TEMA 3.- APARATO LOCOMOTOR El SISTEMA MUSCULAR. 1.- ESTRUCTURA Y FUNCIÓN DEL SISTEMA MUSCULAR. El músculo es una combinación de diferentes tejidos que, en conjunto, le permiten ejercer su función principal: la contracción activa (capacidad para disminuir su longitud bajo el influjo de un estímulo nervioso, produciendo el desplazamiento de los huesos en las articulaciones). En la contracción muscular se disipa una gran cantidad de calor, la cual tiene una decisiva importancia para el mantenimiento de la temperatura corporal. Actúa en la locomoción, en actividades físicas variadas, en las diferentes funciones corporales (respiración, digestión, circulación, ...) y garantizando el bombeo cardíaco. La masa muscular viene a representar de un 35 a un 50% del peso corporal y, en general, las mujeres tienen menor masa muscular que los hombres. El 75% del músculo esquelético es agua, el 20% proteína y el 5% restante está compuesto por sales inorgánicas y otras sustancias que incluyen fosfatos de alta energía, ácido láctico, enzimas, minerales (calcio, fósforo, magnesio, ..), iones de sodio, potasio,.. aminoácidos, grasas y carbohidratos. Tenemos músculos de diferentes formas, tamaños, con diferente número de inserciones y atravesando una o varias articulaciones… todo ello dependerá de la función que deban cumplir, de la forma de los huesos en los que se insertan, de la fuerza que deban ejercer y de la amplitud del movimiento a efectuar. 2.- TIPOS DE TEJIDO MUSCULAR - Músculo liso.- forman parte de numerosos conductos del cuerpo, donde realizan funciones imprescindibles para el correcto funcionamiento del organismo, por ejemplo en vasos sanguíneos, el útero, la vejiga, el aparato digestivo, ... Su característica principal es que actúan automáticamente, es decir, los movimientos de contracción y relajación se producen sin la participación de la voluntad; por eso se denominan músculos involuntarios. - Músculo estriado cardiaco.- es el encargado de realizar la contracción rítmica y continua del corazón. El tejido muscular del corazón tiene las fibras estriadas, como los músculos del aparato locomotor, pero su contracción no está controlada por la voluntad, por lo que es involuntario. Está formado por un tipo de fibra especial llamada miocardio. - Músculo estriado esquelético.- es el que forma los músculos que están unidos al esqueleto. También aparecen en órganos tales como el globo ocular y la lengua. Gracias a su acción, voluntaria, podemos movernos. Es en el que nos centraremos en este tema. 3.- ESTRUCTURA GENERAL DEL MÚSCULO Cada uno de los músculos voluntarios del cuerpo contiene varias envolturas de tejido conjuntivo (membranas) y al igual que otras partes del cuerpo, está formado por un tejido construido por células. Estas poseen muchos núcleos y son muy alargadas. Si realizamos un corte transversal al músculo, observamos que consta de miles de estas células cilíndricas colocadas de forma paralela, llamadas fibras musculares (su longitud puede variar de milímetros a unos 30 cm, según el músculo). Varios haces de estas fibras musculares forman los fascículos musculares y un conjunto de fascículos forman un músculo. Las fibras musculares están formadas por muchas fibras de menor tamaño, las miofibrillas, cada una de ellas formadas por múltiples filamentos contráctiles, unos gruesos (de miosina) y otros delgados (de actina). - Cada fibra muscular está envuelta por una fina capa de tejido conjuntivo (el endomisio). Otra capa de tejido (el perimisio) rodea un grupo de hasta 150 fibras musculares formando los llamados fascículos musculares. Alrededor del músculo entero hay otra capa de tejido (epimisio). Esta vaina protectora o fascia se estrecha en sus extremos y se mezcla con las otras vainas formando los tendones, los cuales conectan ambos extremos del músculo a la envoltura exterior del hueso (el periostio). Son las llamadas inserciones musculares. ¿Para que sirven estas membranas? Separan, protegen y facilitan el deslizamiento entre estructuras (entre fascículos, fibras musculares, ...). tendón hueso También se encuentran vasos sanguíneos que penetran en el músculo y se ramifican formando una densa red de capilares, para facilitar el aporte de nutrientes y la contracción. Además penetran los nervios que provocarán la excitación y el inicio de la contracción en una o varias fibras (cuantas más fibras se exciten más fuerza u potencia en la contracción y cuantas menos fibras excitadas más precisión). La inervación procede del sistema nervioso central, incluye fibras sensitivas (van del músculo al encéfalo) y fibras motoras (van del cerebro al músculo) Las células del sistema nervioso central se llaman neuronas, están formadas por: el cuerpo neuronal, dendritas (prolongaciones cortas y numerosas) y el axón (prolongación del citoplasma neuronal rodeado de membrana celular que conduce los impulsos generados en la corteza cerebral). Este impulso hasta llegar al músculo se transmite mediante sinapsis, fenómeno que consiste en la liberación de una sustancia química (neurotransmisor) por el extremo de un axón próximo a la siguiente neurona. El neurotransmisor llega a las dendritas de la siguiente neurona, excitándole y transmitiéndole el estímulo, así sucesivamente hasta llegar al músculo. La unión neuromuscular es la unión del axón de la neurona motora y el músculo. La porción de fibra muscular que participa se denomina placa motora. - En los músculos y tendones también encontramos receptores sensitivos. Existen 2 elementos conectados directamente con el S.N.C. (sistema nervioso central) a quien envían información acerca del estado del músculo: - Los husos musculares: están en el interior del músculo. Se trata de fibras musculares especiales, que se orientan en la misma dirección de las fibras musculares normales, con lo que cualquier variación en el músculo afectará al huso muscular. Proporcionan la información sensorial que se relaciona con los cambios en la longitud en el músculo. Su función principal es responder al estiramiento del músculo y, mediante una acción refleja, iniciar una contracción más fuerte para reducir este estiramiento. El huso muscular percibe el estiramiento, una fibra nerviosa lleva el impulso sensorial hasta la médula espinal y una neurona motriz indica al músculo que debe contraerse (reflejo de estiramiento o miotático). Este reflejo: - Permite al músculo ajustarse automáticamente a diferencias de carga. - Protege al músculo de posibles roturas contrayéndolo cuando hay estiramientos importantes o/y inesperados. - Es importante para la regulación del movimiento y el mantenimiento de la postura. Bíceps contraido para sostener libro Si se ponen más libros, el músculo se estira Reflejo:el músculo se contrae - Los órganos tendinosos de Golgi.Localizados en los tendones. Estos El brazo vuelve a su posición receptores se estimulan cuando aumenta excesivamente la tensión tendinosa, provocando por vía refleja la relajación del músculo y así cediendo la tensión del tendón (reflejo miotático inverso). Es un mecanismo de protección músculo-tendinoso ante contracciones intensas. Estructura microscópica del músculo: sarcómero sarcómero sarcómero Cortes transversales en diferentes partes de la miofibrilla Al microscopio podemos ver con más detalle las fibras musculares, que están rodeadas como vimos antes por una membrana llamada endomisio. En la fibra muscular observamos: - El sarcolema o membrana plasmática.- está justo debajo del endomisio. Se invagina hacia el interior formando unos túbulos (T), que atraviesan la célula (fibra muscular) de un lado a otro, permitiendo la comunicación entre el interior y el exterior (recibiendo y eliminando diferentes sustancias, como glucosa, O2, iones...) . - El sarcoplasma.- similar al citoplasma celular. Encontramos en ella: - Los núcleos. - El retículo sarcoplasmático.- es un sistema de túbulos comunicados con los nombrados anteriormente. Aquí se almacena calcio (esencial para la contracción muscular). - Las miofibrillas.- Cada fibra contiene entre cientos y miles de miofibrillas, dispuestas de forma paralela a la fibra. Están compuestas en su mayoría por 2 proteínas: la actina (miofilamentos delgados) y miosina (miofilamentos gruesos). En las miofibrillas se distinguen una serie de zonas claras y oscuras que dan al músculo el aspecto estriado. Estas bandas se ven por la diferente concentración de proteínas en las distintas partes del sarcómero, que se trata de la unidad funcional más pequeña del músculo (la parte más pequeña que se contrae como una unidad. La unión de la contracción de varios sarcómeros produce la contracción global del músculo). - Como en otras células también nos encontramos con mitocondrias, el aparato de Golgi, los ribosomas y los lisosomas. - Además hay diferentes sustancias en disolución: gotas de grasa, de glucógeno (forma en la que se almacena la glucosa, de la que obtendremos la energía necesaria), mioglobina (actúa como un almacén extra de oxígeno en el músculo), iones... 4.- LA CONTRACCIÓN MUSCULAR Cuando las órdenes cerebrales llegan a un músculo por vía nerviosa, éste se contrae, es decir, acorta su longitud. Al remitir el estímulo nervioso el músculo se relaja. ¿Cómo se contrae? ¿Cómo acorta su longitud? La disminución de la longitud del músculo, de cada uno de los sarcómeros, se explica por la “teoría de los filamentos deslizantes”, que propone que un músculo se acorta o alarga porque los filamentos finos y gruesos se deslizan entre sí, sin cambiar éstos de longitud. SARCÓMERO relajado SARCÓMERO contraido El fenómeno de la contracción comienza cuando llega un estímulo suficiente a la placa motora (zona de unión entre neurona y músculo), lo que hace que se libere calcio almacenado en los túbulos que rodean las fibras, llegando a las miofibrillas. Este calcio, junto con energía en forma de ATP, desencadena una serie de procesos que permitirá que los filamentos de miosina deslicen a los de actina, acortando los sarcómeros y en general al músculo. neurona Placa motora Se transmite el impulso nervioso El impulso nervioso se propaga por los túbulos Se trasmite al retículo sarcoplasmático Sale el calcio. Las cabezas de miosina enganchan a la actina y la mueven, se desenganchan y se vuelve a repetir el ciclo (cada cabeza se Cambia la estructura de la actina y así se puede unir la miosina mueve de forma independiente). Cuando el estímulo nervioso cesa, el calcio vuelve a los túbulos y se paralizan estos procesos, relajándose de nuevo el músculo. 5.- OTRAS CAPACIDADES DEL MÚSCULO Además de la capacidad de contracción del músculo, también evidencia capacidad de estiramiento y propiedades elásticas. - Capacidad de estiramiento.- se explica por la disposición de los miofilamentos. Su peculiar sistema de ordenación espacial telescópica, posibilita el estiramiento pasivo del sarcómero y del músculo en el caso de que actúen sobre él fuerzas exteriores de suficiente magnitud. - Es interesante esta capacidad de estiramiento: - Para la protección de las inserciones tendinosas en contracciones intensas, ya que si no cediera podría romper la inserción o el tendón. - Permite que existan acortamientos del elemento contráctil sin que se modifique la longitud global muscular (por estiramiento del tendón).- realización de contracciones isométricas. - Comportamiento elástico.- una vez que cesa la fuerza que estira al músculo, recupera su posición inicial (tiene tendencia al acortamiento). Los elementos que confieren elasticidad al músculo son: Epimisio, perimisio, endomisio y sarcolema sarcómero Es interesante este comportamiento elástico: La acumulación de energía elástica aumenta la potencia de una contracción en el tiempo inmediato posterior a un estiramiento moderado (efecto de rebote), muy evidente en determinados movimientos como el salto. El valor de máxima fuerza generable se obtiene con cierto nivel de estiramiento muscular (entre un 10-20% por encima de su longitud de reposo). Su tendencia al acortamiento por efectos de rebote elástico se adiciona a la acción del elemento contráctil Máxima fuerza con el músculo un poco estirado 6.- TIPOS DE FIBRAS Las fibras musculares presentan características diferentes a la hora de contraerse pues lo pueden hacer de forma más rápida o más lenta. Se consideran, de forma general, 3 tipos de fibras: - Fibras lentas (llamadas también fibras tipo I, rojas o aeróbicas).- de pequeño tamaño, tienen más capilares (por lo que puede llegar más sangre y por tanto más oxígeno), mayor nº y tamaño de las mitocóndrias (donde se produce la energía de forma aeróbica) y más mioglobina (transportadores de oxígeno en el músculo), tienen una gran capacidad aeróbica (de obtener energía con presencia de oxígeno suficiente) y son muy resistentes. Son inervadas por motoneuronas con baja velocidad de conducción (por eso son lentas), baja frecuencia de estimulación (pocos estímulos por unidad de tiempo) y bajo umbral de estimulación. - Rápidas (llamadas también fibras tipo II, blancas o anaeróbicas).- con menor concentración de capilares y mioglobina, menor nº de mitocóndrias, tienen una gran capacidad glucolítica (de obtener energía sin oxígeno suficiente), pero son más fatigables. Son inervadas por motoneuronas más gruesas, lo que conlleva una mayor velocidad de conducción y permiten una mayor frecuencia de estimulación. - Intermedias.- no determinadas, se pueden convertir en unas u otras dependiendo de su utilización y entrenamiento. - 7.- TIPOS DE CONTRACCIÓN MUSCULAR - Contracción concéntrica.- hay movimiento. Hay una variación en la longitud del músculo: se acorta acercando sus inserciones. Son movimientos en contra de la gravedad. Por ejemplo cuando se levanta un objeto. La fuerza que puede desarrollar el músculo con contracciones concéntricas disminuye a medida que aumenta la velocidad a la que debe trabajar. Sólo se alcanzan tensiones musculares altas a velocidades pequeñas. Por ello la máxima potencia de trabajo (fuerza x velocidad) se corresponde a valores de fuerza y velocidad intermedios. - Contracción excéntrica.- hay movimiento. Hay una variación en la longitud del músculo: se alarga separándose sus puntos de inserción. Todo el trabajo del músculo se destina a resistir su alargamiento. Por ejemplo, imaginemos que, estando con los codos flexionados, nos cargan en las manos un peso superior al que podemos soportar; todo el trabajo de la musculatura flexora (bíceps,..) se encaminará a resistir la caída de los brazos por el peso. Se trata de acciones de “frenado”. Contracción isométrica.- no hay movimiento. El músculo se pone en tensión pero no es capaz de superar la resistencia que se le ofrece. Esto es posible porque simultáneamente a la disminución de la longitud del elemento contráctil se produce alargamiento del tendón. Los músculos del tronco ejercen contracciones isométricas “de sostén posicional” en gran número de actividades físicas, impidiendo posibles desplazamientos frente a las altas cargas de impacto que actúan sobre el cuerpo. - Por lo general, durante la ejecución de los movimientos se varían continuamente las características y tipos de contracción en cada músculo o grupo muscular implicado. - El músculo puede desarrollar más fuerza realizando contracciones excéntricas, luego con contracciones isométricas y finalmente menos fuerza con las contracciones concéntricas. 8.- MÚSCULOS AGONISTAS Y ANTAGONISTAS La ejecución de los movimientos requiere cierto grado de coordinación de las contracciones musculares. Como los músculos sólo pueden tirar y no empujar, están dispuestos en oposición los unos a los otros (los de la parte anterior y los de la parte posterior que atraviesan cada articulación), realizando movimientos contrarios, cada uno tirando hacia su lado. Así, los músculos que participan en la realización de un movimiento determinado se denominan agonistas. En ese momento y para que el movimiento se pueda producir de forma fluida, los músculos que se oponen a los agonistas (antagonistas) deben relajarse. Fijadores: se contraen para sujetar toda la estructura 9.- MÚSCULOS SEGÚN LAS REGIONES CORPORALES. 9.1.- MÚSCULOS DEL MIEMBRO SUPERIOR. Pectoral mayor Serrato mayor Pectoral menor Los músculos que unen la escápula y la clavícula al húmero por delante son: Subescapular Deltoides, parte clavicular Los músculos que unen la escápula al húmero por detrás son: -Supraespinoso - Infraespinoso - Redondo menor -Redondo mayor - Deltoides (parte acromial) - El Deltoides es un potente músculo que envuelve la extremidad superior del húmero, participando en la mayor parte de los movimientos del hombro y le confiere su forma redondeada (mirar fotos anteriores: parte anterior-clavicular y posterior-acromial) - Los músculos que unen por detrás la escápula a la columna son: el Romboides (mayor y menor), el Angular del omóplato, el Trapecio y el Dorsal ancho une por detrás el húmero a la columna.. - Romboides - Angular del omóplato - Trapecio - Dorsal ancho BRAZO - Parte anterior: Bíceps, Braquial anterior y Coracobraquial. - Bíceps - Parte posterior: - Braquial anterior Triceps. Triceps - Coracobraquial ANTEBRAZO Son menos voluminosos que los precedentes y se disponen en varias capas. - Región anterior: pronadores y flexores. - Por el borde externo: supinadores. - Región posterior: extensores. MANO Se encuentran diferentes músculos, de escasa longitud, destinados a la movilización de los dedos. 9.2.- MÚSCULOS DEL MIEMBRO INFERIOR. El miembro inferior está caracterizado por su potente musculatura en relación con la postura y la locomoción. CADERA - Parte anterior: - Parte posterior: MUSLO - Parte anterior: 1. 2. 3. 4. Recto anterior. Vasto interno. Vasto externo. Crural. - Parte media - Parte posterior - Parte externa PIERNA - Parte anterior - Parte lateral: - Parte posterior 9.3.- MÚSCULOS DE LA CARA Los músculos de la cara están al servicio de las funciones de nutrición (músculos masticadores y de la lengua), de los órganos de los sentidos, de la mímica y los que aseguran la oclusión de los párpados y de la boca (orbiculares). 9.4.- MÚSCULOS DE LA COLUMNA VERTEBRAL. sigue músculos de la columna vertebral 9.5.- MUSCULOS DEL TORAX Intercostales externos Triangular del esternón Intercostales internos Serrato mayor Diafragma LA IMPORTANCIA DE LOS ABDOMINALES La columna vertebral es el pilar central de nuestro tronco. De todos los tramos parten tensores ligamentosos y musculares a modo de cables que unen la columna a su base de implantación, la pelvis. Un segundo sistema de cables (músculos y ligamentos) se dispone en la cintura escapular. En la posición simétrica las tensiones están equilibradas en ambos lados y por lo tanto la columna está recta. Esta estructura se puede deformar cuando hacemos movimientos, pero manteniendo cierta rigidez por la influencia de los músculos. Si nos miramos de perfil (plano anteroposterior) la columna vertebral se eleva describiendo una serie de curvaturas llamadas: curvatura sacra, lordosis lumbar, cifosis dorsal y lordosis cervical. Es misión de los músculos anteriores (abdominales) y posteriores del tronco mantener estas curvaturas dentro de los límites considerados normales. Un desequilibrio muy común es el que se produce en la zona lumbar, en la que los músculos posteriores tiran fuertemente de la columna y tienden a acentuar la lordosis lumbar (hiperlordosis). El papel más importante en la hiperlordosis lumbar la tiene el Recto abdominal situado en la parte anterior del abdomen. En las actividades cotidianas desarrollamos mucho la musculatura de la espalda, ya que es la que nos permite mantener la posición erecta, por lo que están en un estado de tensión permanente lo que provoca su acortamiento. Por el contrario, la musculatura abdominal si no se trabaja a propósito, se va debilitando, las vísceras empujan hacia delante y el abdomen sale hacia fuera, dando lugar a individuos hiperlordóticos. Para evitarlo es conveniente hacer a menudo ejercicios de estiramiento de la musculatura lumbar posterior y fortalecimiento de la musculatura abdominal. Las dolencias de espalda no aparecen de un día para otro, sino que empiezan poco a poco. La prevención es una medida eficaz, por lo que habituarse a hacer ejercicios adecuados para mantener un buen tono muscular y evitar problemas posteriores de difícil solución es importante. 10.- MUSCULATURA Y EDAD Antes de la pubertad, se enlentece el crecimiento muscular, pero durante la misma, y posteriormente al aumento de la talla, el tejido muscular sufre un desarrollo importante y rápido especialmente en los chicos. El aumento de masa muscular permite mejorar la fuerza, pero ésta no consigue los valores máximos hasta que finaliza la maduración de los sistemas endocrino y nervioso. En este período, el músculo crece y madura a mayor velocidad que el tejido óseo. En consecuencia, el desarrollo de la fuerza muscular no es paralela a la resistencia de los huesos, por lo que deben limitarse los ejercicios que soliciten tracciones demasiado elevadas sobre las inserciones óseas. El crecimiento del tejido muscular se realiza por alargamiento del músculo, puesto que se incrementa el número de sarcómeros de cada fibra y por incremento del diámetro debido al aumento de volumen de cada fibra. Una vez completado el crecimiento muscular, los niveles de fuerza se mantienen en sus valores máximos hasta los 20-25 años en las mujeres y los 25-30 años en los hombres. Con la edad y dependiendo del nivel de actividad física del individuo, en los músculos van disminuyendo las fibras, primordialmente las rápidas, aunque también lo hacen las lentas. Estos cambios son, en gran modo, responsables de la pérdida del peso magro sobrevenida con la edad y que a veces llega hasta el 50%. 11.- ADAPTACIONES DEL MÚSCULO CON LA ACTIVIDAD FÍSICA El crecimiento del tejido muscular se realiza por alargamiento del músculo, puesto que se incrementa el número de sarcómeros de cada fibra y por el incremento del diámetro debido al aumento del volumen de cada fibra. De todas formas, habrá que esperar a que el sistema endocrino madure totalmente, ya que antes, parece que la actividad física o entrenamiento no provoca hipertrofia muscular. Los cambios producidos en los músculos, dependerán del tipo de entrenamiento: VARIABLES ENTRENAMIENTO DE VELOCIDAD Concentración de mioglobina Capacidad aerobia (capacidad de oxidar o utilizar grasas e hidratos de carbono) RESISTENCIA aumenta aumenta o sin cambios Mitocondrias en los músculos Reservas de glucógeno ENTRENAMIENTO DE aumenta en fibras lentas y rápidas aumenta en nº y tamaño Aumento aumento ( se duplican) Reservas de triglicéridos aumento (hasta un 83%) Actividad enzimática aeróbica aumenta Actividad enzimática glucolítica aumenta (cambios pequeños) se reduce Actividad enzimática del sistema ATP-PC aumenta (cambios pequeños) Reservas de ATP- PC Aumenta Hipertrofia de las fibras Fibras de contracción lenta y sólo fibras de contracción lenta rápida (mayor en C.R.) aumenta 1- DELTOIDES - Localización: en el hombro. - Moviento que produce al contraerse: - Se estira: Porción anterior llevando brazos atrás Porción anterior Flexión del hombro Porción media Abducción del hombro Porción media bajando hombros Porción posterior Extensión del hombro Porción posterior llevando brazos adelante 2.- PECTORAL - Localización: se palpa en la parte anterior de la axila. - Movimiento que produce al contraerse: Adducción en el hombro ( llevar brazos hacia zona media del cuerpo). - Se estira con el movimiento de : Extensión del brazo en el hombro ( llevar brazos atrás). 3.- BICEPS - Localización: parte anterior del brazo. - Movimiento que produce al contraerse: Flexión del codo y supinación ( palma hacia arriba). - Se estira con el movimiento de : Extensión del codo. 4.- TRICEPS - Localización: parte posterior del brazo. - Movimiento que produce al contraerse: Extensión del codo. - Se estira con el movimiento de: Flexión del codo. 5.- MÚSCULOS DE LA PARTE ANTERIOR DEL ANTEBRAZO - Localización: - Movimiento que produce al contraerse: Flexión de muñeca ( llevar la palma de la mano hacia la parte anterior del antebrazo). - Se estira con el movimiento de : Extensión de muñeca ( llevar el dorso de la mano hacia la parte posterior del antebrazo). 6.- MÚSCULOS DE LA PARTE POSTERIOR DEL ANTEBRAZO - Localización: - Movimiento que produce al contraerse: Extensión de muñeca. - Se estira con el movimiento de : Flexión de muñeca. Anexo.- Diferencias entre fibras de contracción lenta y rápida FIBRAS DE CONTRACCIÓN LENTA Se utilizan preferentemente en actividades de resistencia FIBRAS DE CONTRACCIÓN RÁPIDA Se utilizan preferentemente en actividades de sprint Velocidad de contracción lenta Mayor velocidad de contracción La tensión máxima es posible a partir de 0,8- 0,9 segundos. El tiempo necesario para la tensión máxima no suele superar los 0,3 segundos. 3 veces más tiempo para generar la tensión máxima La fuerza de contracción es menor La fuerza de contracción es mayor Mayor capacidad aeróbica Mayor capacidad anaeróbica Gran cantidad de mitocondrias Menor cantidad de mitocondrias Las enzimas del ATP-PC son menos activas 3 veces más activas las enzimas para el sistema ATP- PC Las enzimas glucolíticas son menos activas 2 veces más activas las enzimas glucolíticas o anaeróbicas (ejemplo la ATP-asa) Más activas ( el doble más o menos) las enzimas del sistema aeróbico (oxidativos) Menos activas las enzimas del sistema aeróbico Mayor número de capilares por fibra (puede llegar más sangre al músculo) Menor número de capilares Mayor contenido en mioglobina (llega más 02 al músculo) Menor mioglobina Mayor reserva de triglicéridos (grasas) Menor reserva de triglicéridos Igual contenido en glucógeno Igual contenido en glucógeno La neurona motriz es menor La neurona motriz es mayor El impulso nervioso que origina la contracción se transmite El impulso nervioso que origina la contracción se con menor rapidez por el axón transmite con mayor rapidez por el axón Se fatigan con menor facilidad Se fatigan con más facilidad ( por acumulación de ácido láctico)