ELEMENTOS DE INFERENCIA ESTADISTICA 1. INTRODUCCIÓN Todas las herramientas estadísticas con las que se cuenta hasta ahora, tales como tablas, gráficos y cálculo de medidas descriptivas se podrían englobar en el término Estadística Descriptiva, puesto que ellas esencialmente permiten describir, presentar y resumir información que ha sido recolectada de alguna forma. Sin embargo las técnicas de la Estadística Descriptiva no permiten responder interrogantes que pueden surgir cuando no se dispone de la información sobre todos los individuos de la población de interés sino sólo de una parte de ella, es decir, que los datos provienen de una muestra de individuos de la población bajo estudio. Ejemplos de esta situación son: Si se conoce que la ganancia promedio de ventas de una muestra de 50 automóviles nuevos es de $935, ¿qué se puede decir sobre la ganancia media de todas las ventas de automóviles nuevos? Si se encontró que una curso de capacitación ayuda a encontrar trabajo a 16 de 20 jóvenes de una ciudad, ¿qué porcentaje de todos los jóvenes que buscan trabajo se puede esperar que encuentren trabajo después de tomar el curso? Para responder este tipo de preguntas la Estadística dispone de una gran cantidad de métodos que se engloban dentro de la llamada Estadística Inferencial, los cuales se usan esencialmente para determinar la probabilidad de que una conclusión sacada a partir de los datos de una muestra sea cierta en la población muestreada. Las poblaciones pueden ser ventas, consumidores de un producto, etc. 109 personal de una empresa, El proceso conocido como inferencia estadística, requiere consideraciones de cómo fue seleccionada la muestra y cuánto varían las observaciones de una muestra a otra. De esta manera, los métodos de selección de los individuos que se usarán en la investigación son de considerable importancia para la obtención de resultados y conclusiones válidas. El requisito fundamental de una buena muestra es que sea representativa de la población que se trata de describir (Población Objetivo – Figura 5.1). Hay, por supuesto muchas formas de obtener una muestra no representativa. Una obvia falta de representatividad ocurre cuando la muestra se toma de la población equivocada. Por ejemplo, se quiere conocer la proporción de personas que consumen un determinado producto y la muestra se obtiene de los clientes de un solo supermercado. Aún cuando se esté seguro que la muestra se obtiene de la apropiada población, otra fuente potencial de error en el muestreo, especialmente en las encuestas de opinión son las respuestas sesgadas. Cuestionarios mal redactados o técnicas de entrevistas inadecuadas pueden dar lugar a respuestas que no reflejan la realidad que se quiere evaluar. Por otra parte, en muchas ocasiones no es posible obtener la muestra a partir de todos los individuos que definen la población objetivo, sino sólo a partir de una subpoblación que es accesible al investigador en el momento de hacer la selección de los individuos de la muestra y ella recibe el nombre de población muestreada (Figura 5.1). 110 Población objetivo Se requiere sentido común para hacer inferencias del muestreo a la población objetivo Población muestreada Para hacer inferencias estadísticas de la muestra a la población muestreada se requiere que la muestra sea aleatoria Muestra Figura 5.1: Alcances de las inferencias realizadas de una muestra (Estadística Biomédica, Dawson-Sauders y Trapp). Consideremos, por ejemplo, un sondeo telefónico que realizó la cadena de televisión ABC inmediatamente antes de las elecciones de 1980 entre Carter y Reagan. La ABC invitó a sus televidentes a llamar (por larga distancia) para dar a conocer sus preferencias presidenciales. En vez de lograr una muestra del sentir real de los electores, la ABC obtuvo una muestra de las preferencias de los votantes que estaban suficientemente interesados en desviar el resultado del sondeo como para invertir en las llamadas telefónicas de larga distancia. Es claro que la ABC no realizó un muestreo aleatorio de la población de posibles votantes. Más demócratas hicieron las llamadas de larga distancia, y la ABC pronosticó así una victoria electoral de Carter. Antes de extender cualquier conclusión, es necesario evaluar qué factores selectivos y sesgos distinguen a la población realmente muestreada (todos los votantes que hicieron las llamadas de larga distancia) de la población objetivo (todos los posibles votantes). Los métodos de la Inferencia Estadística permiten generalizar los resultados de la muestra sólo a los individuos que componen la población muestreada y la generalización hacia la población objetivo está fuera del alcance de la Estadística. Sin embargo, si es posible suponer que la población muestreada es similar a la población objetivo no se cometería un error grande en generalizar los resultados hacia la población objetivo. 111 Aún cuando se esté seguro que la muestra se obtiene de la población apropiada, es igualmente importante que la muestra se saque de una manera objetiva e insesgada. Muestras casuales o muestras seleccionadas sobre la base de que es fácil de recolectar, son raramente representativas de la población. Hay varios métodos adecuados para seleccionar una muestra que permiten evitar los sesgos, y la mayoría tiene como base el concepto de muestra aleatoria o probabilística, en la cual cada individuo en la población de interés es seleccionado (o no) a través del uso de mecanismos aleatorios descriptos claramente. Por ejemplo, el caso más simple, es el denominado esquema de muestreo aleatorio simple en el cual cada posible muestra es igualmente probable, lo que implica que cada individuo tiene igual probabilidad de ser seleccionado para pertenecer a la muestra. Más adelante se tratará con más detalle los distintos tipos de muestreo. En cualquier estudio, los investigadores deben escribir de manera completamente explícita la manera en la cual las muestras han sido elegidas y cuando se escribe o se lee cualquier trabajo de investigación uno debería hacerse las siguientes preguntas: ¿El autor define claramente la población muestreada? ¿El autor discute similitudes y posibles diferencias entre la población muestreada y la población objetivo? ¿El autor describe claramente el mecanismo de muestreo que usó? ¿El mecanismo de muestreo es aleatorio? (Si no lo es, porque?). ¿Los métodos de análisis de datos son adecuados para el esquema de selección usado? ¿Qué ocurre si el investigador no ha usado un muestreo aleatorio para seleccionar los individuos de la muestra? Supongamos por ejemplo que él 112 simplemente usó los datos de los clientes de un supermercado para evaluar las preferencias de los consumidores respecto a distintas marcas de un producto. Muchos, sino la mayoría, de los estudios son de este tipo. Los datos son analizados luego, como si ellos hubieran surgido a partir de una muestra aleatoria de consumidores. El problema aquí es que estamos perdiendo la vital vinculación entre un esquema de muestreo aleatorio y el apropiado método de inferencia estadística, el cual supone siempre que hubo una selección aleatoria de la muestra. En estas circunstancia, ¿se debería entonces abandonar la inferencia estadística? Probablemente no, pero deberíamos siempre estar muy preocupados de tomar estos resultados muy seriamente. Las bases de la inferencia, en este caso, han sido severamente debilitadas (“destruida”, dirían algunos). En rigor de verdad, deberíamos decir: “si pretendemos que tenemos una muestra aleatoria, entonces …”. La palabra pretender ha sido usada deliberadamente ya que no es una suposición, puesto que nosotros sabemos que la muestra no es aleatoria. Al final, nosotros deberíamos aceptar que estamos usando la inferencia estadística sólo como una guía, como una manera de ayudar a que los datos tengan algún sentido, por todo esto, nuestra inferencia en estos casos debería estar basada más en el sentido común que en la teoría estadística. En las Unidades anteriores se estudió las reglas básicas de probabilidad y distintas distribuciones de probabilidad como la binomial, Poisson, Normal y exponencial. En esta unidad se usarán estas reglas de probabilidad junto con el conocimiento de las distribuciones de probabilidad para analizar cómo ciertas medidas (media, proporción) pueden usarse para hacer inferencias respecto a los parámetros poblacionales. La inferencia estadística involucra dos áreas principales: Estimación de Parámetro Poblacional y Prueba de Hipótesis, pero antes de tratar estos 113 importantes temas es necesario manejar el concepto de Distribución en el Muestreo o Distribución Muestral que es la base para comprender los métodos y herramientas de la inferencia estadística. 2. DISTRIBUCIÓN MUESTRAL Un objetivo que se presenta frecuentemente en las investigaciones de diferentes áreas es conocer el promedio de alguna característica cuantitativa o la proporción de individuos que poseen determinada característica cualitativa. Por ejemplo, la edad media de las “mujeres de una dada región que usan determinado servicio” (Población Objetivo); o la proporción de “egresados universitarios de un país” (Población Objetivo) que hacen una carrera de postgrado. En general, las características de interés en un estudio se denominan parámetros poblacionales. En los ejemplos dados los parámetros poblacionales son la media y la proporción y generalmente se denotan con a lamedia y con a la proporción. Para determinar los parámetros poblacionales se requiere conocer los valores de la variable para todos los individuos de la población, por ejemplo para determinar la edad media se requiere conocer la edad de todas las mujeres que usan el servicio. Sin embargo, no siempre es posible obtener la información de todos los individuos que componen la población por razones de costo en tiempo y dinero, y cuando eso ocurre se hace necesario recurrir a una muestra de la población. Luego, a partir de los datos de la muestra se busca una manera de combinar la información de la muestra para obtener la característica de interés. En el ejemplo donde el parámetro de interés es la edad media, se toma una muestra de n (tamaño de la muestra) mujeres de la población y se calcula el promedio de las edades en la muestra. Surge entonces el interrogante a cerca de cual medida de promedio se usará (media aritmética o mediana). Cualquiera 114 sea la medida que se use, cada una de ellas recibe el nombre de estimador o estadístico. Si se conviene en usar la media aritmética, o sea, la media muestral x , ella es en este caso el estimador de la media poblacional Se debe observar que para obtener el valor de x se debe combinar los valores observados en la muestra (suma de los datos divida en el número de observaciones) y esto ocurre con cualquier estadístico o estimador de una parámetro, de manera que formalmente se puede dar la siguiente definición: Definición 1: Un estadístico o estimador es una función de los valores observados en los individuos que componen la muestra, es decir, es la expresión matemática que indica la forma de combinar los datos La Tabla 5.1 muestra los símbolos de los parámetros y sus respectivos estimadores de uso más frecuentemente en medicina. Tabla 5.1: Símbolos usuales para parámetros y estadísticos Características Media Desvío estándar Varianza Correlación Proporción Símbolo del parámetro Símbolo del Estadístico x s s2 r p El valor que toma el estimador para una particular muestra se denomina una estimación del parámetro poblacional. Por ejemplo, si en una muestra de 100 mujeres se calcula el valor de la media aritmética de las edades y se obtiene x = 25.5 años, entonces 25.5 representa un particular valor de x , es decir es una estimación del estimador. Obviamente con cada posible muestra se tendría un valor diferente del estimador, es decir, se obtendría una estimación diferente 115 para el parámetro de interés. Por lo tanto, un estimador toma diferentes valores para cada muestra, es decir, varía de muestra en muestra. Teniendo en cuenta este aspecto de un estimador se puede dar una segunda definición de estimador: Definición 2: Un estadístico o estimador es una variable que toma diferentes valores para cada muestra seleccionada. De esta manera, las estimaciones dependen de la particular muestra con que estemos trabajando. En resumen, Si se está interesado en conocer algún parámetro de una población de interés (media, proporción, coeficiente de correlación, etc.), y no es posible observar o medir a todos los individuos de la población para obtener el valor de dicho parámetro, entonces, una posibilidad es obtener una muestra de tamaño n y conseguir una estimación de parámetro usando un estimador del parámetro. Por otra parte, si se pudiera extraer todas las posibles muestras del mismo tamaño (n) de la población de interés y con cada una de ellas se calcula el valor del estimador o estadístico correspondiente, se obtendría todas las estimaciones posibles del parámetro. Luego a partir de ellos se podría construir la distribución de probabilidad del estadístico, tal distribución de probabilidad que recibe el nombre de distribución muestral del estadístico de interés. Cabe preguntarse por qué es tan importante el concepto de distribución muestral, la respuesta es simple, cuando se quiere estimar un parámetro poblacional (característica de la población) a partir de una muestra surgen otros interrogantes como: ¿Qué tan buena es la estimación obtenida? 116 ¿Se puede llegar a la conclusión de que el parámetro de la población es idéntico al estadístico de la muestra o es probable que exista algún error?. Si es así, ¿qué tan grande es dicho error? Para responder a estas preguntas se debe comparar los resultados obtenidos a partir de las muestras con los resultados “esperados”. Los resultados esperados surgen justamente a partir de la distribución muestral del estadístico y de allí la importancia de ella. Surge ahora otro problema, es más costoso (y a veces imposible) obtener todas las muestras aleatorias de tamaño n para construir la distribución muestral del estadístico o estimador, que observar a todos los individuos de la población. De manera que se plantean ahora nuevos interrogantes: ¿cómo obtener la distribución muestral si se tiene sólo una muestra de la población? Para responder esta pregunta se debe tener en cuenta que la distribución muestral del estadístico depende de: La distribución de la población, es decir, de la distribución de probabilidad de la variable de interés (por ejemplo edad de las mujeres que usan un servicio) Del parámetro de interés (media, variabilidad) Del estadístico que se elija para estimar el parámetro (media aritmética o mediana, desvío estándar muestral o rango intercuartos) De la forma de selección aleatoria de la muestra. Del tamaño de la muestra. La relación existente entre la distribución de probabilidad de la población y distribución muestral del estimador) es la que nos permite hacer afirmaciones sobre el parámetro poblacional y cuantificar el error de dichas afirmaciones. En efecto, la teoría estadística inferencial provee de herramientas que permiten conocer, aunque sea aproximadamente, la distribución muestral del 117 estadístico, y luego, como ya se dijo, a partir de ella conocer el valor esperado del estadístico. De esta manera, es posible evaluar la precisión de la estimación obtenida con la muestra y cuantificar el error de las afirmaciones que se hagan sobre el parámetro poblacional. Para clarificar estos conceptos, se considera el caso en que el parámetro poblacional es la media y el estadístico para estimarla es la media aritmética x , obtenida a partir de una muestra de tamaño n de la población. Como ya se dijo, si se quiere obtener la distribución muestral de x , extrayendo todas las muestras de tamaño n, esto consumiría más tiempo que el requerido para tomar la información de toda la población y, en consecuencia, sería poco práctico. En su lugar, es posible usar la teoría estadística para determinar la distribución muestral de la media aritmética en cualquier situación particular, siempre que se cumplan algunas condiciones para la distribución de probabilidad de la variable que se está estudiando (Ver Figura 2). Ejemplo 1: En una planta embotelladora de bebida se encuentra que la máquina embotelladora está presentando una notable variabilidad en el llenado. Para analizar este problema se lleva a cabo un estudio donde se define que la variable de interés X será la cantidad de bebida que contienen las botellas. Supongamos que la distribución de probabilidad de X es tal que la media poblacional es = 1,2 litros de bebida, con un desvío estándar = 0,2 litros. Supongamos ahora, que se desconoce esta información y se quiere estimar la media poblacional tomando una muestra aleatoria de tamaño n=100 de la población de botellas. La media aritmética calculada a partir de la muestra dio un valor x =1,22 litros. Para hacer afirmaciones sobre la precisión de la estimación que dé algún grado de confianza en el valor encontrado a través de la muestra, se necesita conocer la distribución muestral de x . 118 Las propiedades de la distribución muestral de x son la base para uno de los teoremas más importantes de la teoría estadística, llamado Teorema del Límite Central, que se enuncia a continuación sin mucha formalidad. Dada una población con media x y desviación estándar x (finita), la distribución muestral de la media basada en muestras aleatorias repetidas de tamaño n (grande) tiene las siguientes propiedades: 1. La media de la distribución muestral de x , es decir, el valor esperado x = E( x ) de la distribución de probabilidad de x , es igual a la media x de la distribución de probabilidad de la variable X. 2. El desvío estándar en la distribución muestral de x es igual a n . Esta cantidad es denominada error estándar de la media (SEM). 3. Con muestras de tamaño grande, la distribución muestral de x sigue un modelo teórico denominado modelo de distribución normal, sin importar la forma de la distribución de la población original, siempre que se cumplan las condiciones mencionadas. Otra manera de expresar este resultado y que resulta útil para expresar los resultados de los métodos de inferencia es la siguiente: Teorema del límite central: Independiente de la distribución que tenga la variable aleatoria X, siempre que tenga media y varianza 2 finitas, al hacerse lo bastante grande el tamaño de muestra n, entonces la distribución del estadístico X Z / n es Normal con media 0 y varianza 1, es decir, N(0, 1). 119 (1) Unidad V: Elementos de Inferencia Estadística DISTRIBUCIÓN MUESTRAL DE LA MEDIA ARITMÉTICA (X) DISTRIBUCIÓN DE LA POBLACIÓN DE X DISTRIBUCIÓN DE LA POBLACIÓN DE X CON MEDIA DESVÍO ESTÁNDAR NORMAL CON MEDIA DESVÍO ESTÁNDAR n ERROR ESTÁNDAR x1 M1 x2 M2 / n x3 x4 M3 M4 +/ n ... . X Mm POBLACIÓN DE X xm POBLACIÓN DE X MUESTRAS DE TAMAÑO n Figura 5.2: Distribución muestral de la media aritmética (estadístico). 121 Unidad V: Elementos de Inferencia Estadística El resultado enunciado da la base para toda la inferencia estadística sobre la media. Observación: Aunque siempre hay excepciones, tamaños de muestras de n = 30, o más, en la gran mayoría de los casos aseguran la validez del teorema del límite central, es decir, la distribución muestral para x tendrá aproximadamente una distribución normal para n 30 si es conocido. En el ejemplo, y de acuerdo a lo enunciado, la distribución muestral de x será aproximadamente normal con media x = 1,20 litros y con un error estándar dado por SE( x ) = SEM = n = 0 .2 = 0.2/10 = 0.02. 100 La importancia del SEM y del resultado enunciado radica en que a partir de él se puede hacer la siguiente afirmación: si el tamaño de muestra es grande aproximadamente el 95% de las muestras darían valores de x en un intervalo que va desde -2SEM a +2SEM, es decir, existe una probabilidad del 95% de que el valor calculado de x se encuentre dentro de ese intervalo. Obviamente, en la práctica siempre se desconoce el valor de y casi siempre el valor de , de manera que esto es sólo el respaldo teórico de toda la inferencia estadística, como se verá en las secciones subsiguientes. Ejemplo 2: En el ejemplo anterior si y son conocidos, entonces se puede afirmar que aproximadamente el 95% de las muestran de tamaño n = 100 darían valores de x entre 1,2 - 0.04 y 1,2 + 0.04, es decir entre 1,16 litros y 1,24 litros, o bien que existe una probabilidad del 95% que el valor encontrado para x se encuentre dentro de ese intervalo. 122 Como ya se dijo, la distribución muestral del estimador depende del estadístico elegido para estimar el parámetro poblacional, por ejemplo, si el estimador elegido para estimar la media poblacional no es x sino la mediana, entonces el cálculo de su error estándar y su distribución muestral no sigue exactamente lo enunciado para el caso de x . La teoría que permite establecer la distribución muestral de la mediana está fuera del alcance de este curso, de manera que no será tratada aquí. Del mismo modo que la media poblacional , por lo general, es desconocida, es probable que el desvío estándar de la población , tampoco sea conocido. En el caso en que sea desconocido, él debe ser estimado usando los datos de la muestra. Un estimador razonable para , como ya se vio en las unidades previas, es el desvío estándar de la muestra n xi x S i 1 n 1 2 (2) Reemplazar por S en (1) resulta razonable ya que se puede demostrar que S2 es un estimador insesgado de 2, es decir, E[S2] = 2. Sin embargo, la distribución muestral del estadístico que resulta de esa sustitución, es decir, X t S/ n (3) ya no es N(0,1) debido a que se usa una estimación para y en consecuencia se introduce en la expresión (3) una variabilidad adicional. En efecto, el estadístico t definido en (3) posee una distribución denominada t de Student, la cual tiene una apariencia similar a la distribución normal, simétricas y en forma de campana, pero la distribución t es más dispersa. El único parámetro de la distribución t de Student es el denominado grados de libertad y que en este caso se encuentra relacionado al tamaño de muestra n, y ello se expresa diciendo que el estadístico 123 el estadístico t dado en la expresión (3) tiene distribución t de Student con (n – 1) grados de libertad. 3. ESTIMACIÓN En esta Sección se dará algunas propiedades que debería cumplir un estimador para conseguir estimaciones confiables del parámetro de interés. Se considerará diferentes formas de estimación y se estudiará una manera de medir la precisión en la estimación. 3.1. ESTIMACIÓN PUNTUAL El valor obtenido del estadístico o estimador a partir de una muestra, recibe también el nombre de Estimación Puntual. En el ejemplo de la embotelladora es claro que el interés no es conocer la cantidad de bebida promedio en el grupo particular de botellas que pertenecen a la muestra, sino en toda la población. Por otra parte, la media calculada a partir de los datos de la muestra es sólo “una estimación” de la cantidad de bebida media en la población de botellas. Cabe preguntarse ahora cuáles son las propiedades de que debería tener un estimador (media, mediana) para que sea considerado como bueno y que nos facilite la elección entre un estadístico y otro. Es claro que al obtener una estimación puntual su valor dependerá de la muestra que se haya seleccionado y que el valor encontrado puede cambiar de muestra en muestra. De esta manera, las propiedades deseables serían que cada estimación no se encuentre muy alejada del verdadero valor del parámetro, y por otra parte, que no haya demasiada variabilidad entre los valores del estadístico, obtenidos de muestra en muestra. Esto se puede formalizar definiendo algunas propiedades a tener en cuenta de los estadístico, a saber: 124 1. Insesgado: Informalmente esto significa ausencia de error sistemático. De una manera más formal, un estadístico cualquiera q se dice insesgado si la media de su correspondiente distribución muestral es igual al parámetro de interés Q, es decir, E[q] = Q. 2. Eficiente: Significa que las estimaciones obtenidas para distintas muestras varían poco entre ellas. De una manera más formal, el estimador más eficiente dentro de un conjunto de estimadores insesgado será aquel que tiene la menor varianza. 3. Consistente: Informalmente, un estadístico Q se dice consistente si su variabilidad disminuye cuando aumenta el tamaño de muestra. Se puede demostrar que la media aritmética es un estimador insesgado y eficiente de la media poblacional. Si la variabilidad de las estimaciones se mide a través del desvío estándar, este desvío estándar recibe el nombre de error estándar del estimador (SE). Observaciones: 1. No debe confundirse “desvío estándar” de la distribución de la población (variabilidad entre los individuos) con “error estándar” del estimador que es el desvío estándar de la distribución muestral (variabilidad entre las estimaciones de las muestras). 2. Es muy probable que el estadístico insesgado más eficiente no estime el parámetro poblacional con “exactitud”, esto se debe a que en realidad cuando realizamos la estimación sólo tomamos una muestra, y obtenemos uno de los posibles valores del estadístico que en general no tiene porque coincidir con el valor del parámetro que se quiere estimar. 3.2. ESTIMACIÓN POR INTERVALOS Si bien la precisión se incrementa con muestras grandes no hay razón para esperar que la estimación puntual de una muestra dada deba ser 125 exactamente igual al parámetro poblacional que se supone estima. Entonces, existen muchas situaciones en las cuales es preferible determinar un intervalo dentro del cual se esperaría encontrar el valor del parámetro, tal metodología se conoce como estimación por intervalos y el intervalo se denomina Intervalo de Confianza Los Intervalos del Confianza son intervalos aleatorios obtenidos a partir de los datos y en los cuales hay un grado de confianza prefijado (medido en %) de que dicho intervalo contenga al verdadero valor del parámetro que se quiere estimar. El grado de confianza se denomina nivel de confianza y se lo denota como 100(1-)%, donde se considera a menudo como la probabilidad de cometer un error, ya que indica la proporción de veces en que uno se equivoca o comete un error al suponer que el intervalo contiene al parámetro poblacional. De esta manera, 1- será la proporción de veces que los distintos intervalos de confianza contienen al parámetro. Usualmente el valor 100 (1- )% se lo fija en el 95%, lo que llevaría a establecer que en promedio sólo en el 5% de los casos se cometería error al suponer que el intervalo contiene al verdadero valor del parámetro. Para encontrar estos intervalos debemos conocer la distribución muestral de cada estimador, que como ya se vio esto depende del parámetro de interés y del estadístico que se elija para estimar dicho parámetro. Sin embargo es posible dar la forma general que adopta un intervalo de confianza en cualquier caso. En general, si que se quiere estimar un parámetro través del estadístico de la población a ˆ , y si el error estándar de la distribución de ˆ , que se lo denotará con SE(ˆ ), entonces un intervalo de confianza para confianza del 95% (IC95%) viene dado por la expresión: 126 con una IC95% = [ˆ – k1SE(ˆ ) , ˆ + k2SE(ˆ )] (4) donde k1 y k2 dependen de la forma de la distribución muestral de q. Ejemplo 3: En el ejemplo de la embotelladora un intervalo de confianza para el parámetro poblacional = , con una confianza del 95%, correspondiente a una estimación de ˆ = x = 1.22 litros, calculada a partir de la muestra de tamaño n = 100, y suponiendo que se conoce el desvío estándar de la población, es decir, = 0.2 litros, está dado por: IC95% = [ x – k1SE( x ) , x + k2SE( x )] donde SE( x ) = SEM = n = 0.02 y k1 = k2 = 1.96 se obtienen a partir de la distribución X muestral de , que como se vio en la Sección anterior ella N(0, 1). Por lo tanto, / n IC95% = [1.22 – 1.96x0.02 ; 1.22 + 1.96x0.02] = [1.1808 ; 1.2592] Otra manera alternativa de expresar los IC para la media poblacional cuando se usa a la media aritmética como estimador es la siguiente: x z 2 (5) n o bien x z 2 n x + donde 127 z 2 n (6) z 2 = valor de z tal que el área debajo de la curva de la función de densidad de una distribución normal correspondiente al intervalo [ z 2 , ) es igual /2 si n es grande (este valor es 1.96). n = tamaño de la muestra = desviación estándar de al población muestreada Ejemplo 4: Una corporación quiere emitir algunos pagarés a corto plazo y espera que los intereses que tendrá que pagar no sean mayores a 11,5%. Para obtener cierta información acerca de la tasa media de interés que habría que pagar, la corporación pone a la venta 40 pagarés, uno a través de cada una de 40 firmas de corretaje. Los valores del interés se suponen que tienen una distribución normal con media y varianza 2 conocida, tal que = 0,31%. A partir de la muestra de tamaño n = 40, se obtiene una estimación de , dada por x = 10,3%. Luego, usando la expresión (2) el IC del 100(1- )% para la media poblacional de una distribución normal es: 10.31 1.96 x0.31 1.96 x0.31 1.96 x0.31 , o bien, 10.31 10.31 + 40 40 40 Haciendo los cálculos se obtiene que: 10.21 10.41 De mismo modo que la media de la población es desconocida, por lo general también se desconoce el valor real del desvío estándar y, por lo tanto, se necesita estimar dicho parámetro a partir de los datos de la muestra utilizando el estadístico S. En este caso la primera expresión de (6) adopta la forma x t ( n1), / 2 S n 128 (7) donde se reemplaza por S y z(/2) por t(n-1), /2 que es el valor crítico de la distribución t con n-1 grado de libertad. Ejemplo 5: Si en el estudio de tasa principal de bancos es desconocido y se tiene una muestra de tamaño 50 y el valor obtenido de x = 9,1% y como estimador de se usa 2 n 50 S xi x , dando en este caso el valor S = 0,24, entonces, reemplazando este i 1 n 1 valor en la expresión (7), donde además se reemplaza z(/2) por t(n-1), /2. Luego, el valor estimado del error estándar será, SE x S 0.24 0.034 n 50 y el valor de t(n-1),/2 = 2.01. Luego, el intervalo de confianza para la media poblacional con una confianza del 95% está dado por: IC95% = [9.1 – 2.01x0.034; 9.1 + 2.01x0.034] = [8.96; 9.10] Observaciones: 1. El valor de kiSE(q) del intervalo de confianza para el parámetro q se lo puede entender como cota para el error de estimación. En el último ejemplo se tiene entonces, que esta cota es 1.96x0.034=0,07. Esto se interpreta como que la probabilidad de que el error sea menor a 0,07 es 0,95. Así, la cota para el error de estimación, 7%, proporciona una medida de la exactitud para la estimación efectuada por la empresa de investigaron de mercado. Actividad 5.2: 1. Se relaciona muchas veces un incremento en la proporción de ahorros de los consumidores a una falta de la confianza en la economía, y se dice que ello es un indicador de una tendencia de recesión económica. Una muestra aleatoria de n=200 cuentas de ahorro en una comunidad local, mostró un incremento medio en los 129 valores de las cuentas de 7,2% en los últimos 12 meses y una desviación estándar de 5,6%. a) Estime el intervalo de confianza para el aumento porcentual promedio en las cuentas de ahorro en lo últimos 12 meses, para ahorradores de la comunidad. b) Obtenga una cota para su error de estimación. 2. Escriba la expresión para el IC para el parámetro de la distribución binomial cuando n es mayor de 30. 3.3. TEST DE HIPÓTESIS ESTADÍSTICA En la sección anterior tratamos la estimación y precisión de los estimadores, que conforman una de las dos áreas principales de la Inferencia estadística. En esta sección presentaremos una forma diferente de obtener inferencia acerca de parámetros poblacionales, probando hipótesis respecto a sus valores. Un test de hipótesis es una metodología o procedimiento que permite cuantificar la probabilidad del error que se cometería cuando se hace una afirmación sobre la población bajo estudio, es decir, nos permite medir la fuerza de la evidencia que tienen los datos a favor o en contra de alguna hipótesis de interés sobre la población. Se introducirá la idea de tests de hipótesis a través de un ejemplo hipotético. Ejemplo 6: Una industria usa como uno de los componentes de las máquinas de producción una lámpara especial importada que debe satisfacer algunas exigencias. Una de esas exigencias está relacionada a su vida útil en horas. Esas lámparas son fabricadas por dos países y las especificaciones técnicas varían de país a país. Por ejemplo el catálogo del producto americano afirma que la vida útil media de sus lámparas es de 15500 horas, con un SD de 1200. Mientras que para el producto europeo la media es de 16500, y el SD es de 2000. 130 Un lote de esas lámparas de origen desconocido es ofrecido a un precio muy conveniente. Para que la industria sepa si hace o no una oferta ella necesita saber cual es el país que produjo tales lámparas. El comercio que ofrece tales lámparas afirma que será divulgada la vida útil media de una muestra de 25 lámparas del lote antes de la oferta. ¿Que regla de decisión deben usar los responsables de la industria para decir que las lámparas son de procedencia americana o europea?. Una respuesta que surge inmediatamente es la de considerar como país productor aquel en la cual la media de la muestra se aproxima más a la media de la población. Así, la decisión sería si x 16000 (el punto medio entre 15500 y 16500) diremos que es de procedencia americana; en caso contrario diremos que es de procedencia europea. Suponga que en el día de la licitación se informó que, de acuerdo con la regla de decisión diríamos que las lámparas son de origen americano. ¿Podemos estar herrados en esa conclusión?. O en otras palabras, ¿es posible que una muestra de 25 lámparas de origen europeo presente una media de 15800? Si, es posible. Entonces, para un mejor entendimiento de la regla de decisión adoptada, es interesante estudiar los tipos de errores que podemos cometer y las respectivas probabilidades de cometer esos errores. Los tests de hipótesis consisten en confrontar dos hipótesis, una llamada hipótesis nula que denotamos con Ho y otra llamada hipótesis alternativa denotada con H1. En el ejemplo las hipótesis que se plantean son: En el ejemplo las hipótesis consideradas son Ho Las lámparas son de origen europeo, esto equivale a decir que la vida útil X de cada lámpara sigue una distribución con media =16500 horas y un SD=2000 horas. H1; Las lámparas son de origen americano, es decir la media poblacional = 15500 horas con un SD=1200 horas. Bajo este planteo un test de hipótesis estadística no es otra cosa que un procedimiento para tomar una decisión, bajo incertidumbre, sobre la validez de la hipótesis nula usando la evidencia de los datos. Puesto que trabajamos bajo 131 incertidumbre es claro que cualquiera sea la decisión que tomemos siempre existe una probabilidad de cometer error. A fin de clarificar esto podemos presentar el siguiente esquema: Tabla 5.2. Esquema del procedimiento Decisión Rechazar Ho No rechazar Ho Realidad sobre Ho Cierta Falsa Error Tipo I Decisión correcta Decisión correcta Error Tipo II Como se puede ver en el esquema, con cada tipo de decisión que se tome hay asociado una posibilidad de cometer un error. Un procedimiento de este tipo sería óptimo cuando las probabilidades de cometer un error, cualquiera sea la decisión que se adopte, sean pequeñas. Lamentablemente, en la mayoría de los tests de hipótesis sólo es posible controlar una de ellas, con la circunstancia agravante de que estos errores son competitivos, es decir, cuando se disminuye mucho la probabilidad de uno aumenta la probabilidad del otro. Puesto que, el interés generalmente es “rechazar Ho” la probabilidad de error que se controla durante este procedimiento, es justamente el error asociado a esta decisión (Probabilidad del Error Tipo I), es decir, la probabilidad de rechazar Ho cuando es cierta. La máxima probabilidad de error tipo I se denota con y recibe el nombre de nivel de significación del test y él debe ser prefijado de antemano. La probabilidad de Error Tipo II se denota con y es útil para encontrar la bondad del test que se mide en términos de la cantidad 1- denominada Poder del Test. El nivel de significación que se usa generalmente es =0.05 lo que corresponde a un 5% en término de porcentaje. 132 Retomando el ejemplo vamos a indicar por RC una región determinada por los valores de X menores que 16000, es decir RC={X 16000}. El valor 16000 se denomina punto crítico y se denotará como xc. 10000 12000 14000 Región de Aceptación de H0 16000 18000 20000 Región de Rechazo de H0 Figura 5.3: Valores posibles del estadístico del test Con las notaciones indicadas arriba, la probabilidad de cometer cada uno de los errores puede ser escrita del siguiente modo: P[Error Tipo I] = P[ X pertenezca a RC | H0 es verdadera] = . P[Error Tipo II] = P[ X no pertenezca a RC | H0 es falsa ] = Ejemplo 7: En el ejemplo 6, cuando H0 es verdadera, es decir, las lámparas son de origen europea, sabemos del teorema central del límite que x , o sea la media de las muestras de tamaño 25, tendrán distribución aproximadamente normal con media 16500 y = 2000 400 , es decir X N(16500, 1600). Entonces, 25 P[Error Tipo I] = P[ X RC | H0 es verdadera] = = P[ X 16000 | X N(16500, 1600)] = P[ Z (16000 – 16500)/ 400] = P[ Z -1.25] = 0.106 = 10.6%. Para cada regla de decisión adoptada, es decir, para cada valor crítico xc se obtiene un valor de probabilidad de error tipo 1. Por otra parte, si xc se elige menor que 15000 disminuye pero aumenta. Sin embargo, se puede proceder de manera inversa, es decir, fijado encontramos la regla de decisión que corresponderá a una probabilidad de error 1 igual a . 133 Ejemplo 8: Si se toma = 5%, y se procede a encontrar la regla de decisión correspondiente: 5%= P[Error Tipo I]= P[ X xc | X N(16500, 1600)] = P[Z < -1.645], pero se sabe que, para una distribución normal estándar 1.645 xc 16500 400 de donde xc = 15842 horas. Entonces, la regla de decisión será “Si X fuera inferior a 15842 se dice que el lote es americano, en caso contrario se dice que es europeo”. Con esta regla la probabilidad de error tipo II será P[Error Tipo II] = P[ X > 15842 | X N(16500, 1600)] = = P[Z > 1.425] = 7.93% 134 AMERICANO EUROPEO 5% 7.93% 15500 15842 16500 Figura 5.4: Distribución muestral de X para el caso de la procedencia de lote de lámparas Procedimiento general de un test de hipótesis basado en la región de rechazo Se da ahora una secuencia de pasos que puede ser usada sistemáticamente para cualquier test de hipótesis. 1) Iniciar el procedimiento estableciendo, de manera clara y explícita, cuál es la hipótesis nula, es decir, H0. 2) Usar la teoría estadística para construir un indicador de concordancia entre los datos y la hipótesis nula. Este indicador denominado estadístico del test será usado para juzgar la hipótesis H0. 3) Fijar el nivel de significación deseado , que es el máximo error aceptable cuando se rechaza H0, y usar este valor para construir la región crítica. 4) Calcular el valor del estadístico a partir de la muestra. 5) Si el valor del estadístico pertenece a la región crítica, entonces rechazar H0. En caso contrario, lo que se puede afirmar es que no hay suficiente evidencia para rechazar H0. 6) Si se dispone de una hipótesis alternativa y de la distribución del estadístico del test bajo la suposición que vale la hipótesis alternativa, se puede calcular la probabilidad de error Tipo II. 135 Procedimiento general de un test de hipótesis basado en el P-value Otro procedimiento general de un test de hipótesis más usado en la actualidad debido a la disponibilidad de paquetes de programas estadísticos, consiste en tomar la decisión a partir de la probabilidad del error Tipo I que brindan las salidas de tales paquetes de programas, denominado P-value o simplemente P. Este procedimiento lo podemos resumir en los siguientes pasos: 1. Suponer que Ho es cierta. 2. Para confrontar esta suposición con la información (parcial) que proveen los datos sobre la realidad de Ho, se forma “una especie de indicador” de concordancia, denominado estadístico del test, el cual es función del de los datos. 3. Como el estadístico depende de la información de los datos, con cada muestra posible hay asociado un valor de este estadístico y en consecuencia se genera una nueva variable aleatoria. Asociada a esta variable hay una cierta distribución de probabilidad, a partir de la cual se determina la probabilidad de que la información de los datos concuerde con la hipótesis nula, denominado “P-value”. De esta manera, el “P-value” representaría la probabilidad de cometer un error cuando se toma la decisión de rechazar Ho. 4. Es claro que si de antemano se fija que la máxima probabilidad de error al rechazar Ho debe ser igual a , otra manera de tomar la decisión es comparar el valor del P- value con . Así Si P entonces la decisión es Rechazamos Ho Si P > la decisión es No hay evidencia suficiente para rechazar Ho 136 3.3.2. PRUEBAS DE HIPÓTESIS UNILATERALES Y BILATERALES Las pruebas o test de hipótesis se relacionan con los parámetros poblacionales (medias o proporciones, etc.). Se puede utilizar los estimadores puntuales de los parámetros poblacionales como estadístico del test en cuestión. Supongamos, como ilustración que se utiliza el símbolo para denotar el parámetro poblacional de interés, por ejemplo, puede ser , (1- 2), p ó (p1p2), y el símbolo ˆ para denotar el estimador puntual insesgado correspondiente. Desde el punto de vista práctico se puede tener interés en contrastar la hipótesis nula H0: = 0, contra la alternativa de que el parámetro poblacional es mayor que 0, o sea H1: > 0. En esta situación, se rechazará H0 cuando sea grande, o sea cuando el estadístico del test sea mayor que un cierto valor llamado valor crítico, que separa las regiones de rechazo y no rechazo del test (Ver Figura 5.3). La probabilidad de rechazar la hipótesis nula cuando es cierta será igual al área bajo la curva de la distribución muestral del estadístico del test sobre la región de rechazo. En el caso que estemos trabajando con una distribución normal, y un = 0,05, se rechaza la hipótesis nula cuando se encuentre a más de 1,645 ˆ a la derecha de 0. De esta manera, se puede definir como Una prueba estadística de una cola o unilateral es aquella en la que la región de rechazo se localiza solamente en una cola o extremo de la distribución muestral del estadístico del test. Para detectar > 0, se sitúa la región de rechazo en la extremidad de valores superiores a . Para detectar < 0 se ubica la región de rechazo en la extremidad izquierda de la distribución de , o sea para valores inferiores a . 137 Si hay que detectar diferencias mayores o menores de 0, la hipótesis alternativa será H1: 0 es decir > 0 o bien < 0 En este caso la probabilidad de error Tipo I se repartirá entre las dos colas de la distribución muestral del estadístico, y se rechazará H 0 para valores de mayores que un valor crítico (0 + C) o menor que (0- C). Esta prueba se llama prueba estadística bilateral o de dos colas. 3.3.3. CASOS PARTICULARES DE PRUEBAS DE HIPÓTESIS 1) Caso 1: Prueba de hipótesis para la media de una población Sea una población con media y desviación estándar , y se tiene interés de ver si la media poblacional es un dado valor 0. Se toma una muestra aleatoria de tamaño n de esta población. Por lo que el procedimiento a seguir será: a) Hipótesis nula H0: = 0 b) Estimador puntual de la media poblacional x . Por el teorema del límite central, el cual, en esencia, establece que bajo ciertas condiciones, cualquiera la distribución de X, la variable aleatoria X tiene una distribución aproximadamente normal con media y desviación estándar n para el tamaño de muestra grande. c) Hipótesis alternativa Prueba de una cola Prueba de dos colas H1: > 0 (o bien < 0) 138 H1: 0 d) Si la población tiene una distribución normal, o estamos trabajando con un tamaño de muestra grande (mayor a 30), y la desviación estándar es conocida, entonces el estadístico del test será z x 0 x x 0 , (11) n Este estadístico tiene distribución normal con media 0 y desvío estándar 1, bajo la hipótesis nula. e) Si la población es normal y no se conoce la desviación estándar, se utiliza su estimación puntual s, en cuyo caso el estadístico del test tiene la forma t x 0 s n (12) que tiene una distribución t,(n-1) con (n-1) grados de libertad, bajo la hipótesis nula. f) Región de rechazo Prueba de una cola Prueba de dos colas En el caso del apartado d) En el caso del apartado d) z > z (o bien z <- z) z z 2 o z z 2 En el caso del apartado e) En el caso del apartado e) t > t,(n-1) (o bien t <- t,(n- t t 1)) 2 , n 1 o t t 2 , n 1 Ejemplo 9: La producción diaria en una planta industrial química registrada durante n = 50 días, tiene una media muestral x = 871 toneladas. Se quiere probar la hipótesis 139 de que el promedio de la producción diaria del producto químico es = 880 toneladas por día, contra la alternativa de que la media es distinta de 880 toneladas diarias. Supongamos que se conoce que el desvío estándar de la población es = 21 toneladas diarias. La hipótesis nula es H0: =880 toneladas Contra la alternativa H1: 880 toneladas La estimación puntual para la media poblacional es x , por lo tanto , el estadístico del test está dado por la expresión (11) z x 0 n 871 880 3.03 21 50 Para un = 0,05, la región de rechazo es z > 1,96 o z < -1,96. Observación: 1. Si el estadístico del test es Z como el definido en (1) y donde = 0, entonces, si Z es menor que –1,96, entonces decimos que se rechaza la hipótesis nula al nivel del 5%. 2. El intervalo de confianza de 100(1-)% del parámetro (parámetro poblacional de interés), está relacionado con una prueba de hipótesis estadística, de dos colas, del parámetro x 1,96 poblacional, n 871 5,82 con nivel . En el ejemplo, el intervalo es de tal manera que en un muestreo repetitivo, el 100(1-)% = 95% de los intervalos contendrán al verdadero valor de la media poblacional. Como el valor 880 no cae dentro de este intervalo, entonces nos inclinamos a rechazar la hipótesis de que = 880. Actividad 5.3: 140 Un vendedor de coches nuevos calcula que su compañía tiene un 4,8% de ganancias promedio en la venta de los autos nuevos asignados. El gerente de venta aprobó los precios para producir ese porcentaje de ganancias. El dueño de la compañía quiere estar razonablemente seguro de que la decisión es correcta, para ello se toma una muestra aleatoria de 30 coches en la cual se obtiene una media y un desvío estándar del porcentaje de ganancia de 4,5% y 3,9% respectivamente. a) Examine los datos y utilizando solamente la intuición ¿Cree que ellos apoyan la hipótesis del gerente de venta? b) Para realizar un test de hipótesis estadística en este caso usaría el estadístico t o z. Explique su respuesta. c) Usando el procedimiento de un test de hipótesis para la ganancia media, ¿aportan los datos evidencia suficiente que indique que la política del gerente de ventas al aprobar los precios genera una ganancia media de 4,8% por coche al nivel del 5%?. (Sugerencia: use uno de estos valores para el estadístico seleccionado Z(0.025) = 1.96 y t 0.025 ,30 1 2.045 ) d) El dueño de la compañía quiere estar razonablemente seguro de que la decisión es correcta y para lograrlo, él quiere contrastar la hipótesis nula con = 0,01. (Sugerencia: use uno de estos valores para el estadístico seleccionado Z(0.005) = 2.58 y t 0.005 ,30 1 2.7564 ) e) Obtenga la región de rechazo para la prueba del apartado c) 2) Caso 2: Test de hipótesis para la diferencia de las medias de dos poblaciones. Supongamos tener dos poblaciones con medias 1 y 2 y con desvíos estándares 1 y 2 respectivamente. Se quiere realizar un test de hipótesis para la diferencia (1 - 2) basado en muestras independientes de tamaño n1 y n2 observaciones. Por lo que el procedimiento a seguir sería a) Hipótesis nula H0: (1- 2) = D0, 141 donde D0 es alguna diferencia especificada que se quiere probar. En muchos casos se deseará probar la hipótesis de que no hay diferencias entre las medias de las poblaciones, en cuyo caso D0 será 0 (cero). b) Estimador puntual de la diferencia de las medias poblacionales ( x1 x 2 ) c) Hipótesis alternativa Test de una cola Test de dos colas H1: (1-2) > D0 H1: 1 2 D0 (o H0: (1-2) < D0) d) Si las poblaciones tienen distribución normal, o estamos trabajando con tamaños de muestra grande (mayor a 30), y los desvíos estándares de las dos poblaciones son: 1. Conocidos y diferentes, entonces el estadístico del test será z x 1 x 2 D 0 x 1 x 2 D0 , x x 1 12 2 n1 + 22 (13) n2 donde z tiene una distribución normal con media 0 y desvío estándar 1, bajo la hipótesis nula. 2. Conocidas e iguales, entonces el estadístico del test será z x1 x2 D 0 1 1 + n1 n2 (14) donde z tiene una distribución normal con media 0 y desvío estándar 1, bajo la hipótesis nula. 3. En el caso de que los desvíos poblacionales sean desconocidos e iguales entonces se utiliza el estimador 142 s 2 p n1 1s12 + n2 1s22 n1 + n2 2 (15) Entonces, el estadístico del test toma la forma t x1 x2 D0 sp 1 1 + n1 n2 (16) que tiene una distribución t con (n1+n2-2) grados de libertad, bajo la hipótesis nula. Observación: 1. En la situación en que no se puede o no se desea hacer la suposición de que las dos poblaciones con varianzas iguales tengan distribución normal, la prueba t de varianzas iguales es robusta (es decir, no sensible) con respecto a las violaciones moderadas de la suposición de normalidad, siempre y cuando el tamaño de muestra sea grande. En tal situación, el test t de varianza conjunta puede utilizarse sin que se vea seriamente afectado en su potencia. Por otro lado, si el tamaño de muestra es pequeño y no se puede o no se desea hacer la suposición de normalidad de las poblaciones, se tiene dos alternativas: (a) llevar a cabo alguna transformación normalizante de los datos, por ejemplo tomar el logaritmo de los datos, y luego aplicar el test t a los datos transformados; (b) o bien aplicar a los datos originales un test de distribución libre o test no paramétrico como por ejemplo el test de rangos de Wilcoxon. 4. En el caso en que no se pueda o no se desee hacer la suposición de que las poblaciones, normalmente distribuidas, tienen varianzas iguales y si los desvíos estándares son desconocidos, entonces el estadístico del test tiene la forma t x 1 x 2 D0 , s12 s 22 + n1 n 2 143 (17) donde t´ tiene una distribución t con () grados de libertad bajo la hipótesis nula, y está dado por s s 2 1 2 1 n1 + s22 n2 2 2 n1 s2 n + 2 2 n1 1 n2 1 2 (18) d) Región de rechazo Prueba de una cola Prueba de dos colas Para los casos 1 y 2 Para los casos 1 y 2 z > z (o bien z <- z) z z 2 o z z 2 Para el caso 3 Para el caso 3 t > t (o bien t <- t). t t 2 o t t 2 Para el caso 4 Para el caso 4 t´ > t (o bien t´ <- t). t t 2 o t t 2 Observaciones: 1. El uso del estadístico t y t´ requiere que las muestras sean independientes y tengan distribución normal 2. El uso del estadístico t´ requiere que las poblaciones tengan distribución normal. 3. Un intervalo de confianza del 100(1-)% para 1 2 en el caso 1 está dado por 12 22 IC 95% x1 x 2 z 2 + n n2 1 (19) 4. Un intervalo de confianza del 100(1-)% para 1 2 en el caso 3 está dado por 144 1 1 IC 95% x1 x 2 t 2 s p + n1 n2 (20) con los respectivos grados de libertad para t 5. Un intervalo de confianza del 100(1-)% para 1 2 en el caso 4 está dado por IC 95% x 1 x 2 t 2 s1 s 2 + n1 n 2 (21) con los respectivos grados de libertad para t´. 6. De las últimas observaciones se puede inferir, sin mayores dificultades, que un IC con una confianza del (1 - )100% es equivalente a un test de hipótesis de nivel . De tal manera que si el IC no contiene al valor del parámetro indicado en la hipótesis nula, entonces se puede rechazar dicha hipótesis. 7. Si se quiere evaluar las diferencias entre los parámetros de más de dos grupos, por ejemplo la durabilidad de distintos tipos de cubiertas, no es correcto realizar tales evaluaciones usando el test de diferencias de medias tomando los diferentes pares de medias por razones cuya explicación formal está fuera del alcance del curso. Para solucionar este problema si las mediciones resultantes son continuas y se cumplen las siguientes suposiciones: i) los datos son obtenidos de manera aleatoria e independiente o que los individuos sean asignados a los grupos aleatoriamente, ii) los valores de cada grupo están distribuidos normalmente, iii) la varianza dentro de cada población debería ser igual para todas las poblaciones, existe una metodología conocida como análisis de varianza (ANOVA) para comparar la medias de los grupos y cuya hipótesis nula es H0 : 1 = 2 = …= k. Por otra parte, si los supuestos ii) o iii) no se cumplen existen metodologías que permiten todavía llevar cabo las comparaciones deseadas. Ejemplo 10: Una compañía desea comparar las expectativas salariales anuales de su personal de ventas femenino y masculino, según un nuevo plan de compensaciones sobre ventas, mas comisión. Se seleccionó al azar muestras de tamaño 40, una del personal masculino y otra del personal de ventas femenino y se les pidió que dijeran sus ingresos 145 anuales bajo el nuevo plan. Las medias muestrales y las desviaciones muestrales resultaron en x1 $31083 s1 $2312 x 2 $29745 s 2 $2569 La pregunta que surge es, ¿proporcionan los datos evidencia que indique una diferencia en el promedio de ingreso anual esperado tanto entre los vendedores como las vendedoras?. Ya que se espera una diferencia en el promedio del ingreso anual entre las vendedoras y los vendedores, es decir, 1 < 2 o bien 1 > 2, la hipótesis nula para el test será H0: 1 = 2 es decir H0: 1 -2 = D0 = 0 contra la alternativa H1 : 1 2 es decir H1 : 1 2 0 Si se supone que las poblaciones de los ingresos son normales con diferentes desvíos estándares y puesto que ellos son desconocidos, se los estima con s1 y s2. Luego, el estadístico del test está dado por (17), es decir, t x1 x 2 0 31083 29745 0 s12 s 22 + n1 n 2 23122 + 25692 40 2,45 40 Al utilizar una prueba de dos colas con = 0,05, se considerará /2 = 0,025 en cada cola de la distribución del estadístico y se rechaza H0 si el valor encontrado es mayor que t 2( n1 + n2 2 ) 1.99 o menor que - t 2 ( n1 + n2 2 ) 1.99 . Puesto que, el valor observado t = 2,45 es mayor que 1,99, el estadístico de la prueba cae en la zona de rechazo. Por lo tanto se rechaza H0 y se concluye que hay evidencia suficiente para asegurar que en las expectativas salariales anuales para los vendedores es mayor que para las vendedoras. Actividad 5.4: 146 1. Para comparar las aptitudes para seleccionar acciones por parte de dos AFJP, se comparan las ganancias anuales (menos los honorarios) para una inversión de $1000 (dólares) en cada una de las 30 acciones que se encuentran en las listas de las “más recomendadas” de ambas empresas. Las medias y los desvíos estándares (en dólares) para cada una de las muestras, se indican en la tabla siguiente Empresa Estadística muestral 1 2 Tamaño 30 30 Media 264 199 Desvío estándar 157 111 ¿Hay evidencia con los datos que indique una diferencia entre las dos empresas de corretaje en las ganancias medias por acción recomendada? a) Establezca H0 b) Enuncie la hipótesis alternativa que más conviene para contestar la pregunta expuesta antes. c) Obtenga la región de rechazo para = 0,05. d) Realice la prueba y saque sus conclusiones. e) Obtenga el correspondiente Intervalo de Confianza para la diferencia de las medias y compare las conclusiones que se pueden elaborar con él con aquellas obtenidas por el test de hipótesis. 147