UNIVERSIDAD NACIONAL DE PIURA FACULTAD DE ECONOMIA SOLUCIÓN DEL EXAMEN PARCIAL DE ECONOMETRIA I 1º El investigador especifica los modelos siguientes: MODELO 1: IMP(t) = a + b IMP(t-1) + c IPM(t) + u(t) MODELO 2: IMP(t) = a + b(0) PBI(t) + b(1) PBI(t-1) + .... + b(9) PBI(t-9) + c IPM(t) + u(t) MODELO 3: IMP(t) = a + b PBI(t)^c + d IPM(t) + u(t) se le pide: 1.1. Estimar el modelo 1. (4 puntos) Dependent Variable: IMP Method: LeastSquares Sample (adjusted): 1951 2009 Includedobservations: 59 afteradjustments Variable Coefficient Std. Error t-Statistic Prob. C IPM IMP(-1) -1064.516 41.00726 0.675121 392.7626 9.442247 0.090937 -2.710328 4.342956 7.424072 0.0089 0.0001 0.0000 R-squared Adjusted R-squared S.E. of regression Sum squaredresid Log likelihood Durbin-Watson stat 0.924676 0.921986 1553.922 1.35E+08 -515.7416 1.500327 Mean dependentvar S.D. dependentvar Akaikeinfocriterion Schwarzcriterion F-statistic Prob(F-statistic) 4193.805 5563.430 17.58446 17.69010 343.7274 0.000000 mod1h=mod1rho*sqr(mod1t/(1-mod1t*mod1vb3)) =2,681667 Sample: 1951 2009 Includedobservations: 59 Autocorrelation . |*** | . |*. | PartialCorrelation . |*** | .|. | AC PAC Q-Stat Prob 1 0.444 0.444 12.246 0.000 2 0.170 -0.034 14.064 0.001 QBP1 =59*(0.444247104750863^2) = 11.6439739146919 QBP2 =59*(0.444247104750863^2 + 0.169694926721249^2) = 13.3429596358328 Breusch-Godfrey Serial Correlation LM Test: F-statistic Obs*R-squared 14.18760 12.09853 Probability Probability 0.000405 0.000505 Dependent Variable: RESID Method: LeastSquares Variable Coefficient Std. Error t-Statistic Prob. C IPM IMP(-1) RESID(-1) -1359.274 62.14667 -0.726546 1.300835 505.0616 18.55766 0.209523 0.345357 -2.691303 3.348843 -3.467629 3.766643 0.0094 0.0015 0.0010 0.0004 2 R-squared 0.205060 Mean dependentvar 4.93E-13 Breusch-Godfrey Serial Correlation LM Test: F-statistic Obs*R-squared 10.57244 16.60190 Probability Probability 0.000133 0.000248 Dependent Variable: RESID Method: LeastSquares Variable Coefficient Std. Error t-Statistic Prob. C IPM IMP(-1) RESID(-1) RESID(-2) -2022.020 85.57564 -0.932152 1.033464 1.001108 558.0713 20.31715 0.218609 0.349684 0.418012 -3.623228 4.211990 -4.264021 2.955417 2.394928 0.0006 0.0001 0.0001 0.0046 0.0201 R-squared 0.281388 Mean dependentvar 4.93E-13 Dependent Variable: IMP Method: Two-Stage Least Squares Sample (adjusted): 1951 2009 Includedobservations: 59 afteradjustments Instrument list: C IPM IPM(-1) Variable Coefficient Std. Error t-Statistic Prob. C IPM IMP(-1) -4128.224 169.3952 -0.700391 1423.646 51.33165 0.540795 -2.899755 3.300014 -1.295114 0.0053 0.0017 0.2006 R-squared Adjusted R-squared S.E. of regression F-statistic Prob(F-statistic) 1.2. 0.616928 0.603247 3504.313 63.00741 0.000000 Mean dependentvar S.D. dependentvar Sum squaredresid Durbin-Watson stat 4193.805 5563.430 6.88E+08 0.135987 Estimar el modelo 2. (4 puntos) Dependent Variable: IMP Method: LeastSquares Sample (adjusted): 1959 2009 Included observations: 51 after adjustments Variable Coefficient Std. Error t-Statistic Prob. C IPM PDL01 PDL02 PDL03 PDL04 -1127.346 133.6116 0.001935 -0.022419 -0.018262 0.005715 682.6739 11.63569 0.021044 0.027928 0.020928 0.007808 -1.651368 11.48292 0.091931 -0.802756 -0.872599 0.731984 0.1061 0.0000 0.9272 0.4266 0.3878 0.4682 3 PDL05 PDL06 PDL07 R-squared 0.001894 -0.000331 -2.51E-05 0.003217 0.000403 0.000124 0.972611 0.588754 -0.820768 -0.203277 Mean dependentvar 0.5592 0.4164 0.8399 4805.639 Dependent Variable: IMP Method: LeastSquares Sample (adjusted): 1959 2009 Includedobservations: 51 afteradjustments Variable Coefficient Std. Error t-Statistic Prob. C IPM PDL01 PDL02 PDL03 PDL04 PDL05 PDL06 -1133.645 133.4893 -0.001451 -0.026909 -0.014283 0.007083 0.001248 -0.000404 674.3251 11.48986 0.012720 0.016901 0.007326 0.003915 0.000489 0.000177 -1.681155 11.61802 -0.114071 -1.592121 -1.949544 1.809161 2.550883 -2.287083 0.1000 0.0000 0.9097 0.1187 0.0578 0.0774 0.0144 0.0272 R-squared Adjusted R-squared S.E. of regression Sum squaredresid Log likelihood Durbin-Watson stat 0.972584 0.968121 1027.034 45356345 -421.6709 0.811361 LagDistribution of PBI . * . *. * * *. * . *. .* * . i Coefficient *| | | | | | | | | | 0 1 2 3 4 5 6 7 8 9 Sum of Lags 1.3. Mean dependentvar S.D. dependentvar Akaikeinfocriterion Schwarzcriterion F-statistic Prob(F-statistic) Std. Error 4805.639 5752.171 16.84984 17.15287 217.9180 0.000000 t-Statistic 0.15761 -0.04124 -0.02853 0.00574 -0.00145 -0.03472 -0.04870 -0.01658 0.02141 -0.09047 0.02731 0.02809 0.01307 0.01672 0.01272 0.01296 0.01633 0.01382 0.02925 0.03143 5.77140 -1.46813 -2.18296 0.34343 -0.11407 -2.67957 -2.98156 -1.19987 0.73180 -2.87829 -0.07693 0.01731 -4.44307 Estimar el modelo 3 considerando: a=-3000, b=0.00002, c=2, d=80, aplicando mínimos cuadrados no lineales y máxima verosimilitud. (3 puntos) Dependent Variable: IMP Method: Least Squares Sample: 1950 2009 Included observations: 60 Convergence achieved after 6 iterations 4 IMP=C(1)+C(2)*PBI^C(3)+C(4)*IPM C(1) C(2) C(3) C(4) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Coefficient Std. Error t-Statistic Prob. -3000.000 1.79E-07 2.015007 79.99951 607.9314 1.40E-06 0.623103 16.28905 -4.934767 0.128523 3.233826 4.911243 0.0000 0.8982 0.0021 0.0000 0.893813 0.888124 1853.256 1.92E+08 -534.5485 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Durbin-Watson stat 4126.397 5540.738 17.95162 18.09124 0.403725 System: MOD3MV Estimation Method: Full Information Maximum Likelihood (Marquardt) Sample: 1950 2009 Included observations: 60 Total system (balanced) observations 60 Convergence achieved after 51 iterations C(1) C(2) C(3) C(4) Coefficient Std. Error z-Statistic Prob. -3000.000 5.28E-08 2.118593 79.99596 567.5362 4.73E-07 0.721934 16.14503 -5.286006 0.111576 2.934608 4.954836 0.0000 0.9112 0.0033 0.0000 Log Likelihood Determinant residual covariance -533.5877 3104552. Equation: IMP=C(1)+C(2)*PBI^C(3)+C(4)*IPM Observations: 60 R-squared 0.897160 Mean dependent var Adjusted R-squared 0.891650 S.D. dependent var S.E. of regression 1823.816 Sum squared resid Durbin-Watson stat 0.408951 1.4. 4126.397 5540.738 1.86E+08 Obtener los multiplicadores del modelo 1 y 2. (3 puntos) MODELO 1: IMP(t) = a + b IMP(t-1) + c IPM(t) + u(t) MIIPM = c = 169.3951670613788 MD1RIPM = b*c = -118.642909124683 2 MD2RIPM = b*c = 83.09646685768445 IIIIIIIIII.. MTIPM = b/(1-c) = 99.62128272658205 MODELO 2: IMP(t) = a + b(0) PBI(t) + b(1) PBI(t-1) + .... + b(9) PBI(t-9) + c IPM(t) + u(t) MIIPM = c = 133.4893092 MD1RPBI = b(1) = -0.04123915226 MD9RPBI = b(9) = -0.09046617987 MTPBI = -0.0769293893619857 MIPBI = b(0) = 0.1576082792 MD2RPBI = b(2) = -0.02853420524 IIII. 5 1.5. Seleccione la mejor estimación, justifique su respuesta. (3 puntos) MODELO 1 Adjusted R-squared 0.603247 Sum squaredresid 6.88E+08 MODELO 2 Adjusted R-squared Schwarzcriterion 0.968121 17.15287 Sum squaredresid Akaikeinfocriterion 45356345 16.84984 MODELO 3 - MCNL Adjusted R-squared Schwarz criterion 0.888124 18.09124 Sum squared resid Akaike info criterion 1.92E+08 17.95162 MODELO 3 - MV Adjusted R-squared 2º 0.891650 Sum squared resid 1.86E+08 Comente y fundamente su respuesta. (3 puntos) Todos los modelos dinámicos requieren de la verificación de autocorrelación para determinar el método de estimación adecuado.