Subido por mhernandez

PV System Electrical Design Calculation Report

Anuncio
PV System Electrical Design Calculation Report
Memoria De Cálculo Diseño Eléctrico Para Sistema Fotovoltaico.
P003-T3_03_MCE_RA
General Escobedo, Nuevo León
GP Diseño
Revisión RA – 13/06/2022
QUALITY CONTROL INTERNAL REVISION / REVISION INTERNA DE CONTROL DE CALIDAD
NAME / NOMBRE
DRAWN BY:
DESIGN BY:
MIGUEL HERNÁNDEZ
ROGELIO SANDOVAL
REVISION/
REVISIÓN
A
A
DESIGN MANAGER:
PROJECT LEADER:
PROJECT MANAGER:
ROGELIO SANDOVAL
LEONARDO HERNÁNDEZ
JOSÉ LUIS AGUILAR
A
A
A
DATE /
FECHA
13.06.2022
13.06.2022
13.06.2022
13.06.2022
13.06.2022
SIGNATURE
/ FIRMA
REVISION CONTROL / CONTROL DE REVISIONES
REVISION/
REVISIÓN
R
A
COMMENTS /COMENTARIOS
INTERNAL REVIEW/ REVISION INTERNA
COMMENTS GPC/ COMENTARIOS GPC
B
0
COMMENTS BREMBO/COMENTARIOS BREMBO
ISSUED FOR CONSTRUCTION/EMITIDO PARA CONSTRUCCION
P003-T3_03_MCE_RA
Page 1
NAME/
NOMBRE
JLAM
DATE /
FECHA
21.04.2021
20.05.2021
21.07.2021
21.07.2021
PHOTOVOLTAIC ARRAY
ARREGLO FOTOVOLTAICO
•
2813.25 kWp in Direct current with PV module LONGI 550 W
2813.25 kWp en C.D. con módulos LONGI 550 W
o
•
5115 PV modules model LR5-72HPH-550
o
5115 módulos modelo LR5-72HPH-550
40 PV inverters SMA model Sunny Tripower CORE 1 62-US
•
o
•
40 inversores SMA Sunny Tripower CORE 1 62-US
1 PV inverter SMA model Sunny Tripower CORE 1 33-US
o
1 inversor SMA Sunny Tripower CORE 1 33-US
•
o
P003-T3_03_MCE_RA
Page 2
AC nominal power: 2533.3 kW
Potencia instalada en C.A.: 2533.3 kW en C.A.
INDEX
ÍNDICE
1. ABSTRACT .................................................................................................................................................................. 5
1. INTRODUCCIÓN...................................................................................................................................................... 5
2. GENERAL ASPECTS OF PHOTOVOLTAIC INSTALLATION.................................................................................... 5
2. ASPECTOS GENERALES DE INSTALACIÓN FOTOVOLTAICA ....................................................................... 5
2.1 INSTALLED PEAK POWER IN D.C. .......................................................................................................................... 6
2.1 POTENCIA PICO INSTALADA EN C.D. ............................................................................................................... 6
2.2. ELECTRICAL CHARACTERISTICS OF SOLAR PANELS ...................................................................................... 6
2.2 CARACTERISTICAS ELÉCTRICAS DE MÓDULOS FOTOVOLTAICOS ............................................................ 6
2.3 ELECTRICAL CHARACTERISTICS OF PV INVERTER ...................................................................................... 7
2.3 CARACTERISTICAS ELÉCTRICAS DE INVERSOR FV ..................................................................................... 7
2.4 CHARACTERISTICS OF WIRING FOR DESIGN ...................................................................................................... 7
2.4 CARACTERISTICAS DE CABLEADO PARA DISEÑO ........................................................................................ 7
3. PV SYSTEM ELECTRICAL DESIGN ......................................................................................................................... 12
3. DISEÑO ELÉCTRICO DEL SISTEMA FV ........................................................................................................... 12
3.1 INVERTER SIZING ................................................................................................................................................... 12
3.1 DIMENSIONAMIENTO DE INVERSORES .......................................................................................................... 12
3.2 SIZING OF WIRING AND CONDUITS IN DIRET CURRENT ............................................................................. 17
3.2 DIMENSIONAMIENTO DE CABLEADO Y CANALIZACIONES EN CORRIENTE DIRECTA........................... 17
3.3 WIRING RESULTS FOR INVERTER No. 1-41 ................................................................................................... 17
3.3 RESULTADOS CABLEADO INVERSOR No. 1-41 ............................................................................................ 17
3.4 SIZING OF WIRING AND ELECTRICAL CONDUITS IN A.C.................................................................................. 22
3.4 DIMENSIONAMIENTO DE CABLEADO Y CANALIZACIONES EN C.A. .................................................................. 22
3.5 CALCULATION RESULTS OF INVERTERS No.1-No. 6 (PV BOARD 1),No. 7, No. 8-No. 12 (PV BOARD 2), No.
21 (PV BOARD 3). ...................................................................................................................................................... 24
3.5 RESULTADOS DE CÁLCULOS PARA INVERSORES NO.1- No.6 (TABLERO FV 1), No. 7, No. 8-No. 12 (TABLERO
FV 2), No. 21 (TABLERO FV 3) ............................................................................................................................... 24
3.6 CALCULATION RESULTS OF INVERTERS No.13-No. 20, No. 22-No. 41 (INVERTER-BOX COMBINER) ....... 27
P003-T3_03_MCE_RA
Page 3
3.6 RESULTADOS DE CÁLCULOS PARA INVERSORES NO.13- No.20, No. 22-No. 41 (INVERSOR – CAJAS
COMBINADORAS) ................................................................................................................................................ 27
3.7 CALCULATION RESULTS OF INVERTERS No.13-No. 20, No. 22-No. 41 (BOX COMBINER-PV BOARD 3).... 28
3.7 RESULTADOS DE CÁLCULOS PARA INVERSORES NO.13- No.20, No. 22-No. 41 (CAJA COMBINADORA –
TABLERO FV 3) .................................................................................................................................................... 28
3.8 PV 1-2 BOARD TO INTERCONNECTION POINT. SOUTH EXTENSION. ............................................................. 31
3.8 TABLERO FV 1-2 A PUNTO DE INTERCONEXIÓN. AMPLIACIÓN SUR. ........................................................ 31
3.9 PV 3 BOARD TO TRANSFORMER. CARPORT. ............................................................................................... 33
3.9 TABLERO FV 3 A TRANSFORMADOR. CARPORT .......................................................................................... 33
3.10 TRANSFORMER. INTERCONECTION POINT. ................................................................................................ 34
4. VOLTAGE DROP ........................................................................................................................................................ 36
4. CAÍDA DE TENSIÓN ............................................................................................................................................. 36
5. RESPONSABLE FOR ELECTRICAL CALCULATIONS ........................................................................................... 37
5. RESPONSABLE DE CÁLCULOS EN BAJA Y MEDIA TENSIÓN ....................................................................... 37
P003-T3_03_MCE_RA
Page 4
1. ABSTRACT
1. INTRODUCCIÓN
The purpose of this document is the technical description, dimensioning, justification and legalization of electrical
installations both in C.D as from C.A of the electrical energy generated by the photovoltaic system that will be
installed in the Calipers Building area of the PV Project carried out for BREMBO. El presente documento tiene como
objetivo, presentar la descripción técnica, dimensionamiento, justificación y legalización de instalaciones eléctricas
tanto en CD como en CA de la energía eléctrica generada por el sistema fotovoltaico que se instalará en el área del
Edificio Calipers del proyecto FV realizado para BREMBO.
On the other hand, it is intended to simplify the installation process of the solar system, verification and inspection of
the Inspection Unit (UI) and the Verification Unit (UVIE); in order to demonstrate to any of the competent parties that
the installation in question meets the conditions and guarantees to comply with the current Mexican regulation NOM001-SEDE-2012 required by the requirements of the Energy Regulatory Commission (CRE).
Por otro lado, se pretende simplificar el proceso de instalación del sistema solar, verificación e inspección de la
Unidad de Inspección (UI) y la Unidad de Verificación (UVIE); con el fin de demostrar ante los organismos
competentes que la instalación en cuestión cumple con las condiciones y garantías para cumplir con la normativa
vigente NOM-001-SEDE-2021 exigida por los requisitos de la Comisión Reguladora de Energía (CRE).
2. GENERAL ASPECTS OF PHOTOVOLTAIC INSTALLATION
2. ASPECTOS GENERALES DE INSTALACIÓN FOTOVOLTAICA
As previously mentioned, the photovoltaic system that is the object of this project will be installed in the Calipers building
area of the photovoltaic project installed in BREMBO located in Carretera Escobedo km. 34, Libramiento Noreste 1021,
GP Nueva Castilla, Parque Industrial Escobedo, 66517 General Escobedo, N. L. with geographic coordinates
25.832829922558904, -100.26906770507088; see Figure 1.
Como se comentó anteriormente, el sistema fotovoltaico objeto del presente proyecto se encontrará instalado en el
área del Edificio Calipers del proyecto fotovoltaico instalado en BREMBO ubicado en Carretera Escobedo km. 34,
Libramiento Noreste 1021. GP Nueva Castilla, Parque Industrial Escobedo, 66517 General Escobedo, N. L. con las
coordenadas geográficas 25.832829922558904, -100.26906770507088; ver la Figura 1.
Figure 1. Geographical location of the photovoltaic Project.
Figura 1. Ubicación geográfica de proyecto fotovoltaico.
P003-T3_03_MCE_RA
Page 5
Figure 2 shows the distribution of the installed photovoltaic system. La Figura 2 exhibe la distribución del sistema
fotovoltaico a instalar.
Figure 2. Distribution of photovoltaic modules.
Figura 2. Distribución de módulos fotovoltaicos.
2.1 INSTALLED PEAK POWER IN D.C.
2.1 POTENCIA PICO INSTALADA EN C.D.
The peak power of the photovoltaic system to be installed in this project is 2813.25 kWp, by using 5115 modules 550 W
LONGI, model LR5-72HPH-550 photovoltaic modules. La potencia pico del sistema fotovoltaico que se quiere instalar
en este proyecto es de 2813.25 kWp, con 5115 módulos fotovoltaicos de 550 Wp de la marca LONGI modelo LR572HPH-550.
2.2. ELECTRICAL CHARACTERISTICS OF SOLAR PANELS
2.2 CARACTERISTICAS ELÉCTRICAS DE MÓDULOS FOTOVOLTAICOS
Table 1. Electrical Characteristics of Solar Panels.
Tabla 1. Características Eléctricas de Paneles Solares.
P003-T3_03_MCE_RA
Page 6
2.3 ELECTRICAL CHARACTERISTICS OF PV INVERTER
2.3 CARACTERISTICAS ELÉCTRICAS DE INVERSOR FV
In respond to the distribution and quantity of photovoltaic modules to be installed on this project, 40 inverters of the brand
SMA Sunny Tripower CORE 1 62-US and 1 inverter SMA sunny Tripower CORE 1 33-US will be used.
Por cuestiones de distribución y cantidad de módulos fotovoltaicos, en el caso de este proyecto serán utilizados 40
inversores de la marca SMA Sunny Tripower CORE 1 62-US y 1 inversor SMA sunny Tripower CORE 1 33-US.
The electrical properties of this equipment are shown below:
Las propiedades eléctricas de este equipo se exhiben a continuación:
Table 2. Electrical characteristics of the photovoltaic inverter.
Tabla 2. Características eléctricas de inversor fotovoltaico.
2.4 CHARACTERISTICS OF WIRING FOR DESIGN
2.4 CARACTERISTICAS DE CABLEADO PARA DISEÑO
Table 3. Electrical characteristics of photovoltaic cable / ground wire.
Tabla 3. Características eléctricas cable fotovoltaico / cable puesta a tierra.
P003-T3_03_MCE_RA
Page 7
Cable de Cobre, Tipo H1Z2Z2K, 1.8kV cd, 120°C
DATOS GENERALES
UND.
SUMINISTRADOR
-
Código:
Tipo de cable:
Nivel de tensión:
Nª de condutores por Cable:
kV
Ud.
VIAKON
H1Z2Z2-K
0,6 / 1kV AC - 1,8kV DC
1
Construcción cable
-
IEC 62930
No propagación de llama en cable simple
Libre de halógenos
No corrosivo
Baja emisión de humo
NORMATIVA
Baja toxicidad
Aislamiento
Recubrimiento
Protección UV
Resistencia química: Aceite mineral, ácido y alcalino, amoniaco
Otras
-
IEC 60332-1-2
IEC 60754-1
IEC 60754-2
IEC 61034-1-2
mm²
mm
mm
mm
mm
kg/km
mm
Cobre
5
6
Flexible
2.49
XLPE
0.70
4.6
Natural o con color
XLPE
0.80
Rojo/Negro
6.4
83
25
A
61
A
62
A
51
kA
ºC
ºC
ºC
V /Akm
Ω / km
Ω / km
2.69 / 1.20 / 0.85
90°C
250
-40 a +120 ºC
6.799
3.08
0.1264
IEC 62930
IEC 62930
Sí
Sí
CARACTERÍSTICAS TÉCNICAS
CONDUCTOR
AISLAMIENTO
CUBIERTA
CABLE
Material:
Clase:
Sección:
Formación:
Diámetro Nominal:
Material:
Espesor:
Diámetro sobre aislamiento:
Color:
Material:
Espesor:
Color:
Diámetro exterior
Peso:
Radio de curvatura mínimo:
DATOS ELÉCTRICOS
Intensidad
máxima
admisible [Iz]
P003-T3_03_MCE_RA
Page 8
Instalación al aire libre o en bandeja (30ºC):
Instalación directamente enterrada (0.8m) a (20ºC) y
Resistividad Térmica del suelo a 1,5k.m/W:
Instalación enterrada (0.8m) en tubo (20ºC)
y Resistividad Térmica del suelo a 1,5k.m/W:
En cortocircuito adiabático (0.1/0.5/1.0 s)
Temperatura máxima de funcionamiento:
Temperatura máxima de cortocircuito:
Temperatura de funcionamiento:
Caida de tensión en DC:
Resistencia eléctrica máxima a 20ªC:
Reactancia eléctrica:
P003-T3_03_MCE_RA
Page 9
Table 4. Electrical characteristics of alternating current cable.
Tabla 4. Características eléctricas cable corriente alterna.
P003-T3_03_MCE_RA
Page 10
P003-T3_03_MCE_RA
Page 11
3. PV SYSTEM ELECTRICAL DESIGN
3. DISEÑO ELÉCTRICO DEL SISTEMA FV
3.1 INVERTER SIZING
3.1 DIMENSIONAMIENTO DE INVERSORES
To effectively size this equipment, the electrical properties of the inverter and the photovoltaic modules were considered;
as well as the number of modules in each area depending on the voltage correction by temperature factor. To calculate the
temperature voltage correction, the maximum historical data reported by the National Meteorological Service (SMN) and
the minimum temperature detected were considered. These values have been -8.5 ° C and the maximum of 50° C (SMN)
according to the meteorological station 19004 located near the installation site of the photovoltaic system.
Para dimensionar estos equipos se consideraron las propiedades eléctricas del inversor y de los módulos fotovoltaicos;
así como la cantidad de módulos en cada zona de instalación en función de la corrección de voltajes por factor de
temperatura. Para calcular la corrección de voltajes de temperatura se consideraron los datos históricos máximos que
reporta el Servicio Meteorológico Nacional (SMN)1 y la temperatura mínima detectada. Dichos valores han sido de -8.5°C
y la máxima de 50°C (SMN) de acuerdo con la estación meteorológica 19004 ubicada cerca del sitio de instalación del
sistema fotovoltaico.
Tabla 5. (a) Maximum and minimum temperature station SMN.
Tabla 5. (a) Temperatura máxima y mínima estación SMN.
1
https://smn.conagua.gob.mx/es/
P003-T3_03_MCE_RA
Page 12
Considering the above data and the electrical properties of the photovoltaic module, the corresponding corrections were
made for the open circuit voltage. The data obtained are displayed in the following tables:
Tomando en cuenta los datos anteriores y las propiedades eléctricas del módulo fotovoltaico, se realizaron las
correcciones correspondientes para el voltaje de circuito abierto. Los datos obtenidos se exhiben en las siguientes tablas:
Table 6. Voltage adjustment to module.
Tabla 6. Ajuste de voltaje a módulo.
Brad:
Model:
Type:
Total modules:
Pmax (W)=
Vmp (V)=
Imp(A)=
Isc(A)=
Voc(V)
PHOTOVOLTAIC MODULE
LONGI
LR5-72HPH-550
Monocristaline
5115
Data
βVoc (%/°C)=
βISc (%/°C)=
βPmax (%/°C)=
LONGI
Voltage correction
550
41.95 Vmp(50°C) =
13.12
13.98
49.8 Voc(-8.5°C) =
-0.27
0.048
-0.35
39.118375
54.30441
According to the temperature correction and electrical properties of the SMA Sunny Tripower CORE 1 62-US and 33-US
inverters, such as the maximum voltage range of 1000 V, the number of 6 MPPTs and the number of 2 strings per MPPT,
the photovoltaic arrangements were defined as follows:
De acuerdo con la corrección de temperatura y las propiedades eléctricas de los inversores SMA Sunny Tripower CORE 1
62-US y 33-US, tales como el rango de voltaje máximo de 1000 V, la cantidad de 6 MPPTs y la cantidad de 2 strings por
MPPT, se definieron los arreglos fotovoltaicos de la siguiente forma:
P003-T3_03_MCE_RA
Page 13
Tabla 7. Sizing of inverters.
Table 7. Dimensionamiento de inversores.
Inverters 1 - 6, 8 - 12 (11 Inverters) South Extension
Sunny Tripower CORE1, 62.5 kW (62-US-41)
String modules
#
MPPT
P (W)
Vmp (V)
Voc (V)
Isc (A)
18
1
1
9900
755.10
977.48
13.98
18
2
1
9900
755.10
977.48
13.98
18
3
2
9900
755.10
977.48
13.98
0
-
-
-
-
-
-
18
4
3
9900
755.10
977.48
13.98
0
-
-
-
-
-
-
18
0
18
0
18
5
6
7
4
5
6
9900
9900
9900
755.10
755.10
755.10
977.48
977.48
977.48
13.98
13.98
13.98
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
126
1.11
Total
Ratio DC:AC
-
69300
755.10
977.48
97.86
Inverter 7 (1 Inverter) South Extension
Sunny Tripower CORE1, 62.5 kW (62-US-41)
String modules
#
MPPT
P (W)
Vmp (V)
Voc (V)
Isc (A)
16
1
1
8800
671.20
868.87
13.98
16
2
1
8800
671.20
868.87
13.98
16
3
2
8800
671.20
868.87
13.98
0
-
-
-
-
-
-
17
4
3
9350
713.15
923.17
13.98
17
5
3
9350
713.15
923.17
13.98
17
0
17
0
13
6
7
8
4
5
6
9350
9350
7150
713.15
713.15
545.35
923.17
923.17
705.96
13.98
13.98
13.98
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
129
1.14
Total
Ratio DC:AC
-
70950
545.35
705.96
111.84
Large total rooftop
Installed power DC
Installed power AC
P003-T3_03_MCE_RA
Page 14
1515.00
833.25
750.00
Module
kWp
kW
Inverters 13 - 19, 22 - 24, 26 - 41 (26 Inverters) Carport
Sunny Tripower CORE1, 62.5 kW (62-US-41)
String modules
#
MPPT
P (W)
Vmp (V)
Voc (V)
Isc (A)
18
1
1
9900
755.10
977.48
13.98
18
2
1
9900
755.10
977.48
13.98
18
3
2
9900
755.10
977.48
13.98
0
-
-
-
-
-
-
18
4
3
9900
755.10
977.48
13.98
0
-
-
-
-
-
-
18
0
18
0
18
5
6
7
4
5
6
9900
9900
9900
755.10
755.10
755.10
977.48
977.48
977.48
13.98
13.98
13.98
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
126
1.11
Total
Ratio DC:AC
-
69300
755.10
977.48
97.86
Inverter 20 (1 Inverter) Carport
P003-T3_03_MCE_RA
Page 15
Sunny Tripower CORE1, 62.5 kW (62-US-41)
String modules
#
MPPT
P (W)
Vmp (V)
Voc (V)
Isc (A)
18
1
1
9900
755.10
977.48
13.98
18
2
1
9900
755.10
977.48
13.98
17
3
2
9350
713.15
923.17
13.98
17
4
2
9350
713.15
923.17
13.98
17
5
3
9350
713.15
923.17
13.98
0
-
-
-
-
-
-
17
0
17
0
17
6
7
8
4
5
6
9350
9350
9350
713.15
713.15
713.15
923.17
923.17
923.17
13.98
13.98
13.98
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
138
1.21
Total
Ratio DC:AC
-
75900
713.15
923.17
111.84
Inverter 21 (1 Inverter) Carport
Sunny Tripower CORE1, 33 kW (33-US-41)
String modules
#
MPPT
P (W)
Vmp (V)
Voc (V)
Isc (A)
18
1
1
9900
755.10
977.48
13.98
0
-
-
-
-
-
-
15
2
2
8250
629.25
814.57
13.98
0
-
-
-
-
-
-
15
3
3
8250
629.25
814.57
13.98
0
-
-
-
-
-
-
15
0
0
0
0
4
-
4
-
8250
-
629.25
-
814.57
-
13.98
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
63
1.04
Total
Ratio DC:AC
-
34650
629.25
814.57
55.92
Inverter 25 (1 Inverter) Carport
Sunny Tripower CORE1, 62.5 kW (62-US-41)
String modules
#
MPPT
P (W)
Vmp (V)
Voc (V)
Isc (A)
18
1
1
9900
755.10
977.48
13.98
18
2
1
9900
755.10
977.48
13.98
18
3
2
9900
755.10
977.48
13.98
0
-
-
-
-
-
-
18
4
3
9900
755.10
977.48
13.98
0
-
-
-
-
-
-
18
0
18
0
15
5
6
7
4
5
6
9900
9900
8250
755.10
755.10
629.25
977.48
977.48
814.57
13.98
13.98
13.98
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
123
1.08
Total
Ratio DC:AC
-
67650
629.25
814.57
97.86
Large total Carport
Installed power AC
Installed power DC
Large Total ROOFTOP + CARPORT=
Installed power DC=
Installed power AC=
P003-T3_03_MCE_RA
Page 16
3,600
1,980
1,783
Module
kWp
kW
5,115 Modules
2,813.25 kWp
2,533.30 kW
3.2 SIZING OF WIRING AND CONDUITS IN DIRET CURRENT
3.2 DIMENSIONAMIENTO DE CABLEADO Y CANALIZACIONES EN CORRIENTE DIRECTA
The following concept exposes how, the ampacity calculations were carried out. All calculations were made taking as
reference the current regulations in Mexico NOM-001-SEDE-2012.
En este punto se exponen los cálculos por ampacidad que fueron realizados. Todos los cálculos se realizaron tomando
como referencia la normativa vigente NOM-001-SEDE-2012.
3.3 WIRING RESULTS FOR INVERTER No. 1-41
3.3 RESULTADOS CABLEADO INVERSOR No. 1-41
Table 8. Electrical calculations for Inverter no. 1-41.
Table 8. Cálculos eléctricos para inversores no. 1-41.
Inverters 1 - 6, 8 - 12 (11 Inverters) South Extension
Sunny Tripower CORE1, 62.5 kW (62-US-41)
Calculation of electrical wiring by ampacity
Data
Results
Icc=
13.98
Ampacity with use factors= 38.41 A.
Conductors per phase=
1
Imax*125%=
21.84 A.
Ampacity=
40.00 A.
Icorr Max=
38.41 A.
F.T. =
0.65
Conductor gauge=
10 AWG.
F.A.=
0.7
Conductor grounding=
8 AWG.
F.D.=
1.25
Protection=
25 A.
Maximum conductors in pipe
7
Historical maximun temperature= 50 °C
Ceiling to tube base distance
More than 300 up to 900 mm
Ambient temperature adjustment= 64 °C
Conductor material
COPPER
Nominal temperature conductors= 90 °C
I Max.=
17.48 A.
Calculation of electrical wiring due to voltage drop
Inom=
13.98 A
Distance
string 1=
Conductors per phase=
1
160.95273
string 2=
Resistivity =
3.1558 Ω/km
160.62437
string 3=
Series voltage 1=
755.10 V
133.67074
string
4=
Series voltage 2=
755.10 V
112.80892
string 5=
Series voltage 3=
755.10 V
104.1578
string 6=
Series voltage 4=
755.10 V
116.50622
string 7=
Series voltage 5=
755.10 V
88.43731
string 8=
Series voltage 6=
755.10 V
string 9=
Series voltage 7=
755.10 V
string 10=
Series voltage 8=
-V
string 11=
Series voltage 9=
-V
string 12=
Series voltage 10=
-V
Series voltage 11=
-V
Series voltage 12=
-V
MAX ΔU (V)=
160.95273
Wire gauge=
10 AWG.
Grounding=
8 AWG.
Canalization calculation - thick wall conduit pipe
Conductor gauge=*
10 AWG
Required area=*
467 mm2
Conductor area=
32.17 mm2
Canalization diameter=
1 ½ in
Ground gauge=
8 AWG
Number of canalizations= 2
Grounding area=
8.37 mm2
Canalization area at 40%= 1066 mm2
Series to inverter:
7
* 2 pipes of 1 ½ in will be installed according to the following:
Total wires =**
14 units + 2 ground wire
c/7 wire 10 AWG of current + 1 ground wire 8 AWG
*Insulated wires THHW-LS
** wires per line and 2 ground
P003-T3_03_MCE_RA
Page 17
ΔU (V)=
1.88
1.88
1.56
1.32
1.22
1.36
1.03
1.88
Inverter 7 (1 Inverter) South Extension
Sunny Tripower CORE1, 62.5 kW (62-US-41)
Calculation of electrical wiring by ampacity
Data
Results
Icc=
13.98
Ampacity with use factors= 38.41 A.
Conductors per phase=
1
Imax*125%=
21.84 A.
Ampacity=
40.00 A.
Icorr Max=
38.41 A.
F.T. =
0.65
Conductor gauge=
10 AWG.
F.A.=
0.7
Conductor grounding=
8 AWG.
F.D.=
1.25
Protection=
25 A.
Maximum conductors in pipe
8
Historical maximun temperature= 50 °C
Ceiling to tube base distance
More than 300 up to 900 mm
Ambient temperature adjustment= 64 °C
Conductor material
COPPER
Nominal temperature conductors= 90 °C
I Max.=
17.48 A.
Calculation of electrical wiring due to voltage drop
Inom=
13.98 A
Distance
string 1=
Conductors per phase=
1
99.92187
string 2=
Resistivity =
3.1558 Ω/km
71.89342
string 3=
Series voltage 1=
671.20 V
60.54322
string 4=
Series voltage 2=
671.20 V
50.12791
string 5=
Series voltage 3=
671.20 V
39.8089
string 6=
29.02826
Series voltage 4=
713.15 V
string 7=
Series voltage 5=
713.15 V
36.79135
string 8=
Series voltage 6=
713.15 V
25.1464
string 9=
Series voltage 7=
713.15 V
string 10=
Series voltage 8=
545.35 V
string 11=
Series voltage 9=
-V
string 12=
Series voltage 10=
-V
Series voltage 11=
-V
Series voltage 12=
-V
MAX ΔU (V)=
99.92187
Wire gauge=
10 AWG.
Grounding=
8 AWG.
Canalization calculation - thick wall conduit pipe
Conductor gauge=*
10 AWG
Required area=*
531 mm2
Conductor area=
32.17 mm2
Canalization diameter=
1 ½ in
Ground gauge=
8 AWG
Number of canalizations= 2
Grounding area=
8.37 mm2
Canalization area at 40%= 1066 mm2
Series to inverter:
8
* 2 pipes of 1 ½ in will be installed according to the following:
Total wires =**
16 units + 2 ground wire
c/8 wire 10 AWG of current + 1 ground wire 8 AWG
ΔU (V)=
1.31
0.95
0.80
0.62
0.49
0.36
0.46
0.41
1.31
*Insulated wires THHW-LS
** wire per line and 2 ground
Inverters 13 - 19, 22 - 24, 26 - 41 (26 Inverters) Carport
Sunny Tripower CORE1, 62.5 kW (62-US-41)
Calculation of electrical wiring by ampacity
Data
Results
Icc=
13.98
Ampacity with use factors= 38.41 A.
Conductors per phase=
1
Imax*125%=
21.84 A.
Ampacity=
40.00 A.
Icorr Max=
38.41 A.
F.T. =
0.65
Conductor gauge=
10 AWG.
F.A.=
0.7
Conductor grounding=
8 AWG.
F.D.=
1.25
Protection=
25 A.
Maximum conductors in pipe
7
Historical maximun temperature= 50 °C
Ceiling to tube base distance
More than 300 up to 900 mm
Ambient temperature adjustment= 64 °C
Conductor material
COPPER
Nominal temperature conductors= 90 °C
I Max.=
17.48 A.
Calculation of electrical wiring due to voltage drop
Inom=
13.98 A
Distance
string 1=
Conductors per phase=
1
172.436
string 2=
Resistivity =
3.1558 Ω/km
187.979
string 3=
Series voltage 1=
755.10 V
179.371
string 4=
Series voltage 2=
755.10 V
177.222
string 5=
Series voltage 3=
755.10 V
176.706
string 6=
Series voltage 4=
755.10 V
193.351
string 7=
Series voltage 5=
755.10 V
183.364
string 8=
Series voltage 6=
755.10 V
string 9=
Series voltage 7=
755.10 V
string 10=
Series voltage 8=
-V
string 11=
Series voltage 9=
-V
string 12=
Series voltage 10=
-V
Series voltage 11=
-V
Series voltage 12=
-V
MAX ΔU (V)=
193.351
Wire gauge=
10 AWG.
Grounding=
8 AWG.
Canalization calculation - thick wall conduit pipe
Conductor gauge=*
10 AWG
Required area=*
467 mm2
Conductor area=
32.17 mm2
Canalization diameter=
1 ½ in
Ground gauge=
8 AWG
Number of canalizations= 2
Grounding area=
8.37 mm2
Canalization area at 40%= 1066 mm2
Series to inverter:
7
* 2 pipes of 1 ½ in will be installed according to the following:
Total wires =**
14 units + 2 ground wire
c/7 wire 10 AWG of current+ 1 ground wire 8 AWG
*Insulated wires THHW-LS
** wire per line and 2 ground
P003-T3_03_MCE_RA
Page 18
ΔU (V)=
2.01
2.20
2.10
2.07
2.06
2.26
2.14
2.26
Inverter 20 (1 Inverter) Carport
Sunny Tripower CORE1, 62.5 kW (62-US-41)
Calculation of electrical wiring by ampacity
Data
Results
Icc=
13.98
Ampacity with use factors= 38.41 A.
Conductors per phase=
1
Imax*125%=
21.84 A.
Ampacity=
40.00 A.
Icorr Max=
38.41 A.
F.T. =
0.65
Conductor gauge=
10 AWG.
F.A.=
0.7
Conductor grounding=
8 AWG.
F.D.=
1.25
Protection=
25 A.
Maximum conductors in pipe
8
Historical maximun temperature= 50 °C
Ceiling to tube base distance
More than 300 up to 900 mm
Ambient temperature adjustment= 64 °C
Conductor material
COPPER
Nominal temperature conductors= 90 °C
I Max.=
17.48 A.
Calculation of electrical wiring due to voltage drop
Inom=
13.98 A
Distance
string 1=
Conductors per phase=
1
38.268
string 2=
Resistivity =
3.1558 Ω/km
26.997
string 3=
Series voltage 1=
755.10 V
57.774
string 4=
Series voltage 2=
755.10 V
95.653
string 5=
Series voltage 3=
713.15 V
119.945
string 6=
102.52
Series voltage 4=
713.15 V
string 7=
Series voltage 5=
713.15 V
61.474
string 8=
Series voltage 6=
713.15 V
20.012
string 9=
Series voltage 7=
713.15 V
string 10=
Series voltage 8=
713.15 V
string 11=
Series voltage 9=
-V
string 12=
Series voltage 10=
-V
Series voltage 11=
-V
Series voltage 12=
-V
MAX ΔU (V)=
119.945
Wire gauge=
10 AWG.
Grounding=
8 AWG.
Canalization calculation - thick wall conduit pipe
Conductor gauge=*
10 AWG
Required area=*
531 mm2
Conductor area=
32.17 mm2
Canalization diameter=
1 ½ in
Ground gauge=
8 AWG
Number of canalizations= 2
Grounding area=
8.37 mm2
Canalization area at 40%= 1066 mm2
Series to inverter:
8
* 2 pipes of 1 ½ in will be installed according to the following:
Total wires =**
16 units + 2 ground wire
c/8 wire 10 AWG of current + 1 ground wire 8 AWG
ΔU (V)=
0.45
0.32
0.71
1.18
1.48
1.27
0.76
0.25
1.48
*Insulated wires THHW-LS
** wire per line and 2 ground
Inverter 21 (1 Inverter) Carport
Sunny Tripower CORE1, 33 kW (33-US-41)
Calculation of electrical wiring by ampacity
Data
Results
Icc=
13.98
Ampacity with use factors= 38.41 A.
Conductors per phase=
1
Imax*125%=
21.84 A.
Ampacity=
40.00 A.
Icorr Max=
38.41 A.
F.T. =
0.65
Conductor gauge=
10 AWG.
F.A.=
0.7
Conductor grounding=
8 AWG.
F.D.=
1.25
Protection=
25 A.
Maximum conductors in pipe
8
Historical maximun temperature= 50 °C
Ceiling to tube base distance
More than 300 up to 900 mm
Ambient temperature adjustment= 64 °C
Conductor material
COPPER
Nominal temperature conductors= 90 °C
I Max.=
17.48 A.
Calculation of electrical wiring due to voltage drop
Inom=
13.98 A
Distance
string 1=
Conductors per phase=
1
40.654
string 2=
Resistivity =
3.1558 Ω/km
27.204
string 3=
Series voltage 1=
755.10 V
37.654
string 4=
Series voltage 2=
629.25 V
17.597
string 5=
Series voltage 3=
629.25 V
string 6=
Series voltage 4=
629.25 V
string 7=
Series voltage 5=
-V
string 8=
Series voltage 6=
-V
string 9=
Series voltage 7=
-V
string 10=
Series voltage 8=
-V
string 11=
Series voltage 9=
-V
string 12=
Series voltage 10=
-V
Series voltage 11=
-V
Series voltage 12=
-V
MAX ΔU (V)=
40.654
Wire gauge=
10 AWG.
Grounding=
8 AWG.
Canalization calculation - thick wall conduit pipe
Conductor gauge=*
10 AWG
Required area=*
266 mm2
Conductor area=
32.17 mm2
Canalization diameter=
1 ½ in
Ground gauge=
8 AWG
Number of canalizations= 1
Grounding area=
8.37 mm2
Canalization area at 40%= 533 mm2
Series to inverter:
4
* 1 pipes of 1 ½ in will be installed according to the following:
Total wires =**
8 units + 1 ground wire
c/8 wire 10 AWG of current + 1 ground wire 8 AWG
*Insulated wires THHW-LS
** wire per line and 1 ground
P003-T3_03_MCE_RA
Page 19
ΔU (V)=
0.48
0.38
0.53
0.25
0.53
Inverter 25 (1 Inverter) Carport
Sunny Tripower CORE1, 62.5 kW (62-US-41)
Calculation of electrical wiring by ampacity
Data
Results
Icc=
13.98
Ampacity with use factors= 38.41 A.
Conductors per phase=
1
Imax*125%=
21.84 A.
Ampacity=
40.00 A.
Icorr Max=
38.41 A.
F.T. =
0.65
Conductor gauge=
10 AWG.
F.A.=
0.7
Conductor grounding=
8 AWG.
F.D.=
1.25
Protection=
25 A.
Maximum conductors in pipe
7
Historical maximun temperature= 50 °C
Ceiling to tube base distance
More than 300 up to 900 mm
Ambient temperature adjustment= 64 °C
Conductor material
COPPER
Nominal temperature conductors= 90 °C
I Max.=
17.48 A.
Calculation of electrical wiring due to voltage drop
Inom=
13.98 A
Distance
string 1=
Conductors per phase=
1
84.451
string 2=
Resistivity =
3.1558 Ω/km
49.711
string 3=
Series voltage 1=
755.10 V
163.541
string 4=
Series voltage 2=
755.10 V
119.596
string 5=
Series voltage 3=
755.10 V
76.983
string 6=
61.816
Series voltage 4=
755.10 V
string 7=
Series voltage 5=
755.10 V
102.45
string 8=
Series voltage 6=
755.10 V
string 9=
Series voltage 7=
629.25 V
string 10=
Series voltage 8=
-V
string 11=
Series voltage 9=
-V
string
12=
Series voltage 10=
-V
Series voltage 11=
-V
Series voltage 12=
-V
MAX ΔU (V)=
163.541
Wire gauge=
10 AWG.
Grounding=
8 AWG.
Canalization calculation - thick wall conduit pipe
Conductor gauge=*
10 AWG
Required area=*
467 mm2
Conductor area=
32.17 mm2
Canalization diameter=
1 ½ in
Ground gauge=
8 AWG
Number of canalizations= 2
Grounding area=
8.37 mm2
Canalization area at 40%= 1066 mm2
Series to inverter:
7
* 2 pipes of 1 ½ in will be installed according to the following:
Total wires =**
14 units + 2 ground wire
c/7 wire 10 AWG of current + 1 ground wire 8 AWG
*Insulated wires THHW-LS
** wire per line and 2 ground
P003-T3_03_MCE_RA
Page 20
ΔU (V)=
0.99
0.58
1.91
1.40
0.90
0.72
1.44
1.91
Figure 3. Graphic representation of this section.
Figura 3. Representación gráfica de esta sección.
Inverter 1 - 12
Inverter 13 - 21
Inverter 22 - 29
Inverters 30 - 41
P003-T3_03_MCE_RA
Page 21
3.4 SIZING OF WIRING AND ELECTRICAL CONDUITS IN A.C.
3.4 DIMENSIONAMIENTO DE CABLEADO Y CANALIZACIONES EN C.A.
Figure 4 One-line diagram for photovoltaic system.
Figura 4. Diagrama unifilar para sistema fotovoltaico.
As well as on direct current, the corresponding calculations will be carried out to define the dimension of the wiring in
alternating current by ampacity and voltage drop according to the electrical output properties of each inverter; jointly,
the corresponding size conduits were calculated for each case.
Al igual que en corriente directa, se realizarán los cálculos correspondientes para definir el calibre del cableado en
corriente alterna por ampacidad y caída de voltaje de acuerdo con las propiedades eléctricas de salida de cada
inversor; conjuntamente, se calcularon las canalizaciones correspondientes para cada caso.
Table 9 shows the transcendent properties of the inverters to carry out the proper sizing for the AC wiring:
La Tabla 9, expone las propiedades trascendentes de los inversores para realizar el dimensionamiento adecuado para
el cableado en C.A.:
Table 9. Electrical properties of the inverters.
Tabla 9. Propiedades eléctricas de los inversores.
SMA
Sunny Tripower CORE1, 62.5 kW (62-US-41)
Quantity=
40
PnomAC=
Papparent AC=
V nom AC=
V max DC =
V min DC
Output phases=
Threads
# strings
InomAC=
Isc MPPT1 =
Isc MPPT2 =
Isc MPPT3 =
Isc MPPT4 =
Isc MPPT5 =
Isc MPPT6 =
62.5 kW
66 KVA
480 V
1000 V
150 V
3
3-(N)-PE
6/2
79.5 A
30 A
30 A
30 A
30 A
30 A
30 A
SMA
Sunny Tripower CORE1, 33 kW (33-US-41)
Quantity=
1
PnomAC=
33.3 kW
Papparent AC=
33.3 KVA
V nom AC=
480 V
V max DC =
1000 V
V min DC
150 V
Output phases=
3
Threads
6/2
# strings
3-(N)-PE
40 A
InomAC=
Isc MPPT1 =
30 A
Isc MPPT2 =
30 A
Isc MPPT3 =
30 A
Isc MPPT4 =
30 A
Isc MPPT5 =
30 A
30 A
Isc MPPT6 =
P003-T3_03_MCE_RA
Page 23
3.5 CALCULATION RESULTS OF INVERTERS No.1-No. 6 (PV BOARD 1),No. 7,
No. 8-No. 12 (PV BOARD 2), No. 21 (PV BOARD 3).
3.5 RESULTADOS DE CÁLCULOS PARA INVERSORES NO.1- No.6 (TABLERO FV 1), No. 7,
No. 8-No. 12 (TABLERO FV 2), No. 21 (TABLERO FV 3)
Table 10. Electrical calculations for this section.
Tabla 10. Cálculos eléctricos de esta sección.
Inverters 1 - 6, 8 - 12 (11 Inverters) South Extension
Sunny Tripower CORE1, 62.5 kW (62-US-41)
Calculation of electrical wiring by ampacity
Data
Results
Imax=
79.5 A
Ampacity with use factors=
122.31 A.
Conductors per phase=
1
Imax*125%=
99.38 A.
Conductor ampacity=
135 A
Icorr Max=
122.31 A.
F.T. =
0.65
Conductor gauge=
1/0
F.A.=
1
Conductor grounding=
6 AWG.
F.D.=
1.25
Overcurrent protection=
100.00 A.
Maximum conductors in pi
3
Caliber selection according to Icorr
Historical maximun temper
50 °C
The maximum corrected current in the circuit is 122.31 A, which
Ceiling to tube base distancMore than 300 up to 900 mm
will be carried by 1 conductor(es) 1/0 AWG by phase, which has
Ambient temperature adju
64 °C
an ampacity of 135 A at 90 °C, will be protected with an ITM of 100
Conductor material
ALUMINUM
A, complying with what is required by the NOM 001 Sede 2012
Nominal temperature cond
90 °C
Calculation of electrical wiring due to voltage drop
Inom=
79.5 A
% CT=
2.87
Conductors by phase=
1
Tension drop (CT)=
13.78 V
0.5303 Ω/km
Effective impedance (Ze) =
L=
188.66 m
Voltage=
480 V
Wire gauge=
1/0 AWG
4
Power Factor
0.95
RL =
0.66
XL =
0.18
Canalization calculation
Conductor gauge=*
1/0 AWG
Required area=*
444 mm2
Conductor area=
143.40 mm2
Canalization diameter=
2 in
Ground gauge=
Number of canalizations=
6 AWG
1
Ground area=
13.30 mm2
Canalization area at 40%=
879 mm2
Number of phases=
3
*1 pipes of 2 in will be installed according to the following:
Total wires=**
3 +1 units
c/3 wire 1/0 AWG of current + 1 ground wire 6 AWG
*Insulated wire THHW-LS
**3 wires per line and 1 ground
P003-T3_03_MCE_RA
Page 24
Inverter 7 (1 Inverter) South Extension
Sunny Tripower CORE1, 62.5 kW (62-US-41)
Calculation of electrical wiring by ampacity
Data
Results
Imax=
79.5 A
Ampacity with use factors=
122.31 A.
Conductors per phase=
1
Imax*125%=
99.38 A.
Conductor ampacity=
135 A
Icorr Max=
122.31 A.
F.T. =
0.65
Conductor gauge=
1/0
F.A.=
1
Conductor grounding=
6 AWG.
F.D.=
1.25
Overcurrent protection=
100.00 A.
Maximum conductors in pi
3
Caliber selection according to Icorr
Historical maximun temper
50 °C
The maximum corrected current in the circuits is 122.31 A, which
Ceiling to tube base distan More than 300 up to 900 mm
will be carried by 1 conductor(es) 1/0 AWG by phase, which has
Ambient temperature adju
64 °C
an ampacity of 135 A at 90 °C, will be protected with an ITM of 100
Conductor material
ALUMINUM
A, complying with is required by the NOM 001 Sede 2012
Nominal temperature cond
90 °C
Calculation of electrical wiring due to voltage drop
Inom=
79.5 A
% CT=
0.08
Conductors by phase=
1
Tension drop (CT)=
0.39 V
Effective impedance (Ze) =
0.5303 Ω/km
L=
5.308 m
Voltage=
480 V
Wire gauge=
1/0 AWG
4
Power Factor
0.95
RL =
0.66
XL =
0.18
Canalization calculation
Conductor gauge=*
1/0 AWG
Required area=*
444 mm2
Conductor area=
143.40 mm2
Canalization diameter=
2 in
Ground gauge=
6 AWG
Number of canalizations=
1
Ground area=
13.30 mm2
Canalization area at 40%=
879 mm2
Number of phases=
3
* 1 pipes of 2 in will be installed according to the following:
Total wires=**
3 +1 units
c/3 wire 1/0 AWG of current+ 1 ground wire 6 AWG
*Insulated wire THHW-LS
**3 wires per line and 1 ground
Inverter 21 (1 Inverter) Carport
Sunny Tripower CORE1, 33 kW (33-US-41)
Calculation of electrical wiring by ampacity
Data
Results
Imax=
40 A
Ampacity with use factors=
48.78 A.
Conductors per phase=
1
Imax*125%=
50.00 A.
Conductor ampacity=
55 A
Icorr Max=
50.00 A.
F.T. =
0.82
Conductor gauge=
6 AWG.
F.A.=
1
Conductor grounding=
6 AWG.
F.D.=
1.25
Overcurrent protection=
50.00 A.
Maximum conductors in pi
3
Caliber selection according to Icorr
Historical maximun temper
50 °C
The maximum corrected current in the circuits is 50 A, which will
Ceiling to tube base distancDoes not apply
be carried by 1 conductor(es) 6 AWG by phase, which has an
50 °C
Ambient temperature adju
ampacity of 55 A at 90 °C, will be protected with an ITM of 50 A,
Conductor material
ALUMINUM
complying with is required by the NOM 001 Sede 2012
Nominal temperature cond
90 °C
Calculation of electrical wiring due to voltage drop
Inom=
40 A
% CT=
0.32
Conductors by phase=
1
Tension drop (CT)=
1.53 V
Effective impedance (Ze) =
1.1073 Ω/km
L=
20 m
Voltage=
480 V
Wire gauge=
6 AWG
4
Power Factor
0.95
RL =
1.61
XL =
0.21
Canalization calculation
Conductor gauge=*
6 AWG
Required area=*
225 mm2
Conductor area=
35.24 mm2
Canalization diameter=
2 in
Ground gauge=
6 AWG
Number of canalizations=
1
Ground area=
13.30 mm2
Canalization area at 40%=
879 mm2
Number of phases=
3
* 1 pipes of 2 in will be installed according to the following:
Total wires=**
3 +1 units
c/3 wire 6 AWG of current+ 1 ground wire6 AWG
*Insulated wire THHW-LS
**3 wire per line and 1 ground
P003-T3_03_MCE_RA
Page 25
Figure 5 Is a representation of the one-line diagram of the inverter according to the calculations performed for this
section.
Figura 5 Es una representación del diagrama unifilar del inversor de acuerdo con los cálculos realizados para esta
sección:
INVERTER 1 – 12
Figure 5. One – line diagram of this section.
Figura 5. Diagrama unifilar de esta sección.
P003-T3_03_MCE_RA
Page 26
INVERTER 21
3.6 CALCULATION RESULTS OF INVERTERS No.13-No. 20, No. 22-No. 41
(INVERTER-BOX COMBINER)
3.6 RESULTADOS DE CÁLCULOS PARA INVERSORES NO.13- No.20, No. 22-No. 41
(INVERSOR – CAJAS COMBINADORAS)
Table 11. Electrical calculations for this section.
Tabla 11. Cálculos eléctricos de esta sección.
Inverters 13 - 19, 22 - 24, 26 - 41 (26 Inverters) Carport
Sunny Tripower CORE1, 62.5 kW (62-US-41)
Calculation of electrical wiring by ampacity
Data
Results
Imax=
79.5 A
Ampacity with use factors=
96.95 A.
Conductors per phase=
1
Imax*125%=
99.38 A.
Conductor ampacity=
100 A
Icorr Max=
99.38 A.
F.T. =
0.82
Conductor gauge=
2 AWG.
F.A.=
1
Conductor grounding=
6 AWG.
F.D.=
1.25
Overcurrent protection=
100.00 A.
Maximum conductors in pi
3
Caliber selection according to Icorr
50 °C
Historical maximun temper
The maximum corrected current in the circuits is 99.38 A, which
Ceiling to tube base distancDoes not apply
will be carried by 1 conductor(es) 2 AWG by phase, which has an
50 °C
Ambient temperature adju
ampacity of 100 A at 90 °C, will be protected with an ITM of 100 A,
Conductor material
ALUMINUM
complying with is required by the NOM 001 Sede 2012
90 °C
Nominal temperature cond
Calculation of electrical wiring due to voltage drop
Inom=
79.5 A
% CT=
0.12
Conductors by phase=
1
Tension drop (CT)=
0.59 V
Effective impedance (Ze) =
0.5360 Ω/km
L=
8m
Voltage=
480 V
Wire gauge=
2 AWG
4
Power Factor
0.95
RL =
0.66
XL =
0.187
Canalization calculation
Conductor gauge=*
2 AWG
Required area=*
529 mm2
Conductor area=
86.00 mm2
Canalization diameter=
2 in
Ground gauge=
Number of canalizations=
6 AWG
1
Ground area=
13.30 mm2
Canalization area at 40%=
879 mm2
Number of phases=
3
* 1 pipes of 2 in will be installed according to the following:
Total wires=**
3 +1 units
c/3 wire 2 AWG of current+ 1 ground wire 6 AWG
*Insulated wire THHW-LS
**3 wire per line and 1 ground
Figure 6 Is a representation of the one-line diagram of the inverter according to the calculations performed for this
section.
Figura 6 Es una representación del diagrama unifilar del inversor de acuerdo con los cálculos realizados para esta
sección:
Figure 6. One – line diagram of this section.
Figura 6. Diagrama unifilar de esta sección.
P003-T3_03_MCE_RA
Page 27
INVERTER 13 - 20, 22 – 41
3.7 CALCULATION RESULTS OF INVERTERS No.13-No. 20, No. 22-No. 41
(BOX COMBINER-PV BOARD 3)
3.7 RESULTADOS DE CÁLCULOS PARA INVERSORES NO.13- No.20, No. 22-No. 41 (CAJA
COMBINADORA – TABLERO FV 3)
Table 12. Electrical calculations for this section.
Tabla 12. Cálculos eléctricos de esta sección.
AC Combiner 1-14 - Carport
Sunny Tripower CORE1, 62.5 kW (62-US-41)
Calculation of electrical wiring by ampacity
Datos
Resultados
193.90 A.
Ampacity with use factors=
Imax=
159 A
Imax*125%=
198.75 A.
Conductors per phase=
1
198.75 A.
Icorr Max=
Conductor ampacity=
205 A
Conductor gauge=
4/0
F.T. =
0.82
F.A.=
1
Conductor grounding=
4 AWG.
200.00 A.
F.D.=
1.25
Overcurrent protection=
Maximum conductors in pi
3
Caliber selection according to Icorr
Historical maximun temper
50 °C
The maximum corrected current in the circuits is 198.75 A, which
Ceiling to tube base distan Does not apply
will be carried by 1 conductor(es) 4/0 AWG by phase, which has
50 °C
Ambient temperature adju
an ampacity of 205 A at 90 °C, will be protected with an ITM of 200
Conductor material
ALUMINUM
A, complying with what is required by the NOM 001 Sede 2012
Nominal temperature cond
90 °C
Calculation of electrical wiring due to voltage drop
2.69
159 A
% CT=
Inom=
Conductors by phase=
1
12.91 V
Tension drop (CT)=
Effective impedance (Ze) =
0.2562 Ω/km
182.91 m
L=
480 V
Voltage=
4
4/0 AWG
Wire gauge=
0.95
Power Factor
0.207
RL =
XL =
0.167
Canalization calculation
4/0 AWG
Required area=*
1461 mm2
Conductor gauge=*
239.90 mm2
Canalization diameter=
3 in
Conductor area=
Ground gauge=
4 AWG
Number of canalizations=
1
Ground area=
21.15 mm2
Canalization area at 40%=
1936 mm2
Number of fases=
3
* 1 pipes of 3 in will be installed according to the following:
3 +1 units
c/3 wire 4/0 AWG of current + 1 ground wire 4 AWG
Total wires=**
*Insulated wire THHW-LS
**3 wire per line and 1 ground
P003-T3_03_MCE_RA
Page 28
Inverter 20 (1 Inverter) Carport
Sunny Tripower CORE1, 62.5 kW (62-US-41)
Calculation of electrical wiring by ampacity
Data
Results
Imax=
79.5 A
Ampacity with use factors=
96.95 A.
Conductors per phase=
1
Imax*125%=
99.38 A.
Conductor ampacity=
100 A
Icorr Max=
99.38 A.
F.T. =
0.82
Conductor gauge=
2 AWG.
F.A.=
1
Conductor grounding=
6 AWG.
F.D.=
1.25
Overcurrent protection=
100.00 A.
Maximum conductors in pi
3
Caliber selection according to Icorr
Historical maximun temper
50 °C
The maximum corrected current in the circuits is 99.38 A, which
Ceiling to tube base distancDoes not apply
will be carried by 1 conductor(es) 2 AWG by phase, which has an
Ambient temperature adju
50 °C
ampacity of 100 A at 90 °C, will be protected with an ITM of 100 A,
Conductor material
ALUMINUM
compliying with is required by the NOM 001 Sede 2012
Nominal temperature cond
90 °C
Calculation of electrical wiring due to voltage drop
Inom=
79.5 A
% CT=
0.12
Conductors by phase=
1
Tension drop (CT)=
0.59 V
Effective impedance (Ze) =
0.5360 Ω/km
L=
8m
Voltage=
480 V
Wire gauge=
2 AWG
4
Power Factor
0.95
RL =
0.66
XL =
0.187
Canalization calculation
Conductor gauge=*
2 AWG
Required area=*
271 mm2
Conductor area=
86.00 mm2
Canalization diameter=
1 in
Ground gauge=
6 AWG
Number of canalizations=
1
Ground area=
13.30 mm2
Canalization area at 40%=
229 mm2
Number of phases=
3
* 1 pipes of 1 in will be installed according to the following:
Total wires=**
3 +1 units
c/3 wire 2 AWG of current+ 1 ground wire 6 AWG
*Insulated wire THHW-LS
**3 wire per line and 1 ground
Inverter 25 (1 Inverter) Carport
Sunny Tripower CORE1, 62.5 kW (62-US-41)
Calculation of electrical wiring by ampacity
Data
Results
Imax=
79.5 A
Ampacity with use factors=
96.95 A.
Conductors per phase=
1
Imax*125%=
99.38 A.
100 A
Conductor ampacity=
Icorr Max=
99.38 A.
F.T. =
0.82
Conductor gauge=
2 AWG.
F.A.=
1
Conductor grounding=
6 AWG.
F.D.=
1.25
Overcurrent protection=
100.00 A.
Maximum conductors in pi
3
Caliber selection according to Icorr
50 °C
Historical maximun temper
The maximum corrected current in the circuits is 99.38 A, which
Ceiling to tube base distancDoes not apply
will be carried by 1 conductor(es) 2 AWG by phase, which has an
50 °C
Ambient temperature adju
ampacity of 100 A at 90 °C, will be protected with an ITM of 100 A,
Conductor material
ALUMINUM
complying with is required by the NOM 001 Sede 2012
Nominal temperature cond
90 °C
Calculation of electrical wiring due to voltage drop
Inom=
79.5 A
% CT=
0.05
Conductors by phase=
1
Tension drop (CT)=
0.22 V
Effective impedance (Ze) =
0.5360 Ω/km
L=
3m
Voltage=
480 V
Wire gauge=
2 AWG
4
Power Factor
0.95
RL =
0.66
XL =
0.187
Canalization calculation
Conductor gauge=*
2 AWG
Required area=*
529 mm2
Conductor area=
86.00 mm2
Canalization diameter=
1 ½ in
Ground gauge=
6 AWG
Number of canalizations=
1
Ground area=
Canalization area at 40%=
533 mm2
13.30 mm2
Number of phases=
3
*1 pipes of 1 ½ in will be installed according to the following:
Total wires=**
3 +1 units
c/3 wire 2 AWG of current+ 1 ground wire 6 AWG
*Insulated wire THHW-LS
**3 wire per line and 1 ground
P003-T3_03_MCE_RA
Page 29
Figure 7 Is a representation of the one-line diagram of the inverter according to the calculations performed for this
section.
Figura 7 Es una representación del diagrama unifilar del inversor de acuerdo con los cálculos realizados para esta
sección:
Figure 7. One – line diagram of this section.
Figura 7. Diagrama unifilar de esta sección.
P003-T3_03_MCE_RA
Page 30
3.8 PV 1-2 BOARD TO INTERCONNECTION POINT. SOUTH EXTENSION.
3.8 TABLERO FV 1-2 A PUNTO DE INTERCONEXIÓN. AMPLIACIÓN SUR.
Table 13. Electrical calculations for this section.
Tabla 13. Cálculos eléctricos de esta sección.
Data
Imax=
Conductors per phase=
Conductor ampacity=
F.T. =
F.A.=
F.D.=
Maximum conductors in pipe
Historical maximun temperature=
Ceiling to tube base distance
Ambient temperature adjustment=
Conductor material
Nominal temperature conductors=
Inom=
Conductors by phase=
Tension drop (CT)=
Effective impedance (Ze) =
L=
Voltage=
Wire gauge=
Power Factor
RL =
XL =
Conductor gauge=*
Conductor area=
Ground gauge=
Ground area=
Number of phases=
Total wires=**
Board 1 and 2 South Extension
Sunny Tripower CORE1, 62.5 kW (62-US-41)
Calculation of electrical wiring by ampacity
Results
671.83 A.
Ampacity with use factors=
477 A
3
Imax*125%=
596.25 A.
671.83 A.
Icorr Max=
230 A
0.71
Conductor gauge=
250kcmil
1
Conductor grounding=
2/0
600.00 A.
Overcurrent protection=
1.25
3
Caliber selection according to Icorr
50 °C
The maximum corrected current in the circuits is 671.83 A,
More than 300 up to 900 mmwhich will be carried by 3 conductor(es) 250 AWG by phase,
64 °C
which has an ampacity of 230 A at 90 °C, will be protected with
ALUMINUM
an ITM of 600 A, complying with what is required by the NOM
90 °C
001 Sede 2012
Calculation of electrical wiring due to voltage drop
% CT=
0.78
477 A
3
3.76 V
0.3031 Ω/km
45 m
480 V
250 Kcmill
0.95
0.282
0.171
Canalization calculation
3275 mm2
250 Kcmill
Required area=*
3 in
Canalization diameter=
296.50 mm2
3
2/0 AWG
Number of canalizations=
67.43 mm2
5808 mm2
Canalization area at 40%=
* 3 pipes of 3 in will be installed according to the following:
3
9 +3 units
c/9 wire 250 AWG of current + 1 ground wire 2/0 AWG
*Insulated wire THHW-LS
**3 wire per line and 3 ground
Figure 8 Is a representation of the one-line diagram of the inverter according to the calculations performed for this
section.
Figura 8 es un representación del diagrama unifilar del inversor de acuerdo con los cálculos realizados para esta
sección:
P003-T3_03_MCE_RA
Page 31
Figure 8. One-line diagram of this section.
Figura 8. Diagrama unifilar de esta sección.
P003-T3_03_MCE_RA
Page 32
3.9 PV 3 BOARD TO TRANSFORMER. CARPORT.
3.9 TABLERO FV 3 A TRANSFORMADOR. CARPORT
Table 14. Electrical calculations for this section.
Tabla 14. Cálculos eléctricos de esta sección.
Data
Imax=
Conductors per phase=
Conductor ampacity=
F.T. =
F.A.=
F.D.=
Maximum conductors in pipe
Historical maximun temperature=
Ceiling to tube base distance
Ambient temperature adjustment=
Conductor material
Nominal temperature conductors=
Inom=
Conductors by phase=
Tension drop (CT)=
Effective impedance (Ze) =
L=
Voltage=
Wire gauge=
Power Factor
RL =
XL =
Conductor gauge=*
Conductor area=
Ground gauge=
Ground area=
Number of phases=
Total wires=**
Board 3 Carport
Sunny Tripower CORE1, 62.5 kW (62-US-41)
Calculation of electrical wiring by ampacity
Results
2714.63 A.
Ampacity with use factors=
2226 A
9
Imax*125%=
2782.50 A.
3000 A
Icorr Max=
2782.50 A.
Conductor gauge=
COPPER BUSBAR TO 3000 A
0.82
1
Conductor grounding=
400 AWG.
3000.00 A.
Overcurrent protection=
1.25
3
Caliber selection according to Icorr
50 °C
The maximum corrected current in the circuits is 2782.5 A,
Does not apply
which will be carried by 9 conductor(es) COPPER BUSBAR TO
50 °C
3000 A AWG by phase, which has an ampacity of 3000 A at 90
COPPER
°C, will be protected with an ITM of 3000 A, complying with
90 °C
what is required by the NOM 001 Sede 2012
Calculation of electrical wiring due to voltage drop
% CT=
0.00
2226 A
9
0.00 V
0.0000 Ω/km
1m
480 V
4
USBAR TO 3000 A AWG
0.95
0
0
Canalization calculation
1824 mm2
USBAR TO 3000 A AWG
Required area=*
1 in
0.00 mm2
Canalization diameter=
9
400 AWG
Number of canalizations=
2061 mm2
202.70 mm2
Canalization area at 40%=
3
* 9 pipes of 1 in in will be installed according to the following:
c/27 wire COPPER BUSBAR TO 3000 A AWG of current+ 1 ground wire 400 AWG
27 +9 units
*Insulated wire THHW-LS
**3 wire per line and 9 ground
Figure 9 Is a representation of the one-line diagram of the inverter according to the calculations performed for this
section.
Figura 9 Es una representación del diagrama unifilar del inversor de acuerdo con los cálculos realizados para esta
sección:
Figure 9. One-line diagram of this section.
Figura 9. Diagrama unifilar de esta sección.
P003-T3_03_MCE_RA
Page 33
3.10 TRANSFORMER. INTERCONECTION POINT.
3.10 TRANSFORMADOR A PUNTO DE INTERCONEXIÓN. CARPORT
Table 15. Electrical calculations for this section.
Tabla 15. Cálculos eléctricos de esta sección.
MEDIUM VOLTAGE CELL CARPORT PHOTOVOLTAIC SYSTEM
TR2000KVA
Calculation of electrical wiring by ampacity
Data
Results
Ampacity with use factors=
38.03 A.
Imax=
33.47 A
Conductors per phase=
1
Imax*125%=
41.84 A.
Conductor ampacity=
120 A
Icorr Max=
41.84 A.
F.T. =
0.88
Conductor gauge=
1/0
F.A.=
1
Conductor grounding=
1/0
F.D.=
1.25
Overcurrent protection=
45.00 A.
Maximum conductors in pip
3
Caliber selection according to Icorr
Historical maximun tempera
40 °C
The maximum corrected current in the circuits is 41.84 A,
Ceiling to tube base distanceDoes not apply
which will be carried by 1 conductor(es) 1/0 AWG by phase,
which has an ampacity of 120 A at 75 °C, will be protected with
Ambient temperature adjust
40 °C
an ITM of 45 A, complying with what is required by the NOM
ALUMINUM
Conductor material
001 Sede 2012
Nominal temperature condu
75 °C
Calculation of electrical wiring due to voltage drop
% CT=
0.04
33.47 A
Inom=
Conductors by phase=
1
Tension drop (CT)=
13.74 ∆V
Effective impedance (Ze) =
0.66 Ω/km
L=
360 m
Voltage=
34500 V
Wire gauge=
1/0 AWG
Power Factor
0.95
0.69
RL =
XL =
0.18
Canalization calculation
3274 mm2
Required area=*
1/0 AWG
Conductor gauge=*
1073.47 mm2
Canalization diameter=
4 in
Conductor area=
1/0 AWG
1
Ground gauge=
Number of canalizations=
Ground area=
53.48 mm2
Canalization area at 40%=
3326 mm2
* 1 pipes of 4 in will be installed according to the following:
Number of phases=
3
c/3 wire 1/0 AWG of current + 1 ground wire 1/0 AWG
3 +1 units
Total wires=**
*Insulated wire THHW-LS
**3 wire per line and 1 ground
Figure 10 Is a representation of the one-line diagram of the inverter according to the calculations performed for this
section.
Figura 10 Es una representación del diagrama unifilar del inversor de acuerdo con los cálculos realizados para esta
sección:
P003-T3_03_MCE_RA
Page 34
Figure 10. One-line diagram of this section.
Figura 10. Diagrama unifilar de esta sección.
P003-T3_03_MCE_RA
Page 35
4. VOLTAGE DROP
4. CAÍDA DE TENSIÓN
Tabla 16. Total voltage drop.
Tabla 16. Caída de tensión total.
Voltage drop by section
Photovoltaic module to inverter
Inversor
Alternating current interconnection inverters
Cable Voltage drop modules to
length inverter
Cable length Voltage drop
inverters to board /
combiner
Cable length
Voltage drop
combiner box to
board
Cable
length
Voltage drop PV board
to interconnection
Sum
Cable length
Voltage drop medium
voltage cell Interconnection
Total voltage drop
Inverter 1
148 mts.
ΔVInv 1(%)
1.73
188 mts.
2.85
ΔVInv 1(%)
3.64
Inverter 2
89 mts.
ΔVInv 2(%)
1.04
189 mts.
2.87
ΔVInv 2(%)
3.65
Inverter 3
121 mts.
ΔVInv 3(%)
1.42
143 mts.
2.18
ΔVInv 3(%)
2.96
Inverter 4
65 mts.
ΔVInv 4(%)
0.76
144 mts.
2.19
ΔVInv 4(%)
2.98
Inverter 5
93 mts.
ΔVInv 5(%)
1.08
90 mts.
1.37
ΔVInv 5(%)
2.15
Inverter 6
161 mts.
ΔVInv 6(%)
1.88
21 mts.
0.31
ΔVInv 6(%)
1.10
Inverter 7
100 mts.
ΔVInv 7(%)
1.31
5 mts.
0.08
ΔVInv 7(%)
0.86
Inverter 8
81 mts.
ΔVInv 8(%)
0.94
22 mts.
0.33
ΔVInv 8(%)
1.11
Inverter 9
109 mts.
ΔVInv 9(%)
1.28
9 mts.
0.14
Inverter 10
115 mts.
ΔVInv 10(%)
1.35
26 mts.
0.40
Inverter 11
143 mts.
ΔVInv 11(%)
1.67
87 mts.
Inverter 12
113 mts.
ΔVInv 12(%)
1.32
117 mts.
Inverter 13
122 mts.
ΔVInv 13(%)
1.42
Inverter14
120 mts.
ΔVInv 14(%)
Inverter 15
97 mts.
Inverter 16
45 mts.
0.78
ΔVInv 9(%)
0.92
ΔVInv 10(%)
1.18
1.33
ΔVInv 11(%)
2.11
1.78
ΔVInv 12(%)
2.56
3 mts.
0.05
ΔVInv 13(%)
0.09
1.41
8 mts.
0.12
ΔVInv 14(%)
0.16
ΔVInv 15(%)
1.13
3 mts.
0.05
ΔVInv 15(%)
0.09
158 mts.
ΔVInv 16(%)
1.85
3 mts.
0.05
ΔVInv 16(%)
0.09
Inverter 17
117 mts.
ΔVInv 17(%)
1.37
3 mts.
0.05
ΔVInv 17(%)
0.09
Inverter 18
118 mts.
ΔVInv 18(%)
1.38
3 mts.
0.05
ΔVInv 18(%)
0.09
Inverter 19
133 mts.
ΔVInv 19(%)
1.55
8 mts.
0.12
ΔVInv 19(%)
0.16
Inverter 20
120 mts.
ΔVInv 20(%)
1.40
3 mts.
0.05
ΔVInv 20(%)
0.09
Inverter 21
41 mts.
ΔVInv 21(%)
0.48
0.12
ΔVInv 21(%)
0.16
Inverter 22
118 mts.
ΔVInv 22(%)
1.38
3 mts.
0.05
ΔVInv 22(%)
0.09
Inverter 23
123 mts.
ΔVInv 23(%)
1.43
3 mts.
0.05
ΔVInv 23(%)
0.09
Inverter 24
121 mts.
ΔVInv 24(%)
1.41
3 mts.
0.05
ΔVInv 24(%)
0.09
Inverter 25
164 mts.
ΔVInv 25(%)
1.91
3 mts.
0.05
ΔVInv 25(%)
0.09
Inverter 26
193 mts.
ΔVInv 26(%)
2.26
3 mts.
0.05
ΔVInv 26(%)
0.09
Inverter 27
136 mts.
ΔVInv 27(%)
1.59
3 mts.
0.05
ΔVInv 27(%)
0.09
Inverter 28
188 mts.
ΔVInv 28(%)
2.20
3 mts.
0.05
ΔVInv 28(%)
0.09
Inverter 29
177 mts.
ΔVInv 29(%)
2.06
3 mts.
0.05
ΔVInv 29(%)
0.09
Inverter 30
169 mts.
ΔVInv 30(%)
1.97
3 mts.
0.05
ΔVInv 30(%)
0.09
Inverter 31
172 mts.
ΔVInv 31(%)
2.01
3 mts.
0.05
ΔVInv 31(%)
0.09
Inverter 32
168 mts.
ΔVInv 32(%)
1.96
3 mts.
0.05
ΔVInv 32(%)
0.09
Inverter 33
177 mts.
ΔVInv 33(%)
2.07
3 mts.
0.05
ΔVInv 33(%)
0.09
Inverter 34
147 mts.
ΔVInv 34(%)
1.72
3 mts.
0.05
ΔVInv 34(%)
0.09
Inverter 35
145 mts.
ΔVInv 35(%)
1.69
3 mts.
0.05
ΔVInv 35(%)
0.09
Inverter 36
172 mts.
ΔVInv 36(%)
2.01
3 mts.
0.05
ΔVInv 36(%)
0.09
Inverter 37
169 mts.
ΔVInv 37(%)
1.98
3 mts.
0.05
ΔVInv 37(%)
0.09
Inverter 38
152 mts.
ΔVInv 38(%)
1.78
3 mts.
0.05
ΔVInv 38(%)
0.09
Inverter 39
146 mts.
ΔVInv 39(%)
1.71
3 mts.
0.05
ΔVInv 39(%)
0.09
Inverter 40
125 mts.
ΔVInv 40(%)
1.46
3 mts.
0.05
ΔVInv 40(%)
0.09
Inversor 41
111 mts.
ΔVInv 41(%)
0.47
3 mts.
0.05
ΔVInv 41(%)
0.09
P003-T3_03_MCE_RA
Page 36
8 mts.
45 mts.
17.32
11.07
27.55
44.53
144.18
149.81
135.21
128.98
150.32
158.44
140.12
162.44
158.44
182.91
0.78
0.25
0.16
0.41
0.65
2.12
2.20
1.99
1.90
2.21
2.33
2.06
2.39
2.33
2.69
1
0.00
360.00
0.04
5. RESPONSABLE FOR ELECTRICAL CALCULATIONS
5. RESPONSABLE DE CÁLCULOS EN BAJA Y MEDIA TENSIÓN
JOSÉ ROGELIO SANDOVAL GARZA
Cédula profesional: 9858988
P003-T3_03_MCE_RA
Page 37
Descargar