5.5824 6.2098 6.8017 7.3601 2.3304 2.7676 3.1952 3.6133 4.0220 11 12 13 14 15 1.8983 2.0122 2.1329 2.2609 2.3966 0.52679 0.49697 0.46884 0.44230 0.41727 0.06679 0.05928 0.05296 0.04758 0.04296 14.972 16.870 18.882 21.015 23.276 0.12679 0.11928 0.11296 0.10758 0.10296 7.8869 8.3838 8.8527 9.2950 9.7122 4.4213 4.8113 5.1920 5.5635 5.9260 16 17 18 19 20 2.5404 2.6928 2.8543 3.0256 3.2071 0.39365 0.37136 0.35034 0.33051 0.31180 0.03895 0.03544 0.03236 0.02962 0.02718 25.673 28.213 30.906 33.760 36.786 0.09895 0.09544 0.09236 0.08962 0.08718 10.106 10.477 10.828 11.158 11.470 6.2794 6.6240 6.9597 7.2867 7.6051 21 22 23 24 25 3.3996 3.6035 3.8197 4.0489 4.2919 0.29416 0.27751 0.26180 0.24698 0.23300 0.02500 0.02305 0.02128 0.01968 0.01823 39.993 43.392 46.996 50.816 54.865 0.08500 0.08305 0.08128 0.07968 0.07823 11.764 12.042 12.303 12.550 12.783 7.9151 8.2166 8.5099 8.7951 9.0722 26 27 28 29 30 4.5494 4.8223 5.1117 5.4184 5.7435 0.21981 0.20737 0.19563 0.18456 0.17411 0.01690 0.01570 0.01459 0.01358 0.01265 59.156 63.706 68.528 73.640 79.058 0.07690 0.07570 0.07459 0.07358 0.07265 13.003 13.211 13.406 13.591 13.765 9.3414 9.6029 9.8568 10.103 10.342 31 32 33 34 35 6.0881 6.4534 6.8406 7.2510 7.6861 0.16425 0.15496 0.14619 0.13791 0.13011 0.01179 0.01100 0.01027 0.00960 0.00897 84.802 90.890 97.343 104.18 111.43 0.07179 0.07100 0.07027 0.06960 0.06897 13.929 14.084 14.230 14.368 14.498 10.574 10.799 11.017 11.228 11.432 40 45 50 55 10.286 13.765 18.420 24.650 0.09722 0.07265 0.05429 0.04057 0.00646 0.00470 0.00344 0.00254 154.76 212.74 290.34 394.17 0.06646 0.06470 0.06344 0.06254 15.046 15.456 15.762 15.991 12.359 13.141 13.796 14.341 60 65 70 75 32.988 44.145 59.076 79.057 0.03031 0.02265 0.01693 0.01265 0.00188 0.00139 0.00103 0.00077 533.13 719.08 967.93 1300.9 0.06188 0.06139 0.06103 0.06077 16.161 16.289 16.385 16.456 14.791 15.160 15.461 15.706 80 85 90 95 100 105.80 141.58 189.46 253.55 339.30 0.00945 0.00706 0.00528 0.00394 0.00295 0.00057 0.00043 0.00032 0.00024 0.00018 1746.6 2343.0 3141.1 4209.1 5638.4 0.06057 0.06043 0.06032 0.06024 0.06018 16.509 16.549 16.579 16.601 16.618 15.903 16.062 16.189 16.290 16.371 Z01_FRAS8826_07_SE_APPA.indd 473 28/07/20 3:45 PM 474 Appendix A i 5 7% Discrete Compounding, Discrete Cash Flows Single Payment Z01_FRAS8826_07_SE_APPA.indd 474 Uniform Series Series Present Worth Factor Arithmetic Gradient Series Factor (A/P,i,N) (P/A,i,N) (A/G,i,N) 1.0700 0.55309 0.38105 0.29523 0.24389 0.93458 1.8080 2.6243 3.3872 4.1002 0.00000 0.48309 0.95493 1.4155 1.8650 7.1533 8.6540 10.260 11.978 13.816 0.20980 0.18555 0.16747 0.15349 0.14238 4.7665 5.3893 5.9713 6.5152 7.0236 2.3032 2.7304 3.1465 3.5517 3.9461 0.06336 0.05590 0.04965 0.04434 0.03979 15.784 17.888 20.141 22.550 25.129 0.13336 0.12590 0.11965 0.11434 0.10979 7.4987 7.9427 8.3577 8.7455 9.1079 4.3296 4.7025 5.0648 5.4167 5.7583 0.33873 0.31657 0.29586 0.27651 0.25842 0.03586 0.03243 0.02941 0.02675 0.02439 27.888 30.840 33.999 37.379 40.995 0.10586 0.10243 0.09941 0.09675 0.09439 9.4466 9.7632 10.059 10.336 10.594 6.0897 6.4110 6.7225 7.0242 7.3163 4.1406 4.4304 4.7405 5.0724 5.4274 0.24151 0.22571 0.21095 0.19715 0.18425 0.02229 0.02041 0.01871 0.01719 0.01581 44.865 49.006 53.436 58.177 63.249 0.09229 0.09041 0.08871 0.08719 0.08581 10.836 11.061 11.272 11.469 11.654 7.5990 7.8725 8.1369 8.3923 8.6391 26 27 28 29 30 5.8074 6.2139 6.6488 7.1143 7.6123 0.17220 0.16093 0.15040 0.14056 0.13137 0.01456 0.01343 0.01239 0.01145 0.01059 68.676 74.484 80.698 87.347 94.461 0.08456 0.08343 0.08239 0.08145 0.08059 11.826 11.987 12.137 12.278 12.409 8.8773 9.1072 9.3289 9.5427 9.7487 31 32 33 34 35 8.1451 8.7153 9.3253 9.9781 10.677 0.12277 0.11474 0.10723 0.10022 0.09366 0.00980 0.00907 0.00841 0.00780 0.00723 102.07 110.22 118.93 128.26 138.24 0.07980 0.07907 0.07841 0.07780 0.07723 12.532 12.647 12.754 12.854 12.948 9.9471 10.138 10.322 10.499 10.669 40 45 50 55 14.974 21.002 29.457 41.315 0.06678 0.04761 0.03395 0.02420 0.00501 0.00350 0.00246 0.00174 199.64 285.75 406.53 575.93 0.07501 0.07350 0.07246 0.07174 13.332 13.606 13.801 13.940 11.423 12.036 12.529 12.921 60 65 70 75 57.946 81.273 113.99 159.88 0.01726 0.01230 0.00877 0.00625 0.00123 0.00087 0.00062 0.00044 813.52 1146.8 1614.1 2269.7 0.07123 0.07087 0.07062 0.07044 14.039 14.110 14.160 14.196 13.232 13.476 13.666 13.814 80 85 90 95 100 224.23 314.50 441.10 618.67 867.72 0.00446 0.00318 0.00227 0.00162 0.00115 0.00031 0.00022 0.00016 0.00011 0.00008 3189.1 4478.6 6287.2 8823.9 12382.0 0.07031 0.07022 0.07016 0.07011 0.07008 14.222 14.240 14.253 14.263 14.269 13.927 14.015 14.081 14.132 14.170 Compound Amount Factor Present Worth Factor Sinking Fund Factor Uniform Series Factor Capital Recovery Factor N (F/P,i,N) (P/F,i,N) (A/F,i,N) (F/A,i,N) 1 2 3 4 5 1.0700 1.1449 1.2250 1.3108 1.4026 0.93458 0.87344 0.81630 0.76290 0.71299 1.0000 0.48309 0.31105 0.22523 0.17389 1.0000 2.0700 3.2149 4.4399 5.7507 6 7 8 9 10 1.5007 1.6058 1.7182 1.8385 1.9672 0.66634 0.62275 0.58201 0.54393 0.50835 0.13980 0.11555 0.09747 0.08349 0.07238 11 12 13 14 15 2.1049 2.2522 2.4098 2.5785 2.7590 0.47509 0.44401 0.41496 0.38782 0.36245 16 17 18 19 20 2.9522 3.1588 3.3799 3.6165 3.8697 21 22 23 24 25 28/07/20 3:45 PM Compound Interest Factors for Discrete Compounding, Discrete Cash Flows i 5 8% 475 Discrete Compounding, Discrete Cash Flows Single Payment Uniform Series Compound Amount Factor Present Worth Factor Sinking Fund Factor Uniform Series Factor Capital Recovery Factor Series Present Worth Factor Arithmetic Gradient Series Factor N (F/P,i,N) (P/F,i,N) (A/F,i,N) (F/A,i,N) (A/P,i,N) (P/A,i,N) (A/G,i,N) 1 2 3 4 5 1.0800 1.1664 1.2597 1.3605 1.4693 0.92593 0.85734 0.79383 0.73503 0.68058 1.0000 0.48077 0.30803 0.22192 0.17046 1.0000 2.0800 3.2464 4.5061 5.8666 1.0800 0.56077 0.38803 0.30192 0.25046 0.92593 1.7833 2.5771 3.3121 3.9927 0.00000 0.48077 0.94874 1.4040 1.8465 6 7 8 9 10 1.5869 1.7138 1.8509 1.9990 2.1589 0.63017 0.58349 0.54027 0.50025 0.46319 0.13632 0.11207 0.09401 0.08008 0.06903 7.3359 8.9228 10.637 12.488 14.487 0.21632 0.19207 0.17401 0.16008 0.14903 4.6229 5.2064 5.7466 6.2469 6.7101 2.2763 2.6937 3.0985 3.4910 3.8713 11 12 13 14 15 2.3316 2.5182 2.7196 2.9372 3.1722 0.42888 0.39711 0.36770 0.34046 0.31524 0.06008 0.05270 0.04652 0.04130 0.03683 16.645 18.977 21.495 24.215 27.152 0.14008 0.13270 0.12652 0.12130 0.11683 7.1390 7.5361 7.9038 8.2442 8.5595 4.2395 4.5957 4.9402 5.2731 5.5945 16 17 18 19 20 3.4259 3.7000 3.9960 4.3157 4.6610 0.29189 0.27027 0.25025 0.23171 0.21455 0.03298 0.02963 0.02670 0.02413 0.02185 30.324 33.750 37.450 41.446 45.762 0.11298 0.10963 0.10670 0.10413 0.10185 8.8514 9.1216 9.3719 9.6036 9.8181 5.9046 6.2037 6.4920 6.7697 7.0369 21 22 23 24 25 5.0338 5.4365 5.8715 6.3412 6.8485 0.19866 0.18394 0.17032 0.15770 0.14602 0.01983 0.01803 0.01642 0.01498 0.01368 50.423 55.457 60.893 66.765 73.106 0.09983 0.09803 0.09642 0.09498 0.09368 10.017 10.201 10.371 10.529 10.675 7.2940 7.5412 7.7786 8.0066 8.2254 26 27 28 29 30 7.3964 7.9881 8.6271 9.3173 10.063 0.13520 0.12519 0.11591 0.10733 0.09938 0.01251 0.01145 0.01049 0.00962 0.00883 79.954 87.351 95.339 103.97 113.28 0.09251 0.09145 0.09049 0.08962 0.08883 10.810 10.935 11.051 11.158 11.258 8.4352 8.6363 8.8289 9.0133 9.1897 31 32 33 34 35 10.868 11.737 12.676 13.690 14.785 0.09202 0.08520 0.07889 0.07305 0.06763 0.00811 0.00745 0.00685 0.00630 0.00580 123.35 134.21 145.95 158.63 172.32 0.08811 0.08745 0.08685 0.08630 0.08580 11.350 11.435 11.514 11.587 11.655 9.3584 9.5197 9.6737 9.8208 9.9611 40 45 50 55 21.725 31.920 46.902 68.914 0.04603 0.03133 0.02132 0.01451 0.00386 0.00259 0.00174 0.00118 259.06 386.51 573.77 848.92 0.08386 0.08259 0.08174 0.08118 11.925 12.108 12.233 12.319 10.570 11.045 11.411 11.690 60 65 70 75 101.26 148.78 218.61 321.20 0.00988 0.00672 0.00457 0.00311 0.00080 0.00054 0.00037 0.00025 1253.2 1847.2 2720.1 4002.6 0.08080 0.08054 0.08037 0.08025 12.377 12.416 12.443 12.461 11.902 12.060 12.178 12.266 80 85 90 95 100 471.95 693.46 1018.9 1497.1 2199.8 0.00212 0.00144 0.00098 0.00067 0.00045 0.00017 0.00012 0.00008 0.00005 0.00004 5886.9 8655.7 12724.0 18702.0 27485.0 0.08017 0.08012 0.08008 0.08005 0.08004 12.474 12.482 12.488 12.492 12.494 12.330 12.377 12.412 12.437 12.455 Z01_FRAS8826_07_SE_APPA.indd 475 28/07/20 3:45 PM 476 Appendix A i 5 9% Discrete Compounding, Discrete Cash Flows Single Payment Z01_FRAS8826_07_SE_APPA.indd 476 Uniform Series Compound Amount Factor Present Worth Factor Sinking Fund Factor Uniform Series Factor Capital Recovery Factor Series Present Worth Factor Arithmetic Gradient Series Factor N (F/P,i,N) (P/F,i,N) (A/F,i,N) (F/A,i,N) (A/P,i,N) (P/A,i,N) (A/G,i,N) 1 2 3 4 5 1.0900 1.1881 1.2950 1.4116 1.5386 0.91743 0.84168 0.77218 0.70843 0.64993 1.0000 0.47847 0.30505 0.21867 0.16709 1.0000 2.0900 3.2781 4.5731 5.9847 1.0900 0.56847 0.39505 0.30867 0.25709 0.91743 1.7591 2.5313 3.2397 3.8897 0.00000 0.47847 0.94262 1.3925 1.8282 6 7 8 9 10 1.6771 1.8280 1.9926 2.1719 2.3674 0.59627 0.54703 0.50187 0.46043 0.42241 0.13292 0.10869 0.09067 0.07680 0.06582 7.5233 9.2004 11.028 13.021 15.193 0.22292 0.19869 0.18067 0.16680 0.15582 4.4859 5.0330 5.5348 5.9952 6.4177 2.2498 2.6574 3.0512 3.4312 3.7978 11 12 13 14 15 2.5804 2.8127 3.0658 3.3417 3.6425 0.38753 0.35553 0.32618 0.29925 0.27454 0.05695 0.04965 0.04357 0.03843 0.03406 17.560 20.141 22.953 26.019 29.361 0.14695 0.13965 0.13357 0.12843 0.12406 6.8052 7.1607 7.4869 7.7862 8.0607 4.1510 4.4910 4.8182 5.1326 5.4346 16 17 18 19 20 3.9703 4.3276 4.7171 5.1417 5.6044 0.25187 0.23107 0.21199 0.19449 0.17843 0.03030 0.02705 0.02421 0.02173 0.01955 33.003 36.974 41.301 46.018 51.160 0.12030 0.11705 0.11421 0.11173 0.10955 8.3126 8.5436 8.7556 8.9501 9.1285 5.7245 6.0024 6.2687 6.5236 6.7674 21 22 23 24 25 6.1088 6.6586 7.2579 7.9111 8.6231 0.16370 0.15018 0.13778 0.12640 0.11597 0.01762 0.01590 0.01438 0.01302 0.01181 56.765 62.873 69.532 76.790 84.701 0.10762 0.10590 0.10438 0.10302 0.10181 9.2922 9.4424 9.5802 9.7066 9.8226 7.0006 7.2232 7.4357 7.6384 7.8316 26 27 28 29 30 9.3992 10.245 11.167 12.172 13.268 0.10639 0.09761 0.08955 0.08215 0.07537 0.01072 0.00973 0.00885 0.00806 0.00734 93.324 102.72 112.97 124.14 136.31 0.10072 0.09973 0.09885 0.09806 0.09734 9.9290 10.027 10.116 10.198 10.274 8.0156 8.1906 8.3571 8.5154 8.6657 31 32 33 34 35 14.462 15.763 17.182 18.728 20.414 0.06915 0.06344 0.05820 0.05339 0.04899 0.00669 0.00610 0.00556 0.00508 0.00464 149.58 164.04 179.80 196.98 215.71 0.09669 0.09610 0.09556 0.09508 0.09464 10.343 10.406 10.464 10.518 10.567 8.8083 8.9436 9.0718 9.1933 9.3083 40 45 50 55 31.409 48.327 74.358 114.41 0.03184 0.02069 0.01345 0.00874 0.00296 0.00190 0.00123 0.00079 337.88 525.86 815.08 1260.1 0.09296 0.09190 0.09123 0.09079 10.757 10.881 10.962 11.014 9.7957 10.160 10.430 10.626 60 65 70 75 176.03 270.85 416.73 641.19 0.00568 0.00369 0.00240 0.00156 0.00051 0.00033 0.00022 0.00014 1944.8 2998.3 4619.2 7113.2 0.09051 0.09033 0.09022 0.09014 11.048 11.070 11.084 11.094 10.768 10.870 10.943 10.994 80 85 90 95 100 986.55 1517.9 2335.5 3593.5 5529.0 0.00101 0.00066 0.00043 0.00028 0.00018 0.00009 0.00006 0.00004 0.00003 0.00002 10951.0 16855.0 25939.0 39917.0 61423.0 0.09009 0.09006 0.09004 0.09003 0.09002 11.100 11.104 11.106 11.108 11.109 11.030 11.055 11.073 11.085 11.093 28/07/20 3:45 PM Compound Interest Factors for Discrete Compounding, Discrete Cash Flows i 5 10% 477 Discrete Compounding, Discrete Cash Flows Single Payment Uniform Series Compound Amount Factor Present Worth Factor Sinking Fund Factor Uniform Series Factor Capital Recovery Factor Series Present Worth Factor Arithmetic Gradient Series Factor N (F/P,i,N) (P/F,i,N) (A/F,i,N) (F/A,i,N) (A/P,i,N) (P/A,i,N) (A/G,i,N) 1 2 3 4 5 1.1000 1.2100 1.3310 1.4641 1.6105 0.90909 0.82645 0.75131 0.68301 0.62092 1.0000 0.47619 0.30211 0.21547 0.16380 1.0000 2.1000 3.3100 4.6410 6.1051 1.1000 0.57619 0.40211 0.31547 0.26380 0.90909 1.7355 2.4869 3.1699 3.7908 0.00000 0.47619 0.93656 1.3812 1.8101 6 7 8 9 10 1.7716 1.9487 2.1436 2.3579 2.5937 0.56447 0.51316 0.46651 0.42410 0.38554 0.12961 0.10541 0.08744 0.07364 0.06275 7.7156 9.4872 11.436 13.579 15.937 0.22961 0.20541 0.18744 0.17364 0.16275 4.3553 4.8684 5.3349 5.7590 6.1446 2.2236 2.6216 3.0045 3.3724 3.7255 11 12 13 14 15 2.8531 3.1384 3.4523 3.7975 4.1772 0.35049 0.31863 0.28966 0.26333 0.23939 0.05396 0.04676 0.04078 0.03575 0.03147 18.531 21.384 24.523 27.975 31.772 0.15396 0.14676 0.14078 0.13575 0.13147 6.4951 6.8137 7.1034 7.3667 7.6061 4.0641 4.3884 4.6988 4.9955 5.2789 16 17 18 19 20 4.5950 5.0545 5.5599 6.1159 6.7275 0.21763 0.19784 0.17986 0.16351 0.14864 0.02782 0.02466 0.02193 0.01955 0.01746 35.950 40.545 45.599 51.159 57.275 0.12782 0.12466 0.12193 0.11955 0.11746 7.8237 8.0216 8.2014 8.3649 8.5136 5.5493 5.8071 6.0526 6.2861 6.5081 21 22 23 24 25 7.4002 8.1403 8.9543 9.8497 10.835 0.13513 0.12285 0.11168 0.10153 0.09230 0.01562 0.01401 0.01257 0.01130 0.01017 64.002 71.403 79.543 88.497 98.347 0.11562 0.11401 0.11257 0.11130 0.11017 8.6487 8.7715 8.8832 8.9847 9.0770 6.7189 6.9189 7.1085 7.2881 7.4580 26 27 28 29 30 11.918 13.110 14.421 15.863 17.449 0.08391 0.07628 0.06934 0.06304 0.05731 0.00916 0.00826 0.00745 0.00673 0.00608 109.18 121.10 134.21 148.63 164.49 0.10916 0.10826 0.10745 0.10673 0.10608 9.1609 9.2372 9.3066 9.3696 9.4269 7.6186 7.7704 7.9137 8.0489 8.1762 31 32 33 34 35 19.194 21.114 23.225 25.548 28.102 0.05210 0.04736 0.04306 0.03914 0.03558 0.00550 0.00497 0.00450 0.00407 0.00369 181.94 201.14 222.25 245.48 271.02 0.10550 0.10497 0.10450 0.10407 0.10369 9.4790 9.5264 9.5694 9.6086 9.6442 8.2962 8.4091 8.5152 8.6149 8.7086 40 45 50 55 45.259 72.890 117.39 189.06 0.02209 0.01372 0.00852 0.00529 0.00226 0.00139 0.00086 0.00053 442.59 718.90 1163.9 1880.6 0.10226 0.10139 0.10086 0.10053 9.7791 9.8628 9.9148 9.9471 9.0962 9.3740 9.5704 9.7075 60 65 70 75 304.48 490.37 789.75 1271.9 0.00328 0.00204 0.00127 0.00079 0.00033 0.00020 0.00013 0.00008 3034.8 4893.7 7887.5 12709.0 0.10033 0.10020 0.10013 0.10008 9.9672 9.9796 9.9873 9.9921 9.8023 9.8672 9.9113 9.9410 Z01_FRAS8826_07_SE_APPA.indd 477 28/07/20 3:45 PM 478 Appendix A i 5 11% Discrete Compounding, Discrete Cash Flows Single Payment Z01_FRAS8826_07_SE_APPA.indd 478 Uniform Series Compound Amount Factor Present Worth Factor Sinking Fund Factor Uniform Series Factor Capital Recovery Factor Series Present Worth Factor Arithmetic Gradient Series Factor N (F/P,i,N) (P/F,i,N) (A/F,i,N) (F/A,i,N) (A/P,i,N) (P/A,i,N) (A/G,i,N) 1 2 3 4 5 1.1100 1.2321 1.3676 1.5181 1.6851 0.90090 0.81162 0.73119 0.65873 0.59345 1.0000 0.47393 0.29921 0.21233 0.16057 1.0000 2.1100 3.3421 4.7097 6.2278 1.1100 0.58393 0.40921 0.32233 0.27057 0.90090 1.7125 2.4437 3.1024 3.6959 0.00000 0.47393 0.93055 1.3700 1.7923 6 7 8 9 10 1.8704 2.0762 2.3045 2.5580 2.8394 0.53464 0.48166 0.43393 0.39092 0.35218 0.12638 0.10222 0.08432 0.07060 0.05980 7.9129 9.783 11.859 14.164 16.722 0.23638 0.21222 0.19432 0.18060 0.16980 4.2305 4.7122 5.1461 5.5370 5.8892 2.1976 2.5863 2.9585 3.3144 3.6544 11 12 13 14 15 3.1518 3.4985 3.8833 4.3104 4.7846 0.31728 0.28584 0.25751 0.23199 0.20900 0.05112 0.04403 0.03815 0.03323 0.02907 19.561 22.713 26.212 30.095 34.405 0.16112 0.15403 0.14815 0.14323 0.13907 6.2065 6.4924 6.7499 6.9819 7.1909 3.9788 4.2879 4.5822 4.8619 5.1275 16 17 18 19 20 5.3109 5.8951 6.5436 7.2633 8.0623 0.18829 0.16963 0.15282 0.13768 0.12403 0.02552 0.02247 0.01984 0.01756 0.01558 39.190 44.501 50.396 56.939 64.203 0.13552 0.13247 0.12984 0.12756 0.12558 7.3792 7.5488 7.7016 7.8393 7.9633 5.3794 5.6180 5.8439 6.0574 6.2590 21 22 23 24 25 8.949 9.934 11.026 12.239 13.585 0.11174 0.10067 0.09069 0.08170 0.07361 0.01384 0.01231 0.01097 0.00979 0.00874 72.265 81.214 91.15 102.17 114.41 0.12384 0.12231 0.12097 0.11979 0.11874 8.0751 8.1757 8.2664 8.3481 8.4217 6.4491 6.6283 6.7969 6.9555 7.1045 26 27 28 29 30 15.080 16.739 18.580 20.624 22.892 0.06631 0.05974 0.05382 0.04849 0.04368 0.00781 0.00699 0.00626 0.00561 0.00502 128.00 143.08 159.82 178.40 199.02 0.11781 0.11699 0.11626 0.11561 0.11502 8.4881 8.5478 8.6016 8.6501 8.6938 7.2443 7.3754 7.4982 7.6131 7.7206 31 32 33 34 35 25.410 28.206 31.308 34.752 38.575 0.03935 0.03545 0.03194 0.02878 0.02592 0.00451 0.00404 0.00363 0.00326 0.00293 221.91 247.32 275.53 306.84 341.59 0.11451 0.11404 0.11363 0.11326 0.11293 8.7331 8.7686 8.8005 8.8293 8.8552 7.8210 7.9147 8.0021 8.0836 8.1594 40 45 50 55 65.001 109.53 184.56 311.00 0.01538 0.00913 0.00542 0.00322 0.00172 0.00101 0.00060 0.00035 581.83 986.6 1668.8 2818.2 0.11172 0.11101 0.11060 0.11035 8.9511 9.0079 9.0417 9.0617 8.4659 8.6763 8.8185 8.9135 28/07/20 3:45 PM Compound Interest Factors for Discrete Compounding, Discrete Cash Flows i 5 12% 479 Discrete Compounding, Discrete Cash Flows Single Payment Uniform Series Compound Amount Factor Present Worth Factor Sinking Fund Factor Uniform Series Factor Capital Recovery Factor Series Present Worth Factor Arithmetic Gradient Series Factor N (F/P,i,N) (P/F,i,N) (A/F,i,N) (F/A,i,N) (A/P,i,N) (P/A,i,N) (A/G,i,N) 1 2 3 4 5 1.1200 1.2544 1.4049 1.5735 1.7623 0.89286 0.79719 0.71178 0.63552 0.56743 1.0000 0.47170 0.29635 0.20923 0.15741 1.0000 2.1200 3.3744 4.7793 6.3528 1.1200 0.59170 0.41635 0.32923 0.27741 0.89286 1.6901 2.4018 3.0373 3.6048 0.00000 0.47170 0.92461 1.3589 1.7746 6 7 8 9 10 1.9738 2.2107 2.4760 2.7731 3.1058 0.50663 0.45235 0.40388 0.36061 0.32197 0.12323 0.09912 0.08130 0.06768 0.05698 8.1152 10.089 12.300 14.776 17.549 0.24323 0.21912 0.20130 0.18768 0.17698 4.1114 4.5638 4.9676 5.3282 5.6502 2.1720 2.5515 2.9131 3.2574 3.5847 11 12 13 14 15 3.4785 3.8960 4.3635 4.8871 5.4736 0.28748 0.25668 0.22917 0.20462 0.18270 0.04842 0.04144 0.03568 0.03087 0.02682 20.655 24.133 28.029 32.393 37.280 0.16842 0.16144 0.15568 0.15087 0.14682 5.9377 6.1944 6.4235 6.6282 6.8109 3.8953 4.1897 4.4683 4.7317 4.9803 16 17 18 19 20 6.1304 6.8660 7.6900 8.6128 9.6463 0.16312 0.14564 0.13004 0.11611 0.10367 0.02339 0.02046 0.01794 0.01576 0.01388 42.753 48.884 55.750 63.440 72.052 0.14339 0.14046 0.13794 0.13576 0.13388 6.9740 7.1196 7.2497 7.3658 7.4694 5.2147 5.4353 5.6427 5.8375 6.0202 21 22 23 24 25 10.804 12.100 13.552 15.179 17.000 0.09256 0.08264 0.07379 0.06588 0.05882 0.01224 0.01081 0.00956 0.00846 0.00750 81.699 92.503 104.60 118.16 133.33 0.13224 0.13081 0.12956 0.12846 0.12750 7.5620 7.6446 7.7184 7.7843 7.8431 6.1913 6.3514 6.5010 6.6406 6.7708 26 27 28 29 30 19.040 21.325 23.884 26.750 29.960 0.05252 0.04689 0.04187 0.03738 0.03338 0.00665 0.00590 0.00524 0.00466 0.00414 150.33 169.37 190.70 214.58 241.33 0.12665 0.12590 0.12524 0.12466 0.12414 7.8957 7.9426 7.9844 8.0218 8.0552 6.8921 7.0049 7.1098 7.2071 7.2974 31 32 33 34 35 33.555 37.582 42.092 47.143 52.800 0.02980 0.02661 0.02376 0.02121 0.01894 0.00369 0.00328 0.00292 0.00260 0.00232 271.29 304.85 342.43 384.52 431.66 0.12369 0.12328 0.12292 0.12260 0.12232 8.0850 8.1116 8.1354 8.1566 8.1755 7.3811 7.4586 7.5302 7.5965 7.6577 40 45 50 55 93.051 163.99 289.00 509.32 0.01075 0.00610 0.00346 0.00196 0.00130 0.00074 0.00042 0.00024 767.09 1358.2 2400.0 4236.0 0.12130 0.12074 0.12042 0.12024 8.2438 8.2825 8.3045 8.3170 7.8988 8.0572 8.1597 8.2251 Z01_FRAS8826_07_SE_APPA.indd 479 28/07/20 3:45 PM Appendix D List of Formulas After-tax IRR: IRRafter@tax ≅ IRRbefore@tax * (1 - t) After-tax MARR: MARRafter@tax ≅ MARRbefore@tax * (1 - t) PW(benefits) BCR = PW(costs) Book Value, Declining-Balance: BVdb(n) = P(1 - d)n Book Value, Straight-Line: Capital Tax Factor: CTF = 1 - P - S b N td(1 + i>2) (i + d )(1 + i) Capital Salvage Factor: CSF = 1 - td (i + d ) Capitalized Value: P = (F>A,i,N) = A i (A>P,i,N) = A = (P - S)(A>P,i,N) + Si Compound Interest: • Series Present Worth Factor (P>A,i,N) = (1 + i)N - 1 i(1 + i)N • Arithmetic Gradient to Annuity Conversion Factor (A>G,i,N) = 1 N i (1 + i)N - 1 • Geometric Gradient Series to Present Worth Conversion Factor (P>A,g,i,N) = F = P(1 + i) Compound Interest Factors: • Compound Amount Factor (F>P,i,N) = (1 + i)N • Present Worth Factor 1 (1 + i)N • Sinking Fund Factor i (1 + i)N - 1 (P>A,i°,N) 1 + g (P>A,g,i,N) = ° (1 + i°)N - 1 i°(1 + i°)N 1 + i - 1 1 + g ¢ 1 1 + g Depreciation Amount, Straight Line: Dsl(n) = N (A>F,i,N) = i(1 + i)N (1 + i)N - 1 i° = Capital Recovery Formula: (P>F,i,N) = (1 + i)N - 1 i • Capital Recovery Factor Benefit–Cost Ratio: BVsl(n) = P - n a • Uniform Series Compound Amount Factor P - S N Depreciation Amount, Declining Balance: Ddb(n) = BVdb(n - 1) * d Depreciation Rate: d = 1 - n S AP Effective Interest Rate: ie = a1 + r m b - 1 or m ie = (1 + is)m - 1 494 Z04_FRAS8826_07_SE_APPD.indd 494 07/10/20 3:28 PM List of Formulas Effective Interest Rate for Continuous Compounding: ie = e r - 1 Expected Value of the Discrete Random Variable: E(x) = a xip(xi) • Acid test ratio = Quick assets Current liabilities • Current ratio = Current assets Current liabilities Total assets Sales Inventories • Return on total assets = Profits after taxes Total assets Growth-Adjusted Interest Rate: Internal Rate of Return: a (1 + i*)t = 0 or (Rt - Dt) t=0 = a Z04_FRAS8826_07_SE_APPD.indd 495 y* - y1 y2 - y1 Modified Benefit–Cost Ratio: BCRM = d PW(benefits) - PW(operating costs) PW(capital costs ) Payback period = T Dt t t = 0 (1 + i*) First cost Annual savings Real Dollars: R0,N = RN = AN I0,N >100 AN (1 + f )N RN = AN(P>F,f,N) Real MARR: MARRR = 1 + MARRC - 1 1 + f Real Interest Rate: i′ = 1 + i i° = - 1 1 + g T Rt a t t = 0 (1 + i*) x* = x1 + (x2 - x1) c Total equity • Inventory turnover = T Linear Interpolation: Payback Period: Financial Ratios: • Equity ratio = 495 1 + i - 1 1 + f Real IRR: IRRR = 1 + IRRC - 1 1 + f Simple Interest Amount: Is = PiN 07/10/20 3:28 PM