CT(t)

Anuncio
UNIVERSIDAD NACIONAL DE PIURA
FACULTAD DE ECONOMIA
SOLUCIÓN DE LA PRIMERA PRÁCTICA DE ECONOMETRIA I
1º
El investigador especifica los modelos siguientes:
CT(t) = a + b SPREAD(t) + c(0) EMI(t) + c1 EMI(t-1) + c2 EMI(t-2)+ .... + u(t)
CT(t) = a + b TA(t) + c0 SPREAD(t) + c1 SPREAD(t-1) + ... + c15 SPREAD(t-15) + u(t)
Se le pide:
1.1.
Estime el primer modelo y obtenga los multiplicadores y el retardo medio. (6 puntos)
CT(t) = a + b SPREAD(t) + c(0) EMI(t) + c1 EMI(t-1) + c2 EMI(t-2)+ .... + u(t)
Si C(i) = (1-L)Li
CT(t) = a + b SPREAD(t) + (1-L) EMI(t) + (1-L)L EMI(t-1) + (1-L)L2 EMI(t-2)+ .... + u(t) (1)
retardamos 1 periodo:
CT(t-1) = a + b SPREAD(t-1) + (1-L) EMI(t-1) + (1-L)L EMI(t-2) + (1-L)L2 EMI(t-3)+ .... + u(t-1)
Multiplicamos por L:
LCT(t-1) = aL + bL SPREAD(t-1) + (1-L)L EMI(t-1) + (1-L)L2 EMI(t-2) + (1-L)L3 EMI(t-3)+ .... + L
u(t-1) (2)
(1) – (2)
CT = a(1-L) + b SPREAD(t) - bL SPREAD(t-1) + (1-L) EMI(t) + L CT(t-1) + (u(t)-L u(t-1))
CT = a* + b SPREAD(t) + b* SPREAD(t-1) + L* EMI(t) + L CT(t-1) + u*(t)
Dependent Variable: CT
Method: Least Squares
Sample (adjusted): 2001M02 2009M12
Included observations: 102 after adjustments
Variable
C
Coefficient
Std. Error
t-Statistic
Prob.
-1615.517
3924.997
-0.411597
0.6815
SPREAD
49.63791
17.12357
2.898807
0.0046
SPREAD(-1)
-37.99468
18.00617
-2.110093
0.0374
EMI
4.504581
0.893980
5.038791
0.0000
CT(-1)
0.914848
0.020171
45.35547
0.0000
R-squared
0.998445
Mean dependent var
578303.5
Adjusted R-squared
0.998381
S.D. dependent var
233710.0
S.E. of regression
9405.187
Akaike info criterion
21.18369
8.58E+09
Schwarz criterion
21.31236
F-statistic
15567.00
Prob(F-statistic)
0.000000
Sum squared resid
Log likelihood
-1075.368
Durbin-Watson stat
1.629158
Sample: 2001M02 2009M12
Included observations: 102
Autocorrelation
Partial Correlation
AC
PAC
Q-Stat
Prob
. |*.
|
. |*.
|
1
0.158
0.158
2.6223
0.105
.|.
|
.|.
|
2
0.041
0.016
2.8003
0.247
2
Mod1qbp1 = 102*(0.158011072093364^2) = 2.54668488821762
Mod1qbp2 = 102*(0.158011072093364^2+0.040964627589653^2) = 2.71785116100063
Breusch-Godfrey Serial Correlation LM Test:
F-statistic
2.752296
Probability
0.100379
2.842811
Probability
0.091783
Obs*R-squared
Dependent Variable: RESID
Method: Least Squares
Variable
Coefficient
Std. Error
t-Statistic
Prob.
C
-169.7478
3891.363
-0.043622
0.9653
SPREAD
-4.931046
17.22928
-0.286202
0.7753
SPREAD(-1)
5.740178
18.17802
0.315776
0.7529
EMI
0.146773
0.890419
0.164836
0.8694
CT(-1)
-0.003391
0.020095
-0.168767
0.8663
RESID(-1)
0.175546
0.105814
1.659004
0.1004
R-squared
0.027871
Mean dependent var
1.07E-10
Breusch-Godfrey Serial Correlation LM Test:
F-statistic
1.362020
Probability
0.261098
Obs*R-squared
2.843232
Probability
0.241324
Dependent Variable: RESID
Method: Least Squares
Variable
Coefficient
Std. Error
t-Statistic
Prob.
C
-170.2653
3911.867
-0.043525
0.9654
SPREAD
-4.862724
17.65124
-0.275489
0.7835
SPREAD(-1)
5.668336
18.62090
0.304407
0.7615
EMI
0.145333
0.897965
0.161847
0.8718
CT(-1)
-0.003358
0.020268
-0.165692
0.8688
RESID(-1)
0.175835
0.107340
1.638121
0.1047
RESID(-2)
-0.002187
0.108977
-0.020065
0.9840
R-squared
0.027875
Mean dependent var
mod1h = mod1rho*sqr(mod1t/(1-mod1t*mod1vb5)) = 1.912769
Dependent Variable: CT
Method: Two-Stage Least Squares
1.07E-10
3
Sample (adjusted): 2001M03 2009M12
Included observations: 100 after adjustments
Instrument list: C SPREAD SPREAD(-1) SPREAD(-2) EMI EMI(-1)
Variable
Coefficient
Std. Error
t-Statistic
Prob.
C
-3216.579
4352.109
-0.739085
0.4617
SPREAD
47.76270
17.99800
2.653779
0.0093
SPREAD(-1)
-22.66502
21.68321
-1.045279
0.2985
EMI
7.148063
2.058865
3.471846
0.0008
CT(-1)
0.853912
0.047258
18.06926
0.0000
R-squared
0.998312
Mean dependent var
580597.9
Adjusted R-squared
0.998241
S.D. dependent var
235252.0
S.E. of regression
9866.807
Sum squared resid
9.25E+09
F-statistic
13667.09
Durbin-Watson stat
1.463981
Prob(F-statistic)
0.000000
MOD1MISPREAD = C(2) = 47.7626977023185
MOD1MIEMI = C(4) = 7.1480634098764
MOD1MD1RSPREAD = C(3) + C(2)*C(5) = 18.1201333453488
MOD1MD2RSPREAD = C(3)*C(5) + C(2)*C(5)^2 = 15.4730025877635
MOD1MD1REMI = C(4)*C(5) = 6.1038184173686
MOD1MD2REMI = C(4)*C(5)^2 = 5.21212489815509
MOD1MTSPREAD = (C(3) + C(2))/(1-C(5)) = 171.798592609424
MOD1MTEMI = C(4)/(1-C(5)) = 48.9299071369329
MOD1RMSPREAD = C(3)/(C(2)+C(3)) + C(5)/(1-C(5)) = 4.94212559209028
MOD1RMEMI = C(5)/(1-C(5)) = 5.84519768939473
1.2.
Estime el segundo modelo y obtenga los multiplicadores y el retardo medio. (5 puntos)
CT(t) = a + b TA(t) + c0 SPREAD(t) + c1 SPREAD(t-1) + ... + c15 SPREAD(t-15) + u(t)
Dependent Variable: CT
Method: Least Squares
Sample (adjusted): 2002M04 2009M12
Included observations: 74 after adjustments
Variable
Coefficient
Std. Error
t-Statistic
Prob.
C
2470963.
262045.0
9.429535
0.0000
TA
-61901.80
9903.571
-6.250452
0.0000
PDL01
-69.50788
79.55865
-0.873668
0.3855
4
PDL02
-81.21235
56.48055
PDL03
5.490162
PDL04
6.273413
PDL05
PDL06
PDL07
R-squared
-1.437882
0.1553
29.57882
0.185611
0.8533
5.407807
1.160066
0.2503
-0.031100
1.609867
-0.019319
0.9846
-0.101708
0.095397
-1.066160
0.2903
-0.000749
0.021397
-0.035027
0.9722
0.831106
Mean dependent var
608250.7
Dependent Variable: CT
Method: Least Squares
Sample (adjusted): 2002M04 2009M12
Included observations: 74 after adjustments
Variable
C
Coefficient
Std. Error
t-Statistic
Prob.
2471599.
259428.1
9.527108
0.0000
TA
-61928.17
9799.900
-6.319266
0.0000
PDL01
-71.89564
40.70745
-1.766154
0.0820
PDL02
-82.53275
41.74026
-1.977293
0.0522
PDL03
6.481457
8.535235
0.759377
0.4503
PDL04
6.410882
3.692151
1.736354
0.0872
PDL05
-0.087022
0.205298
-0.423880
0.6730
PDL06
-0.104275
0.060608
-1.720497
0.0900
R-squared
0.831102
Mean dependent var
608250.7
Dependent Variable: CT
Method: Least Squares
Sample (adjusted): 2002M04 2009M12
Included observations: 74 after adjustments
Variable
Coefficient
Std. Error
t-Statistic
Prob.
C
2528236.
261068.2
9.684197
0.0000
TA
-63993.02
9867.379
-6.485311
0.0000
PDL01
-116.8127
31.68691
-3.686464
0.0005
PDL02
-13.46227
11.59298
-1.161244
0.2497
PDL03
17.50606
5.720173
3.060408
0.0032
PDL04
0.092237
0.385280
0.239403
0.8115
PDL05
-0.371801
0.123213
-3.017542
0.0036
R-squared
0.823527
Mean dependent var
608250.7
Adjusted R-squared
0.807724
S.D. dependent var
259759.9
S.E. of regression
113902.9
Akaike info criterion
26.21390
Sum squared resid
8.69E+11
Schwarz criterion
26.43185
5
Log likelihood
-962.9142
Lag Distribution of
SPREAD
*
*
F-statistic
i
Coefficient
52.11038
Std. Error
t-Statistic
*. |
0
-89.1109
106.584
-0.83606
.*|
1
92.4021
30.9568
2.98487
. *|
2
144.245
45.3054
3.18384
.*|
3
116.049
50.6073
2.29313
.* |
4
48.5224
40.1464
1.20864
*. |
5
-26.5506
27.5316
-0.96437
*. |
6
-86.3084
26.3817
-3.27153
* . |
7
-116.813
31.6869
-3.68646
* . |
8
-113.048
32.2243
-3.50817
*. |
9
-78.9239
27.0331
-2.91953
*. |
10
-27.2704
25.4147
-1.07302
* |
11
20.1574
35.6164
0.56596
.* |
12
32.6816
45.8515
0.71277
*. |
13
-29.2987
42.1309
-0.69542
. |
14
-214.308
30.9055
-6.93429
. |
15
-579.794
102.472
-5.65807
-907.368
100.232
-9.05263
Sum of
Lags
MI TA = -63993.02
MI SPREAD = -89.1109
MD SPREAD1R = 92.4021
= -579.794
MD SPREAD2R = 144.245 ……………….. MD SPREAD15R
ML SPREAD = -907.368
mod2rmspread=@sum(i*re)/@sum(re) = 16.983367900646
1.3.
En el primer modelo aplique el contraste de Hausman y Wu. (2 puntos)
HW = @TRANSPOSE(BMCO-BMC2E)*@INVERSE(VARBMC2E-VARBMCO)*(BMCO-BMC2E)
= 2.219990.
Acepta la hipótesis nula.
1.4.
Elija la mejor estimación y justifique su respuesta. (2 puntos)
MODELO 1
MODELO 2
Adjusted R-squared 0.998381
Adjusted R-squared 0.807724
Akaike info criterion 21.18369
Akaike info criterion 26.21390
Sum squared resid
8.58E+09
Sum squared resid
8.69E+11
Schwarz criterion
21.31236
Schwarz criterion
26.43185
6
2º
Comente y fundamente su respuesta. (5 puntos)
2.1.
Cuando se tiene un modelo con variable retardada no se aplica mínimos cuadrados.
2.2.
En todo modelo dinámico se puede obtener el multiplicador total.
Descargar