La superconductividad y los premios Nobel Fernando Sols Universidad Complutense de Madrid Premios Nobel relacionados con la superconductividad • 1913. Heike Kamerlingh Onnes "for his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium". • 1972. John Bardeen, Leon Neil Cooper and John Robert Schrieffer "for their jointly developed theory of superconductivity, usually called the BCS-theory". • 1973. Leo Esaki and Ivar Giaever "for their experimental discoveries regarding tunneling phenomena in semiconductors and superconductors, respectively" and the other half to Brian David Josephson "for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, in particular those phenomena which are generally known as the Josephson effects". • 1987. J. Georg Bednorz and K. Alexander Müller "for their important break-through in the discovery of superconductivity in ceramic materials“ • 2003. Alexei A. Abrikosov, Vitaly L. Ginzburg and Anthony J. Leggett "for pioneering contributions to the theory of superconductors and superfluids". • 2008. Yoichiro Nambu "for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics", the other half jointly to Makoto Kobayashi and Toshihide Maskawa "for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature". Premios Nobel relacionados con la superfluidez • 1962. Lev Landau "for his pioneering theories for condensed matter, especially liquid helium". • 1978. one half awarded to Pyotr Leonidovich Kapitsa "for his basic inventions and discoveries in the area of low-temperature physics", the other half jointly to Arno Allan Penzias and Robert Woodrow Wilson "for their discovery of cosmic microwave background radiation". • 1996. David M. Lee, Douglas D. Osheroff and Robert C. Richardson "for their discovery of superfluidity in helium-3". • 2001. Eric A. Cornell, Wolfgang Ketterle and Carl E. Wieman "for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates". • 2003. Alexei A. Abrikosov, Vitaly L. Ginzburg and Anthony J. Leggett "for pioneering contributions to the theory of superconductors and superfluids". Descubrimiento de la superconductividad (1911) Heike Kammerlingh Onnes (1853-1926) Premio Nobel Física 1913 Descubrimiento de la superconductividad (1911) Heike Kammerlingh Onnes (1853-1926) Premio Nobel Física 1913 Paul Ehrenfest, Hendrik Lorentz, Niels Bohr y Heike Kamerlingh Onnes en 1919 en el Laboratorio Criogénico de Leiden Teoría fenomenológica de Ginzburg-Landau Lev D. Landau (1908-1968) Vitaly L. Ginzburg (1916-2009) Fritz London (1900-1954) Efecto Meissner-Ochsenfeld Fritz Walther Meissner Robert Ochsenfeld (1882-1974) (1901-1993) Lev Shubnikov (1901-1937) Fritz London (1900-1954) Superconductores tipo II. Red de Abrikosov Alexei A. Abrikosov (n. 1928) W. Ketterle et al. (2001) NbSe2 H. F. Hess et al. (1989) Na BEC “I got into particle physics only when I came back to Tokyo after the war. In hindsight, though, I must say that my early exposure to condensed matter physics has been quite beneficial to me.” “How can one then trust the BCS theory for discussing the electromagnetic properties like the Meissner effect? It actually took two years for me to resolve the problem to my satisfaction. There were a number of people who also addressed the same problem, but I wanted to understand it in my own way.” Y. Nambu (1921-) The BCS theory also accounts for the generation of the London mass for the electromagnetic field. This problem is made simple in terms of the Higgs scalar field (Anderson, 1963; Englert and Brout, 1964; Higgs, 1964.) The third relation shows the massless NG boson turning into a massive “plasmon,” a process corresponding to Eq. 4. This was successfully applied to weak gauge field in the Weinberg-Salam (WS) theory (Weinberg, 1967; Salam, 1968) of electroweak unification. The fermion masses are also generated and break chiral invariance. These so-called current masses for the up and down quarks play the role of the bare mass in the Nambu–Jona-Lasinio model. Efecto túnel Ivar Giaever (1929-) Obervó el efecto Josephson dc pero pensó que era una fuga (!) Rev. Mod. Phys. (1974) Brian Josephson (1940-) / t 2eV / I I1 sin Tunneling supercurrent no calcularon la supercorriente (túnel de pares de Cooper) Brian J. Pippard: I1 (T ) (T ) tanh 2eRn 2kT Ambegaokar-Baratoff formula (1963) I1 1 Rn 2 1963 J. M. Rowell (1963) KJ = 483 597.891(12)×109 Hz/V 1019 ( Efect Hall cuántico: h/e2 ) Conclusiones sobre superconductividad • frontera de las bajas temperaturas (está ahí) • nuevo estado de la materia (correlaciones sutiles) • gran interés fundamental (estado sólido, física de partículas) • gran interés tecnológico (patrón de voltaje) • continúa ofreciendo retos científicos y tecnológicos