PV System Electrical Design Calculation Report Memoria De Cálculo Diseño Eléctrico Para Sistema Fotovoltaico. P003-T3_03_MCE_RA General Escobedo, Nuevo León GP Diseño Revisión RA – 13/06/2022 QUALITY CONTROL INTERNAL REVISION / REVISION INTERNA DE CONTROL DE CALIDAD NAME / NOMBRE DRAWN BY: DESIGN BY: MIGUEL HERNÁNDEZ ROGELIO SANDOVAL REVISION/ REVISIÓN A A DESIGN MANAGER: PROJECT LEADER: PROJECT MANAGER: ROGELIO SANDOVAL LEONARDO HERNÁNDEZ JOSÉ LUIS AGUILAR A A A DATE / FECHA 13.06.2022 13.06.2022 13.06.2022 13.06.2022 13.06.2022 SIGNATURE / FIRMA REVISION CONTROL / CONTROL DE REVISIONES REVISION/ REVISIÓN R A COMMENTS /COMENTARIOS INTERNAL REVIEW/ REVISION INTERNA COMMENTS GPC/ COMENTARIOS GPC B 0 COMMENTS BREMBO/COMENTARIOS BREMBO ISSUED FOR CONSTRUCTION/EMITIDO PARA CONSTRUCCION P003-T3_03_MCE_RA Page 1 NAME/ NOMBRE JLAM DATE / FECHA 21.04.2021 20.05.2021 21.07.2021 21.07.2021 PHOTOVOLTAIC ARRAY ARREGLO FOTOVOLTAICO • 2813.25 kWp in Direct current with PV module LONGI 550 W 2813.25 kWp en C.D. con módulos LONGI 550 W o • 5115 PV modules model LR5-72HPH-550 o 5115 módulos modelo LR5-72HPH-550 40 PV inverters SMA model Sunny Tripower CORE 1 62-US • o • 40 inversores SMA Sunny Tripower CORE 1 62-US 1 PV inverter SMA model Sunny Tripower CORE 1 33-US o 1 inversor SMA Sunny Tripower CORE 1 33-US • o P003-T3_03_MCE_RA Page 2 AC nominal power: 2533.3 kW Potencia instalada en C.A.: 2533.3 kW en C.A. INDEX ÍNDICE 1. ABSTRACT .................................................................................................................................................................. 5 1. INTRODUCCIÓN...................................................................................................................................................... 5 2. GENERAL ASPECTS OF PHOTOVOLTAIC INSTALLATION.................................................................................... 5 2. ASPECTOS GENERALES DE INSTALACIÓN FOTOVOLTAICA ....................................................................... 5 2.1 INSTALLED PEAK POWER IN D.C. .......................................................................................................................... 6 2.1 POTENCIA PICO INSTALADA EN C.D. ............................................................................................................... 6 2.2. ELECTRICAL CHARACTERISTICS OF SOLAR PANELS ...................................................................................... 6 2.2 CARACTERISTICAS ELÉCTRICAS DE MÓDULOS FOTOVOLTAICOS ............................................................ 6 2.3 ELECTRICAL CHARACTERISTICS OF PV INVERTER ...................................................................................... 7 2.3 CARACTERISTICAS ELÉCTRICAS DE INVERSOR FV ..................................................................................... 7 2.4 CHARACTERISTICS OF WIRING FOR DESIGN ...................................................................................................... 7 2.4 CARACTERISTICAS DE CABLEADO PARA DISEÑO ........................................................................................ 7 3. PV SYSTEM ELECTRICAL DESIGN ......................................................................................................................... 12 3. DISEÑO ELÉCTRICO DEL SISTEMA FV ........................................................................................................... 12 3.1 INVERTER SIZING ................................................................................................................................................... 12 3.1 DIMENSIONAMIENTO DE INVERSORES .......................................................................................................... 12 3.2 SIZING OF WIRING AND CONDUITS IN DIRET CURRENT ............................................................................. 17 3.2 DIMENSIONAMIENTO DE CABLEADO Y CANALIZACIONES EN CORRIENTE DIRECTA........................... 17 3.3 WIRING RESULTS FOR INVERTER No. 1-41 ................................................................................................... 17 3.3 RESULTADOS CABLEADO INVERSOR No. 1-41 ............................................................................................ 17 3.4 SIZING OF WIRING AND ELECTRICAL CONDUITS IN A.C.................................................................................. 22 3.4 DIMENSIONAMIENTO DE CABLEADO Y CANALIZACIONES EN C.A. .................................................................. 22 3.5 CALCULATION RESULTS OF INVERTERS No.1-No. 6 (PV BOARD 1),No. 7, No. 8-No. 12 (PV BOARD 2), No. 21 (PV BOARD 3). ...................................................................................................................................................... 24 3.5 RESULTADOS DE CÁLCULOS PARA INVERSORES NO.1- No.6 (TABLERO FV 1), No. 7, No. 8-No. 12 (TABLERO FV 2), No. 21 (TABLERO FV 3) ............................................................................................................................... 24 3.6 CALCULATION RESULTS OF INVERTERS No.13-No. 20, No. 22-No. 41 (INVERTER-BOX COMBINER) ....... 27 P003-T3_03_MCE_RA Page 3 3.6 RESULTADOS DE CÁLCULOS PARA INVERSORES NO.13- No.20, No. 22-No. 41 (INVERSOR – CAJAS COMBINADORAS) ................................................................................................................................................ 27 3.7 CALCULATION RESULTS OF INVERTERS No.13-No. 20, No. 22-No. 41 (BOX COMBINER-PV BOARD 3).... 28 3.7 RESULTADOS DE CÁLCULOS PARA INVERSORES NO.13- No.20, No. 22-No. 41 (CAJA COMBINADORA – TABLERO FV 3) .................................................................................................................................................... 28 3.8 PV 1-2 BOARD TO INTERCONNECTION POINT. SOUTH EXTENSION. ............................................................. 31 3.8 TABLERO FV 1-2 A PUNTO DE INTERCONEXIÓN. AMPLIACIÓN SUR. ........................................................ 31 3.9 PV 3 BOARD TO TRANSFORMER. CARPORT. ............................................................................................... 33 3.9 TABLERO FV 3 A TRANSFORMADOR. CARPORT .......................................................................................... 33 3.10 TRANSFORMER. INTERCONECTION POINT. ................................................................................................ 34 4. VOLTAGE DROP ........................................................................................................................................................ 36 4. CAÍDA DE TENSIÓN ............................................................................................................................................. 36 5. RESPONSABLE FOR ELECTRICAL CALCULATIONS ........................................................................................... 37 5. RESPONSABLE DE CÁLCULOS EN BAJA Y MEDIA TENSIÓN ....................................................................... 37 P003-T3_03_MCE_RA Page 4 1. ABSTRACT 1. INTRODUCCIÓN The purpose of this document is the technical description, dimensioning, justification and legalization of electrical installations both in C.D as from C.A of the electrical energy generated by the photovoltaic system that will be installed in the Calipers Building area of the PV Project carried out for BREMBO. El presente documento tiene como objetivo, presentar la descripción técnica, dimensionamiento, justificación y legalización de instalaciones eléctricas tanto en CD como en CA de la energía eléctrica generada por el sistema fotovoltaico que se instalará en el área del Edificio Calipers del proyecto FV realizado para BREMBO. On the other hand, it is intended to simplify the installation process of the solar system, verification and inspection of the Inspection Unit (UI) and the Verification Unit (UVIE); in order to demonstrate to any of the competent parties that the installation in question meets the conditions and guarantees to comply with the current Mexican regulation NOM001-SEDE-2012 required by the requirements of the Energy Regulatory Commission (CRE). Por otro lado, se pretende simplificar el proceso de instalación del sistema solar, verificación e inspección de la Unidad de Inspección (UI) y la Unidad de Verificación (UVIE); con el fin de demostrar ante los organismos competentes que la instalación en cuestión cumple con las condiciones y garantías para cumplir con la normativa vigente NOM-001-SEDE-2021 exigida por los requisitos de la Comisión Reguladora de Energía (CRE). 2. GENERAL ASPECTS OF PHOTOVOLTAIC INSTALLATION 2. ASPECTOS GENERALES DE INSTALACIÓN FOTOVOLTAICA As previously mentioned, the photovoltaic system that is the object of this project will be installed in the Calipers building area of the photovoltaic project installed in BREMBO located in Carretera Escobedo km. 34, Libramiento Noreste 1021, GP Nueva Castilla, Parque Industrial Escobedo, 66517 General Escobedo, N. L. with geographic coordinates 25.832829922558904, -100.26906770507088; see Figure 1. Como se comentó anteriormente, el sistema fotovoltaico objeto del presente proyecto se encontrará instalado en el área del Edificio Calipers del proyecto fotovoltaico instalado en BREMBO ubicado en Carretera Escobedo km. 34, Libramiento Noreste 1021. GP Nueva Castilla, Parque Industrial Escobedo, 66517 General Escobedo, N. L. con las coordenadas geográficas 25.832829922558904, -100.26906770507088; ver la Figura 1. Figure 1. Geographical location of the photovoltaic Project. Figura 1. Ubicación geográfica de proyecto fotovoltaico. P003-T3_03_MCE_RA Page 5 Figure 2 shows the distribution of the installed photovoltaic system. La Figura 2 exhibe la distribución del sistema fotovoltaico a instalar. Figure 2. Distribution of photovoltaic modules. Figura 2. Distribución de módulos fotovoltaicos. 2.1 INSTALLED PEAK POWER IN D.C. 2.1 POTENCIA PICO INSTALADA EN C.D. The peak power of the photovoltaic system to be installed in this project is 2813.25 kWp, by using 5115 modules 550 W LONGI, model LR5-72HPH-550 photovoltaic modules. La potencia pico del sistema fotovoltaico que se quiere instalar en este proyecto es de 2813.25 kWp, con 5115 módulos fotovoltaicos de 550 Wp de la marca LONGI modelo LR572HPH-550. 2.2. ELECTRICAL CHARACTERISTICS OF SOLAR PANELS 2.2 CARACTERISTICAS ELÉCTRICAS DE MÓDULOS FOTOVOLTAICOS Table 1. Electrical Characteristics of Solar Panels. Tabla 1. Características Eléctricas de Paneles Solares. P003-T3_03_MCE_RA Page 6 2.3 ELECTRICAL CHARACTERISTICS OF PV INVERTER 2.3 CARACTERISTICAS ELÉCTRICAS DE INVERSOR FV In respond to the distribution and quantity of photovoltaic modules to be installed on this project, 40 inverters of the brand SMA Sunny Tripower CORE 1 62-US and 1 inverter SMA sunny Tripower CORE 1 33-US will be used. Por cuestiones de distribución y cantidad de módulos fotovoltaicos, en el caso de este proyecto serán utilizados 40 inversores de la marca SMA Sunny Tripower CORE 1 62-US y 1 inversor SMA sunny Tripower CORE 1 33-US. The electrical properties of this equipment are shown below: Las propiedades eléctricas de este equipo se exhiben a continuación: Table 2. Electrical characteristics of the photovoltaic inverter. Tabla 2. Características eléctricas de inversor fotovoltaico. 2.4 CHARACTERISTICS OF WIRING FOR DESIGN 2.4 CARACTERISTICAS DE CABLEADO PARA DISEÑO Table 3. Electrical characteristics of photovoltaic cable / ground wire. Tabla 3. Características eléctricas cable fotovoltaico / cable puesta a tierra. P003-T3_03_MCE_RA Page 7 Cable de Cobre, Tipo H1Z2Z2K, 1.8kV cd, 120°C DATOS GENERALES UND. SUMINISTRADOR - Código: Tipo de cable: Nivel de tensión: Nª de condutores por Cable: kV Ud. VIAKON H1Z2Z2-K 0,6 / 1kV AC - 1,8kV DC 1 Construcción cable - IEC 62930 No propagación de llama en cable simple Libre de halógenos No corrosivo Baja emisión de humo NORMATIVA Baja toxicidad Aislamiento Recubrimiento Protección UV Resistencia química: Aceite mineral, ácido y alcalino, amoniaco Otras - IEC 60332-1-2 IEC 60754-1 IEC 60754-2 IEC 61034-1-2 mm² mm mm mm mm kg/km mm Cobre 5 6 Flexible 2.49 XLPE 0.70 4.6 Natural o con color XLPE 0.80 Rojo/Negro 6.4 83 25 A 61 A 62 A 51 kA ºC ºC ºC V /Akm Ω / km Ω / km 2.69 / 1.20 / 0.85 90°C 250 -40 a +120 ºC 6.799 3.08 0.1264 IEC 62930 IEC 62930 Sí Sí CARACTERÍSTICAS TÉCNICAS CONDUCTOR AISLAMIENTO CUBIERTA CABLE Material: Clase: Sección: Formación: Diámetro Nominal: Material: Espesor: Diámetro sobre aislamiento: Color: Material: Espesor: Color: Diámetro exterior Peso: Radio de curvatura mínimo: DATOS ELÉCTRICOS Intensidad máxima admisible [Iz] P003-T3_03_MCE_RA Page 8 Instalación al aire libre o en bandeja (30ºC): Instalación directamente enterrada (0.8m) a (20ºC) y Resistividad Térmica del suelo a 1,5k.m/W: Instalación enterrada (0.8m) en tubo (20ºC) y Resistividad Térmica del suelo a 1,5k.m/W: En cortocircuito adiabático (0.1/0.5/1.0 s) Temperatura máxima de funcionamiento: Temperatura máxima de cortocircuito: Temperatura de funcionamiento: Caida de tensión en DC: Resistencia eléctrica máxima a 20ªC: Reactancia eléctrica: P003-T3_03_MCE_RA Page 9 Table 4. Electrical characteristics of alternating current cable. Tabla 4. Características eléctricas cable corriente alterna. P003-T3_03_MCE_RA Page 10 P003-T3_03_MCE_RA Page 11 3. PV SYSTEM ELECTRICAL DESIGN 3. DISEÑO ELÉCTRICO DEL SISTEMA FV 3.1 INVERTER SIZING 3.1 DIMENSIONAMIENTO DE INVERSORES To effectively size this equipment, the electrical properties of the inverter and the photovoltaic modules were considered; as well as the number of modules in each area depending on the voltage correction by temperature factor. To calculate the temperature voltage correction, the maximum historical data reported by the National Meteorological Service (SMN) and the minimum temperature detected were considered. These values have been -8.5 ° C and the maximum of 50° C (SMN) according to the meteorological station 19004 located near the installation site of the photovoltaic system. Para dimensionar estos equipos se consideraron las propiedades eléctricas del inversor y de los módulos fotovoltaicos; así como la cantidad de módulos en cada zona de instalación en función de la corrección de voltajes por factor de temperatura. Para calcular la corrección de voltajes de temperatura se consideraron los datos históricos máximos que reporta el Servicio Meteorológico Nacional (SMN)1 y la temperatura mínima detectada. Dichos valores han sido de -8.5°C y la máxima de 50°C (SMN) de acuerdo con la estación meteorológica 19004 ubicada cerca del sitio de instalación del sistema fotovoltaico. Tabla 5. (a) Maximum and minimum temperature station SMN. Tabla 5. (a) Temperatura máxima y mínima estación SMN. 1 https://smn.conagua.gob.mx/es/ P003-T3_03_MCE_RA Page 12 Considering the above data and the electrical properties of the photovoltaic module, the corresponding corrections were made for the open circuit voltage. The data obtained are displayed in the following tables: Tomando en cuenta los datos anteriores y las propiedades eléctricas del módulo fotovoltaico, se realizaron las correcciones correspondientes para el voltaje de circuito abierto. Los datos obtenidos se exhiben en las siguientes tablas: Table 6. Voltage adjustment to module. Tabla 6. Ajuste de voltaje a módulo. Brad: Model: Type: Total modules: Pmax (W)= Vmp (V)= Imp(A)= Isc(A)= Voc(V) PHOTOVOLTAIC MODULE LONGI LR5-72HPH-550 Monocristaline 5115 Data βVoc (%/°C)= βISc (%/°C)= βPmax (%/°C)= LONGI Voltage correction 550 41.95 Vmp(50°C) = 13.12 13.98 49.8 Voc(-8.5°C) = -0.27 0.048 -0.35 39.118375 54.30441 According to the temperature correction and electrical properties of the SMA Sunny Tripower CORE 1 62-US and 33-US inverters, such as the maximum voltage range of 1000 V, the number of 6 MPPTs and the number of 2 strings per MPPT, the photovoltaic arrangements were defined as follows: De acuerdo con la corrección de temperatura y las propiedades eléctricas de los inversores SMA Sunny Tripower CORE 1 62-US y 33-US, tales como el rango de voltaje máximo de 1000 V, la cantidad de 6 MPPTs y la cantidad de 2 strings por MPPT, se definieron los arreglos fotovoltaicos de la siguiente forma: P003-T3_03_MCE_RA Page 13 Tabla 7. Sizing of inverters. Table 7. Dimensionamiento de inversores. Inverters 1 - 6, 8 - 12 (11 Inverters) South Extension Sunny Tripower CORE1, 62.5 kW (62-US-41) String modules # MPPT P (W) Vmp (V) Voc (V) Isc (A) 18 1 1 9900 755.10 977.48 13.98 18 2 1 9900 755.10 977.48 13.98 18 3 2 9900 755.10 977.48 13.98 0 - - - - - - 18 4 3 9900 755.10 977.48 13.98 0 - - - - - - 18 0 18 0 18 5 6 7 4 5 6 9900 9900 9900 755.10 755.10 755.10 977.48 977.48 977.48 13.98 13.98 13.98 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 126 1.11 Total Ratio DC:AC - 69300 755.10 977.48 97.86 Inverter 7 (1 Inverter) South Extension Sunny Tripower CORE1, 62.5 kW (62-US-41) String modules # MPPT P (W) Vmp (V) Voc (V) Isc (A) 16 1 1 8800 671.20 868.87 13.98 16 2 1 8800 671.20 868.87 13.98 16 3 2 8800 671.20 868.87 13.98 0 - - - - - - 17 4 3 9350 713.15 923.17 13.98 17 5 3 9350 713.15 923.17 13.98 17 0 17 0 13 6 7 8 4 5 6 9350 9350 7150 713.15 713.15 545.35 923.17 923.17 705.96 13.98 13.98 13.98 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 129 1.14 Total Ratio DC:AC - 70950 545.35 705.96 111.84 Large total rooftop Installed power DC Installed power AC P003-T3_03_MCE_RA Page 14 1515.00 833.25 750.00 Module kWp kW Inverters 13 - 19, 22 - 24, 26 - 41 (26 Inverters) Carport Sunny Tripower CORE1, 62.5 kW (62-US-41) String modules # MPPT P (W) Vmp (V) Voc (V) Isc (A) 18 1 1 9900 755.10 977.48 13.98 18 2 1 9900 755.10 977.48 13.98 18 3 2 9900 755.10 977.48 13.98 0 - - - - - - 18 4 3 9900 755.10 977.48 13.98 0 - - - - - - 18 0 18 0 18 5 6 7 4 5 6 9900 9900 9900 755.10 755.10 755.10 977.48 977.48 977.48 13.98 13.98 13.98 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 126 1.11 Total Ratio DC:AC - 69300 755.10 977.48 97.86 Inverter 20 (1 Inverter) Carport P003-T3_03_MCE_RA Page 15 Sunny Tripower CORE1, 62.5 kW (62-US-41) String modules # MPPT P (W) Vmp (V) Voc (V) Isc (A) 18 1 1 9900 755.10 977.48 13.98 18 2 1 9900 755.10 977.48 13.98 17 3 2 9350 713.15 923.17 13.98 17 4 2 9350 713.15 923.17 13.98 17 5 3 9350 713.15 923.17 13.98 0 - - - - - - 17 0 17 0 17 6 7 8 4 5 6 9350 9350 9350 713.15 713.15 713.15 923.17 923.17 923.17 13.98 13.98 13.98 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 138 1.21 Total Ratio DC:AC - 75900 713.15 923.17 111.84 Inverter 21 (1 Inverter) Carport Sunny Tripower CORE1, 33 kW (33-US-41) String modules # MPPT P (W) Vmp (V) Voc (V) Isc (A) 18 1 1 9900 755.10 977.48 13.98 0 - - - - - - 15 2 2 8250 629.25 814.57 13.98 0 - - - - - - 15 3 3 8250 629.25 814.57 13.98 0 - - - - - - 15 0 0 0 0 4 - 4 - 8250 - 629.25 - 814.57 - 13.98 - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 63 1.04 Total Ratio DC:AC - 34650 629.25 814.57 55.92 Inverter 25 (1 Inverter) Carport Sunny Tripower CORE1, 62.5 kW (62-US-41) String modules # MPPT P (W) Vmp (V) Voc (V) Isc (A) 18 1 1 9900 755.10 977.48 13.98 18 2 1 9900 755.10 977.48 13.98 18 3 2 9900 755.10 977.48 13.98 0 - - - - - - 18 4 3 9900 755.10 977.48 13.98 0 - - - - - - 18 0 18 0 15 5 6 7 4 5 6 9900 9900 8250 755.10 755.10 629.25 977.48 977.48 814.57 13.98 13.98 13.98 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 123 1.08 Total Ratio DC:AC - 67650 629.25 814.57 97.86 Large total Carport Installed power AC Installed power DC Large Total ROOFTOP + CARPORT= Installed power DC= Installed power AC= P003-T3_03_MCE_RA Page 16 3,600 1,980 1,783 Module kWp kW 5,115 Modules 2,813.25 kWp 2,533.30 kW 3.2 SIZING OF WIRING AND CONDUITS IN DIRET CURRENT 3.2 DIMENSIONAMIENTO DE CABLEADO Y CANALIZACIONES EN CORRIENTE DIRECTA The following concept exposes how, the ampacity calculations were carried out. All calculations were made taking as reference the current regulations in Mexico NOM-001-SEDE-2012. En este punto se exponen los cálculos por ampacidad que fueron realizados. Todos los cálculos se realizaron tomando como referencia la normativa vigente NOM-001-SEDE-2012. 3.3 WIRING RESULTS FOR INVERTER No. 1-41 3.3 RESULTADOS CABLEADO INVERSOR No. 1-41 Table 8. Electrical calculations for Inverter no. 1-41. Table 8. Cálculos eléctricos para inversores no. 1-41. Inverters 1 - 6, 8 - 12 (11 Inverters) South Extension Sunny Tripower CORE1, 62.5 kW (62-US-41) Calculation of electrical wiring by ampacity Data Results Icc= 13.98 Ampacity with use factors= 38.41 A. Conductors per phase= 1 Imax*125%= 21.84 A. Ampacity= 40.00 A. Icorr Max= 38.41 A. F.T. = 0.65 Conductor gauge= 10 AWG. F.A.= 0.7 Conductor grounding= 8 AWG. F.D.= 1.25 Protection= 25 A. Maximum conductors in pipe 7 Historical maximun temperature= 50 °C Ceiling to tube base distance More than 300 up to 900 mm Ambient temperature adjustment= 64 °C Conductor material COPPER Nominal temperature conductors= 90 °C I Max.= 17.48 A. Calculation of electrical wiring due to voltage drop Inom= 13.98 A Distance string 1= Conductors per phase= 1 160.95273 string 2= Resistivity = 3.1558 Ω/km 160.62437 string 3= Series voltage 1= 755.10 V 133.67074 string 4= Series voltage 2= 755.10 V 112.80892 string 5= Series voltage 3= 755.10 V 104.1578 string 6= Series voltage 4= 755.10 V 116.50622 string 7= Series voltage 5= 755.10 V 88.43731 string 8= Series voltage 6= 755.10 V string 9= Series voltage 7= 755.10 V string 10= Series voltage 8= -V string 11= Series voltage 9= -V string 12= Series voltage 10= -V Series voltage 11= -V Series voltage 12= -V MAX ΔU (V)= 160.95273 Wire gauge= 10 AWG. Grounding= 8 AWG. Canalization calculation - thick wall conduit pipe Conductor gauge=* 10 AWG Required area=* 467 mm2 Conductor area= 32.17 mm2 Canalization diameter= 1 ½ in Ground gauge= 8 AWG Number of canalizations= 2 Grounding area= 8.37 mm2 Canalization area at 40%= 1066 mm2 Series to inverter: 7 * 2 pipes of 1 ½ in will be installed according to the following: Total wires =** 14 units + 2 ground wire c/7 wire 10 AWG of current + 1 ground wire 8 AWG *Insulated wires THHW-LS ** wires per line and 2 ground P003-T3_03_MCE_RA Page 17 ΔU (V)= 1.88 1.88 1.56 1.32 1.22 1.36 1.03 1.88 Inverter 7 (1 Inverter) South Extension Sunny Tripower CORE1, 62.5 kW (62-US-41) Calculation of electrical wiring by ampacity Data Results Icc= 13.98 Ampacity with use factors= 38.41 A. Conductors per phase= 1 Imax*125%= 21.84 A. Ampacity= 40.00 A. Icorr Max= 38.41 A. F.T. = 0.65 Conductor gauge= 10 AWG. F.A.= 0.7 Conductor grounding= 8 AWG. F.D.= 1.25 Protection= 25 A. Maximum conductors in pipe 8 Historical maximun temperature= 50 °C Ceiling to tube base distance More than 300 up to 900 mm Ambient temperature adjustment= 64 °C Conductor material COPPER Nominal temperature conductors= 90 °C I Max.= 17.48 A. Calculation of electrical wiring due to voltage drop Inom= 13.98 A Distance string 1= Conductors per phase= 1 99.92187 string 2= Resistivity = 3.1558 Ω/km 71.89342 string 3= Series voltage 1= 671.20 V 60.54322 string 4= Series voltage 2= 671.20 V 50.12791 string 5= Series voltage 3= 671.20 V 39.8089 string 6= 29.02826 Series voltage 4= 713.15 V string 7= Series voltage 5= 713.15 V 36.79135 string 8= Series voltage 6= 713.15 V 25.1464 string 9= Series voltage 7= 713.15 V string 10= Series voltage 8= 545.35 V string 11= Series voltage 9= -V string 12= Series voltage 10= -V Series voltage 11= -V Series voltage 12= -V MAX ΔU (V)= 99.92187 Wire gauge= 10 AWG. Grounding= 8 AWG. Canalization calculation - thick wall conduit pipe Conductor gauge=* 10 AWG Required area=* 531 mm2 Conductor area= 32.17 mm2 Canalization diameter= 1 ½ in Ground gauge= 8 AWG Number of canalizations= 2 Grounding area= 8.37 mm2 Canalization area at 40%= 1066 mm2 Series to inverter: 8 * 2 pipes of 1 ½ in will be installed according to the following: Total wires =** 16 units + 2 ground wire c/8 wire 10 AWG of current + 1 ground wire 8 AWG ΔU (V)= 1.31 0.95 0.80 0.62 0.49 0.36 0.46 0.41 1.31 *Insulated wires THHW-LS ** wire per line and 2 ground Inverters 13 - 19, 22 - 24, 26 - 41 (26 Inverters) Carport Sunny Tripower CORE1, 62.5 kW (62-US-41) Calculation of electrical wiring by ampacity Data Results Icc= 13.98 Ampacity with use factors= 38.41 A. Conductors per phase= 1 Imax*125%= 21.84 A. Ampacity= 40.00 A. Icorr Max= 38.41 A. F.T. = 0.65 Conductor gauge= 10 AWG. F.A.= 0.7 Conductor grounding= 8 AWG. F.D.= 1.25 Protection= 25 A. Maximum conductors in pipe 7 Historical maximun temperature= 50 °C Ceiling to tube base distance More than 300 up to 900 mm Ambient temperature adjustment= 64 °C Conductor material COPPER Nominal temperature conductors= 90 °C I Max.= 17.48 A. Calculation of electrical wiring due to voltage drop Inom= 13.98 A Distance string 1= Conductors per phase= 1 172.436 string 2= Resistivity = 3.1558 Ω/km 187.979 string 3= Series voltage 1= 755.10 V 179.371 string 4= Series voltage 2= 755.10 V 177.222 string 5= Series voltage 3= 755.10 V 176.706 string 6= Series voltage 4= 755.10 V 193.351 string 7= Series voltage 5= 755.10 V 183.364 string 8= Series voltage 6= 755.10 V string 9= Series voltage 7= 755.10 V string 10= Series voltage 8= -V string 11= Series voltage 9= -V string 12= Series voltage 10= -V Series voltage 11= -V Series voltage 12= -V MAX ΔU (V)= 193.351 Wire gauge= 10 AWG. Grounding= 8 AWG. Canalization calculation - thick wall conduit pipe Conductor gauge=* 10 AWG Required area=* 467 mm2 Conductor area= 32.17 mm2 Canalization diameter= 1 ½ in Ground gauge= 8 AWG Number of canalizations= 2 Grounding area= 8.37 mm2 Canalization area at 40%= 1066 mm2 Series to inverter: 7 * 2 pipes of 1 ½ in will be installed according to the following: Total wires =** 14 units + 2 ground wire c/7 wire 10 AWG of current+ 1 ground wire 8 AWG *Insulated wires THHW-LS ** wire per line and 2 ground P003-T3_03_MCE_RA Page 18 ΔU (V)= 2.01 2.20 2.10 2.07 2.06 2.26 2.14 2.26 Inverter 20 (1 Inverter) Carport Sunny Tripower CORE1, 62.5 kW (62-US-41) Calculation of electrical wiring by ampacity Data Results Icc= 13.98 Ampacity with use factors= 38.41 A. Conductors per phase= 1 Imax*125%= 21.84 A. Ampacity= 40.00 A. Icorr Max= 38.41 A. F.T. = 0.65 Conductor gauge= 10 AWG. F.A.= 0.7 Conductor grounding= 8 AWG. F.D.= 1.25 Protection= 25 A. Maximum conductors in pipe 8 Historical maximun temperature= 50 °C Ceiling to tube base distance More than 300 up to 900 mm Ambient temperature adjustment= 64 °C Conductor material COPPER Nominal temperature conductors= 90 °C I Max.= 17.48 A. Calculation of electrical wiring due to voltage drop Inom= 13.98 A Distance string 1= Conductors per phase= 1 38.268 string 2= Resistivity = 3.1558 Ω/km 26.997 string 3= Series voltage 1= 755.10 V 57.774 string 4= Series voltage 2= 755.10 V 95.653 string 5= Series voltage 3= 713.15 V 119.945 string 6= 102.52 Series voltage 4= 713.15 V string 7= Series voltage 5= 713.15 V 61.474 string 8= Series voltage 6= 713.15 V 20.012 string 9= Series voltage 7= 713.15 V string 10= Series voltage 8= 713.15 V string 11= Series voltage 9= -V string 12= Series voltage 10= -V Series voltage 11= -V Series voltage 12= -V MAX ΔU (V)= 119.945 Wire gauge= 10 AWG. Grounding= 8 AWG. Canalization calculation - thick wall conduit pipe Conductor gauge=* 10 AWG Required area=* 531 mm2 Conductor area= 32.17 mm2 Canalization diameter= 1 ½ in Ground gauge= 8 AWG Number of canalizations= 2 Grounding area= 8.37 mm2 Canalization area at 40%= 1066 mm2 Series to inverter: 8 * 2 pipes of 1 ½ in will be installed according to the following: Total wires =** 16 units + 2 ground wire c/8 wire 10 AWG of current + 1 ground wire 8 AWG ΔU (V)= 0.45 0.32 0.71 1.18 1.48 1.27 0.76 0.25 1.48 *Insulated wires THHW-LS ** wire per line and 2 ground Inverter 21 (1 Inverter) Carport Sunny Tripower CORE1, 33 kW (33-US-41) Calculation of electrical wiring by ampacity Data Results Icc= 13.98 Ampacity with use factors= 38.41 A. Conductors per phase= 1 Imax*125%= 21.84 A. Ampacity= 40.00 A. Icorr Max= 38.41 A. F.T. = 0.65 Conductor gauge= 10 AWG. F.A.= 0.7 Conductor grounding= 8 AWG. F.D.= 1.25 Protection= 25 A. Maximum conductors in pipe 8 Historical maximun temperature= 50 °C Ceiling to tube base distance More than 300 up to 900 mm Ambient temperature adjustment= 64 °C Conductor material COPPER Nominal temperature conductors= 90 °C I Max.= 17.48 A. Calculation of electrical wiring due to voltage drop Inom= 13.98 A Distance string 1= Conductors per phase= 1 40.654 string 2= Resistivity = 3.1558 Ω/km 27.204 string 3= Series voltage 1= 755.10 V 37.654 string 4= Series voltage 2= 629.25 V 17.597 string 5= Series voltage 3= 629.25 V string 6= Series voltage 4= 629.25 V string 7= Series voltage 5= -V string 8= Series voltage 6= -V string 9= Series voltage 7= -V string 10= Series voltage 8= -V string 11= Series voltage 9= -V string 12= Series voltage 10= -V Series voltage 11= -V Series voltage 12= -V MAX ΔU (V)= 40.654 Wire gauge= 10 AWG. Grounding= 8 AWG. Canalization calculation - thick wall conduit pipe Conductor gauge=* 10 AWG Required area=* 266 mm2 Conductor area= 32.17 mm2 Canalization diameter= 1 ½ in Ground gauge= 8 AWG Number of canalizations= 1 Grounding area= 8.37 mm2 Canalization area at 40%= 533 mm2 Series to inverter: 4 * 1 pipes of 1 ½ in will be installed according to the following: Total wires =** 8 units + 1 ground wire c/8 wire 10 AWG of current + 1 ground wire 8 AWG *Insulated wires THHW-LS ** wire per line and 1 ground P003-T3_03_MCE_RA Page 19 ΔU (V)= 0.48 0.38 0.53 0.25 0.53 Inverter 25 (1 Inverter) Carport Sunny Tripower CORE1, 62.5 kW (62-US-41) Calculation of electrical wiring by ampacity Data Results Icc= 13.98 Ampacity with use factors= 38.41 A. Conductors per phase= 1 Imax*125%= 21.84 A. Ampacity= 40.00 A. Icorr Max= 38.41 A. F.T. = 0.65 Conductor gauge= 10 AWG. F.A.= 0.7 Conductor grounding= 8 AWG. F.D.= 1.25 Protection= 25 A. Maximum conductors in pipe 7 Historical maximun temperature= 50 °C Ceiling to tube base distance More than 300 up to 900 mm Ambient temperature adjustment= 64 °C Conductor material COPPER Nominal temperature conductors= 90 °C I Max.= 17.48 A. Calculation of electrical wiring due to voltage drop Inom= 13.98 A Distance string 1= Conductors per phase= 1 84.451 string 2= Resistivity = 3.1558 Ω/km 49.711 string 3= Series voltage 1= 755.10 V 163.541 string 4= Series voltage 2= 755.10 V 119.596 string 5= Series voltage 3= 755.10 V 76.983 string 6= 61.816 Series voltage 4= 755.10 V string 7= Series voltage 5= 755.10 V 102.45 string 8= Series voltage 6= 755.10 V string 9= Series voltage 7= 629.25 V string 10= Series voltage 8= -V string 11= Series voltage 9= -V string 12= Series voltage 10= -V Series voltage 11= -V Series voltage 12= -V MAX ΔU (V)= 163.541 Wire gauge= 10 AWG. Grounding= 8 AWG. Canalization calculation - thick wall conduit pipe Conductor gauge=* 10 AWG Required area=* 467 mm2 Conductor area= 32.17 mm2 Canalization diameter= 1 ½ in Ground gauge= 8 AWG Number of canalizations= 2 Grounding area= 8.37 mm2 Canalization area at 40%= 1066 mm2 Series to inverter: 7 * 2 pipes of 1 ½ in will be installed according to the following: Total wires =** 14 units + 2 ground wire c/7 wire 10 AWG of current + 1 ground wire 8 AWG *Insulated wires THHW-LS ** wire per line and 2 ground P003-T3_03_MCE_RA Page 20 ΔU (V)= 0.99 0.58 1.91 1.40 0.90 0.72 1.44 1.91 Figure 3. Graphic representation of this section. Figura 3. Representación gráfica de esta sección. Inverter 1 - 12 Inverter 13 - 21 Inverter 22 - 29 Inverters 30 - 41 P003-T3_03_MCE_RA Page 21 3.4 SIZING OF WIRING AND ELECTRICAL CONDUITS IN A.C. 3.4 DIMENSIONAMIENTO DE CABLEADO Y CANALIZACIONES EN C.A. Figure 4 One-line diagram for photovoltaic system. Figura 4. Diagrama unifilar para sistema fotovoltaico. As well as on direct current, the corresponding calculations will be carried out to define the dimension of the wiring in alternating current by ampacity and voltage drop according to the electrical output properties of each inverter; jointly, the corresponding size conduits were calculated for each case. Al igual que en corriente directa, se realizarán los cálculos correspondientes para definir el calibre del cableado en corriente alterna por ampacidad y caída de voltaje de acuerdo con las propiedades eléctricas de salida de cada inversor; conjuntamente, se calcularon las canalizaciones correspondientes para cada caso. Table 9 shows the transcendent properties of the inverters to carry out the proper sizing for the AC wiring: La Tabla 9, expone las propiedades trascendentes de los inversores para realizar el dimensionamiento adecuado para el cableado en C.A.: Table 9. Electrical properties of the inverters. Tabla 9. Propiedades eléctricas de los inversores. SMA Sunny Tripower CORE1, 62.5 kW (62-US-41) Quantity= 40 PnomAC= Papparent AC= V nom AC= V max DC = V min DC Output phases= Threads # strings InomAC= Isc MPPT1 = Isc MPPT2 = Isc MPPT3 = Isc MPPT4 = Isc MPPT5 = Isc MPPT6 = 62.5 kW 66 KVA 480 V 1000 V 150 V 3 3-(N)-PE 6/2 79.5 A 30 A 30 A 30 A 30 A 30 A 30 A SMA Sunny Tripower CORE1, 33 kW (33-US-41) Quantity= 1 PnomAC= 33.3 kW Papparent AC= 33.3 KVA V nom AC= 480 V V max DC = 1000 V V min DC 150 V Output phases= 3 Threads 6/2 # strings 3-(N)-PE 40 A InomAC= Isc MPPT1 = 30 A Isc MPPT2 = 30 A Isc MPPT3 = 30 A Isc MPPT4 = 30 A Isc MPPT5 = 30 A 30 A Isc MPPT6 = P003-T3_03_MCE_RA Page 23 3.5 CALCULATION RESULTS OF INVERTERS No.1-No. 6 (PV BOARD 1),No. 7, No. 8-No. 12 (PV BOARD 2), No. 21 (PV BOARD 3). 3.5 RESULTADOS DE CÁLCULOS PARA INVERSORES NO.1- No.6 (TABLERO FV 1), No. 7, No. 8-No. 12 (TABLERO FV 2), No. 21 (TABLERO FV 3) Table 10. Electrical calculations for this section. Tabla 10. Cálculos eléctricos de esta sección. Inverters 1 - 6, 8 - 12 (11 Inverters) South Extension Sunny Tripower CORE1, 62.5 kW (62-US-41) Calculation of electrical wiring by ampacity Data Results Imax= 79.5 A Ampacity with use factors= 122.31 A. Conductors per phase= 1 Imax*125%= 99.38 A. Conductor ampacity= 135 A Icorr Max= 122.31 A. F.T. = 0.65 Conductor gauge= 1/0 F.A.= 1 Conductor grounding= 6 AWG. F.D.= 1.25 Overcurrent protection= 100.00 A. Maximum conductors in pi 3 Caliber selection according to Icorr Historical maximun temper 50 °C The maximum corrected current in the circuit is 122.31 A, which Ceiling to tube base distancMore than 300 up to 900 mm will be carried by 1 conductor(es) 1/0 AWG by phase, which has Ambient temperature adju 64 °C an ampacity of 135 A at 90 °C, will be protected with an ITM of 100 Conductor material ALUMINUM A, complying with what is required by the NOM 001 Sede 2012 Nominal temperature cond 90 °C Calculation of electrical wiring due to voltage drop Inom= 79.5 A % CT= 2.87 Conductors by phase= 1 Tension drop (CT)= 13.78 V 0.5303 Ω/km Effective impedance (Ze) = L= 188.66 m Voltage= 480 V Wire gauge= 1/0 AWG 4 Power Factor 0.95 RL = 0.66 XL = 0.18 Canalization calculation Conductor gauge=* 1/0 AWG Required area=* 444 mm2 Conductor area= 143.40 mm2 Canalization diameter= 2 in Ground gauge= Number of canalizations= 6 AWG 1 Ground area= 13.30 mm2 Canalization area at 40%= 879 mm2 Number of phases= 3 *1 pipes of 2 in will be installed according to the following: Total wires=** 3 +1 units c/3 wire 1/0 AWG of current + 1 ground wire 6 AWG *Insulated wire THHW-LS **3 wires per line and 1 ground P003-T3_03_MCE_RA Page 24 Inverter 7 (1 Inverter) South Extension Sunny Tripower CORE1, 62.5 kW (62-US-41) Calculation of electrical wiring by ampacity Data Results Imax= 79.5 A Ampacity with use factors= 122.31 A. Conductors per phase= 1 Imax*125%= 99.38 A. Conductor ampacity= 135 A Icorr Max= 122.31 A. F.T. = 0.65 Conductor gauge= 1/0 F.A.= 1 Conductor grounding= 6 AWG. F.D.= 1.25 Overcurrent protection= 100.00 A. Maximum conductors in pi 3 Caliber selection according to Icorr Historical maximun temper 50 °C The maximum corrected current in the circuits is 122.31 A, which Ceiling to tube base distan More than 300 up to 900 mm will be carried by 1 conductor(es) 1/0 AWG by phase, which has Ambient temperature adju 64 °C an ampacity of 135 A at 90 °C, will be protected with an ITM of 100 Conductor material ALUMINUM A, complying with is required by the NOM 001 Sede 2012 Nominal temperature cond 90 °C Calculation of electrical wiring due to voltage drop Inom= 79.5 A % CT= 0.08 Conductors by phase= 1 Tension drop (CT)= 0.39 V Effective impedance (Ze) = 0.5303 Ω/km L= 5.308 m Voltage= 480 V Wire gauge= 1/0 AWG 4 Power Factor 0.95 RL = 0.66 XL = 0.18 Canalization calculation Conductor gauge=* 1/0 AWG Required area=* 444 mm2 Conductor area= 143.40 mm2 Canalization diameter= 2 in Ground gauge= 6 AWG Number of canalizations= 1 Ground area= 13.30 mm2 Canalization area at 40%= 879 mm2 Number of phases= 3 * 1 pipes of 2 in will be installed according to the following: Total wires=** 3 +1 units c/3 wire 1/0 AWG of current+ 1 ground wire 6 AWG *Insulated wire THHW-LS **3 wires per line and 1 ground Inverter 21 (1 Inverter) Carport Sunny Tripower CORE1, 33 kW (33-US-41) Calculation of electrical wiring by ampacity Data Results Imax= 40 A Ampacity with use factors= 48.78 A. Conductors per phase= 1 Imax*125%= 50.00 A. Conductor ampacity= 55 A Icorr Max= 50.00 A. F.T. = 0.82 Conductor gauge= 6 AWG. F.A.= 1 Conductor grounding= 6 AWG. F.D.= 1.25 Overcurrent protection= 50.00 A. Maximum conductors in pi 3 Caliber selection according to Icorr Historical maximun temper 50 °C The maximum corrected current in the circuits is 50 A, which will Ceiling to tube base distancDoes not apply be carried by 1 conductor(es) 6 AWG by phase, which has an 50 °C Ambient temperature adju ampacity of 55 A at 90 °C, will be protected with an ITM of 50 A, Conductor material ALUMINUM complying with is required by the NOM 001 Sede 2012 Nominal temperature cond 90 °C Calculation of electrical wiring due to voltage drop Inom= 40 A % CT= 0.32 Conductors by phase= 1 Tension drop (CT)= 1.53 V Effective impedance (Ze) = 1.1073 Ω/km L= 20 m Voltage= 480 V Wire gauge= 6 AWG 4 Power Factor 0.95 RL = 1.61 XL = 0.21 Canalization calculation Conductor gauge=* 6 AWG Required area=* 225 mm2 Conductor area= 35.24 mm2 Canalization diameter= 2 in Ground gauge= 6 AWG Number of canalizations= 1 Ground area= 13.30 mm2 Canalization area at 40%= 879 mm2 Number of phases= 3 * 1 pipes of 2 in will be installed according to the following: Total wires=** 3 +1 units c/3 wire 6 AWG of current+ 1 ground wire6 AWG *Insulated wire THHW-LS **3 wire per line and 1 ground P003-T3_03_MCE_RA Page 25 Figure 5 Is a representation of the one-line diagram of the inverter according to the calculations performed for this section. Figura 5 Es una representación del diagrama unifilar del inversor de acuerdo con los cálculos realizados para esta sección: INVERTER 1 – 12 Figure 5. One – line diagram of this section. Figura 5. Diagrama unifilar de esta sección. P003-T3_03_MCE_RA Page 26 INVERTER 21 3.6 CALCULATION RESULTS OF INVERTERS No.13-No. 20, No. 22-No. 41 (INVERTER-BOX COMBINER) 3.6 RESULTADOS DE CÁLCULOS PARA INVERSORES NO.13- No.20, No. 22-No. 41 (INVERSOR – CAJAS COMBINADORAS) Table 11. Electrical calculations for this section. Tabla 11. Cálculos eléctricos de esta sección. Inverters 13 - 19, 22 - 24, 26 - 41 (26 Inverters) Carport Sunny Tripower CORE1, 62.5 kW (62-US-41) Calculation of electrical wiring by ampacity Data Results Imax= 79.5 A Ampacity with use factors= 96.95 A. Conductors per phase= 1 Imax*125%= 99.38 A. Conductor ampacity= 100 A Icorr Max= 99.38 A. F.T. = 0.82 Conductor gauge= 2 AWG. F.A.= 1 Conductor grounding= 6 AWG. F.D.= 1.25 Overcurrent protection= 100.00 A. Maximum conductors in pi 3 Caliber selection according to Icorr 50 °C Historical maximun temper The maximum corrected current in the circuits is 99.38 A, which Ceiling to tube base distancDoes not apply will be carried by 1 conductor(es) 2 AWG by phase, which has an 50 °C Ambient temperature adju ampacity of 100 A at 90 °C, will be protected with an ITM of 100 A, Conductor material ALUMINUM complying with is required by the NOM 001 Sede 2012 90 °C Nominal temperature cond Calculation of electrical wiring due to voltage drop Inom= 79.5 A % CT= 0.12 Conductors by phase= 1 Tension drop (CT)= 0.59 V Effective impedance (Ze) = 0.5360 Ω/km L= 8m Voltage= 480 V Wire gauge= 2 AWG 4 Power Factor 0.95 RL = 0.66 XL = 0.187 Canalization calculation Conductor gauge=* 2 AWG Required area=* 529 mm2 Conductor area= 86.00 mm2 Canalization diameter= 2 in Ground gauge= Number of canalizations= 6 AWG 1 Ground area= 13.30 mm2 Canalization area at 40%= 879 mm2 Number of phases= 3 * 1 pipes of 2 in will be installed according to the following: Total wires=** 3 +1 units c/3 wire 2 AWG of current+ 1 ground wire 6 AWG *Insulated wire THHW-LS **3 wire per line and 1 ground Figure 6 Is a representation of the one-line diagram of the inverter according to the calculations performed for this section. Figura 6 Es una representación del diagrama unifilar del inversor de acuerdo con los cálculos realizados para esta sección: Figure 6. One – line diagram of this section. Figura 6. Diagrama unifilar de esta sección. P003-T3_03_MCE_RA Page 27 INVERTER 13 - 20, 22 – 41 3.7 CALCULATION RESULTS OF INVERTERS No.13-No. 20, No. 22-No. 41 (BOX COMBINER-PV BOARD 3) 3.7 RESULTADOS DE CÁLCULOS PARA INVERSORES NO.13- No.20, No. 22-No. 41 (CAJA COMBINADORA – TABLERO FV 3) Table 12. Electrical calculations for this section. Tabla 12. Cálculos eléctricos de esta sección. AC Combiner 1-14 - Carport Sunny Tripower CORE1, 62.5 kW (62-US-41) Calculation of electrical wiring by ampacity Datos Resultados 193.90 A. Ampacity with use factors= Imax= 159 A Imax*125%= 198.75 A. Conductors per phase= 1 198.75 A. Icorr Max= Conductor ampacity= 205 A Conductor gauge= 4/0 F.T. = 0.82 F.A.= 1 Conductor grounding= 4 AWG. 200.00 A. F.D.= 1.25 Overcurrent protection= Maximum conductors in pi 3 Caliber selection according to Icorr Historical maximun temper 50 °C The maximum corrected current in the circuits is 198.75 A, which Ceiling to tube base distan Does not apply will be carried by 1 conductor(es) 4/0 AWG by phase, which has 50 °C Ambient temperature adju an ampacity of 205 A at 90 °C, will be protected with an ITM of 200 Conductor material ALUMINUM A, complying with what is required by the NOM 001 Sede 2012 Nominal temperature cond 90 °C Calculation of electrical wiring due to voltage drop 2.69 159 A % CT= Inom= Conductors by phase= 1 12.91 V Tension drop (CT)= Effective impedance (Ze) = 0.2562 Ω/km 182.91 m L= 480 V Voltage= 4 4/0 AWG Wire gauge= 0.95 Power Factor 0.207 RL = XL = 0.167 Canalization calculation 4/0 AWG Required area=* 1461 mm2 Conductor gauge=* 239.90 mm2 Canalization diameter= 3 in Conductor area= Ground gauge= 4 AWG Number of canalizations= 1 Ground area= 21.15 mm2 Canalization area at 40%= 1936 mm2 Number of fases= 3 * 1 pipes of 3 in will be installed according to the following: 3 +1 units c/3 wire 4/0 AWG of current + 1 ground wire 4 AWG Total wires=** *Insulated wire THHW-LS **3 wire per line and 1 ground P003-T3_03_MCE_RA Page 28 Inverter 20 (1 Inverter) Carport Sunny Tripower CORE1, 62.5 kW (62-US-41) Calculation of electrical wiring by ampacity Data Results Imax= 79.5 A Ampacity with use factors= 96.95 A. Conductors per phase= 1 Imax*125%= 99.38 A. Conductor ampacity= 100 A Icorr Max= 99.38 A. F.T. = 0.82 Conductor gauge= 2 AWG. F.A.= 1 Conductor grounding= 6 AWG. F.D.= 1.25 Overcurrent protection= 100.00 A. Maximum conductors in pi 3 Caliber selection according to Icorr Historical maximun temper 50 °C The maximum corrected current in the circuits is 99.38 A, which Ceiling to tube base distancDoes not apply will be carried by 1 conductor(es) 2 AWG by phase, which has an Ambient temperature adju 50 °C ampacity of 100 A at 90 °C, will be protected with an ITM of 100 A, Conductor material ALUMINUM compliying with is required by the NOM 001 Sede 2012 Nominal temperature cond 90 °C Calculation of electrical wiring due to voltage drop Inom= 79.5 A % CT= 0.12 Conductors by phase= 1 Tension drop (CT)= 0.59 V Effective impedance (Ze) = 0.5360 Ω/km L= 8m Voltage= 480 V Wire gauge= 2 AWG 4 Power Factor 0.95 RL = 0.66 XL = 0.187 Canalization calculation Conductor gauge=* 2 AWG Required area=* 271 mm2 Conductor area= 86.00 mm2 Canalization diameter= 1 in Ground gauge= 6 AWG Number of canalizations= 1 Ground area= 13.30 mm2 Canalization area at 40%= 229 mm2 Number of phases= 3 * 1 pipes of 1 in will be installed according to the following: Total wires=** 3 +1 units c/3 wire 2 AWG of current+ 1 ground wire 6 AWG *Insulated wire THHW-LS **3 wire per line and 1 ground Inverter 25 (1 Inverter) Carport Sunny Tripower CORE1, 62.5 kW (62-US-41) Calculation of electrical wiring by ampacity Data Results Imax= 79.5 A Ampacity with use factors= 96.95 A. Conductors per phase= 1 Imax*125%= 99.38 A. 100 A Conductor ampacity= Icorr Max= 99.38 A. F.T. = 0.82 Conductor gauge= 2 AWG. F.A.= 1 Conductor grounding= 6 AWG. F.D.= 1.25 Overcurrent protection= 100.00 A. Maximum conductors in pi 3 Caliber selection according to Icorr 50 °C Historical maximun temper The maximum corrected current in the circuits is 99.38 A, which Ceiling to tube base distancDoes not apply will be carried by 1 conductor(es) 2 AWG by phase, which has an 50 °C Ambient temperature adju ampacity of 100 A at 90 °C, will be protected with an ITM of 100 A, Conductor material ALUMINUM complying with is required by the NOM 001 Sede 2012 Nominal temperature cond 90 °C Calculation of electrical wiring due to voltage drop Inom= 79.5 A % CT= 0.05 Conductors by phase= 1 Tension drop (CT)= 0.22 V Effective impedance (Ze) = 0.5360 Ω/km L= 3m Voltage= 480 V Wire gauge= 2 AWG 4 Power Factor 0.95 RL = 0.66 XL = 0.187 Canalization calculation Conductor gauge=* 2 AWG Required area=* 529 mm2 Conductor area= 86.00 mm2 Canalization diameter= 1 ½ in Ground gauge= 6 AWG Number of canalizations= 1 Ground area= Canalization area at 40%= 533 mm2 13.30 mm2 Number of phases= 3 *1 pipes of 1 ½ in will be installed according to the following: Total wires=** 3 +1 units c/3 wire 2 AWG of current+ 1 ground wire 6 AWG *Insulated wire THHW-LS **3 wire per line and 1 ground P003-T3_03_MCE_RA Page 29 Figure 7 Is a representation of the one-line diagram of the inverter according to the calculations performed for this section. Figura 7 Es una representación del diagrama unifilar del inversor de acuerdo con los cálculos realizados para esta sección: Figure 7. One – line diagram of this section. Figura 7. Diagrama unifilar de esta sección. P003-T3_03_MCE_RA Page 30 3.8 PV 1-2 BOARD TO INTERCONNECTION POINT. SOUTH EXTENSION. 3.8 TABLERO FV 1-2 A PUNTO DE INTERCONEXIÓN. AMPLIACIÓN SUR. Table 13. Electrical calculations for this section. Tabla 13. Cálculos eléctricos de esta sección. Data Imax= Conductors per phase= Conductor ampacity= F.T. = F.A.= F.D.= Maximum conductors in pipe Historical maximun temperature= Ceiling to tube base distance Ambient temperature adjustment= Conductor material Nominal temperature conductors= Inom= Conductors by phase= Tension drop (CT)= Effective impedance (Ze) = L= Voltage= Wire gauge= Power Factor RL = XL = Conductor gauge=* Conductor area= Ground gauge= Ground area= Number of phases= Total wires=** Board 1 and 2 South Extension Sunny Tripower CORE1, 62.5 kW (62-US-41) Calculation of electrical wiring by ampacity Results 671.83 A. Ampacity with use factors= 477 A 3 Imax*125%= 596.25 A. 671.83 A. Icorr Max= 230 A 0.71 Conductor gauge= 250kcmil 1 Conductor grounding= 2/0 600.00 A. Overcurrent protection= 1.25 3 Caliber selection according to Icorr 50 °C The maximum corrected current in the circuits is 671.83 A, More than 300 up to 900 mmwhich will be carried by 3 conductor(es) 250 AWG by phase, 64 °C which has an ampacity of 230 A at 90 °C, will be protected with ALUMINUM an ITM of 600 A, complying with what is required by the NOM 90 °C 001 Sede 2012 Calculation of electrical wiring due to voltage drop % CT= 0.78 477 A 3 3.76 V 0.3031 Ω/km 45 m 480 V 250 Kcmill 0.95 0.282 0.171 Canalization calculation 3275 mm2 250 Kcmill Required area=* 3 in Canalization diameter= 296.50 mm2 3 2/0 AWG Number of canalizations= 67.43 mm2 5808 mm2 Canalization area at 40%= * 3 pipes of 3 in will be installed according to the following: 3 9 +3 units c/9 wire 250 AWG of current + 1 ground wire 2/0 AWG *Insulated wire THHW-LS **3 wire per line and 3 ground Figure 8 Is a representation of the one-line diagram of the inverter according to the calculations performed for this section. Figura 8 es un representación del diagrama unifilar del inversor de acuerdo con los cálculos realizados para esta sección: P003-T3_03_MCE_RA Page 31 Figure 8. One-line diagram of this section. Figura 8. Diagrama unifilar de esta sección. P003-T3_03_MCE_RA Page 32 3.9 PV 3 BOARD TO TRANSFORMER. CARPORT. 3.9 TABLERO FV 3 A TRANSFORMADOR. CARPORT Table 14. Electrical calculations for this section. Tabla 14. Cálculos eléctricos de esta sección. Data Imax= Conductors per phase= Conductor ampacity= F.T. = F.A.= F.D.= Maximum conductors in pipe Historical maximun temperature= Ceiling to tube base distance Ambient temperature adjustment= Conductor material Nominal temperature conductors= Inom= Conductors by phase= Tension drop (CT)= Effective impedance (Ze) = L= Voltage= Wire gauge= Power Factor RL = XL = Conductor gauge=* Conductor area= Ground gauge= Ground area= Number of phases= Total wires=** Board 3 Carport Sunny Tripower CORE1, 62.5 kW (62-US-41) Calculation of electrical wiring by ampacity Results 2714.63 A. Ampacity with use factors= 2226 A 9 Imax*125%= 2782.50 A. 3000 A Icorr Max= 2782.50 A. Conductor gauge= COPPER BUSBAR TO 3000 A 0.82 1 Conductor grounding= 400 AWG. 3000.00 A. Overcurrent protection= 1.25 3 Caliber selection according to Icorr 50 °C The maximum corrected current in the circuits is 2782.5 A, Does not apply which will be carried by 9 conductor(es) COPPER BUSBAR TO 50 °C 3000 A AWG by phase, which has an ampacity of 3000 A at 90 COPPER °C, will be protected with an ITM of 3000 A, complying with 90 °C what is required by the NOM 001 Sede 2012 Calculation of electrical wiring due to voltage drop % CT= 0.00 2226 A 9 0.00 V 0.0000 Ω/km 1m 480 V 4 USBAR TO 3000 A AWG 0.95 0 0 Canalization calculation 1824 mm2 USBAR TO 3000 A AWG Required area=* 1 in 0.00 mm2 Canalization diameter= 9 400 AWG Number of canalizations= 2061 mm2 202.70 mm2 Canalization area at 40%= 3 * 9 pipes of 1 in in will be installed according to the following: c/27 wire COPPER BUSBAR TO 3000 A AWG of current+ 1 ground wire 400 AWG 27 +9 units *Insulated wire THHW-LS **3 wire per line and 9 ground Figure 9 Is a representation of the one-line diagram of the inverter according to the calculations performed for this section. Figura 9 Es una representación del diagrama unifilar del inversor de acuerdo con los cálculos realizados para esta sección: Figure 9. One-line diagram of this section. Figura 9. Diagrama unifilar de esta sección. P003-T3_03_MCE_RA Page 33 3.10 TRANSFORMER. INTERCONECTION POINT. 3.10 TRANSFORMADOR A PUNTO DE INTERCONEXIÓN. CARPORT Table 15. Electrical calculations for this section. Tabla 15. Cálculos eléctricos de esta sección. MEDIUM VOLTAGE CELL CARPORT PHOTOVOLTAIC SYSTEM TR2000KVA Calculation of electrical wiring by ampacity Data Results Ampacity with use factors= 38.03 A. Imax= 33.47 A Conductors per phase= 1 Imax*125%= 41.84 A. Conductor ampacity= 120 A Icorr Max= 41.84 A. F.T. = 0.88 Conductor gauge= 1/0 F.A.= 1 Conductor grounding= 1/0 F.D.= 1.25 Overcurrent protection= 45.00 A. Maximum conductors in pip 3 Caliber selection according to Icorr Historical maximun tempera 40 °C The maximum corrected current in the circuits is 41.84 A, Ceiling to tube base distanceDoes not apply which will be carried by 1 conductor(es) 1/0 AWG by phase, which has an ampacity of 120 A at 75 °C, will be protected with Ambient temperature adjust 40 °C an ITM of 45 A, complying with what is required by the NOM ALUMINUM Conductor material 001 Sede 2012 Nominal temperature condu 75 °C Calculation of electrical wiring due to voltage drop % CT= 0.04 33.47 A Inom= Conductors by phase= 1 Tension drop (CT)= 13.74 ∆V Effective impedance (Ze) = 0.66 Ω/km L= 360 m Voltage= 34500 V Wire gauge= 1/0 AWG Power Factor 0.95 0.69 RL = XL = 0.18 Canalization calculation 3274 mm2 Required area=* 1/0 AWG Conductor gauge=* 1073.47 mm2 Canalization diameter= 4 in Conductor area= 1/0 AWG 1 Ground gauge= Number of canalizations= Ground area= 53.48 mm2 Canalization area at 40%= 3326 mm2 * 1 pipes of 4 in will be installed according to the following: Number of phases= 3 c/3 wire 1/0 AWG of current + 1 ground wire 1/0 AWG 3 +1 units Total wires=** *Insulated wire THHW-LS **3 wire per line and 1 ground Figure 10 Is a representation of the one-line diagram of the inverter according to the calculations performed for this section. Figura 10 Es una representación del diagrama unifilar del inversor de acuerdo con los cálculos realizados para esta sección: P003-T3_03_MCE_RA Page 34 Figure 10. One-line diagram of this section. Figura 10. Diagrama unifilar de esta sección. P003-T3_03_MCE_RA Page 35 4. VOLTAGE DROP 4. CAÍDA DE TENSIÓN Tabla 16. Total voltage drop. Tabla 16. Caída de tensión total. Voltage drop by section Photovoltaic module to inverter Inversor Alternating current interconnection inverters Cable Voltage drop modules to length inverter Cable length Voltage drop inverters to board / combiner Cable length Voltage drop combiner box to board Cable length Voltage drop PV board to interconnection Sum Cable length Voltage drop medium voltage cell Interconnection Total voltage drop Inverter 1 148 mts. ΔVInv 1(%) 1.73 188 mts. 2.85 ΔVInv 1(%) 3.64 Inverter 2 89 mts. ΔVInv 2(%) 1.04 189 mts. 2.87 ΔVInv 2(%) 3.65 Inverter 3 121 mts. ΔVInv 3(%) 1.42 143 mts. 2.18 ΔVInv 3(%) 2.96 Inverter 4 65 mts. ΔVInv 4(%) 0.76 144 mts. 2.19 ΔVInv 4(%) 2.98 Inverter 5 93 mts. ΔVInv 5(%) 1.08 90 mts. 1.37 ΔVInv 5(%) 2.15 Inverter 6 161 mts. ΔVInv 6(%) 1.88 21 mts. 0.31 ΔVInv 6(%) 1.10 Inverter 7 100 mts. ΔVInv 7(%) 1.31 5 mts. 0.08 ΔVInv 7(%) 0.86 Inverter 8 81 mts. ΔVInv 8(%) 0.94 22 mts. 0.33 ΔVInv 8(%) 1.11 Inverter 9 109 mts. ΔVInv 9(%) 1.28 9 mts. 0.14 Inverter 10 115 mts. ΔVInv 10(%) 1.35 26 mts. 0.40 Inverter 11 143 mts. ΔVInv 11(%) 1.67 87 mts. Inverter 12 113 mts. ΔVInv 12(%) 1.32 117 mts. Inverter 13 122 mts. ΔVInv 13(%) 1.42 Inverter14 120 mts. ΔVInv 14(%) Inverter 15 97 mts. Inverter 16 45 mts. 0.78 ΔVInv 9(%) 0.92 ΔVInv 10(%) 1.18 1.33 ΔVInv 11(%) 2.11 1.78 ΔVInv 12(%) 2.56 3 mts. 0.05 ΔVInv 13(%) 0.09 1.41 8 mts. 0.12 ΔVInv 14(%) 0.16 ΔVInv 15(%) 1.13 3 mts. 0.05 ΔVInv 15(%) 0.09 158 mts. ΔVInv 16(%) 1.85 3 mts. 0.05 ΔVInv 16(%) 0.09 Inverter 17 117 mts. ΔVInv 17(%) 1.37 3 mts. 0.05 ΔVInv 17(%) 0.09 Inverter 18 118 mts. ΔVInv 18(%) 1.38 3 mts. 0.05 ΔVInv 18(%) 0.09 Inverter 19 133 mts. ΔVInv 19(%) 1.55 8 mts. 0.12 ΔVInv 19(%) 0.16 Inverter 20 120 mts. ΔVInv 20(%) 1.40 3 mts. 0.05 ΔVInv 20(%) 0.09 Inverter 21 41 mts. ΔVInv 21(%) 0.48 0.12 ΔVInv 21(%) 0.16 Inverter 22 118 mts. ΔVInv 22(%) 1.38 3 mts. 0.05 ΔVInv 22(%) 0.09 Inverter 23 123 mts. ΔVInv 23(%) 1.43 3 mts. 0.05 ΔVInv 23(%) 0.09 Inverter 24 121 mts. ΔVInv 24(%) 1.41 3 mts. 0.05 ΔVInv 24(%) 0.09 Inverter 25 164 mts. ΔVInv 25(%) 1.91 3 mts. 0.05 ΔVInv 25(%) 0.09 Inverter 26 193 mts. ΔVInv 26(%) 2.26 3 mts. 0.05 ΔVInv 26(%) 0.09 Inverter 27 136 mts. ΔVInv 27(%) 1.59 3 mts. 0.05 ΔVInv 27(%) 0.09 Inverter 28 188 mts. ΔVInv 28(%) 2.20 3 mts. 0.05 ΔVInv 28(%) 0.09 Inverter 29 177 mts. ΔVInv 29(%) 2.06 3 mts. 0.05 ΔVInv 29(%) 0.09 Inverter 30 169 mts. ΔVInv 30(%) 1.97 3 mts. 0.05 ΔVInv 30(%) 0.09 Inverter 31 172 mts. ΔVInv 31(%) 2.01 3 mts. 0.05 ΔVInv 31(%) 0.09 Inverter 32 168 mts. ΔVInv 32(%) 1.96 3 mts. 0.05 ΔVInv 32(%) 0.09 Inverter 33 177 mts. ΔVInv 33(%) 2.07 3 mts. 0.05 ΔVInv 33(%) 0.09 Inverter 34 147 mts. ΔVInv 34(%) 1.72 3 mts. 0.05 ΔVInv 34(%) 0.09 Inverter 35 145 mts. ΔVInv 35(%) 1.69 3 mts. 0.05 ΔVInv 35(%) 0.09 Inverter 36 172 mts. ΔVInv 36(%) 2.01 3 mts. 0.05 ΔVInv 36(%) 0.09 Inverter 37 169 mts. ΔVInv 37(%) 1.98 3 mts. 0.05 ΔVInv 37(%) 0.09 Inverter 38 152 mts. ΔVInv 38(%) 1.78 3 mts. 0.05 ΔVInv 38(%) 0.09 Inverter 39 146 mts. ΔVInv 39(%) 1.71 3 mts. 0.05 ΔVInv 39(%) 0.09 Inverter 40 125 mts. ΔVInv 40(%) 1.46 3 mts. 0.05 ΔVInv 40(%) 0.09 Inversor 41 111 mts. ΔVInv 41(%) 0.47 3 mts. 0.05 ΔVInv 41(%) 0.09 P003-T3_03_MCE_RA Page 36 8 mts. 45 mts. 17.32 11.07 27.55 44.53 144.18 149.81 135.21 128.98 150.32 158.44 140.12 162.44 158.44 182.91 0.78 0.25 0.16 0.41 0.65 2.12 2.20 1.99 1.90 2.21 2.33 2.06 2.39 2.33 2.69 1 0.00 360.00 0.04 5. RESPONSABLE FOR ELECTRICAL CALCULATIONS 5. RESPONSABLE DE CÁLCULOS EN BAJA Y MEDIA TENSIÓN JOSÉ ROGELIO SANDOVAL GARZA Cédula profesional: 9858988 P003-T3_03_MCE_RA Page 37