La superconductividad y los premios Nobel

Anuncio
La superconductividad y los premios Nobel
Fernando Sols
Universidad Complutense de Madrid
Premios Nobel relacionados con la superconductividad
•
1913. Heike Kamerlingh Onnes "for his investigations on the properties of matter at low
temperatures which led, inter alia, to the production of liquid helium".
•
1972. John Bardeen, Leon Neil Cooper and John Robert Schrieffer "for their jointly
developed theory of superconductivity, usually called the BCS-theory".
•
1973. Leo Esaki and Ivar Giaever "for their experimental discoveries regarding tunneling
phenomena in semiconductors and superconductors, respectively" and the other half to
Brian David Josephson "for his theoretical predictions of the properties of a supercurrent
through a tunnel barrier, in particular those phenomena which are generally known as the
Josephson effects".
•
1987. J. Georg Bednorz and K. Alexander Müller "for their important break-through in the
discovery of superconductivity in ceramic materials“
•
2003. Alexei A. Abrikosov, Vitaly L. Ginzburg and Anthony J. Leggett "for pioneering
contributions to the theory of superconductors and superfluids".
•
2008. Yoichiro Nambu "for the discovery of the mechanism of spontaneous broken
symmetry in subatomic physics", the other half jointly to Makoto Kobayashi and Toshihide
Maskawa "for the discovery of the origin of the broken symmetry which predicts the
existence of at least three families of quarks in nature".
Premios Nobel relacionados con la superfluidez
•
1962. Lev Landau "for his pioneering theories for condensed matter, especially liquid
helium".
•
1978. one half awarded to Pyotr Leonidovich Kapitsa "for his basic inventions and
discoveries in the area of low-temperature physics", the other half jointly to Arno Allan
Penzias and Robert Woodrow Wilson "for their discovery of cosmic microwave background
radiation".
•
1996. David M. Lee, Douglas D. Osheroff and Robert C. Richardson "for their discovery of
superfluidity in helium-3".
•
2001. Eric A. Cornell, Wolfgang Ketterle and Carl E. Wieman "for the achievement of
Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental
studies of the properties of the condensates".
•
2003. Alexei A. Abrikosov, Vitaly L. Ginzburg and Anthony J. Leggett "for pioneering
contributions to the theory of superconductors and superfluids".
Descubrimiento de la superconductividad (1911)
Heike Kammerlingh Onnes
(1853-1926)
Premio Nobel Física 1913
Descubrimiento de la superconductividad (1911)
Heike Kammerlingh Onnes
(1853-1926)
Premio Nobel Física 1913
Paul Ehrenfest, Hendrik Lorentz, Niels Bohr y
Heike Kamerlingh Onnes en 1919 en el
Laboratorio Criogénico de Leiden
Teoría fenomenológica de Ginzburg-Landau
Lev D. Landau (1908-1968)
Vitaly L. Ginzburg (1916-2009)
Fritz London (1900-1954)
Efecto Meissner-Ochsenfeld
Fritz Walther Meissner Robert Ochsenfeld
(1882-1974)
(1901-1993)
Lev Shubnikov
(1901-1937)
Fritz London (1900-1954)
Superconductores tipo II. Red de Abrikosov
Alexei A. Abrikosov
(n. 1928)
W. Ketterle et al.
(2001)
NbSe2
H. F. Hess et al.
(1989)
Na BEC
“I got into particle physics only when I came back to Tokyo after the war. In
hindsight, though, I must say that my early exposure to condensed matter
physics has been quite beneficial to me.”
“How can one then trust the BCS theory for discussing the electromagnetic
properties like the Meissner effect? It actually took two years for me to resolve
the problem to my satisfaction. There were a number of people who also
addressed the same problem, but I wanted to understand it in my own way.”
Y. Nambu (1921-)
The BCS theory also accounts
for the generation of the London
mass for the electromagnetic
field. This problem is made
simple in terms of the Higgs
scalar field (Anderson, 1963;
Englert and Brout, 1964; Higgs,
1964.)
The third relation shows the massless NG
boson turning into a massive “plasmon,” a
process corresponding to Eq. 4. This was
successfully applied to weak gauge field in
the Weinberg-Salam (WS) theory (Weinberg,
1967; Salam, 1968) of electroweak
unification. The fermion masses are also
generated and break chiral invariance. These
so-called current masses for the up and
down quarks play the role of the bare mass in
the Nambu–Jona-Lasinio model.
Efecto túnel
Ivar Giaever (1929-)
Obervó el efecto Josephson dc
pero pensó que era una fuga (!)
Rev. Mod. Phys. (1974)
Brian Josephson (1940-)
  / t     2eV / 
I  I1 sin   
Tunneling supercurrent
no calcularon la supercorriente (túnel de pares de Cooper)
Brian J. Pippard:
I1 
(T )
  (T ) 
tanh 

2eRn
 2kT 
Ambegaokar-Baratoff formula (1963)
I1 
1
Rn 2
1963
J. M. Rowell (1963)
KJ = 483 597.891(12)×109 Hz/V
  1019
( Efect Hall cuántico: h/e2 )
Conclusiones sobre superconductividad
•
frontera de las bajas temperaturas (está ahí)
• nuevo estado de la materia (correlaciones sutiles)
• gran interés fundamental (estado sólido, física de partículas)
• gran interés tecnológico (patrón de voltaje)
• continúa ofreciendo retos científicos y tecnológicos
Descargar