Preliminary Assessment of the Climate Change on Patagonia Argentina’s Agriculture Nidia Barbero, Cristina Rössler, Pablo Canziani Programa de Estudio de los Procesos Atmosféricos para el Cambio Global UCA Pontificia Universidad Católica Argentina Consejo Nacional de Investigaciones Cientìficas y Técnicas Servicio Meterológico de la Armada Argentina nbarbero@uca.edu.ar Climate Change Scenarios Baselines Climatologies mm 150 130 110 90 70 50 30 10 -10 BARILOCHE Cdro. RIVADAVIA TRELEW Lat 41,09 Lon 71,1 840 m L a t 4 5, 4 7 L o n 6 7 , 3 4 6 m Lat 43,12 Lon 65,16 43 m ºC 30 mm 50 ºC 30 mm 50 ºC 40 40 25 40 30 30 20 25 20 15 30 10 20 5 0 J A S O N D E F MA M J 20 15 20 10 10 5 10 0 0 0 -5 ESQUEL Lat 51,37 Lon 69,17 19 m Lat 38,57 Lon 68,08 271m Lat 42,76 Lon 71,09 785 m ºC 25 mm 50 20 40 15 60 30 10 40 0 0 10 -5 0 J A S O N D E F MA M J ºC 35 mm 100 30 80 25 60 20 40 15 20 5 20 NorthEast Patagonia – 2070-2099 Autumn: MAM -10 NEUQUEN 80 NorthWest Patagonia – 2070-2099 Autumn: MAM 0 J A S O N D E F M A M J Río GALLEGOS mm 100 NorthEast Patagonia – 2070-2099 Summer: JFM 10 J A S O N D E F M A M J ºC 25 20 15 10 5 0 -5 20 10 0 5 J A S O N D E F M A M J 0 J A S O N D E F M A M J Precipitation Tmed Tmax Tmin Mean, maximum/minimum temperatures of Patagonia stations (1961-1990) NEUQUÉN precipitation ºC Lat 38,57 Lon 68,08 271 temp med 900 20 800 700 15 600 500 10 400 Lat 38,57 Lon 68,08 271 12 1000 temp min 10 8 South Patagonia – 2070-2099 Autumn: MAM 4 2 0 J A S O N D E F M A M J 200 Anual cycle Mountly values of heliophany for Neuquén (1961-1990) 100 0 0 67 69 71 73 75 77 79 81 83 85 87 89 91 Historical trends of anual temperatures and total precipitation for Neuquén METHODOLOGY AND TOOLS Scatterplots Temperature vs precipitation changes for NordWest, NordEast, Nord and South Patagonia’s zones. GCMs simulations Historical data In this presentation we assess the effect of significant climatic variations on agricultural production in Patagonia and its ultimate impact on agricultural incomes. The main steps were the: • collection of base data and information (climatic and agricultural from 1961-1990 period) • daily temperatures, and precipitation for Neuquén, Bariloche, Esquel, Trelew, Comodoro Rivadavia, Puerto Gallegos (1961-1990) used. • provision climate change scenarios for Patagonia based on selected IPCC SRES emission scenarios for 3 period time horizons (2010-2039, 2040-2069, 2070-2100) • current focus is on climate change scenario construction using GCM output: 7 GCMs climate change scenarios: ECHAM4, HadCM3, NCAR-PCM, CCCma, CSIRO/Mk2, CCSR/NIES, GFDL-R30 (SERES scenario available from IPCC-DDC: ) • 3 experimental regions (in Patagonia) studied. • making of scatter plots to assist with scenario selection. • analyses made for each of agricultural factors: crops productions (wheat, apple, pear, oat, fruit), wool production, crops yield and incomes • impacts of climate change and agricultural production are evaluated by comparing some important variables during the two time periods using multiple regression. • provision socio-economic scenarios for Patagonia relevant to agriculture for the 2080s • climatic records used in conjunction with the agricultural records for the country using GIS techniques. Neuquén Neuquén Oat Oat A popular climatological baseline period is a 30-year “normal period” as defined by the WMO. The current WMO normal period is 1961-1990, which provides a standard reference for many impact studies Climate Scenario; refers to a plausible future climate, and a climate change scenario, which implies the difference between some plausible future climate and the present-day climate, through the terms are used interchangeably in the scientific literature. Neuquén Apple Tons CNA '60 Tons Yield Yield 1.200 1.200 1.200 1.000 1.000 1.000 800 800 800 600 600 600 400 400 400 200 200 200 0 Governance Economic Production (T) Yield Yield (kg/ha) (kg/ha) 2.000.000 1.000.000 0 Neuquén Wheat 1.000 2.500 65/66 67/68 69/70 71/72 73/74 75/76 CNA '60 400 1.000 200 500 20.000 0 0 10.000 89/90 91/92 93/94 95/96 97/98 99/00 01/02 Neuquén Pear Number of plants CNAEFRUT EFRUT EFRUT EFRUT EFRUT EFRUT '88 '90 '92 '95 '98 '00 '02 Census 2.500.000 2.000.000 60.000 1.500.000 40.000 1.000.000 30.000 500.000 0 0 59/60 61/62 63/64 65/66 67/68 69/70 71/72 73/74 75/76 77/78 79/80 81/82 83/84 85/86 87/88 89/90 91/92 93/94 95/96 97/98 99/00 01/02 Production (T) Yield (kg/ha) Number of plants *1000 Planted area (ha) Gross County Product Neuquen Tons 3.000 2.500 2.000 1.500 1.000 500 1960-89. At constant prices of 1970 GCP ($) 8.000 6.000 6.000 4.000 4.000 2.000 2.000 0 00 60 60 6162 616263 63 64 6465 65 66 6667 67 68 6869 6970 70 7172 7172 73 7374 7475 75 76 7677 77 78 7879 79 80 80 8182 8182 83 83 84 84 85 85 86 86 87 87 88 88 89 90 90 91 91 92 93 94 95 96 97 98 98 99 00 01 0102 02 1960 1960 1962 1962 1964 1964 1966 1966 1968 1968 1970 1970 GCP-1 GCP-1 Production Production of of Wool Wool (T) (T) 1972 1972 1974 1974 1976 1976 1978 1978 1980 1980 GCP-Agriculture GCP-Agriculture 1982 1982 1984 1984 1986 1986 1988 1988 GCP-Livestock GCP-Livestock Crops and sheep distribution Arándano (Azul) Castaño (Verde) Damasco (Rosa) Grosella (Amarillo) Almendro (V. Petróleo) Guindo (Azul) Membrillo (Amarillo) Frambuesa (Rojo) Hasta 20 has CNA02 Hasta 50 has CNA02 Uva de Mesa (Violeta) Avellano (Rojo) Nogal (Celeste) Pelón (Negro) Cerezo (Amarillo) Hasta 250 has CNA02 Pear Apple Wool GCP GCP-1 GCP-Agri Adjusted R² Adjusted R² (with year) (within year) 0,90 0,75 0,93 0,83 * 0,60 0,65 * 0,18 0,96 0,78 0,50 0,68 0,60 0,89 0,98* 0,33 0,65* 0,18 0,64 0,57 0,52 α=0.05 Manzano (Rojo) Pera (Amarillo) Uva Vinífera (Violeta) Durazno (Celeste) Ciruelo (Verde) storylines Trigo-has (Amarillo) Avena-has (Rojo) Ovino-cabezas (Azul) CNA02 Pear (yield) N=11 Hasta 600-15000 has CNA02 IMPACT ON AGRICULTURE •May alter spatial and temporal demands and supply by impacting: •Trade 87/88 50.000 Planted area area (ha) (ha) Planted 900.000 900.000 800.000 800.000 700.000 700.000 600.000 600.000 500.000 500.000 400.000 400.000 300.000 300.000 200.000 200.000 100.000 100.000 00 Expl variable year Mean Temp Autumn Total Precip Winter Annual Min Temp Total Precip Spring Mean Temp Summer Total Precip Autumn Total Precip Spring Mean Temp Spring Total Precip Summer Mean Temp Autumn Year Annual Max Temp N=20 N*=11 B 42,82 -406,54 -6,78 -414,36 4,14 6.729,42 -148,47 168,21 -7.501,98 -8,98 3.886,55 375,83 -1.767,51 St. Err. of B 9,00 133,36 2,80 163,73 1,80 63,28 2,35 1,59 77,93 0,81 104,73 7,79 113,95 t(11) 4,7601128 -3,0484901 -2,4256326 -2,5308542 2,3008250 106,3418611 -63,2220572 106,0870842 -96,2704029 -11,1373181 37,1099941 48,2427588 -15,5118590 p-level 0,0005900 0,0110773 0,0336692 0,0279309 0,0419710 0,0059864 0,0100687 0,0060007 0,0066126 0,0570081 0,0171508 0,0131943 0,0409841 α=0.05 Model Predictions Depend on Future Scenarios •Profitability 85/86 Yield (kg/ha) Planted area (ha) CFRUT '74 Arandano=Blueberries , Cas taño=Chestnu t, Damasco=Apricot, Grosella=Grooseberries, Alm endro=Almond, Guindo=Cranberries, Me mbrillo=Quince , Frambuesa=Raspberries, U va de Mesa=Grape, A vellano=Haselnut, Nogal=Walnu t, Pe lo n=Nectarin e, Cer ezo=Cherr ies, Manzano=Apple, Pera=P ear, Viníf era=Grape-wine, Durazno=Peach, Cirue lo=Plu m, Trig o=Whea t, Avena=Oat, Ovin o=She ep(head). Azul= Blu e , Verde=Green , Amarillo=Ye llo w , V. Petro leo=Dark green, Rojo =Red, V iole ta=Violet, C eleste= Light blue , Negro=Black Local •Employment and autonomy 83/84 70.000 1.500 Evolution Evolution of of the the livestock livestock Stock Stock and and Wool Wool Neuquen Neuquen 81/82 80.000 2.000 Yield (kg/ha) (kg/ha) Yield 79/80 90.000 600 59/60 61/6263/6465/6667/6869/70 61/6263/6465/6667/6869/70 71/7273/7475/7677/7879/80 71/7273/7475/7677/7879/80 81/8283/8485/8687/8889/90 81/8283/8485/8687/8889/90 91/9293/9495/9697/98 91/9293/9495/9697/98 99/00 99/00 01/02 01/02 59/60 77/78 Production (T) Number of plants *1000 800 Sheep Sheep (heads) (heads) 63/64 Tons Yield Tons Production (T) (T) Production 61/62 Planted Planted area area(ha) (ha) Wheat (yield) N=20 •Stability and sustainability 4.000.000 0 B2 •Food production EFRUT '02 00 FACTOR SRES EFRUT EFRUT '98 '00 50.000 Environmental Development A2 EFRUT '95 100.000 FACTOR B1 EFRUT '92 3.000.000 Wheat Oat Global EFRUT '90 150.000 SRES emissions scenarios: A1 Number of plants CNA '88 Census 200.000 59/60 0 0 CFRUT '74 250.000 59/60 61/62 63/64 63/64 65/66 65/66 67/68 67/68 69/70 69/70 71/72 71/72 73/74 73/74 75/76 75/76 77/78 77/78 79/80 79/80 81/82 81/8283/84 83/84 85/86 85/86 87/88 87/88 89/90 89/90 91/92 91/92 93/94 93/9495/96 95/96 97/98 97/9899/00 99/00 01/02 01/02 Heads Heads CLIMATIC AND CLIMATE CHANGE SCENARIOS North Patagonia – 2070-2099 Autumn: MAM 6 300 5 CCSRNIES CCCma CSIRO GFDL HADCM3 NEUQUEN mm temp max 25 Heliofania (Hs) Climate change represents a potential threat for the global agricultural. Current climatic, soil and socioeconomic conditions vary widely across the world. Each crop has specific climatic tolerances and optima. A large number of studies conducted over the past few years for many different sites across the world show few, if any, conclusions of either the magnitude or sometime even the direction of change and impact for individual countries or regions as for example Patagonia Argentina. In Patagonia there are few cities and many rural communities. Farmers have limited financial resources and farming systems with few adaptive technological opportunities available to limit or reverse adverse climate. As agriculture is one of the most weather-dependent of all human activities, climate change can make fruit farming, forestry, horticulture and agricultural production uncertain, posing risks to individual farmers, local, and regional economies. Temporal-spatial variations and land-use activities exist due to changes in climatic, economic and environmental conditions. However, through effective systems analysis and planning, the desired land use patterns for adapting to the changing climate could be obtained. The importance developing new methodologies to evaluate the socio economic impact on the climatic projection is well established. The goal of this work is to make an exploration of the relationship between climate and agriculture through economic income. This work attempts to evaluate how the future scenarios could modify the regional overall harvest, the land use, the diversity of the production and the regional economics. Temperature and precipitation data provided by a set of Global Climatic Model (GCMs) considering three scenarios for Southern South Argentina are analyzed to evaluate their ability to represent the annual fields of both variables, temperature and precipitation. GCMs outputs corresponding to drier, wetter, and without substantially variations of the scenarios than the current ones were chosen for this study. All global climate models (GCMs) show warming in response to increased greenhouse gas concentrations, but the sensitivity of models varies considerably. Precipitation changes occur in both directions. These values are known as the climate sensitivity. However, they describes a highly idealized situation. Temporal and spatial changes in present and future variables under the baseline climate and GCMs climate-change scenarios were mapped and integrated in a Geographical Information System (GIS).They are integrated by combining various data layers such as climatic, agricultural and socio-economic datasets. NorthWest Patagonia – 2070-2099 Summer: JFM CONCLUSIONS • Different GCMs would produce different regional climate changes. No single GCM model can be taken as correct. Until GCMs get better at evaluating regional climate, the regional estimates of future environmental resources must be considered speculative and uncertain. • Because of the importance of regional and small-scale processes in determining impacts on water resources and water systems, substantial improvements in methods to downscale climate information continue to be needed. • Improved GCMs, downscaling methods, and integrated impact assessments are important in further studies. • The statistic information suggest that others explicative variables should be considered a well in the analyses, such as technology and selection of species/varieties, etc… •The study demonstrates that climate variability effects on agricultural in Patagonia are detectable hence future agricultural activities could indeed depend on the magnitude of global warming and precipitation changes projected by GCM used in impact analysis studies.