Derivadas Usando la Regla de la Cadena DERIVADA USANDO LA REGLA DE LA CADENA La gran mayoría de las funciones que se estudian en cálculo están construidas por una composición de funciones, de aquí la importancia de conocer un método sencillo para diferenciar dichas funciones; el método utilizado para hallar la derivada de una función compuesta se conoce como "Regla de la cadena". Regla de la cadena: Si y = f (u ), u = g ( x), y es una función diferenciable de u y u es una función diferenciable de x, dy du es decir, y existen, entonces la función compuesta definida como y = f ( g ( x) ) = f g du dx tiene derivada definida así: dy dy du = = f ´(u ).g´( x) = f ´( g ( x) ) . ( g´( x) ) dx du dx Derivada externa Derivada interna Recuerda entonces las reglas de derivación y extiéndelas a la regla de la cadena Si y = xn → dy d n = ( x ) = n.x n −1 dx dx Si y = un → dy d n du = ( u ) = n.u n −1. u´= n.u n −1. dx dx dx Hallar la derivada de cada una de las funciones usando la regla de la cadena 100 Ejemplo 1: f ( x ) = ( x 2 + 5 x ) Solución: Aplicando la regla de la cadena 100 f ´( x) = Dx ( x 2 + 5 x ) 99 = 100 ( x 2 + 5 x ) Dx ( x 2 + 5 x ) = 100 ( x 2 + 5 x ) Ejemplo 2: f ( x ) = 99 ( 2 x + 5) 1 ( 3x − 1) 4 Solución: Aplicando la regla de la cadena Lcdo. Eliezer Montoya Página 1 Derivadas Usando la Regla de la Cadena 1 −4 f ´( x ) = Dx = Dx ( 3 x − 1) 4 ( 3 x − 1) = −4 ( 3 x − 1) −4 −1 −5 .Dx ( 3 x − 1) = −4 ( 3 x − 1) = −12 ( 3 x − 1) = −5 ( 3) = −12 ( 3x − 1) 5 Podemos ver en azul la función interna, por tanto al derivar una función compuesta, calculamos la derivada de la función externa por la derivada de la función interna. Ejemplo 3: y = ( x 2 + 5 x ) 3 Solución: Aplicando la regla de la cadena du = 2 x + 5 2 = + 5 u x x dx y = ( x2 + 5x ) ⇒ ⇒ 3 y = u dy = 3u 2 du 2 dy dy du = = 3u 2 ( 2 x + 5 ) = 3 ( x 2 + 5 x ) ( 2 x + 5 ) = ( x 4 + 10 x 3 + 25 x 2 ) ( 6 x + 15 ) = dx du dx = 6 x5 + 60 x 4 + 150 x3 + 15 x 4 + 150 x 3 + 375 x 2 = 6 x 5 + 75 x 4 + 300 x 3 + 375 x 2 3 Ejemplo 4: y = x 2 + 1 Solución: Aplicando la regla de la cadena du = 2x u = x + 1 dx ⇒ y = x2 + 1 ⇒ 1/ 2 y = u = u dy = 1 u −1/ 2 = 1 du 2 2 u 2 dy dy du 1 2x = = .2 x = = dx du dx 2 u 2 x2 + 1 Ejemplo 5: h( x ) = sin 3 x = ( sin x ) x 2 x +1 → Dx u = Dx u 2 u 3 Solución: Aplicando la regla de la cadena 3 h '( x ) = Dx ( sin x ) = 3 ( sin x ) Lcdo. Eliezer Montoya 3−1 Dx ( sin x ) = 3sin 2 x.cos x Página 2 Derivadas Usando la Regla de la Cadena Ejemplo 6: g ( x ) = sin x 3 = sin ( x 3 ) Solución: Aplicando la regla de la cadena g´( x ) = Dx ( sin x 3 ) = cos x 3 Dx ( x 3 ) = 3 x 2 cos x 3 Con lo antes expuesto, podemos generalizar las siguientes reglas de derivación Dx sin u = cos u.Dx u Dx cos u = − sin u.Dx u Dx tan u = sec 2 u.Dx u Dx sec u = sec u.tan u.Dx u 2 Dx csc u = − csc u.cot u.Dx u Dx cot u = − csc u.Dx u 10 Ejemplo 7: g (t ) = ( t 2 + 6t ) (1 − 3t ) 4 Solución: Aplicando la regla de la cadena: -Recuerde la regla de la derivada de dos funciones Dx ( u.v ) = ( Dx u ) .v + ( Dx v ) .u g´(t ) = Dt ( t 2 + 6t ) 10 (1 − 3t ) 4 10 10 4 4 = Dt ( t 2 + 6t ) . (1 − 3t ) + Dt (1 − 3t ) . ( t 2 + 6t ) 9 4 10 3 = 10 ( t 2 + 6t ) Dt ( t 2 + 6t ) . (1 − 3t ) + 4 (1 − 3t ) Dt (1 − 3t ) . ( t 2 + 6t ) 9 4 9 4 10 3 = 10 ( t 2 + 6t ) ( 2t + 6 ) . (1 − 3t ) + 4 (1 − 3t ) ( −3) . ( t 2 + 6t ) 3 10 = 10 ( t 2 + 6t ) ( 2t + 6 ) . (1 − 3t ) − 12 (1 − 3t ) . ( t 2 + 6t ) 9 3 = 2 ( t 2 + 6t ) (1 − 3t ) 5 ( 2t + 6 ) (1 − 3t ) − 6 ( t 2 + 6t ) 9 3 = 2 ( t 2 + 6t ) (1 − 3t ) −36t 2 − 116t + 30 9 3 = −4 ( t 2 + 6t ) (1 − 3t ) 18t 2 + 58t − 15 Ejemplo 8: y = e x 2 +5 x + 6 Solución: Aplicando la regla de la cadena Lcdo. Eliezer Montoya Página 3 Derivadas Usando la Regla de la Cadena du = 2 x + 5 u = x + 5 x + 6 dx → → u y = e dy = eu du 2 y = ex 2 +5 x + 6 Dx eu = eu Dx u Como: 2 dy dy du = = eu ( 2 x + 5 ) = ( 2 x + 5 ) e x + 5 x + 6 dx du dx Problemas Propuestos En los problemas 1 al 4, hallar las derivadas requeridas usando la regla de la cadena: 1.- y = u , u = x 2 + x + 1, hallar dy dx 3.- y = u −5 , u = x 4 + 1, hallar dy dx 2.- y = u 3 − 2u1/ 2 , u = x 2 + 2 x, hallar dy dx −1 4.- y = u , u = ( 7 − x 2 )( 7 + x 2 ) , hallar Dx y En los problemas 5 al 68, encontrar la derivada de cada función con la ayuda de la regla de la cadena: 10 5.- f ( x ) = ( 5 − 2 x ) 7.- f ( y ) = 6.- f ( x ) = ( 2 x − 3) 1 ( 4 y + 1) 8 8.- f (t ) = ( 2t 4 − t + 1) 5 2 9.- g ( x ) = ( 3 x 2 + 7 ) ( 5 − 3 x ) −4 2 3 10.- g (t ) = ( 5t 2 + 1) ( 3t 4 + 2 ) 4 2 1 5 11.- f ( x) = 3 x + ( 6 x − 1) x 13.- g ( y ) = ( 7 y + 3) −2 x2 + x 15.- f ( x) = 1− 2x 3x + 1 17.- f ( x) = 2 x Lcdo. Eliezer Montoya 4 3 ( 2t + 5 ) −3 12.- f ( t ) = ( 3t − 1) −1 1 14.- f (u ) = 6u + u 1+ t2 16.- f (t ) = 2 1− t ( 2t + 5 ) −3 −5 ( 2u − 2 ) 7 5 16 x 18. f ( x) = 2 x −7 −3 Página 4 Derivadas Usando la Regla de la Cadena 1 19.- f ( x ) = = x ( x) 1 −1 20.- f ( x ) = x2 + 1 21.- g ( x ) = x 2 + 2 x − 1 22.- f ( x) = x = x1/ 4 23.- f (t ) = t 4 − t 2 + 3 24.- g ( y ) = y3 − y + y ( 25.- f ( x ) = x − x ) 3 4 26.- Q( s) = 1 + s3 s 27.- f ( x ) = 5sin 7 x 28.- f ( x) = 8cos ( 3x + 5) 29.- g ( x ) = 4sin 6 x 2 30.- g (t ) = 3sin ( 5t 2 + t ) 31.- h( x ) = sin x 32.- h( s ) = s 2 sin s 3 33.- g (t ) = sin 4 3t 34.- g ( x ) = cos 2 5 x − sin 2 5 x 35.- h( x) = cos ( sin x ) 36.- f (t ) = (1 − 2sin 3t ) 37.- f ( x ) = cos 5 x 38.- g ( x ) = 4 − cos 3 x x2 sin x − x cos x cos x 39.- h( x) = sin x 1 + cos 5 x 40.- g ( x) = 41.- h(t ) = 27 35 + sin 2t cos 2t 42. g (r ) = tan 5r 4 ( 5 ) 43.- g (t ) = cot ( 3t 5 ) 44.- h(r ) = sec 45.- f (u ) = csc u 2 + 1 7 46.- g ( s ) = cot s 47.- h( x) = 1 + sec x t 48.- g (t ) = tan t+2 49.- h(t ) = sec 2 7t − tan 2 7t 50.- g ( x) = csc 2 15 x − cot 2 15 x 51.- h( s ) = sec 4 13s − tan 4 13s 52.- g ( x) = ( tan x + sec x ) Lcdo. Eliezer Montoya r −r 3 Página 5 Derivadas Usando la Regla de la Cadena 53.- g ( x) = x 3 tan 5 2 x 54.- f (t ) = cot 3t t2 +1 55.- h( x) = 2x 1 + sec 5 x 56.- g (t ) = tan ( 3t ) sec ( 3t ) 57.- f ( x) = 1 2 x − cot 3 2 x 3 58.- g (r ) = 59.- g (t ) = sec 2 3t t3 θ 60.- f (θ ) = tan θ 61.- f ( x) = sin ( tan 5 x 2 ) 63.- g ( x) = e x 3 3 62.- g ( x) = sec ( csc7 7 x ) 2x 64.- h( x) = exp x+4 /2 65.- f (t ) = ( t 2 + 6t − 10 ) e − t 67.- h(t ) = ( cos t ) 2 3 2 r csc5 3r 2 sin ( 5 / t ) 66.- f ( x) = exp ( sin 2 x ) 68.- f ( x) = ( tan x + cot x ) esec x Referencias Bibliográficas [1] LARSON R. ,HOSTETLER R y EDWARDS B . ( ) Cálculo y Geometría Analítica, (Sexta Edición -Volumen 1 ) México: Edit Mc Graw Hill [ 2] LEITHOLD , L. (1998) El cálculo 7. México Edit Oxford University Press [3] MUNEN & FOULIS (1984) Calculus with Analytic Geometry (Second Edition) U.S.A -New York Edit Worth Publishers, Inc...1048 Pág. Lcdo. Eliezer Montoya Página 6