Editor: Editorial de la Universidad de Granada Autor: María de las Mercedes Ruiz Estévez D.L.: GR 890-2014 ISBN: 978-84-9028-937-2 El presente trabajo se ha realizado en el Grupo de Genética Evolutiva del Departamento de Genética de la Universidad de Granada. La investigación ha sido financiada por el Ministerio de Ciencia e Innovación a través del proyecto CGL200911917 y parcialmente realizada con fondos FEDER. Durante la realización de este proyecto de Tesis Doctoral he disfrutado de una Beca Predoctoral de Formación del Personal Universitario (FPU), del Ministerio de Ciencia y Tecnología, con la siguiente referencia: AP2007-00348. A mis padres Tomás y Mercedes, a mi hermana Marta A Karl y… A todos los que me apoyaron durante todos estos años Agradecimientos Parece que fue ayer cuando empecé la Tesis Doctoral, pero parece también un día lejano cuando me pongo a pensar en pequeños detalles del día a día. A lo largo de estos 5 años he pasado por muuuuchos momentos buenos, pero también muchos momentos duros, en los que los resultados no salen o los experimentos no van lo bien que, en tu mente habías, planeado. Han sido momentos de sonrisas y lágrimas, alegrías y tristezas, y muchísimas noches las que he soñado con esta bendita Tesis Doctoral. Ahora que se acerca el final, la alegría que siento hace que todo lo malo se borre de la mente, y si tuviera que empezar de nuevo esta Tesis, aceptaría con los ojos cerrados. No podría imaginar un grupo de investigación mejor para desarrollar mi Tesis Doctoral. En estos 5 años he entrado a formar parte de “una familia” en la que me he sentido muy cómoda y feliz, a la vez que arropada en todos los sentidos. Grupos como éste hay pocos, y por eso les doy las gracias por ser como son. En primer lugar quería agradecer al Dr. Juan Pedro Martínez Camacho y a la Dra. Mª Dolores López-León el haber sido unos directores de tesis excepcionales. Me siento muy orgullosa de ellos porque son imparables, incansables y siempre están detrás de un ordenador (sábados y domingos incluidos) para responder a mis preguntas. Nunca me han dejado sola, me han ayudado, aconsejado, “dado caña” cuando había que hacerlo y, sobre todo, me han enseñado a pensar de una manera autocrítica en el trabajo que desarrollo, a no conformarme y mirar más allá, a tener inquietudes propias de un investigador….en resumen, me han formado como científica. También quiero agradecer a la Dra. Josefa Cabrero Hurtado el haber sido una parte importante de su proyecto, y es que la considero una tercera directora de esta Tesis. Gracias por ayudarme siempre, aconsejarme en los diferentes experimentos, enseñarme el mundo de la citogenética, hablarme siempre desde el lado práctico, y ayudarme a que no empeoraran mis dolores de espalda fruto de cientos de horas en el microscopio, prestándome “tu cojín”. Y es que esto es solo un ejemplo de que te has comportado conmigo siempre como una madre, y sé que hablo por mi madre Mercedes también cuando digo que “gracias”. Por otro lado, no puede faltar mi especial agradecimiento a la Dra. y amiga Eli Montiel. Ella fue la que me enseñó el mundo del laboratorio cuando llegué a este grupo, me enseñó a PeCeeRrear como una loca, a analizar resultados, y a empezar a ser crítica. Mi iniciación en este mundo la asocio a ti, así que muchas gracias por tu paciencia y tus ganas, siempre dispuesta a ayudarme con lo que fuera. También quiero darle las gracias a mi amiga Tati López. Para mí siempre serás nuestra técnico y por supuesto, la mejor. Gracias por enseñarme cosas del laboratorio, ayudarme, cuidar mis saltamontes cuando yo no estaba, pero sobre todo, por recibirme cada mañana con energía, vitalidad, una sonrisa, ganas de trabajar, cosas que contar, por llevarme a tu casa y hacerme sentir parte de tu familia, ayudarme a hacer la mudanza, llevarme con tus amigas al Aquaola, etc etc etc…Has sido durante estos 5 años una gran amiga (y lo seguirás siendo) y te he 9 echado muchísimo de menos estos últimos meses. Ojalá vuelvas pronto porque tú vales lo que no está escrito. Continúo con Paquillo, “el crack”. Has estado siempre ahí dispuesto a ayudarme, aunque supusiera dejar de hacer tus cosas. Poco a poco te has ido convirtiendo en un gran amigo, y así las Tesis se hacen mejor. Gracias por las risas y conversaciones que nos echamos, por tu forma de ser, por las comidas en los comedores, por hacerme la guía turística de tu pueblo, por darme bollos de tu madre, por ayudarme con cualquier programa/problema informático y por compartir conmigo grandes momentos fuera del laboratorio, como los “hashs” que hemos corrido por Granada, las cenas que hemos hecho en mi casa (acompañadas de los partidos de “beerpong”, que hasta para eso eres un crack!), las barbacoas, el partido de frisbee en Plaza de Gracia…Son muchos buenos recuerdos, así que gracias por contribuir a que estos años fueran muy buenos. También quiero agradecer a mi amiga y compañera Bea Navarro su aportación a la presente Tesis. Gracias por compartir conmigo parte de estos momentos, darme consejos, animarme, hacerme preguntas que me incitan a pensar más allá de lo que yo creía, compartir conmigo tus inquietudes y aspectos personales. Tú también me has metido en tu grupo de amigas y me has llevado tanto al campo como a la montaña, así que has hecho que los días de esta Tesis sean más alegres. Gracias. Continúo agradeciendo a Rubén Martín su granito de arena a esta Tesis. Llegaste el último, por lo que hemos compartido menos momentos, pero no menos importante. Gracias por tu humor y tu sentido práctico de las cosas, por mostrar interés en qué estaba pasando por mi cabeza, y por apartar tu vista del ordenador en un segundo cada vez que te preguntaba una duda. Agradezco al Dr. Francisco Perfectti todas sus aportaciones a la presente Tesis. Tu ojo estadístico, consejos y ayuda me han facilitado mucho las cosas. Así que una parte importante de esta Tesis también se la debo a él. También le agradezco al Dr. Mohammed Bakkali la ayuda que me ha brindado en todo momento, sus consejos, ser tan directo a la hora de decir las cosas, las bromas que hemos tenido, haberme llamado cuando tuve que ir al hospital, y también haberme “mentido” cuando le pregunté gritando “¿estoy sangrando?”, tras haberme explotado un termo con nitrógeno líquido en toda la oreja. Evitaste que me desmayara en ese momento. No podía olvidarme de la Dra. María Teruel. Ella es otra persona, y además amiga, importante en mi iniciación en el laboratorio. Cuando yo entraba tú casi salías, pero me enseñaste a organizarme, a no parar de trabajar con cabeza y a que había que llegar a las 4 de la tarde a continuar trabajando tras el almuerzo. Gracias por enseñarme muchas cosas teóricas y prácticas, gracias por querer que fuera yo la que me quedara con tu puesto del lab cuando tú te fueras, y gracias por enseñarme que si quería hacer una tesis tenía que ser fuerte para superar el gran reto que es. Y es que aún recuerdo que tú escribías la tesis cuando yo prácticamente acababa de llegar, y viéndote sabía que esto no iba a ser fácil. Me armé de fuerzas y dije: “Yo puedo con esto”. Gracias. Mis agradecimientos también van para la Dra. Inma Manríquez, con la que compartí muchos momentos en el lab, y con la que competía a ver quién hablaba más y más alto, jeje. Pasamos buenos momentos y entablamos una amistad que aún perdura. Tu alegría y desparpajo me hicieron sentirme 10 relajada y cómoda cuando llegué al lab, así que por eso y por los años posteriores, gracias. A Ángel, el que me mortifica llamándome “la niña que habla raro”, le agradezco ser un amigo que me ha ayudado siempre que he tenido cualquier problema informático o a la hora de dar las prácticas. Contigo he compartido además buenos momentos de almuerzos en el comedor, tapas y clases de inglés, con lo que has aportado felicidad a estos años. Gracias también Carmen, con tu alegría traías aire fresco al laboratorio, y se agradece muchísimo. A la Dra. Ester, por tu forma de ser y tu humor, has sido una parte importante de estos años y te has convertido en una buena amiga. Gracias por compartir esas largas horas en el departamento conmigo, sobre todo cuando ya oscurecía y aún seguíamos sacando resultados, a la vez que nos sacábamos fotos con la bata y la luna llena (y tengo pruebas). A los Drs. Jesús y Moha, por enseñarme que hay que trabajar duro, pasar mucho tiempo sentado delante del ordenador, e invertir mucho tiempo en el departamento para llegar lejos. A Eva, por ser un torbellino lleno de energía y hacer que los días que pasábamos juntas en el lab fueran más divertidos. A María Lucena, por compartir conmigo momentos de pipeteos con una agradable conversación. En general, a todos los profesores/becarios/alumnos internos del departamento les agradezco lo bien que me lo han hecho pasar y lo agradables que siempre han sido conmigo, dispuestos siempre a entretenerme con una alegre conversación. Me llevo un buen recuerdo de este departamento. Mis años de Tesis no sólo se desarrollaron en esta universidad, sino que tuve la oportunidad de pasar unos meses aprendiendo y compartiendo pipeteos en el laboratorio del Dr. Josef Vanden Broeck en Leuven (Bélgica). A él le agradezco que me abriera las puertas desde el principio, que tuviera siempre hueco para reunirse conmigo, se interesara por cómo iba mi trabajo, y me organizara hasta una fiesta de despedida. Mis agradecimientos son igual de grandes para Liesbeth Badisco, que a pesar de estar embarazada se metía conmigo en el laboratorio y me introdujo de una manera muy sencilla en el mundo de la qRT-PCR. Siempre tenía una sonrisa en su cara, y a pesar de estar liada con mil cosas, siempre tenía un tiempo para mí. Lo mismo Joost, el técnico de ese grupo, pasamos muchas horas juntas en el laboratorio y nos hicimos buenos amigos. Siempre alegrándome los días con bromas y buena música, así que le doy las gracias. Y en general gracias a todos los de aquel departamento, que a pesar de ser un país muy frío, siempre me tenían arropada. Durante parte de los 5 años en que he desarrollado la presente Tesis Doctoral, mi vida se ha desarrollado tanto dentro como fuera del laboratorio. Agradezco a todos los amigos y compañeros de piso que me han acompañado estos años y me han brindado su apoyo y amistad, haciendo que “no todo fuera trabajo en esta vida”. No puedo concebir mi etapa de Tesis sin ellos. En especial a mi equipo de Ultimate Frisbee “PenultimanosGranayd”, el cual tuve el honor de capitanear durante un año y ser siempre “la corazón del equipo”. Gracias a todos los jugadores de todos los rincones del mundo que han pasado por nuestro equipo y a toda la comunidad de jugadores españoles, por hacerme 11 desconectar del laboratorio y llegar cada lunes con una sonrisa, agujetas, o incluso un pie roto, pero con ganas de trabajar. Gracias, gracias, gracias, ¡son muy grandes! Para el final he dejado los agradecimientos a las personas más importantes en mi vida. En primer lugar, agradezco infinitamente a mis padres Tomás y Mercedes la vida que me han dado, y la educación que he recibido. Sin ellos, nunca hubiese llegado a donde estoy ahora mismo, así que una gran parte de esta tesis es de ellos y para ellos. Gracias por apoyarme, escucharme, y ayudarme a llegar a donde estoy ahora mismo. Estas páginas se quedarían cortas para decir todo lo que me gustaría. Lo mismo a mi hermana Marta, gracias por ser parte de mí, interesarte por mi trabajo, estar siempre a mi lado, escucharme y darme ánimos cuando lo necesitaba. La distancia nos ha separado físicamente pero no de corazón, así que espero que siempre sigamos estando la una para la otra. Gracias. A los tres les agradezco enormemente el que hayan hecho un gran esfuerzo para estar conmigo en un día muy especial. También agradezco a toda mi familia canaria y torrecampeña todo el apoyo que me han dado estos años, siempre interesándose por esta bendita Tesis, preguntando “cuándo voy a acabar” y diciéndome cosas como “ojalá encontraras trabajo y te quedaras colocada”. También a mi familia americana Kristine, Richard, Aurora y Christopher, porque en los más de dos años que nos conocemos se han interesado por cada detalle de esta Tesis de una manera sin igual, preguntando en cada llamada o visita cómo me iba en el laboratorio, y dándome ánimos desde la distancia. Y por supuesto MIL GRACIAS a Karl, mi pareja, amigo y compañero. Has llegado a mi vida en la mitad de la tesis y me has llenado de alegría y felicidad. Gracias a tu faceta de biólogo y a tu inigualable personalidad, me has transmitido fuerzas, paz y tranquilidad para trabajar con muchas más ganas. Te agradezco que CADA DÍA al llegar a casa te interesaras por los experimentos realizados ese día, que si había subido la temperatura de esto, que si había mirado la plata de lo otro… He podido compartir contigo esta etapa apasionante de desarrollar una Tesis Doctoral, y agradezco mil veces a la vida que te hayas cruzado en mi camino (bendito Ultimate Frisbee). Gracias por ser como eres y por estar siempre dispuesto a escucharme y darme ánimos. Gran parte de esta Tesis es tuya también. 12 Índice Resumen 17 Capítulo 1. Introducción general y Objetivos 25 El ADN ribosómico________________________________________27 Estructura, abundancia y función biológica_____________________ 27 Expresión del ADNr. El nucleolo______________________________29 El nucleolo como sensor de estrés y daño del ADN________________31 Estudio del nucleolo________________________________________32 Los ITSs (Espaciadores Internos Transcritos) ribosómicos_________ 33 Modelos de evolución del ADNr______________________________ 34 Los cromosomas B________________________________________ 37 Historia del descubrimiento__________________________________37 Características generales y frecuencia_________________________ 37 Tamaño y composición molecular_____________________________ 38 Origen___________________________________________________41 Comportamiento meiótico___________________________________ 42 Modelos de mantenimiento de los cromosomas B en las poblaciones_______________________________________________44 Efectos__________________________________________________ 45 Eyprepocnemis plorans_____________________________________46 La especie________________________________________________46 El genoma________________________________________________47 Los cromosomas B de E. plorans______________________________48 Referencias_______________________________________________50 Objetivos________________________________________________65 Capítulo 2. B-Chromosome ribosomal DNA is functional in 67 the grasshopper Eyprepocnemis plorans Abstract_________________________________________________ 69 Introduction______________________________________________ 69 Results__________________________________________________ 70 Cytological analysis______________________________________70 Molecular analysis_______________________________________70 Discussion_______________________________________________ 71 Material and methods_______________________________________73 Experimental material____________________________________ 73 13 Cytological analysis of B-NOR expression____________________73 Molecular analysis of B-NOR expression_____________________73 Supporting Information__________________________________74, 76 References_______________________________________________74 Capítulo 3. B1 was the ancestor B chromosome variant in the western mediterranean area in the grasshopper Eyprepocnemis plorans 77 Abstract_________________________________________________ 79 Materials and methods______________________________________80 Results and discussion______________________________________ 80 References_______________________________________________ 83 Capítulo 4. Ribosomal DNA is active in different B chromosome variants of the grasshopper Eyprepocnemis plorans 85 Abstract_________________________________________________ 87 Introduction______________________________________________ 87 Materials and methods______________________________________88 Biological samples and characterization of B variants___________88 Cytological analysis of rRNA gene expression in B chromosomes__89 Molecular analysis of rRNA gene expression in B chromosomes___89 Results__________________________________________________ 89 Discussion_______________________________________________ 92 References_______________________________________________ 94 Capítulo 5. B chromosomes in Eyprepocnemis plorans are present in all body parts analyzed and show extensive variation for rDNA copy number 97 Abstract________________________________________________ 100 Introduction_____________________________________________ 100 Materials and methods_____________________________________101 Biological material preparation____________________________101 B presence in the body parts______________________________ 102 B-rDNA copy number estimation at the individual and body part levels_____________________________________________102 Fluorescent in situ hibridization (FISH)_____________________ 103 14 Statistical analyses______________________________________103 Results_________________________________________________ 103 Analysis of B chromosome presence________________________ 103 B-rDNA copy number estimation in male bodies_______________104 No qITS2_B copy number variation among body parts__________107 Discussion______________________________________________ 107 References______________________________________________ 109 Capítulo 6. Ribosomal DNA on a B chromosome shows differential expression level in several body parts of the grasshopper Eyprepocnemis plorans 113 Abstract________________________________________________ 116 Introduction_____________________________________________ 116 Materials and methods_____________________________________118 Biological samples______________________________________118 Total RNA extractions and complementary DNA (cDNA) synthesis______________________________________________118 B-rDNA expression in different body parts___________________118 Target and housekeeping genes primers___________________ 118 Housekeeping reference genes validation and relative quantification of B-rDNA expression______________________119 Statistical analysis____________________________________ 120 Results and discussion_____________________________________ 120 References______________________________________________ 123 Supporting information____________________________________ 127 Capítulo 7. HP1 knockdown is associated with abnormal condensation of almost all chromatin types 129 Abstract________________________________________________ 132 Introduction_____________________________________________ 132 Material and methods______________________________________135 Biological samples______________________________________135 Molecular analyses______________________________________135 Nucleic acid isolation and genotyping_____________________135 HP1 gene amplification, dsRNA synthesis and delivery_______ 136 HP1 silencing analysis_________________________________136 Analysis of rDNA, Bub1 and Hsp70 genes expression patterns after HP1 knockdown__________________________________137 Cytological techniques___________________________________137 15 Silver Stain__________________________________________138 C-Banding__________________________________________ 138 Fluorescent in situ hybridization (FISH)___________________138 Immunofluorescence analysis___________________________ 138 Statistical Analyses_____________________________________ 139 Results _________________________________________________139 HP1 knockdown was effective in RNAi males_______________ 139 Influence of HP1 knockdown on the activity of other genes____ 141 Physiological effects of HP1 knockdown___________________141 Cytological effects of HP1 knockdown_____________________142 Discussion______________________________________________ 145 References______________________________________________ 149 Supporting information____________________________________ 154 Capítulo 8. High variation of ITS2 rDNA region and nonrandom expression of rDNA units in a grasshopper genome 157 Abstract________________________________________________ 160 Introduction_____________________________________________ 160 Materials and methods_____________________________________163 Biological samples and karyotypic characterization____________163 gDNA and RNA extractions, cDNA synthesis and B-NOR activity analysis________________________________________ 163 Tagged PCR and amplicon NGS sequencing__________________163 Data analysis__________________________________________ 164 Whole-Genome Shotgun Sequencing-NGS____________________165 Secondary structure and genetic diversity analyses_____________165 Statistical analyses______________________________________165 Results_________________________________________________ 165 Preliminary analysis of ITS2 variation______________________ 165 Body part experiment____________________________________166 Population experiment___________________________________167 Differential expression among haplotypes____________________170 Discussion______________________________________________ 172 References______________________________________________ 177 Supporting information____________________________________ 182 Capítulo 9. Discusión general 185 Referencias______________________________________________197 16 Capítulo 10. Conclusiones 203 Capítulo 11. Perspectivas 207 Resumen 17 18 Resumen Resumen El ADN ribosómico (ADNr) es un componente esencial de los genomas porque codifica para el ARN ribosómico que es el componente principal de los ribosomas junto con una serie de proteínas ribosomales, y son los responsables de la síntesis proteica. Se localiza en clusters altamente repetidos en tándem y esto posibilita la síntesis masiva de ribosomas en períodos de rápido crecimiento. Cada cluster está separado por los Intergenic Spacers (IGS) y formado por tres genes ribosómicos para los ARN 18S, 5.8S y 28S (en animales), separados entre sí por los Internal Transcribed Spacers 1 y 2 (ITS1 e ITS2, respectivamente), que se transcriben pero no son incorporados al ribosoma maduro. Delante del gen para el ARN 18S se encuentra el External Transcribed Spacer (EGS). De todas las repeticiones de ADNr que hay en un genoma, sólo el 50% están transcripcionalmente activas en un momento dado. Eyprepocnemis plorans es una especie de saltamontes cuyo genoma estándar está organizado en 23 cromosomas (11 parejas autosómicas y el cromosoma sexual con determinismo X0/XX). Además de estos cromosomas (A), puede albergar un número variable de cromosomas supernumerarios (también denominados cromosomas B). Los cromosomas B son dispensables, de naturaleza heterocromática, que no recombinan con los cromosomas A, muestran mecanismos de transmisión no mendeliana y están constituidos principalmente por una variedad de secuencias repetidas entre las que destacan ADN satélite (ADNsat), ADNr y elementos móviles. Sin embargo, estudios recientes han revelado que los cromosomas B de esta especie, en la población española de Torrox, son capaces de organizar nucleolos que pueden visualizarse asociados a las Regiones Organizadoras Nucleolares (NORs) de los Bs. La obtención de ADN de varios cromosomas, mediante microdisección, y su amplificación por PCR, permitió comparar las secuencias de las regiones ITS y detectar la existencia de una inserción de una adenina en la región ITS2 que sólo se observó en las secuencias procedentes del cromosoma B. Este fue el punto de partida de la presente tesis doctoral, con la que hemos pretendido ampliar estos resultados preliminares analizando la estructura y expresión de la región ITS2 a los niveles de partes corporales, individuo y población. En primer lugar, realizamos un estudio combinado, citogenético y molecular, de la expresión del ADNr de los cromosomas B 24 de machos y hembras de E.plorans procedentes de Torrox. El análisis citogenético se hizo mediante tinción argéntica de células en profase meiótica I, y el molecular mediante el diseño de primers para PCR que anclaran en la adenina diferencial del ITS2 del cromosoma B, cuyo amplicón llamamos ITS2_B. Estos primers nos permitieron detectar molecularmente transcritos procedentes del ADNr del B, tanto en machos como en hembras. Así, de los 29 machos portadores de cromosomas B analizados, alrededor del 50% mostraron un nucleolo asociado a la NOR de alguno de sus cromosomas B, confirmando resultados anteriores en esta población. Además, cuando el macho tenía un B activo, formaba nucleolo en el 20% de las células, en promedio, aunque la variación entre individuos era alta (5 -50%). 19 La correspondencia entre la tinción argéntica y la amplificación del ITS2_B fue positiva en todos los machos en los que visualizamos nucleolos en el B, a excepción de tres casos. En estos tres machos, observamos nucleolo pero no transcritos o viceversa, sugiriendo que la proporción de células con B-NOR activa es demasiado baja como para detectar transcritos (en el primer caso) o que los nucleolos se desorganizan tempranamente y por ello no se detectan transcritos (en el segundo). Al mismo tiempo, no se detectaron transcritos ITS2_B en machos que no portaban cromosomas B. En las hembras, la actividad de la NOR del B no puede ser estudiada citogenéticamente, debido a la dificultad de analizar la meiosis femenina, pero sí pudimos detectar transcritos ITS2_B en 10 de las 13 hembras portadoras de cromosomas B, así como su ausencia en hembras sin B. Estos resultados ya han sido publicados (Ruiz-Estévez M, López-León MD, Cabrero J, Camacho JPM (2012) B-Chromosome Ribosomal DNA is functional in the grasshopper Eyprepocnemis plorans. PLoS ONE 7(5): e36600. doi:10.1371/journal.pone.0036600). En E.plorans se han descrito más de 50 variantes de cromosomas B, sólo en la Península Ibérica. Estas variantes se diferencian en la composición relativa de las dos secuencias repetitivas de ADN que principalmente componen los Bs (ADNr y ADNsat) y en su tamaño relativo con respecto al cromosoma X. Para caracterizar mejor esta variación, hemos realizado un estudio exhaustivo de la distribución de estas dos secuencias en los cromosomas B encontrados en 17 poblaciones naturales de E.plorans plorans localizadas en la región mediterránea occidental, incluyendo la Península Ibérica, las Islas Baleares, Sicilia y Túnez. Los resultados pusieron de manifiesto que en estas 17 poblaciones hay cuatro tipos de variantes: B 1, B2, B5 y B24. El B1 es el más ampliamente distribuido por lo que se puede considerar que es el tipo ancestral para la región analizada. Se caracteriza por cantidades similares de ambos tipos de ADN en las poblaciones de la Península Ibérica, Sicilia y Túnez, y por tener una cantidad un poco mayor de rDNA en las Islas Baleares. Sin embargo, los otros tres tipos, B 2, B24 y B5 , contienen más ADNsat que ADNr en proporciones 2:1, 3:1 y 2:1, respectivamente. El tamaño del B24 es la mitad del X, y el del B5 llega ser dos tercios. Para el B1 y el B2 , encontramos variabilidad para el tamaño entre poblaciones. Así, el tamaño del B 1 es aproximadamente la mitad del X en las Islas Baleares, mientras que en poblaciones de las provincias de Alicante, Murcia y Albacete (todas ellas de la Península Ibérica) su tamaño es dos tercios del X. Igualmente, el B2 es aproximadamente un tercio del tamaño del X en poblaciones de Granada, mientras que en Málaga su tamaño es la mitad. Además, encontramos evidencia de que los cromosomas B de esta especie siguen abriéndose nuevos caminos evolutivos, al encontrar una nueva variante (B 2i) en Maro (Málaga) que presumiblemente surgió a través de una inversión paracéntrica que cambió las posiciones relativas del ADNr y parte del ADNsat. (Manuscrito aceptado en Cytogenetic and Genome Research). Tras conocer las diferencias estructurales de las diferentes variantes de Bs, decidimos ampliar el estudio de la expresión del ADNr del B a otras variantes, tales como B1 , B2 y B5 , además de volver a estudiar el B24 tres años después del anterior estudio. Bajo la hipótesis de que los cromosomas B son de reciente aparición en 20 Resumen E.plorans, deberíamos esperar que todas las variantes tuvieran la capacidad de expresar su ADNr pues no habría habido tiempo de que ocurrieran mutaciones que los silenciaran. Para someter a prueba esta hipótesis, analizamos la expresión del B, a los niveles citogenético y molecular, en machos procedentes de 11 poblaciones españolas: cuatro procedentes de la provincia de Málaga (Algarrobo, Nerja, Torrox y Fuengirola), dos de la provincia de Granada (Salobreña y Otívar), una de la de Murcia (Cieza), una de Alicante (San Juan), una de Albacete (Mundo), y dos de la isla de Mallorca (S’Albufereta y S’Esgleieta). Los resultados mostraron no sólo expresión del ADNr localizado en el cromosoma B24 de Torrox, sino también en el B1 de Mundo, San Juan y S’Esgleieta, y en el B2 de Otívar, Salobreña y Algarrobo, pero en estas dos variantes la proporción de células con B-NOR activa era mucho menor que la anteriormente reportada para B24. Por el contrario, no detectamos expresión de la variante B 5. Además, detectamos que en machos con menos de un 10% de células con nucleolo en el B no es posible detectar transcritos ITS2_B, y que la probabilidad de detectar molecularmente la actividad de la NOR del B parece ser independiente del tamaño del nucleolo de dicho cromosoma. Estos resultados ya han sido publicados (Ruiz-Estévez M, López-León MD, Cabrero J, Camacho JPM (2013) Ribosomal DNA is active in different B chromosome variants of the grasshopper Eyprepocnemis plorans. Genetica 141(79):337-345, doi: 10.1007/s10709-013-9733-6). La puesta a punto del procedimiento molecular para detectar la presencia de transcritos ITS2_B nos permitió abordar el estudio de la estabilidad mitótica de los cromosomas B de E. plorans. Para ello, nos planteamos analizar si el cromosoma B está presente en las diferentes partes del cuerpo de los individuos con cromosomas B. Hasta ahora se sabía que los cromosomas B de esta especie son mitóticamente estables en espermatocitos y células somáticas de los ciegos gástricos, mostrando el mismo número en ambos casos. Pero no se conocía qué pasaba en el resto del cuerpo, debido a la imposibilidad de observar cromosomas condensados en células en interfase. En nuestro estudio, hemos detectado molecularmente la presencia del cromosoma B (es decir, de la secuencia ITS2_B, específica del B) en 8 partes del cuerpo diferentes con tejido somático en ambos sexos (cabeza, ganglio cerebral, antena, músculo alar, pata saltadora, ciegos gástricos, túbulos de Malphigi y glándula accesoria en machos) y también en ovariolas en hembras y testículos en machos, tras amplificar el marcador ITS2_B y también un marcador SCAR puesto a punto previamente, para reforzar el diagnóstico. Además, analizamos el número de copias de ITS2_B que tienen los cromosomas B 24 y B2 en machos con diferente número de Bs, para intentar utilizarlo como método que nos permitiera determinar el número de Bs que tiene un individuo, a partir de su ADN, y así ver si además ese número se mantenía estable entre diferentes partes del cuerpo. No obstante, observamos una gran variabilidad para el número de copias de ADNr por cromosoma B (B-ADNr), incluso entre individuos de la misma población y con el mismo número de Bs, por lo que no es posible averiguar el número de Bs que tiene un individuo a través del número de copias de B-ADNr. El análisis mediante FISH de varios machos con números de copias muy divergentes corroboró la coexistencia en la población de bandas de ADNr muy diferentes en tamaño en los cromosomas B de 21 diferentes individuos, sugiriendo la existencia de posibles eventos de amplificación diferencial en el B-ADNr mediante sobrecruzamiento desigual durante la meiosis. Sin embargo, cuando cuantificamos el número de copias de ADNr del B 24 en diferentes partes corporales de machos y hembras, no observamos variabilidad significativa. (Manuscrito en preparación). Una vez demostrado que el B está presente en todas las partes del cuerpo, que el ADNr del B está ocasionalmente activo, y que esta expresión puede detectarse en testículo mediante análisis citológico o molecular y en otras partes del cuerpo (sin necesidad de que haya células en división celular) mediante análisis molecular, quisimos averiguar si dicha expresión muestra variación entre esas partes. Para ello, analizamos molecularmente la expresión del ITS2_B en 6 partes del cuerpo diferente (cabeza, músculo alar, testículo, ciegos gástricos, pata saltadora y glándula accesoria) de machos con B24 donde previamente habíamos observado citológicamente la formación de nucleolos por parte del B en las gónadas. Los resultados indicaron que el ADNr del B se expresaba en todas las partes analizados, con niveles de expresión (analizados mediante qPCR) que variaban entre ellas. La parte del cuerpo con mayor expresión del B-ADNr era el testículo, seguido por el músculo alar, la glándula accesoria, la pata saltadora, los ciegos gástricos y la cabeza, en este orden. Esto podría sugerir la existencia de diferencias entre las partes del cuerpo con respecto al requerimiento de ARNr, por las demandas metabólicas que tenían en el momento de ser congelados para su análisis, pudiéndose requerir que, en algunos casos, las células tuvieran que necesitar incluso transcritos procedentes del B. (Manuscrito en preparación). La heterocromatina que forma parte de los cromosomas B es constitutiva y ésta también se localiza en las regiones pericentroméricas de todos los cromosomas A. Además, hay heterocromatina facultativa en el bivalente S 9 y en el cromosoma X. La Proteína Heterocromática 1 (HP1) es necesaria para el silenciamiento de genes heterocromáticos, la regulación de la transcripción de genes eucromáticos, la organización de la cromatina y la conservación de la integridad cromosómica. Por tanto, realizamos un estudio en el que a través de ARN de interferencia (ARNi) disminuimos los niveles de expresión de HP1 en E.plorans, y así analizamos el efecto que dicha disminución tuvo sobre la heterocromatina, la expresión de otros genes y la estructura de los cromosomas en dicha especie. Los resultados revelaron que los genes ribosómicos (ARNr) y el de la proteína de choque térmico 70KD (Hsp70) no cambiaron sus niveles de expresión tras la disminución de HP1, pero sí lo hizo el gen de la quianasa serina/treonina de punto de control mitótico (Bub1). Este hecho vino acompañado de varios efectos fenotípicos tales como la condensación anormal de todos los tipos de cromatina (y no sólo la heterocromatina, que era el efecto esperado), la existencia de células con puentes cromosómicos, una alta frecuencia de macroespermátidas, la presencia de menor cantidad de hemolinfa, menor número de células en división y, finalmente, una reducción drástica de la supervivencia. (Manuscrito en preparación). Por último, y para intentar caracterizar en profundidad la variación para el ITS2 en una población de E. plorans, así como el grado en que se expresan las diferentes 22 Resumen variantes encontradas, realizamos varios experimentos mediante 454 “amplicon sequencing” (Next Generation Sequencing, NGS) de la región ITS2 del ADNr de E.plorans procedentes de la población de Torrox, donde el B predominante es B 24. Además de algunos experimentos preliminares que nos ayudaros a perfeccionar el diseño experimental, realizamos dos experimentos principales: 1) Amplificación por PCR de la región ITS2 mediante cebadores anclados en los genes 5.8S y 28S del ARNr, en ADN genómico (ADNg) y ADN complementario (ADNc) obtenido a partir del ARN total extraído ambos a partir de diferentes partes del cuerpo de un macho sin B; y 2) El mismo protocolo fue aplicado a 18 machos (estudio poblacional), con diferentes números de cromosomas B (0-3). Para optimizar el diseño y abaratar costes, utilizamos etiquetas de 6 nucleótidos asociadas a la región 5’ de los cebadores que nos permitieron mezclar, por un lado, las 12 muestras de las diferentes partes del cuerpo, y por otro, las 36 muestras de los 18 machos, y separarlas tras haberlas secuenciado en conjunto (cada experimento en 1/8 de placa). El análisis de los resultados fue realizado mediante una serie de scripts escritos en Python (por nosotros). Una de las tareas más complicadas fue diferenciar la enorme variedad de secuencias resultantes (en cada muestra) de los errores inherentes a la secuenciación 454, donde cerca del 1% de las secuencias suelen llevar algún error. Para ello, utilizamos un control interno proporcionado por la parte de las lecturas que incluía 123 nucleótidos de región codificadora (parte del gen 5.8S y parte del gen 28S). Para ello, estimamos la proporción de lecturas que llevaban esos 123 nt idénticos a los que se han reportado para otros saltamontes acrídidos (incluyendo E. plorans y L. migratoria) y asumimos que esas lecturas no estaban sujetas a error. Eso nos permitió deducir la tasa de error a partir del resto de las lecturas de la misma muestra. La tasa de error así estimada en el experimento poblacional de E. plorans fue de 2,28%, por lo que decidimos considerar como válidas todas aquellos tipos de lecturas cuya frecuencia superase este valor. La selección de tipos de ITS2 en cada muestra, una vez aplicado el control interno, demostró la existencia de 3 haplotipos (Hap1-Hap3) en las diferentes partes del cuerpo y 6 haplotipos (Hap1-Hap6) en el estudio de población (que incluían los 3 anteriores), un valor que contrastó con lo observado en uno de los experimentos preliminares realizado en L. migratoria, donde había sólo un haplotipo. Estos 6 haplotipos de E. plorans demuestran que la homogenización del ITS2 en E. plorans es poco eficiente, en contraste con la de las secuencias codificadoras que era muy elevada, con el 97,72% de las secuencias siendo idénticas. En los experimentos preliminares en E. plorans también aparecieron cinco de los seis haplotipos, lo que aboga también por la credibilidad de este resultado. Uno de los haplotipos (Hap4) era portador de la inserción de la adenina mencionada anteriormente, y sólo estaba presente en el ADNg de los individuos con cromosomas B. No apareció en ninguno de los individuos sin B. Además había asociación significativa entre el número de lecturas para el Hap4 y el número de Bs. Todo esto indica que este haplotipo es específico del cromosoma B, y su presencia es la que habíamos estado detectando con los primers ITS2_B. Los haplotipos más divergentes se diferencian por hasta cuatro mutaciones, y su estructura secundaria es muy similar en todos ellos, indicando la energía libre de Gibbs que todos tienen la 23 capacidad de expresarse. Y, de hecho, todos estaban presentes en el cDNA, aunque con diferentes valores de expresividad, destacando, sobre todo, la bajísima expresión del haplotipo específico del B que nos lleva a concluir que el B está muy silenciado. De hecho, sólo aparecieron lecturas del Hap4 en el cDNA de 5 de los 12 individuos con B y, en esos 5 individuos este haplotipo se encontraba en muy baja frecuencia. Finalmente, las diferencias de expresión de los diferentes haplotipos ITS2 entre diferentes partes del cuerpo e individuos se repiten, en general apareciendo el Hap1 sobreexpresado y el Hap3 subexpresado, aunque este patrón muestra pequeñas variaciones entre las partes del cuerpo. En los 18 machos, el patrón con los cuatro haplotipos restantes se repite entre ellos: Hap3, Hap4 y Hap6 están subexpresados y el Hap5 está sobreexpresado. Estas diferencias de expresión entre haplotipos, que a la vez son propias de cada uno de ellos, sugieren que las copias de ARNr no se expresan al azar. (Manuscrito en preparación). 24 Capítulo 1. Introducción general y Objetivos 25 26 Introducción general y Objetivos 1. El ADN ribosómico 1.1. Estructura, abundancia y función biológica El ADN ribosómico (ADNr) es una secuencia de ADN repetida en tándem que alberga los genes para el ARN ribosómico (ARNr) que formará parte de la estructura de los ribosomas. En animales, cada repetición (cistrón) 45S está formada por los tres genes ribosómicos 18S, 5,8S y 28S. En la mayoría de eucariotas, estos genes están en lugares genómicos diferentes de los genes que codifican el ARNr 5S. Los genes del cistrón ribosómico 45S están separados entre sí por dos espaciadores internos que se transcriben (ITS1 e ITS2) y flanqueados por dos espaciadores externos transcritos (ETS) y los espaciadores intergénicos no transcritos (IGS) (Long y David, 1980) (Figura 1). Figura 1. Estructura y composición del ADNr. (Extraída de Eickbush y Eickbush, 2007). El número de repeticiones en el ADNr puede variar desde una copia por genoma haploide que posee Tetrahymena, hasta cientos de copias, y está correlacionado positivamente con el tamaño del genoma (Prokopowich y col., 2000). Numerosos organismos poseen muchas más copias de ADNr de las que necesita para suplir su requerimiento de producción de ARNr, permaneciendo muchas de ellas transcripcionalmente inactivas, incluso a altas tasas de crecimiento (Reeder, 1999). Debido a su alto número de repeticiones, el ADNr produce tal cantidad de transcritos que el ARNr es el producto génico más abundante en la célula. En Saccharomyces cerevisiae por ejemplo, aproximadamente 150 copias de ADNr están localizadas en el cromosoma XII, ocupando aproximadamente el 60% del cromosoma y el 10% de su genoma (Kobayashi y col., 2011) mientras que los genomas de animales y plantas pueden contener cientos o miles de copias (Rogers y Bendich, 1987). Los loci de ADNr pueden también variar, en cuanto al número de repeticiones y localización cromosómica, dentro del mismo género o incluso dentro de la misma especie. Un ejemplo de esta variación ha sido descrito por Sánchez-Gea y col. (2000) encontrando dentro del género Zabrus una gran variabilidad para el número de loci de ADNr, el número de cromosomas que portaban ADNr y el tamaño de esos loci. En Drosophila melanogaster, donde las NORs se localizan en los cromosomas sexuales, el fenotipo 27 bobbed (bb) está asociado con un bajo número de copias de ADNr en los individuos con dicho fenotipo, y cuando el número de copias es inferior al 15% de las presentes en el fenotipo salvaje, se produce letalidad en embriones en desarrollo (Long y David, 1980; Lyckegaard y Clark 1991). Este efecto deletéreo se ha descrito también en vertebrados (Delany y col. 1994), lo que sugiere la necesidad de un número mínimo de copias de genes ribosómicos para el correcto desarrollo y supervivencia de los organismos. Varios mecanismos han sido propuestos para explicar la variación en el número de copias de los genes ribosómicos, aunque las fuerzas evolutivas responsables de ellos no han sido encontradas aún (Bik y col., 2013). Estos mecanismos podrían ser la compensación, la magnificación, la contracción y el entrecruzamiento desigual entre cromátidas hermanas o entre cromosomas. La compensación ocurre porque no todas las copias de ADNr están activas a la vez, y por ello la tasa de transcripción de una célula no tiene por qué ser necesariamente proporcional al número de copias de genes de ARNr. Un claro ejemplo lo encontramos en Drosophila que aunque posee 200-250 copias de ARNr, sólo son necesarias 35-60 de ellas para mantener una viabilidad normal en el laboratorio (Ritossa, 1968). La magnificación y la contracción del número de copias se ha detectado en Daphnia obtusa (McTaggart y col., 2007) y Drosophila melanogaster (Averbeck y col., 2005), lo que pone en evidencia que el ADNr está evolucionando dinámicamente. En Xenopus, la magnificación solo ocurre durante la oogénesis (Rogers y Bendich, 1987), que es cuando hay alto requerimiento energético. La amplificación de copias ARNr puede ocurrir también en localizaciones extracromosómicas como en los protozoos (Kafatos y col., 1985), e incluso se ha sugerido que las múltiples copias de los genomas de cloroplastos y mitocondrias sean para incrementar la dosis de ARNr de la célula más que para codificar proteínas (Rogers y Bendich, 1987). Por último, un entrecruzamiento desigual entre genes ARNr de cromátidas hermanas o diferentes cromosomas produce copias de más en uno de los implicados, y de menos en el otro, conduciendo a variabilidad intraindividual para el número de copias de ARNr. Este mecanismo ha sido bien estudiado por Lyckegaard y Clark (1991) en los cromosomas sexuales de Drosophila melanogaster. . Los genes ribosómicos 45S y 5S dan lugar a las moléculas de ARNr que conforman el núcleo de las subunidades ribosómicas (Sollner-Webb y Tower, 1986) junto con las proteínas ribosómicas. Los ribosomas son orgánulos celulares imprescindibles compuestos por dos subunidades: la subunidad mayor, que contiene los genes 5S, 5,8S y 28S, y la subunidad menor que contiene el gen 18S; ambas subunidades, además, tienen un alto número de proteínas ribosómicas. En ellos ocurre la síntesis de proteínas en todos los organismos. La biogénesis de ribosomas conlleva una gran inversión de energía celular, y está estrechamente regulada en cada célula en respuesta a varios estímulos ambientales que afectan a la síntesis proteica, el crecimiento celular y la proliferación. 28 Introducción general y Objetivos 1.2. Expresión del ADNr. El nucleolo Las repeticiones de ADNr se localizan en las constricciones secundarias de los cromosomas, las cuales se pueden visualizar al microscopio y reciben el nombre de Regiones Organizadoras Nucleolares (NORs) (Heitz, 1931; McClintock, 1934; Raska y col., 2006a, 2006b). A pesar de que el alto número de repeticiones de ADNr de los eucariotas ha sido interpretado como un efecto de la alta demanda de proteínas en ciertas situaciones, lo cierto es que aproximadamente el 50% esas copias permanecen transcripcionalmente inactivas en levaduras y humanos (French y col., 2003). Los genes ribosómicos 45S son transcritos por la ARN polimerasa I (ARN pol I) como un único precursor del rRNA que es metilado en varias regiones y del que se escinden los ETS e ITSs dando lugar a los tres ARN ribosómicos, 18S, 5.8S y 28S. El cuarto ARNr, 5S, es transcrito por la RNA pol III (Highett y col., 1993). El estado de fosforilación de muchos componentes de la maquinaria de la ARN pol I puede modificar la actividad y las interacciones de esas proteínas y así modular la transcripción del ADNr durante el ciclo celular (Sirri y col. 2008). La activación de los genes de ADNr depende sobre todo del estado en el que se encuentre la célula, el cual es dependiente a su vez de los requerimientos energéticos que precise el tejido y el individuo al que pertenece. Cuando se activa la transcripción de los genes ribosómicos 45S se organiza el nucleolo en las NORs (Figura 2). El nucleolo es una estructura altamente organizada donde los ribosomas están siendo madurados y ensamblados, lo que implica que se estén importando desde el citoplasma al núcleo muchas proteínas ribosómicas y factores accesorios de procesamiento, y exportando al citoplasma las subunidades que conformarán el ribosoma. Durante el ciclo celular en los eucariotas superiores, la producción de ribosomas empieza al final de la mitosis, incrementa durante G1, es máxima en G2 y finaliza durante profase (Gébrane-Younès y col., 1997; Sirri y Hernández-Verdun, 2000). Además de estar implicado en la formación de ribosomas, el nucleolo es un dominio plurifuncional involucrado en la respuesta al estrés, la biogénesis de partículas de ribonucleoproteínas independientes a las subunidades ribosómicas y en enfermedades como el cáncer, las ribosomopatías o las infecciones virales (Olson y col., 2000; Boisvert y col., 2007; Hiscox, 2007; Pederson y Tsai, 2009). Asimismo, su papel clave en el mantenimiento de la homeostasis celular y la integridad genómica ha sido propuesto recientemente (Grummt, 2013). Cuando el nucleolo de las células animales es visualizado al microscopio electrónico, se observa una estructura tripartita: una región pequeña y brillante llamada centros fibrilares, rodeada por un material densamente teñido llamado el componente denso fibrilar, y el resto del nucleolo contiene lo que aparentemente son gránulos densamente empaquetados (el componente granular) (Shaw y Jordan, 1995). Muchos apuntan a que la estructura refleja la compartimentación de la maquinaria relacionada con la transcripción del ADNr, el procesamiento del ARNr y el ensamblaje de las dos subunidades ribosómicas (Hernández-Verdun y col., 2010), respectivamente. Recientemente, Thiry y col., (2011) han mostrado que la organización del nucleolo es 29 cuerpos fibrilares, al igual que ocurre con los nucleolos de Drosophila e insectos (Knibiehler y col., 1982, 1984). Aun así, las controversias sobre la organización nucleolar no serán totalmente resueltas hasta que entendamos la función y la composición molecular de estas tres estructuras descritas. Al final de la profase, cuando la membrana nuclear ha desaparecido totalmente y los cromosomas están condensados, el nucleolo ya no es visible pero los bloques que conformarán el futuro nucleolo están almacenados y mantenidos en diferentes localizaciones celulares durante la división. Cuando la división celular llega al final y comienza la telofase, el nucleolo vuelve a ensamblarse en un complejo proceso que se extiende durante un tiempo relativamente largo del ciclo celular. El ensamblaje depende de la coordinación entre la activación de la transcripción de ADNr y el reclutamiento y activación de complejos de procesamiento del ARN (Hernández-Verdun y col., 2002). Además, la translocación de estos complejos a los sitios de transcripción de ADNr está unida a la formación de unas estructuras llamadas cuerpos prenucleolares (Stevens, 1965; Ochs y col., 1985). Figura 2. Célula meiótica en diplotene mostrando un bivalente cromosómico asociado a dos nucleolos (nu), uno por cada cromosoma homólogo,debido a la activación del ADNr, revelado por la técnica de impregnación argéntica. La regulación de la expresión del ADNr y la organización de nucleolos es muy compleja, como lo refleja el fenómeno de dominancia nucleolar según la cual no todas las NORs se encuentran activas en la célula (Pikaard, 2000a; Pikaard, 2000b; Reeder, 1985). Éste fenómeno se observa en híbridos interespecíficos donde frecuentemente las NORs de un progenitor forman nucleolo mientras que las del otro parental permanecen 30 Introducción general y Objetivos inactivas, a pesar de que las secuencias de ARNr de los dos parentales son esencialmente idénticas. La dominancia nucleolar resulta entonces de la transcripción de un solo set parental de genes de ARNr, y se relaciona con la necesidad que tiene el genoma de controlar la dosis activa de ARNr (Preuss y Pikaard, 2007). Este fenómeno de expresión génica diferencial puede ser inestable, parcial o reversible (Volkov y col., 2007) y se observa ampliamente en la naturaleza, tanto en plantas, como insectos, anfibios y mamíferos. Este mecanismo epigenético está regulado via ARN de interferencia (ARNi) (Preuss y col., 2008; Tucker y col., 2010), metilación de citosinas en el ADN, modificación de histonas y factores de remodelación de la cromatina (Preuss y Pikaard 2007; Volkov y col., 2007), mientras que la impronta gamética no parece ser el mecanismo por el cual uno se inactiva el ARNr de uno de los partentales. La base molecular por la cual se elige qué genes son inactivados, permanece todavía sin clarificar. En general, se considera que las repeticiones de ARNr que están inactiva s aparecen en forma de heterocromatina constitutiva, altamente condensadas, mientras que las repeticiones activas aparecen en forma de eucromatina, dando lugar a zonas accesibles para la maquinaria de transcripción. Sin embargo, otros autores proponen que estos dos estados principales en los que existe la cromatina ribosómica podrían derivar en tres: un estado inactivo similar a la heterochromatina, un estado transcripcionalmente competente pero inactivo, y un estado transcripcionalmente productivo (Huang y col., 2006). Las modificaciones post-traducionales, es decir, las modificaciones en el ADN y en las histonas asociadas, son las que permiten distinguir los dos estados principales de la cromatina ribosómica. Los promotores de los genes activos están hipometilados y las histonas asociadas altamente acetiladas, ocurriendo lo contrario para los promotores de genes inactivos (Santoro y col., 2002; Nemeth y col., 2008). Además, las copias silenciadas de los promotores de ADNr tienen metilada la histona H3K9 y están asociadas con la Proteína Heterocromática 1 (HP1), molécula asociada principalmente (pero no exclusivamente) a la heterocromatina (James y Elgin, 1986). En levaduras ambos tipos de cromatina están entremezclados, argumentando en contra de que la activación/inhibición de la transcripción está controlada por dominios cromosómicos y a favor de la independencia de regulación que tiene cada repetición de ADNr (Dammann y col., 1995; French y col., 2003). 1.3. El nucleolo como sensor de estrés y daño del ADN Hay varias líneas de investigación que sugieren que el nucleolo tiene un papel en la detección y la respuesta al estrés causado por una variedad de factores, como falta de nutrientes, presencia de algún elemento extra en el genoma (por ejemplo, cromosomas B parasíticos), contaminación ambiental o virus (Langerstedt, 1949; Hudson y Ciborowski, 1996; Camacho y col., 2000; Hiscox, 2007; Boulon y col., 2010, Grummt 2013). En general, los nucleolos son más pequeños en condiciones de estrés (Olson, 2004) ya que la célula disminuye la transcripción del ADNr, la síntesis de proteínas y ribosomas, y además protege el genoma al inducir mecanismos de reparación de ADN o 31 apoptosis. Esta hipótesis parte de la base de la gran asociación que hay entre el tamaño del genoma y el número de copias de ADNr, y defiende que las copias extras presentes en el ADNr (que no se transcriben) amortiguarían dicho daño, para así asegurar que las copias no dañadas estuvieran disponibles para la síntesis de ribosomas (Kobayashi, 2008). De forma similar, se ha argumentado que las copias extra pueden facilitar la reparación del ADNr por recombinación homóloga (Ide y col. 2010). En levaduras, el cambio morfológico que sufre el nucleolo en respuesta al estrés va acompañado además de liberación de ARN pol I desde el nucleolo y deacetilación de la histona H4. Por lo tanto, parece que la respuesta al estrés también hay un mecanismo de modulación de la estructura nucleolar mediado por la cromatina (Tsang y col., 2003). En mamíferos hay muchas evidencias de la relación existente entre el daño del ADN mediado por p53 y el nucleolo, sugiriendo que la estructura nucleolar es un sensor del daño de ADN (Rubbi y Milner, 2003). Si se deteriora la función nucleolar, se estabiliza p53 mediante la prevención de su degradación y de esta manera, las células pueden responder a la actividad nucleolar aberrante mediante la inducción de la detención del ciclo celular y/o la apoptosis (Mayer y Grummt, 2005). También, el tamaño del nucleolo es generalmente más grande en células cancerosas, hecho que ha sido relacionado con la alta proliferación celular que ocurre en este tipo de células. Además, muchos supresores de tumores y proto-oncogenes afectan a la producción de ribosomas (Ruggero y Pandolfi, 2003). 1.4. Estudio del nucleolo Analizar las NORs activas y, por tanto, el número de nucleolos que tiene una célula da información del requerimiento energético que tiene la célula, y ese número puede variar entre individuos e incluso entre células del mismo individuo. Además, la evaluación de la distribución de las NORs activas da información de la tasa de proliferación de tumores en algunos tipos de lesiones (Derenzini, 2000). El tamaño del nucleolo está positivamente correlacionado con la tasa de síntesis de ARNr y por tanto de ribosomas (Mosgoeller, 2004), la cual conlleva el reclutamiento de proteínas necesarias para la transcripción del ADNr (Derenzini, 2000). No hay relación numérica entre las NORs que aparecen en metafase y las de interfase: una NOR metafásica puede ser distribuída en muchas NORs interfásicas, al igual que muchas NORs metafásicas pasan a ser una durante la interfase (Derenzini y Ploton, 1994). En el nucleolo se localizan un grupo de proteínas ácidas que son altamente argirófilas, lo que hace que pueda observarse citogenéticamente con la técnica de Impregnación Argéntica (Goodpasture y Bloom, 1975; Rufas y col., 1982). Esta técnica es muy útil, ya que de una manera simple permite medir el tamaño nucleolar e así indirectamente medir la transcripción de los genes ARNr, ya que lo que tiñe específicamente es la maquinaria transcripcional de la ARN polimerasa I, incluyendo la B23, nuclelina, las proteínas UBF y las subunidades de la ARN polimerasa I (Roussel y col., 1992; Roussel y Hernandez-Verdun, 1994; Roussel y col., 1996). Por tanto, lo que hace décadas empezó siendo un análisis de la presencia/ausencia de nucleolos o de la 32 Introducción general y Objetivos variación del tamaño de éste, se ha podido completar a lo largo de los años con el significado biológico de esas observaciones, en términos de actividad transcripcional del ADNr. A lo largo del tiempo se han propuesto dos métodos para analizar los resultados de la impregnación argéntica: el método de conteo (Crocker y col., 1989) y el método morfométrico (Derenzini y col., 1989b; Rüschoff y col., 1990). El primer método consiste en la enumeración de cada nucleolo teñido en cada célula, y si están muy agregados algunos nucleolos y no se pueden diferenciar, se cuentan como uno. Esto hace que este método sea subjetivo y poco reproducible. Sin embargo, el segundo método mide el área ocupada por todas las estructuras teñidas por plata (todos los nucleolos) y se analiza con un sistema de imágenes (Trerè y col., 1995). Este procedimiento es más rápido, más preciso, más objetivo y más reproducible que el método de conteo (para un ejemplo de empleo del método, ver Teruel y col. 2007, 2009). 1.5. Los ITSs (Espaciadores Internos Transcritos) ribosómicos El ADNr es generalmente procesado post-transcripcionalmente para dar lugar a tres moléculas maduras de ARNr, 18S, 5.8S y 28S, que resultan de eliminar del transcrito precursor los ETS, ITS1 e ITS2. Aunque los ITSs no forman parte del ribosoma, se encargan de señalizar el correcto procesamiento de los transcritos de ARNr. En eucariotas microbianos, el tamaño del ITS1 varía desde 100 a 400pb, mientras que el ITS2 desde 200-500pb. Algunos ITSs son inusualmente largos, como los del alga roja Cyanidioschyzo merolae (Maruyama y col., 2004), donde el tamaño medio de los ITS1 e ITS2 son 862 y 1738pb, respectivamente. Euglena gracilis tiene uno de los ITS1 más largos, 1188pb (Schnare y col., 1990), y el del dinoflagelado Cochlodinium polykrikoides contiene una secuencia de 101pb repetida en tándem, dando lugar a un ITS1 de 813pb (Ki y Han, 2007). Yarrowia y Giardia tiene los ITSs más pequeños conocidos de los eucariotas microbianas, siendo la suma de los dos ITS en Y. lipolytica tan solo 150pb (van Heerikhuizen y col., 1985), mientras que los de G. intestinalis miden tan solo 89pb (Boothroyd y col., 1987). Algunas especies de Microsporidia directamente no tienen ITS2 (Vossbrinck y Woese, 1986). Los ITSs son partes no codificantes del ADNr, por lo que sobre ellos la selección natural no actúa pudiendo, por tanto, acumular mutaciones. Debido a esto, los ITSs evolucionan rápidamente y su secuencia es más heterogénea en comparación con la región codificante del ADNr (Matyášek y col., 2012, entre otros), hecho que les hace ser uno de los marcadores más usados para la identificación de especies (Horton y Bruns, 2001; Bridge y col. 2005) y en estudios filogenéticos (Alvarez y Wendel, 2003; Coleman, 2003; Pettengill y Neel, 2008). Esta característica por un lado, y la estructura secundaria tan conservada por otro, hacen concretamente del ITS2 una herramienta excepcional para estudios de metagenómica (Seifert, 2009; Blaalid y col., 2012; Schoch y col., 2012; entre otros). Además, la inclusión de la estructura secundaria en la reconstrucción filogenética hacen que ésta sea más robusta y cercana a la realidad 33 (Keller y col., 2010). Sin embargo, recientemente el uso de los ITSs para identificar especies se ha puesto en duda, ya que se han publicado varios estudios en los que se detecta variabilidad intraespecífica (Kảrén y col., 1997; Kauserud y Schumacher, 2002; Nilsson y col., 2008; Blaalid y col., 2013) e intragenómica para dichas secuencias en una amplia variedad de taxones, incluyendo procariotas, plantas, animales y hongos (Mayol y Rosselló 2001; Feliner y col. 2004; Wörheide y col. 2004; Stage y Eickbush 2007; Stewart y Cavanaugh 2007; Simon y Weiss 2008; James y col. 2009; Pilotti y col. 2009; Alper y col. 2011; Hřibová y col. 2011; Vydryakova y col. 2012; Li y col. 2013). Algunos autores (Alper y col. 2011; Song y col. 2012) advierten de que el uso de los ITSs como identificador de especies debe ser evaluado en cada caso, porque la variabilidad que existe para su secuencia puede sobreestimar la riqueza real de especies que existe en una comunidad (Lidner y col. 2013). 1.6. Modelos de evolución del ADNr Para explicar la evolución de familias multigénicas, entre las que se encuentra el ADNr, se han propuesto varias teorías, destacando la evolución concertada (Zimmer, 1980) y la evolución mediante nacimiento y muerte (Nei y Hughes, 1992) (Figura 3). En general, se considera que las familias multigénicas evolucionan siguiendo un patrón de evolución concertada, por el que se homogenizan las secuencias de ADN de los genes miembros de la misma familia. Brown y col. (1972) fueron los primeros que propusieron que las copias de los genes de ARNr evolucionan “horizontalmente”, con nuevas variantes surgiendo por mutación y dispersándose reemplazando a otras copias. El principal mecanismo de homogenización es la recombinación desigual entre copias repetidas (Smith 1973; Szostak y Wu 1980; Kobayashi y col. 1998; Eickbush y Eickbush, 2007), que genera nuevos genes duplicados con secuencia idéntica y elimina otros genes duplicados. Se asume que los genes de una familia multigénica son polimórficos, pero que estos polimorfismos evoluciona a la vez (Nei y col., 1997) debido a la evolución concertada. Si este proceso continúa, los genes duplicados de una familia multigénica tienden a tener secuencias de nucleótidos similares, incluso aunque estén ocurriendo mutaciones. Además de la recombinación, también se ha propuesto que la conversión génica, es decir, la transferencia unidireccional de una secuencia de ADN desde una cadena donante a una receptora (Gangloff y col., 1996), es un mecanismo que homogeniza secuencias. La evolución de de la familia génica de ADNr es un buen ejemplo de evolución concertada ya que las diferentes unidades suelen tener secuencias de ADN muy similares en individuos de la misma especie (Ganley y Kobayashi, 2007; Stage y Eickbush, 2007). Cuando el modelo de evolución concertada fue propuesto, se creía que incluso los ITSs tenían secuencias de ADN conservadas, pero hoy en día se sabe que no es así (véase apartado 1.5.). Aunque se ha pensado durante mucho tiempo que la evolución de las familias multigénicas se producía siempre por evolución concertada, Nei y Hughes observaron en 1992 que otras familias, como la del Complejo Mayor de Histocompatibilidad (MHC) y los genes de Inmunoglobulinas (Ig) de la misma especie no estaban 34 Introducción general y Objetivos necesariamente más relacionados entre ellos que entre especies diferentes (Gojobori y Nei, 1984; Hughes y Nei, 1989; Nei y Hughes, 1991; Nei y Hughes, 1992; Ota y Nei, 1994), por lo que propusieron el modelo de evolución por nacimiento y muerte. En este modelo, los genes duplicados pueden aparecer por varios mecanismos, como son la duplicación en tándem y por bloques, y tras una fuerte selección purificadora, unos genes divergen y se hacen funcionales y otros se convierten en pseudogenes debido a mutaciones deléteras o son eliminados del genoma. El resultado es una familia multigénica con una mezcla de grupos de genes, unos divergentes y otros altamente homólogos, acompañados de un sustancial número de pseudogenes. Por tanto, la presencia de pseudogenes en una familia de genes, los cuales pueden ser tolerados de manera diferente según el genoma hospedador (Eickbush y col., 1997), sugiere que está evolucionando por el modelo de nacimiento y muerte. Se ha sugerido que este modelo podría explicar también los inusuales altos niveles de polimorfismos de los ITSs e IGSs de algunas especies (superior al 40% en algunos casos). Otro ejemplo de este tipo de evolución lo encontramos en los genes 5S de los hongos filamentosos (Rooney y Ward, 2005). Para explicar la diferente asociación de las familias multigénicas con cada uno de estos dos modelos evolutivos, Nei y col. (1997) propusieron que el ADNr evolucionaba por evolución concertada debido a que tiene que producir una gran cantidad del mismo producto, por lo que los genes de esta familia deberían ser altamente homólogos, mientras que las multifamilias MHC e Ig lo hacen por nacimiento y muerte ya que tienen la función de defender al hospedador de diferentes tipos de parásitos, haciendo necesaria una gran cantidad de diversidad. Aunque la evolución concertada y la evolución por nacimiento y muerte son conceptualmente diferentes, pueden ser difícilmente distinguibles si se asume que la tasa con la que se produce la evolución concertada es muy baja (Nei y col., 2000). Figura 3. Modelos de evolución de las familias multigénicas (extraído de Nei y col., 1997): Evolución concertada (izquierda) y modelo de nacimiento y muerte (derecha) 35 La evolución del ADNr no tiene que ceñirse estrictamente a estos dos modelos, sino que pueden existir matices. Así, Ganley y Kobayashi (2007) propusieron un modelo “de evolución concertada de “rápida homogenización” (Figura 4) para explicar por qué existía tan poca variación para las secuencias de ADNr a pesar de tener regiones altamente variables como los IGSs. Este modelo proponía tres fases para homogenizar un array de secuencias repetidas: 1) Ocurre una mutación en una secuencia de ADNr y, como éste es altamente redundante, las fuerzas de selección no actúan sobre la mutación, con lo que puede persistir durante un tiempo; 2) Hay un paso de transición en el que continuos entrecruzamientos desiguales entre las secuencias repetidas producen duplicaciones que llevan la mutación, algunas se dispersarán por el genoma tras sucesivas duplicaciones, y otras serán eliminadas (estocásticamente). Sólo las mutaciones no deletéreas y toleradas por la selección natural podrán aumentar su frecuencia hasta un umbral. Quedarán muchos polimorfismos de baja frecuencia que no han podido superar el umbral porque comprometen la eficacia biológica del portador o porque son de reciente aparición; 3) La fijación hace que las repeticiones mutadas toleradas se mantengan en la población, reemplazando a las antiguas repeticiones. Este modelo es consistente con resultados presentados en estudios previos (Liao y col., 1997; Ganley y Scott 1998, 2002; Skalicka y col., 2003; Averbeck y Eickbush, 2005; Kovarik y col., 2005). En resumen, los autores sugieren que debido a que los individuos tienden a tener arrays homogéneos, los polimorfismos entre individuos de una población son casos donde la homogenización ha dispersado una mutación a todas las repeticiones del array en un individuo, creándose así un polimorfismo fijado. Figura 4. Modelo de “rápida homogenización” de evolución concertada (extraído de Ganley y Kobayashi, 2007). 36 Introducción general y Objetivos 2. Los cromosomas B 2.1. Historia del descubrimiento Los genomas eucarióticos, además de contener los genes que colaboran con el buen funcionamiento del organismo en los cromosomas estándar (también llamados A), pueden albergar también elementos genéticos egoístas que interaccionan con él procurando maximizar su propia expansión y transmisión, aún a costa de disminuir la eficacia biológica de los individuos portadores (ver revisión de Burt y Trivers, 2006). Entre éstos podemos destacar, por ejemplo, los transposones, los distorsionadores de la segregación, algunos factores citoplasmáticos y los cromosomas B. Estos últimos fueron los primeros en ser descubiertos hace un siglo por Wilson (1907) al observar un cromosoma “extra” en el hemíptero Metapodius (ahora llamado Acanthocepal), y al ver que no se comportaba como los cromosomas A, lo llamó cromosoma “supernumerario”. Tras este descubrimiento, seguidamente fueron descritos otros casos en el escarabajo Diabrotica (Stevens, 1908) y en el maíz (Kuwada, 1915). A lo largo de la historia, muchos han sido los nombres que se le han dado a los cromosomas B, tales como “fragmentos extras de cromosomas” (Müntzing, 1944; Östergen, 1945), “cromosomas superfluos” (Hakansson, 1945) y “cromosomas accesorios” (Hakansson, 1948; Müntzing, 1948) entre otros. Pero fue Randolph en 1928 el primero en acuñar el término de “cromosomas B”, y es el que ha perdurado hasta la actualidad. 2.2. Características generales y frecuencia Los cromosomas B se han encontrado formando parte del genoma de más de 2000 especies de plantas, animales y hongos y se estima que el 15% de genomas eucarióticos llevan Bs (véase las revisiones de Jones y Rees 1982, Jones 1995, y Camacho 2005). Las especies donde se han descrito cromosomas Bs pertenecen predominantemente a ciertos grupos taxonómicos, como las Gramíneas, las Liliáceas y los Ortópteros, pero esto es debido a que son grupos donde se llevan a cabo un elevado número de estudios citogenéticos. En base a las características de los cromosomas B, son varias las definiciones que se han dado de estos cromosomas supernumerarios. Así, en 1982 Jones y Rees los definieron como “cromosomas no homólogos a los cromosomas del complemento normal (cromosomas A), que no recombinan con ellos y además son totalmente dispensables”. En 1993, JPM Camacho y JS Parker los definieron durante la primera “B Chromosome Conference” como “cromosomas dispensables, presentes en algunos individuos de algunas poblaciones de especies de plantes y animales, que ha surgido probablemente de los cromosomas A, pero que siguen su propio camino evolutivo al no recombinar con ellos” (Beuckeboom, 1994a). Además, no hay que olvidar otra característica muy importante inherente al hecho de que los cromosomas B no recombinan: no siguen las leyes Mendelianas de segregación, ya que poseen una segregación meiótica irregular que les hace acumularse en la línea germinal. De ahí le 37 viene el adjetivo de “egoísta”, ya que se transmiten con tasas superiores a las de los cromosomas As. La frecuencia con la que los cromosomas B aparecen en las poblaciones naturales es muy variable ya que depende del grado de tolerancia del genoma hospedador y de la fuerza del mecanismo de acumulación de los Bs. Los factores geográficos, históricos y ecológicos tales como la existencia de barreras geográficas que impiden la migración de individuos portadores de cromosomas B a ciertas poblaciones, el tiempo trascurrido desde que aparece el B en una población o la permisibilidad de las condiciones ambientales son otros factores que explican la variación temporal y espacial que muestra, pudiéndose encontrar poblaciones de la misma especie con y sin cromosomas B. Los Bs son deletéreos cuando aparecen en un número alto en los genomas hospedadores, así que por lo general el número de Bs que tiene un individuo no suele ser mayor de 3 ó 4. Sin embargo, hay estudios donde se han encontrado excepciones. Así, el mayor número de cromosomas B encontrado en una planta es de 50, en la especie Pachyphytum fittkaui (Crassulaceae). Otros casos de plantas con muchos cromosomas Bse han descrito en el maíz con 34 Bs (Jones y Rees, 1982), 31 en Gibasis karwinskyana (Kenton, 1991), 26 en Fritillaria japonica (Noda, 1975) y 22 en Centaurea scabiosa (Fröst, 1957). En animales también se ha encontrado individuos con alto número de Bs, como en Apodemus peninsulae donde se han observado hasta 24 Bs (Volobujev y Timina, 1980), 20 en Xylota nemorum (Boyes y Van Brink, 1947) y 16 en Gonista bicolor (Sannomiya, 1974) y en Leiopelma hochstetteri (Green, 1988). 2.3. Tamaño y composición molecular El tamaño de los cromosomas B es muy variable entre especies. En algunas especies, como en Reithrodontomys megalotis, los Bs son más pequeños incluso que los As más pequeños (Peppers y col., 1997). En Megaselia scalaris, el cromosoma B no es más que un centrómero independiente, siendo el elemento más pequeño que puede ser considerado un cromosoma (Wolf y col., 1991). En el otro extremo, están los cromosomas B de Uromys caudimaculatus (Baverstock y col., 1982) y Astyanax scabripinnins (Mestriner y col., 2000) que son tan grandes como sus cromosomas As más grandes. También hay casos donde los Bs tienen un tamaño mayor que los As de su propia especie, como en Alburnus alburnus (Ziegler y col., 2003), aunque parecen ser isocromosomas. La mayoría de Bs tienen un tamaño medio, aunque incluso dentro de la misma especie pueden mostrar variación en el tamaño, tal y como se ha observado en diferentes poblaciones españolas (Henriques-Gil y col., 1984; López-León y col., 1993) i marroquíes (Bakkali y col. 1999) de Eyprepocnemis plorans. El tamaño del cromosoma B es una característica que afecta a su estabilidad mitótica (Hewitt, 1979). Así, los cromosomas B grandes tienden a ser mitóticamente estables, es decir, todas las células del individuo tienen el mismo número de cromosomas B. Sin embargo, los Bs pequeños suelen ser mitóticamente inestables. Tradicionalmente se ha descrito a los cromosomas B como elementos heterocromáticos, ya que muestran un alto grado de compactación de la cromatina con 38 Introducción general y Objetivos lo que es posible distinguirlos citogenéticamente de los cromosomas A. Debido a su naturaleza heterocromática los cromosomas B han sido tradicionalmente considerados genéticamente inactivos, es decir, que no producían transcritos procedentes de las secuencias génicas que contenían, frecuentemente ADN ribosómico (ADNr). En este sentido apuntaron varios estudios, como los realizados en el saltamontes Myrmeleotettix maculatus (Fox y col., 1974), el ratón Apodemus peninsulae (Ishak y col., 1991), la rata negra Rattus rattus (Stitou y col. 2000) y los peces Metynnis maculatus (Baroni y col., 2009) y Haplochromis obliquidens (Poletto y col., 2010). Sin embargo, con el paso de los años son varios los estudios que han aportado evidencias citogenéticas de la actividad del ADNr de los cromosomas B como ocurre en los saltamontes Dichroplus pratensis (Bidau 1986) y Eyprepocnemis plorans (Teruel y col., 2007, 2009) (Figura 5) o en el ratón Apodemus peninsulae (Boeskorov y col., 1995). Otras evidencias moleculares indirectas se han encontrado en la rana Leiopelma hochstetteri (Green 1988) y el mosquito Simulium juxtacrenobium (Brockhouse y col., 1989), y directas en la planta Crepis capillaris (Leach y col. 2005), la avispa Trichogramma kaykai (van Vugt y col., 2005), el centeno (Carchilan y col., 2007, 2009; Banaei-Moghaddam y col., 2013), y el ciervo siberiano Capreolus pygargus (Trifonov y col., 2013). Figura 5. Activación del ADNr del cromosoma de Eyprepocnemis plorans, tal y como indica la presencia de nucleolo (marrón) (extraída de Teruel y col., 2009). La compactación tan elevada que tienen los cromosomas B se debe a su composición molecular, ya que están formados mayoritariamente por secuencias de ADN mediana y altamente repetidas que varían en el tipo de repeticiones y en el tamaño de éstas (Amos y Dover, 1981; Eickbush y col., 1992). Estas secuencias son 39 ADNs satélites (ADNsat), ADNr y elementos transponibles (transposones), que se acumulan debido al entrecruzamiento desigual y a la falta de recombinación (Charlesworth y col., 1986; Stephan 1987). Estudios recientes han revelado que algunos Bs llevan además genes de histonas (Teruel y col., 2010), secuencias derivadas de genes de los As (Martis y col., 2012; Banaei-Moghaddam y col., 2013) o secuencias que codifican para proteínas (Trifonov y col., 2013). El ADNsat de los Bs puede ser compartido por los As de su misma especie, como en Crepis capillaris (Jamilena y col., 1994), en Drosophila subsilvestris (Gutknecht y col., 1995); o por el contrario ser específico del B, como el ADNsat del cromosoma PSR (Paternal Sex Ratio) de Nasonia vitripennis (Nur y col., 1988). Puertas en su revisión de 2002 reúne más ejemplos de ADNsat compartido por los Bs y As (en Zea mays o Secale cereale) y otros de secuencias de ADNsat específicas de los cromosomas B. En muchos casos, los Bs tienen mayor cantidad de secuencias repetidas comparado con el genoma del que se originó, sugiriendo que ocurren fenómenos de amplificación de ADNsat en los Bs en una corta escala de tiempo. Algunos estudios han sugerido que este hecho podría hacer que un neo-B se estabilizara y llegara a ser seleccionado positivamente dentro del núcleo (Reed y col., 1994; Leach y col., 1995). Los cromosomas B pueden acumular transposones provenientes de diversas fuentes (Beukeboom, 1994a; Camacho y col., 2000) ya que son heterocromáticos y no recombinan con los otros elementos del genoma. Los transposones que se han descrito en cromosomas B (veáse Tabla 4.2 de Camacho, 2005) son muy diversos. Algunos ejemplos son el retrotransposón NATE (NAsonia Transponible Element) que invade el cromosoma PSR de Nasonia vitripennis (McAllister, 1995; McAllister y Werren, 1997), el retrotransposón CfT-I responsable de la transposición de ADN cloroplastídico en el cromosoma B de Brachycome dichromosomatica (Franks y col., 1996) o los retrotransposones Gypsy, RTE y R2 y el transposon mariner presentes en la especie Eypepocnemis ploras (Montiel y col. 2012, Montiel y col., in preparation). En los últimos años, se han descubierto además secuencias específicas de los Bs que proceden de elementos transponibles (Langdon y col., 2000; Lamb y col., 2007). De esta manera los transposones son responsables de generar variabilidad en los cromosomas B. Además, esta transposición de secuencias hacia los Bs puede ocasionar que los genes de estos cromosomas se vean inactivados, ya sea porque se insertan en medio de un gen, o porque rompen la estructura del cromosoma (Camacho y col., 2000). Otra de las secuencias repetidas que forman mayoritariamente parte de los Bs es el ADNr 45S (Green, 1990). Sin embargo, el gen de ADNr 5S (que suele aparecer en los genomas separado del cistrón 45S) sólo se ha detectado en algunos cromosomas B, como son los de la especie Plantago lagopus (Dhar y col., 2002) y el cromosoma B de Eyprepocnemis plorans de las poblaciones del Cáucaso (Cabrero y col., 2003). La variación que existe para el número de repeticiones de los cistrones de ADNr 45S influye significativamente en el tamaño de los cromosomas B (Adam, 1992; Pukkila y Skrzynia, 1993). Se ha sugerido que las constricciones secundarias (NORs), donde se localiza el ADNr, son regiones propensas a producir roturas cromosómicas que podrían ser el origen de un neo-B. Como se dijo en este mismo apartado, se han citado casos de 40 Introducción general y Objetivos Bs con NORs activas, y es por esto que Teruel y col. (2009) proponen que la cromatina del ADNr puede encontrarse en tres estados: silenciada, competente o activa. Además de las secuencias de nucleótidos que componen los cromosomas B, su organización y función depende también de la existencia de estructuras secundarias y modificaciones epigenéticas en dichos cromosomas. Así, la naturaleza heterocromática de los B se atribuye en parte a la presencia de estructuras secundarias en su ADN, como ocurrre en el cromosoma PSR, donde pequeñas secuencias palindrómicas están asociadas con intercambios entre repeticiones de dicho cromosoma, sugiriendo que provocan recombinación entre repeticiones (Reed y col., 1994). También se ha observado formación de horquillas in vivo en un cromosoma B microdiseccionado de Leiopelma hochstetteri (Sharbel y col., 1998). Entre las modificaciones epigenéticas, la metilación y la acetilación son dos de los cambios más frecuentemente descritos. El primero tiene un papel fundamental en la inactivación de cromosomas sexuales (Holliday, 1987) y por tanto, también en la inactivación del B, ya que ambos sistemas tienen muchas similitudes (Camacho y col., 2000). Un ejemplo de este proceso lo encontramos en repeticiones centroméricas hipermetiladas del B de Brachycome dichromosomatica, las cuales causan su inactivación (Leach y col., 1995) o en la inactivación de la NOR del B de Eyprepocnemis plorans (López-León y col. 1991, 1995). El segundo proceso ha sido reportado para Brachycome dichromosomatica, por Houben y col. (1997b), cuyo cromosoma B está hipoacetilado y podría estar también ayudando a mantener su inactividad. 2.4. Origen El origen de los cromosomas B es uno de los aspectos más estudiados de estos cromosomas. La creencia más extendida es que los Bs proceden de los As de la misma especie, como un subproducto de la evolución del cariotipo estándar (Jones y Rees, 1982; Camacho y col., 2000). Ya en los años 1970s y 80s se vieron los primeros indicios de que el ADN encontrado en los Bs de algunas especies era muy similar al encontrado en los As (véase la revisión de Jones y Rees, 1982). En los años 1990s se siguió estudiando el origen de los Bs con más profundidad, llevándose a cabo el aislamiento, clonación y secuenciación de secuencias de ADN repetidas de los Bs. Algunas resultaron ser específicas de ellos y otras compartidas con los As (véase la revisión de Beukeboom 1994a; Hackstein y col., 1996). La realidad es que los cromosomas B pueden surgir a partir de los As de su misma especie (origen intraespecífico) o tras hibridar con una especie emparentada (origen interespecífico). Los Bs con origen intraespecífico surgen a partir de cromosomas A, como una copia extra (polisomía) que se heterocromatiniza rápidamente, adquiriendo así la misma apariencia y comportamiento meiótico que los Bs (Hewitt, 1973a; Peters, 1981; Talavera y col., 1990). También, los neo-Bs pueden surgir a partir de fragmentos céntricos originados tras translocaciones robertsonianas o a partir de la amplificación de la región paracentromérica de un cromosoma A fragmentado (Keyl y Hägele, 1971). Así, Dhar y col. (2002) encontraron que la aparición del B de Plantago lagopus podría 41 estar asociada a la amplificación del 5S tras la fragmentación de un cromosoma A. Otros ejemplos de Bs con origen intraespecífico los encontramos en Crepis capillaris (Jamilena y col., 1994, 1995) y en el centeno (Houben, 1996; Puertas, 2002), donde los investigadores encontraron secuencias compartidas por los As y los Bs. Por otro lado, los cromosomas B también pueden proceder de los cromosomas sexuales, ya que la polisomía de estos es más tolerada (Hewitt, 1973a). En Leiopelma hochstetteri Green y col. (1993) y Sharbel y col. (1998) observaron que su cromosoma B parece proceder del cromosoma sexual heteromórfico W, debido a su parecido en morfología y secuencia. La teoría de que los cromosomas B se pueden originar además interespecíficamente tras procesos de hibridación entre especies emparentadas fue propuesta por primera vez por Battaglia (1964). La evidencia supone la existencia de secuencias específicas del B de una especie, en los As de una especie emparentada. Esta teoría ha sido validada en varias ocasiones: McAllister y Werren (1997) reportaron el caso del cromosoma PSR de Nasonia vitripennis, el cual tiene un transposón cuya secuencia es más parecida a los copias presentes en especies emparentadas del género Trichomalopsis que a las presentes en su propio genoma y Sapre y Deshpande (1987) demostraron la formación espontánea de un cromosoma B tras hibridar dos especies emparentadas, Coix aquanticus y Coix gigantea. Otras demostraciones empíricas de esta teoría, es la formación de novo del cromosoma B de Poecilia formosa, que se origina tras hibridar P. mexicana y P. latipinna (Schartl y col., 1995), y la del neo-B originado tras introducir una región cromosómica de Nasonia giraulti en N. vitripennis (Perfectti y Werren, 2001). 2.5. Comportamiento meiótico Los cromosomas A aparecen formando bivalentes, lo que posibilita que los cromosomas homólogos recombinen entre ellos para posteriormente migrar cada uno de ellos a un polo celular durante la primera división meiótica. Este es el principio de la segregación mendeliana. Sin embargo, los cromosomas B pueden no formar bivalentes y, como univalentes, pueden sacar ventaja a la hora de transmitirse a los futuros gametos. En muchos casos, los cromosomas B migran preferentemente al polo que dará lugar al oocito, consiguiendo así tasas de transmisión mayores del 50%. El comportamiento meótico de los Bs varía entre individuos y entre especies. Rebollo y col. (1998) vieron que en la primera metafase meótica los Bs se comportan a veces tan estáticos como los X, otras veces un poco menos dinámicos, y otras se comportan como un univalente muy dinámico. Estos autores también vieron otra característica importante del B durante esta fase como es la reorientación de polo a polo que realiza este univalente, tal y como ocurre con el cromosoma X de Melanoplus differentialis (Nicklas, 1961). Así, cualquier polo es susceptible de contener estos univalentes, ya que están migrando de polo a polo durante la anafase I meiótica de la espermatogénesis. La acumulación del B puede ser premeiótica, debido a no-disyunción durante las mitosis embrionarias y el destino preferencial de los productos mitóticos con mayor número de Bs hacia la línea germinal. Este tipo de acumulación implica que las células 42 Introducción general y Objetivos que entran en meiosis tienen anormalmente un número alto de cromosomas B en comparación con los que originariamente contenía el cigoto. Esto fue reportado por primera vez por Nur (1963) en el saltamontes Calliptamus palaestinensis al observar que espermatocitos del mismo individuo tenían número variable de Bs. Otros ejemplos los encontramos en el B de Locusta migratoria, cuya inestabilidad mitótica hace que las células con alto número de cromosomas B den lugar preferencialmente a las futuras espermatogonias (Nur, 1969; Kayano, 1971; Viseras y col., 1990). En muchos casos, la acumulación del B ocurre durante la meiosis femenina como resultados de la asimetría funcional que existe en la producción de óvulos, ya que se origina tan sólo uno a partir de cada oogonia. Los cromosomas A tienen la misma probabilidad de migrar tanto al oocito secundario (futuro óvulo) como al corpúsculo polar, pero esto no ocurre con los cromosomas Bs. Estos, en sus movimientos de polo a polo pasan más tiempo en el oocito secundario, por lo que tendrán mayor oportunidad de permanecer ahí al final de la anafase (Hewitt 1976). Ejemplos de acumulación meiótica los encontramos en la planta Lillium callosum (Kayano, 1957) y en los saltamontes Melanoplus femur-rubrum (Lucov y Nur, 1973; Nur, 1977), Myrmeleotettix maculatus (Hewitt, 1973a, 1976), Heteracris litoralis (Cano y Santos, 1989), Omocestus burri (Santos y col., 1993) y Eyprepocnemis plorans (Zurita y col., 1998; Bakkali y col., 2002). En plantas es frecuente la acumulación del B después de la meiosis, ya que la formación del grano de polen implica dos divisiones mitóticas tras la meoisis que da lugar a los núcleos vegetativos y generativos. La acumulación se produce cuando hay no-disyunción del B en estas mitosis y las dos cromátidas del B migran preferentemente al núcleo generativo. Este mecanismo se vio por primera vez en el centeno (Hasegawa, 1934), donde además ocurre acumulación del B en la primera mitosis de la megaespora (Jones, 1995; Puertas, 2002). La acumulación postmeiótica puede ocurrir en la primera mitosis del grano de polen, como en Festuca pratensis (Bosemark 1954) y Secale cereale (Jones y Puertas 1993; Jiménez y col., 1997), o en la segunda mitosis tal y como ocurre en el maíz (Roman, 1948). Además de los tres tipos de acumulación explicados hasta ahora, existe la acumulación ameiótica. Este caso se da, por ejemplo, en el cromosoma B (llamado PSR) de la avispa Nasonia vitripennis, una especie haplodiploide. El PSR causa la condensación del juego cromosómico paterno en los espermatozoides, haciendo que el huevo fecundado no sea diploide (hembra), sino haploide (haploide), por lo que distorsiona la proporción de sexos a favor de los machos. Así, la tasa de transmisión del PSR es próxima a 1, y es considerado uno de los cromosomas B más parasíticos (Werren, 1991). 43 2.6. Modelos de mantenimiento de los cromosomas B en las poblaciones Se han propuesto dos modelos para explicar el mantenimiento de los cromosomas B en las poblaciones naturales. El modelo “parasítico” o egoísta sostiene que los Bs se mantienen por sus mecanismos de acumulación, permaneciendo en las poblaciones a pesar de los efectos deletéreos que suelen causar a los organismos hospedadores (Östergen, 1945). El modelo “heterótico” propone que los Bs se mantienen debido a los efectos beneficiosos que confieren a los portadores, en bajo número, y no debido a mecanismos de acumulación (White, 1973). La mayoría de los sistemas de cromosomas B que se han analizado en profundidad, hasta ahora, se ajustan mejor al modelo parasítico (véase revisión en Camacho, 2005). Estos dos modelos llevan implícita la existencia de un equilibrio entre dos fuerzas contrapuestas. En el parasítico, estas fuerzas son la acumulación del B, que incrementa su frecuencia, y la selección fenotípica contra los portadores, que la disminuye. En el heterótico, el equilibrio resulta de la selección fenotípica a favor de los individuos con pocos B y la que se produce contra los individuos con muchos B. Sin embargo, estos equilibrios pueden verse alterados por la incorporación al juego coevolutivo de respuestas defensivas por parte del genoma hospedador. Así se ha demostrado la existencia de variantes génicas en los cromosomas A capaces de suprimir la acumulación de los cromosomas B en el saltamontes Myrmeleotettix maculatus (Shaw y Hewitt, 1985), en el hemíptero Pseudococcus affinis (Nur y Brett, 1985) y en plantas como el centeno y el maíz (para revisión, ver Puertas 2002). Esto constituye una clara evidencia de que entre los cromosomas A y B se produce una “carrera de armamentos” similar a la que se produce en otros sistemas hospedador-parásito. Una consecuencia de esta carrera de armamentos es la aparición de cromosomas B neutralizados, es decir, que han perdido su capacidad de acumulación y se transmiten a la misma tasa que los cromosomas A. La primera evidencia fue aportada por López-León y col. (1992) al demostrar que los tres tipos de cromosomas B más ampliamente distribuidos en las poblaciones españolas del saltamontes Eyprepocnemis plorans (B1, B2 y B5) muestran tasas de transmisión similares a las de los cromosomas A, es decir, cada B es transmitido a la mitad de los gametos, como predice la ley mendeliana de la segregación. Posteriormente, Herrera y col. (1996) demostraron que los cromosomas B neutralizados tienen la capacidad de acumularse, pero está reprimida en la población natural, presumiblemente por la selección de variantes génicas en los cromosomas A que suprimen la acumulación del B. Posteriormente, Zurita y col. (1998) encontraron una nueva variante (B24) en la población malagueña de Torrox, derivada de un B neutralizado, que se acumulaba con una tasa media de transmisión de 0,7, lo que indicó que un cromosoma B puede recuperar la capacidad de acumulación y el comportamiento parasítico corroborando además la existencia de cromosomas B parásitos y neutralizados en diferentes poblaciones de E. plorans. Para explicar este mosaico geográfico de relaciones coevolutivas entre los cromosomas A y B, Camacho y col. (1997) propusieron un modelo, derivado del 44 Introducción general y Objetivos parasítico, que no asume que el sistema tenga que conducir necesariamente a un equilibrio, sino a una sucesión en el tiempo y en el espacio de diferentes relaciones coevolutivas. Basándose en sus estudios sobre el sistema de cromosomas B del saltamontes E. plorans, estos autores propusieron que, para invadir nuevas poblaciones, los cromosomas B necesitan tener acumulación, por lo que comenzarían su andadura con acumulación (drive). Conforme aumenta su frecuencia, los cromosomas B se convierten en una carga cada vez mayor para la población, debido a los efectos deletéreos que suelen causar a los individuos portadores, por lo que cualquier variante alélica de los cromosomas A que sea capaz de suprimir la acumulación de los B será favorecida por la selección natural. Finalmente, cuando estos alelos de resistencia (que suprimen la acumulación del B) se establezcan en la población, los Bs se habrán convertido en elementos neutros, que se transmiten a la misma tasa que los A. Pero el juego coevolutivo no termina ahí, ya que los cromosomas B suelen tener elevadas tasas de mutación (López-León y col., 1993; Bakkali y Camacho, 2004) y los B neutralizados pueden mutar a nuevas variantes que recuperen la capacidad de acumulación, tal como ocurrió con B24 en Torrox, una variante parásita que derivó de B2 , una variante neutralizada (Zurita y col., 1998). Por tanto, el ciclo comienza de nuevo cuando surge una nueva variante parásita (con drive) que, posteriormente es neutralizada, como ha ocurrido recientemente con B24 en Torrox (Perfectti y col., 2004). Estos cambios sucesivos de Bs parásitos a neutros y de nuevo a parásitos, prolongan enormemente el período de vida de los cromosomas B, tal como propusieron Camacho y col. (1997). 2.7. Efectos La presencia de un B en un genoma hace que éste tenga mayor cantidad de ADN y que además tenga que usar la maquinaria replicativa del genoma hospedador para replicarse y transmitirse (Puertas, 2002; Jones y col., 2008). Así, el cromosoma B del pez A. alburnus supone casi el 10% del tamaño de su genoma (Schmid y col., 2006) y el del maíz incrementa la cantidad de ADN en el genoma un 4% (Jones y col., 2008). Por tanto, es lógico pensar que toda esta cantidad extra de material biológico tenga efectos sobre el genoma hospedador. La mayoría de cromosomas B son heterocromáticos, y durante mucho tiempo este hecho ha llevado a pensar que son genéticamente inertes. Sin embargo, cada vez son más los estudios que revelan la existencia de actividad de genes ribosómicos, pseudogenes, o de proteínas codificadoras localizados en los Bs. Por tanto, los efectos encontrados, relacionados con la presencia de cromosomas B, en los individuos pueden deberse a los productos génicos que provienen del propio B, como ocurre para los genes de resistencia a la roya que tienen los Bs de Avena sativa (Dherawattana y Sadanaga, 1973) y los de resistencia a antibióticos localizados en los Bs de Nectria haematococca (Miao y col., 1991a, b), o bien derivar de su mera presencia en los genomas, como aluden la mayoría de casos descritos en los que se ha estudiado los efectos de los cromosomas B (Camacho y col., 2000). Un ejmplo de esta última situación lo encontramos en la planta liliácea Scilla autumnalis, cuyos Bs tienen 45 influencia sobre la expresión de un gen de los As que codifica para una esterasa, haciendo que las plantas con B expresen el gen E-1 y las sin B no (Ruiz-Rejón y col., 1980; Oliver y col., 1982). Los efectos de los Bs pueden afectar a procesos celulares y fisiológicos tanto en plantas como animales. Estos efectos normalmente no son visibles fenotípicamente, salvo en el caso de la planta Haplopappus gracilis, donde los Bs cambian el color de los aquenios (Jackson y Newmark, 1960), o del maíz, donde las plantas con B tienen las hojas rayadas (Staub, 1987). En la naturaleza encontramos con mucha más frecuencia casos donde los Bs afectan negativamente a la vigorosidad, la fecundidad y fertilidad de los individuos portadores, haciendo referencia a la naturaleza parasítica de estos elementos genéticos. También es posible encontrar situaciones contrarias donde los individuos con bajo número de Bs ven incrementado el vigor por el efecto de éstos (Jones y Rees, 1982). Otros efectos que se han descrito para los Bs son la alteración de los niveles de expresión de las NORs de los cromosomas A de E. plorans (Cabrero y col., 1987), siendo mayor en los individuos 1B que en los 0B, y la variación de la frecuencia de quiasmas de los cromosomas del genoma hospedador. Atendiendo a éste último efecto, se ha observado tanto un incremento de quiasmas (en la mayoría de los casos) como una disminución o ausencia de efecto relacionado con la presencia de cromosomas B (Jones y Rees, 1982; Bell y Burt, 1990). Como consecuencia de ésto, la existencia de cromosomas B se interpretó inicialmente como un fenómeno adaptativo que hace que la población evolucione más rápido debido al incremento de variabilidad genética (John y Hewitt, 1965; Hewitt y John, 1967). Sin embargo, Bell y Burt (1990) criticaron esta hipótesis ya que suponía que los Bs, a pesar de ser parásitos, eran seleccionados por sus efectos favorables sobre el genoma hospedador, y propusieron otra que defendía que el aumento de número de quiasmas y de la variabilidad genética de la descendencia son una respuesta del genoma hospedador a la presencia del cromosoma B parásito (teoría de la recombinación inducible). Camacho y col. (2002) apoyaron esta teoría y además matizaron que era dependiente del estado del polimorfismo del B en cada población, siendo mayor el número de quiasmas en los As cuanta más acumulación presentaba el B. 3. Eyprepocnemis plorans 3.1. La especie Eyprepocnemis plorans (Orthoptera, Acrididae) es una especie de saltamontes en la que se han descrito cuatro subespecies: E. plorans plorans (Charpentier, 1825), E. plorans ornatipes (Walter, 1870), E. plorans ibandana (Giglio-Tos, 1907) y E. plorans meridionalis (Uvarov, 1921). E. plorans plorans (Figura 6) se distribuye por toda la región circunmediterránea, llegando hasta el Cáucaso y la Península Arábiga (Dirsh, 1958). En España, se encuentra a lo largo de la costa mediterránea, desde Tarragona hasta Huelva, adentrándose hacia regiones interiores a lo largo de las cuencas de los 46 Introducción general y Objetivos principales ríos mediterráneos. Las otras tres subespecies se encuentran on diferentes lugares del Africa (Dirsh, 1958). La subespecie empleada en el presente trabajo corresponde a E. plorans plorans, y a ella nos referiremos de ahora en adelante con el nombre de la especie. Este saltamontes tiene una única generación anual, desde julio a marzo, con un máximo de densidad poblacional en el mes de octubre para ambos sexos, siendo mayor para los machos. En agosto podemos ya encontrar poblaciones de las primeras ninfas. Es una especie polífaga poco exigente en su dieta, con cierta capacidad gregaria y elevado poder de dispersión (Hernández y Presa, 1984), que vive preferentemente en ambientes húmedos y muy cálidos (30°C). Su elevada tasa reproductiva y su capacidad de descubrir las condiciones bióticas más favorables, le ha hecho en ocasiones una especie dañina para los cultivos. Una vez recolectados individuos en el medio natural, esta especie se puede cultivar en el laboratorio e incluso mantener el cultivo de un año hasta el siguiente. Figura 6. Espécimen de Eyprepocnemis plorans plorans. 3.2. El genoma El complemento cromosómico de E. plorans tiene un tamaño aproximado de 10 picogramos, es decir de alrededor de 10 10 pb (Ruiz-Ruano y col., 2011) y está formado por 11 pares de autosomas y un par sexual (Figura 7). El determinismo del sexo es del tipo XX/X0, con lo que las hembras tienen dos cromosomas X y los machos solo uno. Todos los cromosomas son acrocéntricos y se clasifican en tres grupos según su tamaño: cromosomas largos (L 1 -L2), medianos (M3 -M8) y pequeños (S9 -S11). El cromosoma X tiene un tamaño intermedio entre los cromosomas L2 y M3. Todos los autosomas y el par sexual poseen ADNr, aunque existe variación entre poblaciones, situándose los bloques mayores en los bivalentes S9, S10, S11 y X. En éstos se puede visualizar las constricciones secundarias correspondientes a las NORs, y es en estos cromosomas donde las encontramos recurrentemente activas. 47 Figura 7. Célula en diplotene correspondiente a un macho de E. plorans de la población de Torrox (Málaga) sometida a una tinción con orceína lactopropiónica al 2% . En la foto se aprecia los 11 bivalentes, el cromosoma X y dos Bs. La gran mayoría de las poblaciones españolas analizadas hasta ahora poseen cromosomas B (Camacho y col., 1980; Henriques-Gil y col., 1984; Cabrero y col., 1997; Riera y col., 2004) con la única excepción de las poblaciones situadas en las cabeceras de los ríos de la cuenca del Segura (Cabrero y col., 1997). También contienen cromosomas B las poblaciones analizadas en Marruecos (Bakkali, 2001), Italia (LópezFernández y col., 1992), Grecia (Abdelaziz y col., 2007), Turquía (López-León y col., 2008), Armenia (López-León y col., 2008), Dagestan (Rusia) (Cabrero y col., 2003), Tunez y Sicilia (Cabrero y col. 2013), y recientemente los hemos encontrado en Egipto. Poblaciones de Sudáfrica, pertenecientes a la subespecie E. plorans meridionalis, sin embargo, no poseen cromosomas B (López-León y col., 2008). 3.3. Los cromosomas B de E. plorans El sistema de cromosomas B de E. plorans es uno de los más ampliamente estudiados (véase Camacho, 2003). Los cromosomas B de esta especie se caracterizan por ser mitóticamente estables en los tejidos gonadales masculinos y en los ciegos gástricos, es decir, por presentar el mismo número de cromosomas B en cada célula. Otra característica muy llamativa es que se han descrito más de 50 variantes citológicas de Bs en esta especie (Henriques-Gil y col., 1984; López-León y col., 1993; Bakkali 2001; López-León y col., 2008), coexistiendo algunas de ellas en la misma población. Estas variantes difieren en tamaño y morfología mostrando variación en la proporción relativa 48 Introducción general y Objetivos de las secuencias que lo componen (López-León y col., 1994; Cabrero y col., 1999). De todas las variantes de B que existen en E. plorans, B1 es la más ampliamente distribuida tanto en la Península Ibérica (en poblaciones de Murcia, Alicante e Islas Baleares entre otras) como en Marruecos, por lo que es considerada la variante ancestral (HenriquesGil y Arana, 1990). B2 es la variante más común en Granada y Málaga oriental, B 5 es predominante en Fuengirola (Málaga), y B 24 en Torrox (Málaga). El resto de variantes aparecen con muy baja frecuencia. El número de cromosomas B que porta un individuo también es variable, pudiendo coexistir en la misma población individuos sin cromosoma B y otros con diferente número de Bs (se han descrito casos de hasta 6B en el mismo macho). Al igual que ocurre en la mayoría de especies, las diferentes variantes de Bs de E. plorans están formados mayoritariamente por secuencias repetidas presentes también en los cromosomas A: el ADNsat de 180pb (específico de E. plorans) y el ADNr 45S, el cual constituye en este cromosoma el mayor bloque de esta secuencia en todo su genoma. Se han observado diferencias en la composición relativa de estas dos secuencias en los Bs no sólo entre variantes, sino también entre regiones geográficas. Así, los Bs de las poblaciones del este de Europa (Cáucaso, Turquía y Grecia) tienen mucha cantidad de ADNr 45S y poca de ADNsat de 180pb (Cabrero y col., 2003; López-León y col., 2008), exceptuando el cromosoma B4a de Armenia que no porta dichas secuencias (López-León y col., 2008). Por el contrario, las poblaciones del oeste de Europa (España y Marruecos) tienen cromosomas B con aproximadamente la misma cantidad de ambas secuencias, exceptuando B5 y B24 donde la proporción de ADNsat es mayor que la de ADNr 45S (Cabrero y col., 1999; Bakkali, 2001; López-León y col., 2008). Este hecho de diversificación de los Bs por zonas geográficas sugería que el origen de los Bs de las poblaciones del este y del oeste de Europa es independiente. Pero Muñoz-Pajares y col. (2011) consiguieron aislar un marcador específico del B (SCAR) en poblaciones muy distantes como son Marruecos y Armenia cuya secuencia estaba muy conservada, abogando por el origen común y reciente de todos los cromosomas B de E.plorans. El ciclo de vida de los Bs en esta especie sigue el modelo casi-neutro explicado en el apartado 1.6. propuesto por Camacho y col. en 1997. En E. plorans, las variantes B1, B2 y B5 se encontrarían en estadio evolutivo de neutralización ya que carecen de mecanismos de acumulación y muestran tasas de transmisión próximas a 0,5 (LópezLeón y col., 1992a), debido probablemente a la existencia de genes supresores localizados en los As. Sin embargo, la variante B 24 de la población de Torrox es de aparición reciente. En esta población, la variante neutral B 2 ha sido sustituida por la variante parasítica B24 (con acumulación) tras mutaciones cromosómicas que han hecho que la nueva variante tenga más ADNsat y menos ADNr que la anterior. Esta nueva variante se relacionó con un descenso de la fertilidad de los huevos pero aún así era transmitido por las hembras con una frecuencia del 70% (Zurita y col., 1998). De acuerdo con la dinámica evolutiva propuesta para los cromosomas B, la probable actuación de genes supresores de la acumulación sobre el cromosoma B24 ha eliminado la inicial capacidad de sobretransmisión de dicho B , neutralizándolo. 49 Los cromosomas B de E. plorans no tienen normalmente efectos sobre la eficacia biológica de sus portadores, exceptuando la reducción significativa en la fertilidad de los huevos producida por B24 en su fase parasítica (Zurita y col. 1998). Estudios realizados en poblaciones de Granada con B 2 pusieron de manifiesto que esta variante no tiene efectos sobre la frecuencia de cópula (López-León y col., 1992b), el tamaño de la puesta, la fertilidad de los huevos ni la viabilidad desde el embrión hasta adulto (Camacho y col., 1997). De ahí que se denomine a este tipo de Bs “casi-neutros”. Debido a las secuencias altamente repetidas que portan, los cromosomas B son heterocromáticos en esta especie. Durante mucho tiempo se pensó que el B de E.plorans era genéticamente inactivo, hasta que Cabrero y col. (1987) encontraron un individuo donde muchas de sus células en diplotene mostraban un nucleolo asociado a la región distal del cromosoma B2 que se había fusionado con el autosoma más largo del complemento. Tras este hallazgo, Teruel y col. (2007, 2009) estudiaron, mediante impregnación argéntica, diplotenes de machos de la población de Torrox, y vieron que la NOR del B24 aparecía recurrentemente activa. Además, analizaron el área nucleolar de los diferentes cromosomas con NOR activa y encontraron que, tanto si el B estaba activo como si no, el área nucleolar total de la célula permanecía constante. También Teruel (2009) obtuvo las secuencias del cistrón de ADNr de individuos con y sin cromosoma B, así como la localizada en los cromosomas X y B de E.plorans, previa microdisección de estos dos tipos cromosómicos. Los resultados condujeron al hallazgo de la inserción diferencial de una adenina en la ITS2 del ADNr amplificado a partir del cromosoma B y que, por tanto, no aparecía en el resto de secuencias analizadas correspondientes a los cromosomas A. Este hallazgo supuso realmente el inicio de la presente tesis. Referencias Abdelaziz M, Teruel M, Chobanov D, Camacho JP, Cabrero J (2007) Physical mapping of rDNA and satDNA in A and B chromosomes of the grasshopper Eyprepocnemis plorans from a Greek population. Cytogenet Genome Res 119:143-6 Alper I, Frenette M, and Labrie S (2011) Ribosomal DNA polymorphisms in the yeast Geotrichum candidum. Fungal Biol 115(12):1259-1269 Alvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417-434 Amos A, Dover G (1981) The distribution of repetitive DNAs between regular and supernumerary chromosomes in species of Glossina (Tsetse): a two-step process in the origin of supernumeraries. Chromosoma 81:673-690 Averbeck KT, Eickbush TH (2005) Monitoring the mode and tempo of concerted evolution in Drosophila melanogaster rDNA locus. Genetics 171:1837-1846 Bakkali M (2001) Tesis Doctoral: Evolución de los cromosomas B del saltamontes Eyprepocnemis plorans en Marruecos. Universidad de Granada. Bakkali M, Cabrero J, López-León MD, Perfectti F, Camacho JPM (1999) The B chromosome polymorphism of the grasshopper Eyprepocnemis plorans in North Africa. I. B variants and frequency. Heredity 83:428-434 50 Introducción general y Objetivos Bakkali M, Perfectti F, and Camacho JP M (2002) The B chromosome polymorphism of the grasshopper Eyprepocnemis plorans in North Africa. II. Parasitic and neutralized B1 chromosomes. Heredity 88:14-18 Bakkali M, Camacho, JPM (2004) The B chromosome polymorphism of the grasshopper Eyprepocnemis plorans in North Africa: III. Mutation rate of B chromosomes. Heredity 92:428-433 Baroni S, Lopes CE, de Almeida-Toledo LF (2009) Cytogenetic characterization of Metynnis maculatus (Teleostei; Characiformes): the description in Serrasalminae of a small B chromosome bearing inactive NOR-like sequences. Caryologia 62:95-101 Battaglia E (1964) Cytogenetics of B-chromosomes. Caryologia 17:245-299 Bell G, Burt A (1990) B chromosomes: germ-line parasites which induce changes in host recombination. Parasitology 100:S19-S26 Beukeboom LW (1994a) Bewildering Bs: an impression of the 1st B-chromosome conference. Heredity 73:328-336 Bidau CJ, Rosato M, Martí DA (2004) FISH detection of ribosomal cistrons and assortment-distortion for X and B chromosomes in Dichroplus pratensis (Acrididae). Cytogenet Genome Res 106:295-301 Bik HM, Fournier D, Sung W, Bergeron RD, Thomas WK (2013) Intra-Genomic Variation in the Ribosomal Repeats of Nematodes. PLoS ONE 8(10): e78230. doi:10.1371/journal.pone.0078230 Blaalid R, Carlsen TOR, Kumar S, Halvorsen R, Ugland KI, Fontana G, Kauserud H (2012) Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing. Molecular Ecology 21:1897-1908 Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk PM, Kauserud H (2013) ITS1 versus ITS2 as DNA metabarcodes for fungi. Molecular Ecology 21:1897-1908 Boeskorov GG, Kartavtseva IV, Zagorodniuk IV, Belianin AN, Liapunova EA (1995) Nucleolus organizer regions and B-chromosomes of field mice (Mammalia, Rodentia, Apodemus). Genetika 31(2):185-192 Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574-585 Boothroyd JC, Wang A, Campbell DA, Wang CC (1987) An unusually compact ribosomal DNA repeat in the protozoan Giardia lamblia. Nucleic Acids Res 15:4065-4084 Bosemark NO (1954) On accessory chromosomes in Festuca pratensis. Hereditas 40:346-376 Boulon S, Westman BJ, Hutten S, Boisvert F-M, Lamond AI (2010) The nucleolus under stress. Mol Cell 40:216-227 Boyes JM, Van Brink JM (1967) Chromosomes of Shyrpidae III. Karyotypes of some species in the trihes Milesiini and Myoleptini. Chromosoma 22:417-455 Bridge PD, Spooner BM, Roberts PJ (2005) The impact of molecular data in fungal systematics. Adv Bot Res 42:33-67 Brockhouse C, Bas JAB, Fereday RM, Strauss NA (1989) Supernumerary chromosomes evolution in the Simulium vernum group (Diptera: Simulidae). Genome 32:516-521 Brown DD, Wensink PC, Jordan E (1972) A comparison of the ribosomal DNA’s of Xenopus laevis and Xenopus mulleri: the evolution of tandem genes. J Mol Biol 63:57-73 51 Burt A, Trivers R (2006) Genes in conflict: the biology of selfish genetic elements. Belknap Press of Harvard University Press (Cambridge) Cabrero J, Alché JD, Camacho JPM (1987) Effects of B chromosomes of the grasshopper Eyprepocnemis plorans on nucleolar organiser regions activity. Activation of a latent NOR on a B chromosome fused to an autosome. Genome 29:116-121 Cabrero J, López-León MD, Gómez R, Castro AJ, Martín-Alganza A, Camacho JPM (1997) Geographical distribution of B chromosomes in the grasshopper Eyprepocnemis plorans, along a river basin, is mainly shaped by non-selective historical events. Chromosome Res 5:194-198 Cabrero J, López-León MD, Bakkali M, Camacho JPM (1999). Common origin of B chromosome variants in the grasshopper Eyprepocnemis plorans. Heredity 83:435-439 Cabrero J, Bakkali M., Bugrov,A, Warchalowska-Sliwa E, López-León MD, Perfectti F, Camacho JPM (2003) Multiregional origin of B chromosomes in the grasshopper Eyprepocnemis plorans. Chromosoma 112:207-211 Cabrero J, Bakkali M, Navarro-Domínguez B, Ruíz-Ruano FJ, Martín-Blázquez R, López-León MD, Camacho JPM (2013) The Ku70 DNA-repair protein is involved in centromere function in a grasshopper species. Chromosome Research 21:393-406 Camacho JPM, Shaw MW, López–León MD, Pardo MC, Cabrero J (1997) Population dynamics of a selfish B chromosome neutralized by the standard genome in the grasshopper Eyprepocnemis plorans. Am Nat 149:1030-1050 Camacho JPM, Carballo AR, Cabrero J (1980) The B-chromosome system of the grasshopper Eyprepocnemis plorans subsp. plorans (Charpentier). Chromosoma 80:163-166 Camacho JPM, Sharbel TF, Beukeboom LW (2000) B chromo- some evolution. Phil Trans R Soc Lond B 355:163-178 Camacho JPM, Bakkali M, Corral JM, Cabrero J, López-León MD, Aranda I, MartínAlganza A, Perfectti F (2002) Host recombination is dependent on the degree of parasitism. Proc R Soc Lond Ser B 269:2173-2177 Camacho JPM, Cabrero J, López-León MD, Bakkali M, Perfectti F (2003) The B chromosomes of the grasshopper Eyprepocnemis plorans and the intragenomic conflict. Genetica 117:77-84 Camacho JPM (2005) B chromosomes. In: Gregory TR (ed) The evolution of the genome. Academic Press, New York, pp 223-286 Cano MI, Santos JL (1989) Cytological basis of the B chromosome accumulation mechanism in the grasshopper Heteracris littoralis (Ramb). Heredity 62:91-95 Carchilan M, Delgado M, Ribeiro T, Costa-Nunes P, Caperta A et al (2007) Transcriptionally active heterochromatin in rye B chromosomes. Plant Cell 19:1738-1749 Carchilan M, Kumke K, Mikolajewski S, Houben A (2009) Rye B chromosomes are weakly transcribed and might alter the transcriptional activity of A chromosome sequences. Chromosoma 118:607-616 Charlesworth B, Langley CH, Stephan W (1986) The evolution of restricted recombination and the accumulation of repeated DNA sequences. Genetics 112:947-962 Coleman AW (2003) ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends in Genetics 19:370-375 52 Introducción general y Objetivos Crocker J, Boldy DA, Egan MJ (1989) How should we count AgNORs? Proposals for a standardized approach. The Journal of pathology 158:185-188 Delany ME, Muscarella DE, Bloom SE (1994) Effects of rRNA gene copy number and nucleolar variation on early development: inhibition of gastrulation in rDNAdeficient chick embryos. J Hered 85:211-217 Dammann R, Lucchini R, Koller T, Sogo JM (1995) Transcription in the yeast rRNA gene locus: distribution of the active gene copies and chromatin structure of their flanking regulatory sequences. Mol Cell Biol 15:5294-5303 Derenzini M, Nardi F, Farabegoli F, Ottinetti A, Roncaroli F, Bussolati G (1989) Distribution of silver-stained interphase nucleolar organizer regions as a parameter to distinguish neoplastic from nonneoplastic reactive cells in human effusions. Acta Cytol 33:491-498 Derenzini M, Ploton D (1990) Interphase nucleolar organizer regions in cancer cells. International review of experimental pathology 32:149-192 Derenzini M (2000) The AgNORs. Micron 31:117-120 Dhar MK, Friebe B, Koul AK, Gill BS (2002) Origin of an apparent B chromosome by mutation, chromosome fragmentation and specific DNA sequence amplification. Chromosoma 111:332-340 Dherawattana A, Sadanaga K (1973) Cytogenetics of a crown rust-resistant hexaploid oat with 42+ 2 fragment chromosomes. Crop Science 13:591-594 Dirsh VM (1958) Revision of the genus Eyprepocnemis Fieber, 1853 (Orthoptera: Acridoidea). Proc R Entomol Soc Lond 27:33-45 Eickbush DG, Eickbush TH, Werren JH (1992) Molecular characterization of repetitive DNA sequences from a B chromosome. Chromosoma 101:575-583 Eickbush TH, Burke WD, Eickbush DG, Lathe WC (1997) Evolution of R1 and R2 in the rDNA units of the genus Drosophila. Genetica 100(1-3):49-61 Eickbush TH, Eickbush DG (2007) Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175(2):477-485 Feliner GN, Larena BG, a Aguilar JF (2004) Fine-scale geographical structure, intraindividual polymorphism and recombination in nuclear ribosomal internal transcribed spacers in Armefia (Plumbaginaceae). Ann Bot 93:189-200 Fox DP, Hewitt GM, Hall DJ (1974) DNA replication and RNA transcription of euchromatic and heterocromatic chromosome regions during grasshopper meiosis. Chromosoma 45:43-62 Franks TK, Houben A, Leach CR, Timmis JN (1996) The molecular organisation of a B chromosome tandem repeat sequence from Brachycome dichromosomatica. Chromosoma 105(4):223-30 French SL, Osheim YN, Cioci F, Nomura M, Beyer AL (2003) In exponentially growing Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA polymerase I loading rate rather than by the number of active genes. Mol Cell Biol 23:1558-1568 Fröst S (1957) The inheritance of the accessory chromosomes in Centaurea scabiosa. Hereditas 43:403-422 Gangloff S, Zou H, Rothstein R (1996) Gene conversion plays the major role in controlling the stability of large tandem repeats in yeast. The EMBO Journal 15:1715-1725 Ganley ARD, Scott B (1998) Extraordinary ribosomal spacer length heterogeneity in a Neotyphodium endophyte hybrid: Implications for concerted evolution. Genetics 150:1625-1637 53 Ganley ARD, Scott B (2002) Concerted evolution in the ribosomal RNA genes of an Epichloë endophyte hybrid: Comparison between tandemly-arranged rDNA and dispersed 5S rrn genes. Fungal Gene Bio 35:39-51 Ganley ARD, Kobayashi T (2007) Highly efficient concerted evolution in the ribosomal DNA repeats: total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Research 17:184-191 Gébrane-Younès J, Fomproix N, Hernandez-Verdun D (1997) When rDNA transcription is arrested during mitosis, UBF is still associated with noncondensed rDNA. J Cell Sci 110:2429-2440 Gojobori T, Nei M (1984) Concerted evolution of the immunoglobulin VH gene family. Molecular biology and evolution 1:195-212 Goodpasture C, Bloom SE (1975) Visualization of nucleolar organizer regions in mammalian chromosomes using silver staining. Chromosoma 53:37-50 Green DM (1988) Cytogenetics of the endemic New Zealand frog, Leiopelma hochstetteri: extraordinary supernumerary chromosome variation and a unique sex-chromosome system. Chromosoma 97:55-70 Green DM (1990) Muller's Ratchet and the evolution of supernumerary chromosomes. Genome 33:818-824 Green DM, Zeyl CW, Sharbel TF (1993) The evolution of hypervariable sex and supernumerary (B) chromosomes in the relict New Zealand frog, Leiopelma hochstetteri. Journal of evolutionary biology 6:417-441 Grummt I (2013) The nucleolus, guardian of celular homeostasis and genome integrity. Chromosoma. doi10.1007/s00412-013-0430-0 Gutknecht J, Sperlich D, Bachmann L (1995) A species specific satellite DNA family of Drosophila subsilvestris appearing predominantly in B chromosomes. Chromosoma 103:539-544 Hackstein JHP, Hochstenbach R, Hauschteck-Jungen E, Beukeboom LW (1996) Is the Y chromosome of Drosophila an evolved supernumerary chromosome? BioEssays 18:317-323 Hakansson A (1945) Überzählige chromosomen in einer rasse von Godetia nutans. Hiorth Bot Notiser 2:1-19 Hakansson A (1948) Behaviour ol accessory rye chromosomes in the embryo-sac. Hereditas 34:35-59 Heitz E (1931) Die Ursache der gesetzmässigen Zahl, Lage, From und Grösse pflanzlicher Nukleolen. Planta 12:775-844 Henriques-Gil N, Santos JL, Arana P (1984) Evolution of a complex polymorphism in the grasshopper Eyprepocnemis plorans. Chromosoma 89:290-293 Henriques-Gil N, Arana P (1990) Origin and substitution of B chromosomes in the grasshopper Eyprepocnemis plorans. Evolution 44:747-753 Hernández F, Presa JJ (1984) Sobre la biología de Eyprepocnemis plorans (Charpentier, 1825) (Orthoptera: Acrididae), en la huerta de Murcia (S.E. España). Bol Serv Plagas 10:245-249 Hernandez-Verdun D, Roussel P, Gébrane-Younès J (2002) Emerging concepts of nucleolar assembly. J Cell Sci 115:2265-2270 Hernandez-Verdun D, Roussel P, Thiry M, Sirri V, Lafontaine DLJ (2010) The nucleolus: structure/function relationship in RNA metabolism. Wires RNA 1:415431 Herrera JA, López-León MD, Cabrero J, Shaw MW, Camacho JPM (1996) Evidence for B chromosome drive suppression in the grasshopper Eyprepocnemis plorans. Heredity 76:633-639 54 Introducción general y Objetivos Hewitt GM, John B (1967) The B-chromosome system of Myrmeleotettix maculatus (Thunb.) III. The statistics. Chromosoma 21:140-162 Hewitt GM (1973a) The integration of supernumerary chromosomes into the orthopteran genome. Cold Spring Harbour Symp Quant Bio 38:183-194 Hewitt GM (1976) Meiotic drive for B chromosomes in the primary oocytes of Myrmeleotettix maculatus (Orthoptera: Acrididae). Chromosoma 56:381-391 Hewitt GM (1979) Grasshopper and crickets. In “Animal Cytogenetics”, vol. 3: Insecta 1 Orthoptera (ed. B. John), 170 pp. Berlin Stuttgart: Gebruder Borntraeger Highett MI, Beven AF, Shaw PJ (1993) Localization of 5 S genes and transcripts in Pisum sativum nuclei. J Cell Sci 105:1151-1158 Hiscox JA (2007) RNA viruses: hijacking the dynamic nucleolus. Nat Rev Microbiol 5:119-127 Holliday R (1987) The inheritance of epigenetic defects. Science 238:163-170 Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Molecular Ecology 10:1855-1871 Hřibová E, Čížková J, Christelová P, Taudien S, de Langhe E, Doležel J (2011) The ITS1-5.8S-ITS2 sequence region in the Musaceae: structure, diversity and use in molecular phylogeny. PLoS One 6(3):e17863. doi: 10.1371/journal.pone.0017863 Houben A, Kynast RG, Heim U, Hermann H, Jones RN, Forster JW (1996) Molecular cytogenetic characterisation of the terminal heterochromatic segment of the B chromosome of rye (Secale cereale). Chromosoma 105:97-103 Houben A, Belyaev ND, Leach CR, Timmis JN (1997) Differences of histone H4 acetylation and replication timing between A and B chromosomes of Brachycome dichromosomatica. Chromosome Research 5:233-237 Huang S, Rothblum LI, Chen D (2006) Ribosomal chromatin organization. Biochem Cell Biol 84:444-44 Hudson LA, Ciborowski JJH (1996) Teratogenic and genotoxic responses of larval Chironomus salinarius group (Diptera: Chironimidae) to contaminated sediment. Environ Toxicol Chem 15:1375-1381 Ide S, Miyazaki T, Maki H, Kobayashi T (2010) Abundance of ribosomal RNA gene copies maintains genome integrity. Science 327:693-696 Ishak B, Jaafar H, Maetz JL, Rumpler Y (1991) Absence of transcriptional activity of the B-chromosome of Apodemus peninsulae during pachytene. Chromosoma 100:278-281 Jackson RC, Newmark KP (1960) Effect of supernumerary chromosome on production of pigment in Haplopappus gracilis. Science 132:1316-1317 James TC, Elgin SC (1986) Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6:3862-3872 James SA, O’Kelly MJT, Carter DM, Davey RP, Van Oudenaarden A, and Roberts IN (2009) Repetitive sequence variation and dynamics in the ribosomal DNA array of Saccharomyces cerevisiae as revealed by whole genome resequencing. Genome Res 19:626-635 Jamilena M, Ruiz–Rejón C, Ruiz–Rejón M (1994) A molecular analysis of the origin of the Crepis capillaris B chromosome. J. Cell Sci 107:703-708 Jamilena M, Garrido-Ramos M, Ruiz-Rejón M, Ruiz-Rejón , Parker JS (1995) Characterisation of repeated sequences from microdissected of Crepis capillaris. Chromosoma 104(2):113-120 55 Jimenez MM, Romera F, González-Sánchez M, Puertas MJ (1997) Genetic control of the rate of transmission of rye B chromosomes. III. Male meiosis and gametogenesis. Heredity 78:636-644 John B, Hewitt GM (1965) The B chromosome system of Myrmeleotettix maculatus (Thunb.), I. The mechanics. Chromosoma 16:548-578 Jones RN, Rees H (1982) B chromosomes. New York: Academic Press Jones RN, Puertas MJ (1993) The B-chromosomes of rye (Secale cereale L.). In: Frontiers in Plant Science Research, eds. KK Dhir and TS Sareen. Delhi: Bhagwati Enterprises, pp. 81-112 Jones RN (1995) Tansley review no. 85: B chromosomes in plants. New Phytol 131:411-434 Jones RN, Viegas W, Houben A (2008) A century of B chromosomes in plants: So what? Annals of Botany 101:767-775 Kafatos FC, Orr W, Delidakis C (1985) Developmentally regulated gene amplification. Trends in Genet 1:301-306 Kảrén O, Högberg N, Dahlberg A, Jonsson L, Nylund JE (1997) Inter-and intraspecific variation in the ITS region of rDNA of ectomycorrhizal fungi in Fennoscandia as detected by endonuclease analysis. New Phytologist 136:313-325 Kauserud H, Schumacher T (2002) Population structure of the endangered wood decay fungus Phellinus nigrolimitatus (Basidiomycota). Canadian journal of botany 80:597-606 Kayano H (1957). Cytogenetic studies in Lillium callosum. III. Preferential segregation of a supernumerary chromosome in EMCs. Proc Jap Acad 33:553-558 Kayano H (1971). Accumulation of B chromosomes in the germ-line of Locusta migratoria. Heredity 27:119-123 Keller A, Förster F, Müller T, Dandekar T, Schultz J, Wolf M (2010) Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees. Biology Direct 5:4. doi: 10.1186/1745-6150-5-4 Kenton A (1991) Heterochromatin accumulation, disposition and diversity in Gibasis karwinskyana (Commelinaceae). Chromosoma 100:467-478 Keyl HG, Hägele K (1971) B-Chromosomen bei Chironomus. Chromosoma 35:403-417 Ki JS, Han MS (2007) Cryptic long internal repeat sequences in the ribosomal DNA ITS1 gene of the dinoflagellate Cochlodinium polykrikoides (dinophyceae): a 101 nucleotide six-repeat track with a palindrome-like structure. Genes and genetic systems 82:161-166 Knibiehler B, Mirre C, Rosset R (1982) Nucleolar organizer structure and activity in a nucleolus without fibrillar centres: the nucleolus in an established Drosophila cell line. Journal of cell science 57:351-364 Knibiehler B, Mirre C, Navarro A, Rosset R (1984) Studies on chromatin organization in a nucleolus without fibrillar centres. Cell and tissue research 236:279-288 Kobayashi T, Heck DJ, Nomura M, Horiuchi T (1998) Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes and development 12:3821-3830 Kobayashi T (2008) A new role of the rDNA and nucleolus in the nucleus--rDNA instability maintains genome integrity. Bioessays 30:267-272 Kobayashi, T (2011) Regulation of ribosomal RNA gene copy number and its role in modulating genome integrity and evolutionary adaptability in yeast. Cell Mol Life Sci 68:1395-1403 56 Introducción general y Objetivos Kovarik A, Pires JC, Leitch AR, Lim KY, Sherwood AM, Matyasek R, Rocca J, Soltis DE, and Soltis, PS (2005) Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploids of recent and recurrent origin. Genetics 169:931-944 Kuwada Y (1915) Übe rdie Chromosomenzahl von Zea Mays L. Bot. Mag. Tôkyô 29:83-89 Langerstedt S (1949) Cytological studies on the protein metabolism of the liver in the rat. Acta Anat Suppl 9:1–140 Lamb JC, Riddle NC, Cheng YM, Theuri J, Birchler JA (2007) Localization and transcription of a retrotransposon-derived element on the maize B chromosome. Chromosome research 15:383-398 Leach CR, Donald TM, Franks TK, Spiniello SS, Hanrahan CF, Timmis JN (1995) Organisation and origin of a B chromosome centromeric sequence from Brachycome dichromosomatica.Chromosoma 103(10):708-714 Leach CR, Houben A, Bruce F, Pistrick K, Demidov D et al (2005) Molecular evidence for transcription of genes on a B chromosome in Crepis capillaris. Genetics 171:269-278 Li Y, Jiao L, and Yao YJ (2013) Non-concerted ITS evolution in fungi, as revealed from the important medicinal fungus Ophiocordyceps sinensis. Mol Phylogenet Evol 68(2):373-379 Liao D, Pavelitz T, Kidd JR, Kidd KK, Weiner AM (1997) Concerted evolution of the tandemly repeated genes encoding human U2 snRNA (the RNU2 locus) involves rapid intrachromosomal homogenization and rare interchromosomal gene conversion. EMBO J 16:588-598 Lidner DL, Carlesen T, Henrik Nilsson R, Davey M, Schumacher T, Kauserud H (2013) Employing 454 amplicon pyrosequencing to reveal intragenomic divergence in the internal transcribed spacer rDNA region in fungi. Ecol Evol 3(6):1751-1764 Long EO, David IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727764 López-Fernández C, Mezzanotte R, Gosálvez J (1992) Autosomal, sex and B chromosomes in Eyprepocnemis plorans (Orthoptera) viewed with restriction endonuclease in situ digestion. Heredity 68:365-372 López-León MD, Cabrero J, Camacho JPM (1991) A nucleolus organizer region in a B chromosome inactivated by DNA methylation. Chromosoma 100:134-138 López-León MD, Cabrero J, Camacho JPM, Cano MI, Santos JL (1992a) A widespread B chromosome polymorphism maintained without apparent drive. Evolution 46:529-539 López-León MD, Pardo MC, Cabrero J, Camacho JPM (1992b) Random mating and absence of sexual selection for B chromosomes in two natural populations of the grasshopper Eyprepocnemis plorans. Heredity 69:558-561 López–León MD, Cabrero J, Pardo MC, Viseras E, Camacho JPM, Santos JL (1993) Generating high variability of B chromosomes in the grasshopper Eyprepocnemis plorans. Heredity 71:352-362 López-León MD, Neves N, Schwarzacher T, Heslop-Harrison TS, Hewitt GM, Camacho JPM (1994). Possible origin of a B chromosome deduced from its DNA composition using double FISH technique. Chromosome Res 2:87-92 López-León MD, Cabrero J, Camacho JPM (1995) Changes in DNA methylation during development in the B chromosome NOR of the grasshopper Eyprepocnemis plorans. Heredity 74:296-302 57 López-León MD, Cabrero J, Dzyubenko VV., Bugrov AG, Karamysheva TV, Rubtsov NB, Camacho JPM (2008) Differences in ribosomal DNA distribution on A and B chromosomes between eastern and western populations of the grasshopper Eyprepocnemis plorans plorans. Cytogenet genome Res 121:260-265 Lucov Z, Nur U (1973) Accumulation of B-chromosomes by preferential segregation in females of the grasshopper Melanoplus femur-rubrum. Chromosoma 42:289-306 Lyckegaard EM, Clark AG (1991) Evolution of ribosomal RNA gene copy number on the sex chromosomes of Drosophila melanogaster. Mol Biol Evol 8(4):458-474 Martis MM, Klemme S, Banaei-Moghaddam AM, Blattner FR, Macas J, Schmutzer T, Scholz U, Gundlach H, Wicker, T, Šimková H, Novák P, Neumann,P, Kubaláková M, Bauer E, Haseneyer G, Fuchs J, Doležel J, Stein N, Mayer KFX, Houben A (2012) Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc Natl Acad Sci USA 109:13343-13346 Maruyama S, Misumi O, Ishii Y, Asakawa S, Shimizu A, Sasaki T, Matsuzaki M, Shini T, Nozaki H, Kohara Y (2004) The minimal eukaryotic ribosomal DNA units in the primitive red alga Cyanidioschyzon merolae. DNA research 11:83-91 Mayol M, Rosselló JA (2001) Why nuclear ribosomal DNA spacers (ITS) tell different stories in Quercus. Mol Phylogenet Evol 19:167-176 Matyášek R, Renny-Byfield S, Fulneček J, Macas J, Grandbastien MA, Nichols R, Leitch A, Kovařík A (2012) Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids. BMC genomics 13:722. doi: 10.1186/1471-2164-13-722 Mayer C, Grummt I (2005) Cellular Stress and Nucleolar Function. Cell Cycle 4(8):1036-1038 McAllister BF, Werren JH (1997) Hybrid origin of a B chromosome (PSR) in the parasitic wasp Nasonia vitripennis. Chromosoma 106:243-253 McClintock DJL (1934) The relation of a particular chromosomal element to the development of the nucleoli in Zea mays. Z Zellforsch Mikrosk Anat 21:294-328 McTaggart SJ, Dudycha JL, Omilian A, Crease TJ (2007) Rates of recombination in the ribosomal DNA of apomictically propagated Daphnia obtusa lines. Genetics 175:311-320 Mestriner CA, Galetti PM, Valentini SR, Ruiz IR, Abel LD, Moreira-Filho O, Camacho JPM (2000) Structural and functional evidence that a B chromosome in the characid fish Astyanax scabripinnis is an isochromosome. Heredity 85:1.9 Miao VP, Covert SF, VanEtten HD (1991a) A fungal gene for antibiotic resistance on a dispensable (‘B’) chromosome. Science 254:1773-1776 Miao VP, Matthews DE, VanEtten HD (1991b) Identification and chromosomal locations of a family of cytochrome P-450 genes for pisatin detoxification in the fungus Nectria haematococca. Mol Gen Genet 226:214-223 Montiel EE, Cabrero J, Camacho JPM, López-León MD (2012) Gypsy, RTE and Mariner transposable elements populate Eyprepocnemis plorans genome. Genetica 140:365-374 Mosgoeller W (2004) Nucleolar ultrastructure in vertebrates. In Olson MOJ, ed. The Nucleolus. New York: Kluwer. pp 10-20 Müntzing A (1944) Cytological studies of extra fragment chromosomes in rye. I. Isofragments produced by misdivision. Hereditas 30:231-248 Müntzing A (1948) Accessory chromosomes in Poa alpina. Herediy 2:4941 58 Introducción general y Objetivos Muñoz-Pajares AJ, Martínez-Rodríguez L, Teruel M, Cabrero J, Camacho JPM, Perfectti F (2011) A single, recent origin of the accessory B chromosome of the grasshopper Eyprepocnemis plorans. Genetics 187:853-863 Nei M, Hughes AL (1991) in Evolution at the Molecular Level, eds. Selander R, Clark A and Whittam T (Sinauer, Sunderland, MA), pp:222-247 Nei M, Hughes AL (1992) in 11th Histocompatibility Workshop and Conference, eds. Tsuji K, Aizawa M and Sasazuki T (Oxford Univ. Press, Oxford), Vol. 2, pp:2738 Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA 94(15):77997806 Nei M, Rogozin IB, and Piontkivska H (2000) Purifying selection and birth-and-death evolution in the ubiquitin gene family. Proc Natl Acad Sci USA 97(20):1086610871 Nemeth A, Guibert S, Tiwari VK, Ohlsson R, Langst G (2008) Epigenetic regulation of TTF-I-mediated promoter–terminator interactions of rRNA genes. EMBO J 27:1255-1265 Nicklas RB (1961) Recurrent pole-to-pole movements of the sex chromosome during prometaphase I in Melanoplus differentials spermatocytes. Chromosoma 12:97115 Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson KH (2008) Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evolutionary bioinformatics online 4:193-201 Nur U (1963) A mitotically unstable supernumerary chromosome with an accumulation mechanism in a grasshopper. Chromosoma 14:407-422 Nur U (1969) Mitotic instability leading to an acumulation of B-chromosomes in grasshoppers. Chromosoma 27:1-19 Nur U (1977) Maintenance of a "parasitic" B chromosome in the grasshopper Melanoplus femur–rubrum. Genetics 87:499-512 Nur U, Brett BLH (1985) Genotypes suppressing meiotic drive of a B chromosome in the mealy bug Pseudococcus obscurus. Genetics 110:73-92 Nur U, Brett BLH (1988) Genotypes affecting the condensation and transmission of heterochromatic B chromosomes in the mealy bug Pseudococcus affinis. Chromosoma 96:205-212 Ochs RL, Lischwe MA, Shen E, Caroll RE, Busch H (1985) Nucleologenesis: composition and fate of prenucleolar bodies. Chromosoma 92:330-336 Oliver JL, Posse F, Martínez-Zapater JM, Enriquez AM, Ruiz-Rejón M (1982) B chromosomes and E1 isoenzyme activity in mosaic bulbs of Scilla autumnalis. Chromosoma 85:399-403 Olson MOJ, Dundr M, Szebeni A (2000) The nucleolus: an old factory with unexpected capabilities. Trends Cell Biol 10:189-96 Olson MOJ (2004) Sensing cellular stress: another new function for the nucleolus? Sci STKE 2004(224):pe10 Ota T, Nei M (1994) Divergent evolution and evolution by the birth-and-death process in the immunoglobulin VH gene family. Mol Biol Evol 11(3):469-482 Östergen G (1945) Parasitic nature of extra fragment chromosomes. Bot Notiser 2:157163 Pederson T, Tsai RY (2009) In search of nonribosomal nucleolar protein function and regulation. J Cell Biol 184:771-776 59 Peppers JA, Wiggins LE, Baker RJ (1997) Nature of B chromosomes in the harvest mouse Reithrodontomys megalotis by fluorescence in situ hybridization (FISH). Chromosome Research 5:475-479 Perfectti F, Werren JH (2001) The interspecific origin of B chromosomes: experimental evidence. Evolution 55:1069-1073 Perfectti F, Pita M, De La Vega CG, Gosálvez J, Camacho JPM (2004) Spatio-temporal dynamics of a neutralized B chromosome in the grasshopper Eyprepocnemis plorans. Cytogenet genome Res 106:376-385 Peters GB (1981) Germ line polysomy in the grasshopper Atractomorpha similis. Chromosoma 81:593-617 Pettengill J, Neel M (2008) Phylogenetic patterns and conservation among North American members of the genus Agalinis (Orobanchaceae). BMC evolutionary biology 8:264 Pikaard CS (2000a) Nucleolar dominance: uniparental gene silencing on a multimegabase scale in genetic hybrids. Plant Mol Biol 43:163-177 Pikaard CS (2000b) The epigenetics of nucleolar dominance. Trends in Genetics 16:495-500 Pilotti M, Brunetti B, Tizzani L (2009) Platanus×acerifolia genotypes surviving to inoculation with Ceratocystis platani (the agent of canker stain): first screening and molecular characterization. Euphytica 169:1-7 Poletto AB, Ferreira IA, Martins C (2010) The B chromosomes of the African cichlid fish Haplochromis obliquidens harbour 18S rRNA gene copies. BMC Genet 11:1 Preuss S, Pikaard Cs (2007) rRNA gene silencing and nucleolar dominance: insights into a chromosome-scale epigenetic on/off switch. Biochimica et Biophysica Acta (BBA) Gene Structure and Expression 1769:383-392 Preuss SB, Costa-Nunes P, Tucker S, Pontes O, Lawrence RJ, Mosher R, Kasschau KD, Carrington JC, Baulcombe DC, Viegas W, Pikaard CS (2008) Multimegabase silencing in nucleolar dominance involves siRNA-directed DNA methylation and specific methylcytosine-binding proteins. Mol Cell 32:673-684 Prokopowich CD, Gregory TR, Crease TJ (2000) The correlation between rDNA copy number and genome size in eukaryotes. Genome 46:48-50 Puertas MJ (2002) Nature and evolution of B chromosomes in plants: A non-coding but information-rich part of plant genomes. Cytogenet Genome Res 96:198-205 Randolph IF (1928) Types of supernumerary chromosornes in maize. Anat Rec 41. 102 Raška I, Shaw PJ, Cmarko D (2006a) New Insights into Nucleolar Architecture and Activity. In: Kwang W Jeon (Ed.), International Review of Cytology. Academic Press, pp:177-235 Raška I, Shaw PJ, Cmarko D (2006b) Structure and function of the nucleolus in the spotlight. Current Opinion in Cell Biology 18:325-334 Rebollo E, Martin S, Manzanero S, Arana P (1998) Chromosomal strategies for adaptation to univalency. Chromosome Res 6:515-532 Reeder RH (1985) Mechanisms of nucleolar dominance in animals and plants. The Journal of cell biology 101:2013-2016 Reeder RH (1999) Regulation of RNA polymerase I transcription in yeast and vertebrates. Prog Nucleic Acid Res Mol Biol 62:193-327 Reed KM, Beukeboom LW, Eickbush DG, Werren JH (1994) Junctions between repetitive DNAs on the PSR chromosome of Nasonia vitripennis: association of palindromes with recombination. Journal of molecular evolution 38:352-362 Ritossa FM (1968) Unstable redundancy of genes for ribosomal RNA. Proc Natl Acad Sci USA 60:509-516 60 Introducción general y Objetivos Rogers SO, Bendich AJ (1987) Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Molecular Biology 9:509-520 Roman H (1948) Directed fertilization in maize. Proc Natl Acad Sci USA 34:36. Rooney AP, Ward TJ (2005) Evolution of a large ribosomal RNA multigene family in filamentous fungi: Birth and death of a concerted evolution paradigm. Proc Natl Acad Sci 102:5084-5089 Roussel P, Belenguer P, Amalric F, Hernandez-Verdun D (1992) Nucleolin is an AgNOR protein; this property is determined by its amino-terminal domain independently of its phosphorylation state. Exp Cell Res 203:259-269 Roussel P, Hernandez-Verdun D (1994) Identification of Ag-NOR proteins, markers of proliferation related to ribosomal gene activity. Exp Cell Res 214:465-472 Roussel P, Andre C, Comai L, Hernandez-Verdun D (1996) The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J Cell Biol 133:235-246 Rubbi CP, Milner J (2003) Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. The EMBO journal 22:6068-6077 Ruggero D, Pandolfi PP (2003) Does the ribosome translate cancer? Nature Reviews Cancer 3:179-192 Ruiz-Rejón M, Posse F, Oliver JL (1980) The B chromosome system of Scilla autumnalis (Liliaceae): Effects at the isozyme level. Chromosoma 79: 341-348 Ruiz-Ruano FJ, Ruiz-Estévez M, Rodríguez-Pérez J, López-Pino JL, Cabrero J, Camacho JPM (2011) DNA amount of X and B chromosomes in the grasshoppers Eyprepocnemis plorans and Locusta migratoria. Cytogenet genome Res 134:120-126 Rüschoff J, Plate KH, Contractor H, Kern S, Zimmermann R, Thomas C (1990) Evaluation of nucleolus organizer regions (NORs) by automatic image analysis: a contribution to standardization. The Journal of pathology 161:113-118 Sánchez-Gea J, Serrano J, Galián J (2000) Variability in rDNA loci in Iberian species of the genus Zabrus (Coleoptera: Carabidae) detected by fluorescence in situ hybridization. Genome 43:22-28 Santoro R, Li J, Grummt I (2002) The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nature genetics 32:393-396 Santos JL, Cerro AD, Fernández A, Díez M (1993) Meiotic behaviour of B chromosomes in the grasshopper Omocestus burri: A case of drive in females. Hereditas 118:139-143 Sapre AB, Deshpande DS (1987) Origin of B chromosomes in Coix L. through spontaneous interspecific hybridization. Journal of Heredity 78:191-196 Schartl M, Wilde B, Schlupp I, Parzefall J (1995) Evolutionary origin of a parthenoform, the Amazon molly Poecilia formosa, on the basis of a molecular genealogy. Evolution 827-835 Schmid M, Ziegler CG, Steinlein C, Nanda I, Schartl M (2006) Cytogenetics of the bleak (Alburnus alburnus), with special emphasis on the B chromosomes. Chromosome Res 14:231-242 Smith GP (1973) Unequal crossover and the evolution of multigene families. Symposia on Quantitative Biology, Vol. 38, pp:507-513 Schnare MN, Cook JR, Gray MW (1990) Fourteen internal transcribed spacers in the circular ribosomal DNA of Euglena gracilis. Journal of molecular biology 215:85-91 61 Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241-6246 Seifert KA (2009) Progress towards DNA barcoding of fungi. Mol Ecol Resour 9 (Suppl.1):83-89 Sharbel TF, Green DM, Houben A (1998) B-chromosome origin in the endemic New Zealand frog Leiopelma hochstetteri through sex chromosome devolution. Genome 41:14-22 Shaw MW, Hewitt GM (1985) The genetic control of meiotic drive acting on the B chromosome of Myrmeleotettix maculatus (Orthoptera: Acrididae). Heredity 54:259-268 Shaw PJ, Jordan EG (1995) The nucleolus. Annu Rev Cell Dev Biol 11:93-121 Simon UK, Weiss M (2008) Intragenomic variation of fungal ribosomal genes is higher than previously thought. Mol Biol Evol 25(11):2251-2254 Sirri V, Roussel P, Hernandez-Verdun D (2000) The AgNOR proteins: qualitative and quantitative changes during the cell cycle. Micron 31:121-126 Sirri V, Urcuqui-Inchima S, Roussel P, Hernandez-Verdun D (2008) Nucleolus: the fascinating nuclear body. Histochem Cell Biol 129:13-31 Skalicka K, Lim KY, Matyásek R, Koukalová B, Leitch AR, Kovarìk A (2003) Rapid evolution of parental rDNA in a synthetic tobacco allotetraploid line. Am J Bot 90: 988-996 Sollner-Webb B, Tower J (1986) Transcription of cloned eukaryotic ribosomal RNA genes. Annu Rev Genet 55:801-830 Song HX, Gao SP, Jiang MY, Liu GL, Yu XF, Chen QB (2012) The evolution and utility of ribosomal ITS sequences in Bambusinae and related species: divergence, pseudogenes, and implications for phylogeny. J Genet 91:129-139 Stage DE, Eickbush TH (2007) Sequence variation within the rRNA gene loci of 12 Drosophila species. Genome Res 17(12):1888-1897 Staub RW (1987) Leaf striping correlated with the presence of B chromosomes in maize. J Hered 78:71-74 Stephan W (1987) Quantitative variation and chromosomal location of satellite DNAs. Genet Res 50:41-52 Stevens B (1985) The fine structure of the nucleolus during mitosis in the grasshopper neuroblast cell. J Cell Biol 24:349-368 Stevens NM (1908) The chromosomes in Diabrotica vittata, Diabrotica soror and Diabrotica punctata. A contribution to the literature on heterochromosomes and sex determination. Journal of Experimental Zoology 5:453-470 Stewart FJ, Cavanaugh CM (2007) Intragenomic variation and evolution of the internal transcribed spacer of the rRNA operon in bacteria. J Mol Evol 65(1):44-67 Stitou S, Zurita F, Díaz de la Guardia R, Jiménez R, Burgos M (2004) Transmission analysis of B chromosomes in Rattus rattus from Northern Africa. Cytogenet Genome Res 106: 344-346 Szostak JW, Wu R (1980) Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae. Nature 284:426-430 Talavera M, López-León MD, Cabrero J, Camacho JPM (1990) Male germ line polysomy in the grasshopper Chorthippus binotatus: extra chromosomes are not transmitted. Genome 33:384-388 62 Introducción general y Objetivos Teruel M, Cabrero J, Perfectti F, Camacho JPM (2007) Nucleolus size variation during meiosis and NOR activity of a B chromosome in the grasshopper Eyprepocnemis plorans. Chromosome Res 15:755-765 Teruel M, Cabrero J, Perfectti F, Camacho JPM (2009) Quantitative analysis of NOR expression in a B chromosome of the grasshopper Eyprepocnemis plorans. Chromosoma 118:291-301 Teruel M, Cabrero J, Perfectti F, Camacho JPM (2010) B chromosome ancestry revealed by histone genes in the migratory locust. Chromosoma 119: 217–225 Thiry M, Lamaye F, Lafontaine DL (2011) The nucleolus: when 2 became 3. Nucleus 2:289-293 Trerè D, Migaldi M, Trentini GP (1995) Higher reproducibility of morphometric analysis over the counting method for interphase AgNOR quantification. Analytical cellular pathology: the journal of the European Society for Analytical Cellular Pathology 8:57 Trifonov VA, Dementyeva PV, Larkin DM, O’Brien PC, Perelman PL, Yang F, Ferguson-Smith MA, Graphodatsky AS (2013) Transcription of a protein-coding gene on B chromosomes of the Siberian roe deer (Capreolus pygargus). BMC biology 11:1-11 Tsang CK, Bertram PG, Ai W, Drenan R, Zheng XF (2003) Chromatin-mediated regulation of nucleolar structure and RNA Pol I localization by TOR. EMBO J 22:6045-6056 Tucker S, Vitins A, Pikaard CS (2010) Nucleolar dominance and ribosomal RNA gene silencing. Current Opinion in Cell Biology 22:351-356 Van Heerikhuizen H, Ykema A, Klootwijk J, Gaillardin C, Ballas C, Fournier P (1985) Heterogeneity in the ribosomal RNA genes of the yeast Yarrowia lipolytica; cloning and analysis of two size classes of repeats. Gene 39:213-222 van Vugt JJFA, de Nooijer S, Stouthamer R, de Jong H (2005) NOR activity and repeat sequences of the paternal sex ratio chromosome of the parasitoid wasp Trichogramma kaykai. Chromosoma 114:410-419 Viseras E, Camacho JPM, Cano MI, Santos JL (1990) Relationship between mitotic instability and accumulation of B chromosomes in males and females of Locusta migratoria. Genome 33:23-29 Volkov RA, Komarova NY, Hemleben V (2007) Ribosomal DNA in plant hybrids: inheritance, rearrangement, expression. Systematics and Biodiversity 5:261-276 Volobuev VT, Timina Ni (1980) Unusually high number of B-chromosomes and mosaicism among them in the Asiatic forest mouse Apodemus peninsulae (Rodentia, Muridae)]. Tsitol Genet 14(3):43-45 Vossbrinck CR, Woese CR (1986) Eukaryotic ribosomes that lack a 5.8S RNA. Nature 320:287-288 Vydryakova GA, Van DT, Shoukouhi P, Psurtseva NV, Bissett J (2012) Intergenomic and intragenomic ITS sequence heterogeneity in Neonothopanus nambi (Agaricales) from Vietnam. Mycology 3:89-99 Werren JH (1991) The paternal sex ratio chromosome of Nasonia. Am Nat 137:392-402 White MJD (1973) Animal Cytology and Evolution. 3rd ed. London: Cambridge University Press. Wilson EB (1907) The supernumerary chromosomes of Hemiptera. Science 26: 870871 Wolf KW, Mertl HG, Traut W (1991) Structure, mitotic and meiotic behaviour, and stability of centromere-like elements devoid of chromosome arms in the fly Megaselia scalaris (Phoridae). Chromosoma 101:99-108 63 Wörheide G, Nichols SA, Goldberg J (2004) Intragenomic variation of the rDNA internal transcribed spacers in sponges (Phylum Porifera): implications for phylogenetic studies. Mol Phylogenet Evol 33(3):816-830 Ziegler CG, Lamatsch DK, Steinlein C, Engel W, Schartl M, Schmid M (2003) The giant B chromosome of the cyprinid fish Alburnus alburnus harbours a retrotransposon-derived repetitive DNA sequence. Chromosome Res 11:23-35 Zimmer EA, Martin SL, Beverley SM, Kan YW, Wilson, AC (1980) Rapid duplication and loss of genes coding for the alpha chains of hemoglobin. Proc Natl Acad Sci USA 77: 2158-2162 Zurita S, Cabrero J, López-León MD, Camacho JPM (1998) Polymorphism regeneration for a neutralized selfish B chromosome. Evolution 52:274-277 64 Introducción general y Objetivos Objetivos - Objetivos generales: 1. Esta tesis doctoral tiene como objetivo general averiguar si la secuencia del ADN ribosómico que albergan los cromosomas B del saltamontes Eyprepocnemis plorans permite diferenciarlo del localizado en los cromosomas A y, en ese caso, averiguar si el ARNr del B es funcional, en qué grado y en qué partes del cuerpo se expresa, así como el significado biológico de los transcritos que aportan los cromosomas B. Para ello, nos hemos propuesto analizar los siguientes objetivos específicos: - Objetivos específicos: 2. Desarrollar un método molecular para detectar molecularmente los transcritos procedentes del ADNr de los cromosomas B, diseñando para ello cebadores y programas de PCR específicos. Para probar el método, analizaremos citogenética y molecularmente la expresión del ADNr del cromosoma B 24 en machos y hembras de la población de Torrox (Málaga). 3. Caracterizar mediante doble FISH, con sondas de ADNr y ADNsat, los tipos de Bs existentes en poblaciones de la región mediterránea occidental, con el fin de seleccionar un grupo de poblaciones con diferentes tipos de cromosomas B (ver objetivo siguiente). 4. Averiguar si otros tipos de cromosomas B, además de B 24, expresan su ADNr y con qué frecuencia. Para ello, analizaremos una serie de poblaciones españolas portadoras de otras variantes tales como B1, B 2 y B5. Bajo la hipótesis de que los Bs son de origen reciente en esta especie, cabría esperar que todas las variantes mantuviesen la capacidad de expresar su ADNr. Analizaremos, por tanto, si éste está activo en las otras variantes y en qué grado se expresa. 5. Averiguar si los cromosomas B están presentes en todas las partes del cuerpo de un mismo individuo. Para ello, utilizaremos el método molecular desarrollado en el objetivo 1, y también un marcador molecular específico del B, desarrollado anteriormente. 6. Para averiguar si los cromosomas B de E. plorans son mitóticamente estables, es decir, si se encuentran en el mismo número en todos los tejidos de un mismo individuo, intentaremos cuantificar el número de copias del ADNr específico del cromosoma B en diferentes machos de dos poblaciones diferentes, así como en diferentes partes del cuerpo de varios individuos. Para ello, utilizaremos el método molecular anteriormente descrito pero, en este caso, cambiando el cebador forward para que el fragmento amplificado sea de menor tamaño y se ajuste así a los requerimientos técnicos de la PCR cuantitativa (qPCR). 65 7. Averiguar si el ADNr de los cromosomas B se expresa en grados similares en diferentes partes del cuerpo de los mismos individuos donde previamente hemos visualizado citológicamente la formación de nucleolos por parte de los cromosomas B. 8. Para intentar averiguar las razones por las que el ADNr de los cromosomas B está normalmente inactivo, intentaremos disminuir el nivel de expresión de HP1 (Heterochromatin Protein 1), mediante la técnica del ARNi (ARN de interferencia), y analizaremos su incidencia sobre la cantidad de transcritos específicos del ADNr de los cromosomas B, así como sobre la cantidad de ARNm para otras proteínas, y cualesquiera efectos que puedan aparecer a los niveles citogenético y fenotípico. 9. Determinar si los cromosomas B contienen variantes específicas de la región ITS2 del ADNr, y comparar su grado de expresión con otras variantes del genoma. Para ello, realizaremos varios experimentos de secuenciación masiva (mediante pirosecuenciación 454 de Roche) de los amplicones previamente obtenidos mediante PCR con cebadores anclados en las regiones codificadoras adyacentes. 66 Capítulo 2. B-Chromosome ribosomal DNA is functional in the grasshopper Eyprepocnemis plorans 67 68 B-Chromosome Ribosomal DNA Is Functional in the Grasshopper Eyprepocnemis plorans Mercedes Ruiz-Estévez, Ma Dolores López-León, Josefa Cabrero, Juan Pedro M. Camacho* Departamento de Genética, Universidad de Granada, Granada, Spain Abstract B-chromosomes are frequently argued to be genetically inert elements, but activity for some particular genes has been reported, especially for ribosomal RNA (rRNA) genes whose expression can easily be detected at the cytological level by the visualization of their phenotypic expression, i.e., the nucleolus. The B24 chromosome in the grasshopper Eyprepocnemis plorans frequently shows a nucleolus attached to it during meiotic prophase I. Here we show the presence of rRNA transcripts that unequivocally came from the B24 chromosome. To detect these transcripts, we designed primers specifically anchoring at the ITS-2 region, so that the reverse primer was complementary to the B chromosome DNA sequence including a differential adenine insertion being absent in the ITS2 of A chromosomes. PCR analysis carried out on genomic DNA showed amplification in B-carrying males but not in B-lacking ones. PCR analyses performed on complementary DNA showed amplification in about half of B-carrying males. Joint cytological and molecular analysis performed on 34 B-carrying males showed a close correspondence between the presence of B-specific transcripts and of nucleoli attached to the B chromosome. In addition, the molecular analysis revealed activity of the B chromosome rDNA in 10 out of the 13 B-carrying females analysed. Our results suggest that the nucleoli attached to B chromosomes are actively formed by expression of the rDNA carried by them, and not by recruitment of nucleolar materials formed in A chromosome nucleolar organizing regions. Therefore, B-chromosome rDNA in E. plorans is functional since it is actively transcribed to form the nucleolus attached to the B chromosome. This demonstrates that some heterochromatic B chromosomes can harbour functional genes. Citation: Ruiz-Estévez M, López-León MD, Cabrero J, Camacho JPM (2012) B-Chromosome Ribosomal DNA Is Functional in the Grasshopper Eyprepocnemis plorans. PLoS ONE 7(5): e36600. doi:10.1371/journal.pone.0036600 Editor: Brian P. Chadwick, Florida State University, United States of America Received March 2, 2012; Accepted April 9, 2012; Published May 3, 2012 Copyright: ß 2012 Ruiz-Estévez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This study was supported by a grant from the Spanish Ministerio de Ciencia e Innovación (CGL2009-11917), and was partially performed by FEDER funds. M. Ruiz-Estévez was supported by a fellowship (FPU) from the Spanish Ministerio de Ciencia e Innovación. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: jpmcamac@ugr.es The size of the nucleolus is proportional to its biosynthetic activity [11–17]. B chromosomes were considered genetically inert for long, since experiments with tritiated uridine revealed its scarce incorporation into B chromosomes in the grasshoppers Myrmeleotettix maculatus and Chorthippus parallelus [18] and the mouse Apodemus peninsulae [19]. In maize, B chromosomes are basically inert [20]. However, indirect evidence for transcription from B chromosomes was obtained in the toad Leiopelma hochstetteri [21] and the mosquito Simulium juxtacrenobium [22]. Recently, evidence for a functional role of B chromosomes on female sex determination has been shown in cichlid fishes [23]. Some B chromosomes have been shown to carry a NOR being able to organize nucleoli. For instance, in the grasshopper Dichroplus pratensis, a B chromosome was frequently associated to a nucleolus during meiosis [24], and it was later shown, by fluorescent in situ hybridization (FISH), that it carries rDNA [25]. In many cases, however, the rDNA located on the B chromosomes is inactive, as found, for instance, in the black rat Rattus rattus [26] and the fish species Metynnis maculatus [27] and Haplochromis obliquidens [28]. Especially puzzling is the case of the plant Brachychome dichromosomatica, where large B chromosomes carrying rRNA genes are often associated with a nucleolus at mitotic prophase cells in root tips and in meiosis of pollen mother cells [29], but these genes do not silver stain and no transcripts were Introduction B chromosomes constitute a bizarre part of the genomes in about 15% of eukaryote species, being dispensable and frequently harmful for carrier individuals, despite they sometimes reach high population frequencies thanks to conspicuous mechanisms for advantageous transmission (drive). The DNA contained into B chromosomes is a broad panoply of repetitive sequences, including satellite and microsatellite DNA, ribosomal DNA (rDNA) and mobile elements [1]. Recently, the presence of H3 and H4 histone genes has been shown in the B chromosomes of Locusta migratoria [2]. The kind of repetitive DNA most frequently found in B chromosomes is 45S rDNA [1,3,4]. It is located at chromosome sites named nucleolus organizer regions (NORs) consisting of tandemly repeated units composed of 18S, 5.8S and 28S rDNA, separated by two internal transcribed spacers (ITS1 and ITS2) and flanked by external transcribed spacers (ETS) and nontranscribed spacers (NTS) [5]. A cytologically visible phenotype for these genes is the nucleolus, a nuclear membrane-free compartment where ribosome components are synthesized [6]. It may easily be revealed in both interphase and meiotic cells by silver impregnation [7]. This technique specifically reveals the transcriptional machinery of RNA polimerase I, including the B23, nucleolin, UBF and ARN Pol I subunits proteins [8–10]. PLoS ONE | www.plosone.org 1 69 May 2012 | Volume 7 | Issue 5 | e36600 A Functional B Chromosome detected coming from them in leaves [30]. On the other hand, the rare nucleolar association of micro B chromosomes suggests inactivity of its 45S rDNA [31]. The first molecular evidence for gene activity on B chromosomes was found in the plant Crepis capillaris [32], specifically for rDNA. In the parasitic wasp Trichogramma kaykai, NOR activity of B chromosomes and presence of rRNA transcripts coming from the Bs has also been reported [33]. In rye, it has recently been shown the transcription of B-specific DNA sequences belonging to high-copy number families with similarity to mobile elements [34]. In the grasshopper Eyprepocnemis plorans, FISH has shown that most A chromosomes carry rDNA, although the highest amount is actually found in the B chromosomes [35]. However, in most cases, NOR activity is only observed in the three smallest autosomes (9, 10 and 11) and the X chromosome, but not in the B. Cabrero et al. [36] reported the presence of nucleoli associated to a B chromosome that had fused to the longest autosome, in strong contrast to non-fused Bs where such NOR activity had never been found. It was later shown that rDNA is one of the principal components of B chromosomes in this species [35], and we have recently found a natural population where the rDNA in the B24 chromosome is recurrently active, as deduced from the presence of nucleoli attached to B chromosomes [37,38]. It was unknown, however, whether those B-attached nucleoli are formed in situ by expression of the B chromosome rDNA, or else by recruitment of nucleolar material coming from other nucleolar organizer regions (NORs), and therefore without expression of the B rDNA. The main objective of the present research was to test for these two alternatives by trying to detect rRNA transcripts that undoubtedly had come from the B chromosome rDNA. For this purpose, we used previous information provided by Teruel [39], who determined the DNA sequence of the ITS1 and ITS2 of rDNA coming from microdissected B24 chromosomes in E. plorans. A comparison with the corresponding DNA sequence in the A chromosomes, obtained from 0B individuals, revealed that most Bderived ITS2 sequences carried an inserted adenine which was absent in all A-derived sequences [39]. This difference could thus be used for identifying the rRNA transcripts coming from the B chromosome. We then developed a PCR-based molecular method to detect the B-rRNA transcripts in B-carrying males and, as a cytological control, analysed the presence of nucleoli attached to B chromosomes at diplotene. This molecular approach also demonstrated to be useful to find B-rRNA transcripts in females. Table 1. Number of B chromosomes in the 67 individuals collected in the Torrox (Málaga, Spain) population of the grasshopper Eyprepocnemis plorans. Number of Bs == 2003 == 2004 RR 2007 == 2008 Total 0 - - 10 10 20 1 - 1 2 19 21 2 1 - 11 5 18 3 1 2 - 4 7 4 - - - 1 1 Total 2 3 23 39 67 doi:10.1371/journal.pone.0036600.t001 1B, 23.7% in 2B and 26.9% in 3B males (Table 3), suggesting that it does not depend on the number of B chromosomes. The cytological analysis of the five B-carrying males collected in 2003 and 2004 showed nucleoli attached to Bs in all of them, since they had been selected from a larger sample previously analysed [39]. The average frequency of diplotene cells showing B-attached nucleoli in males showing B-NOR expression in the 2008 sample (24.7% of 284 cells analysed in 14 males), did not differ from the values previously observed in this same population (23.2% of 69 cells in 1999, 23.3% of 240 cells in 2003 and 19.5% of 380 cells in 2004) [37,38] (contingency x2 = 2.84, df = 3, P = 0.42). Molecular analysis In each individual, we performed PCR experiments with the ITSA and ITSB primers on both genomic (gDNA) and complementary (cDNA) DNA. The former served as a positive control for the presence of the B-specific ITS2 with the inserted adenine (ITS2_B), whereas the cDNA analysis tested the presence of rRNA transcripts carrying the B-specific ITS2. The PCR experiments on gDNA showed amplification in all Bcarrying males and females but not in any of the B-lacking ones (Figure 2). Therefore, this PCR reaction shows the appropriate specificity to reveal B chromosome (and ITS2_B) presence. Results Cytological analysis Table 1 shows the number of B chromosomes observed in the 67 individuals analysed. Silver impregnation of diplotene cells revealed the presence of nucleoli attached to B chromosomes in 14 out of the 29 B-carrying males collected in 2008 (Figure 1), but not in the 15 remaining males (Table 2). Therefore, 48.3% of Bcarrying males showed NOR activity in the B chromosomes. This figure did not differ from that reported by Teruel et al. [38] in a sample from this same population collected in 2004, where 53% of 36 B-carrying males showed B-NOR activity (contingency x2 = 0.02, df = 1, P = 0.89). This shows that the frequency of Bcarrying males showing NOR activity in the B chromosomes has not significantly changed in these four years. As Table 2 shows, the likelihood of showing NOR activity in a B chromosome increased with B number, at least from 1–3 Bs, the exception being a single 4B male failing to show active Bs. In the 14 males showing B-NOR activity, a rather regular proportion of diplotene cells showed B-attached nucleoli: 23.3% in 70 PLoS ONE | www.plosone.org Figure 1. Nucleolus formation by B chromosomes. Silver stained diplotene cell showing nucleoli (nu) attached to a B bivalent (BB), the X chromosome and autosomal bivalent no. 9. Bar = 10 m. doi:10.1371/journal.pone.0036600.g001 2 May 2012 | Volume 7 | Issue 5 | e36600 A Functional B Chromosome The joint cytological and molecular analysis performed in 34 Bcarrying males (also including five males collected in 2003 and 2004) revealed that 18 out of the 20 males showing ITS2_B transcripts also showed nucleoli attached to B chromosomes in diplotene cells, whereas the two remaining males (no. 43 and 72, both with 1B) failed to show evidence of B-rDNA expression at the cytological level. On the other hand, one male (no. 74) failed to show the presence of the ITS2_B transcript but showed nucleoli attached to Bs in two out of the 20 cells analysed (see Table 3). Finally, 13 males showed absence of B-rDNA expression at both cytological and molecular levels (Table 4). A contingency chisquare test performed to this 262 table showed a very strong association between the presence of nucleoli attached to the B chromosomes and the presence of the ITS2_B transcript (x21 = 19.69, P,0.0001, with Yates’ correction). Table 2. Frequency of B-carrying males from the 2008 sample showing NOR activity in the B chromosomes, as deduced from the presence of nucleoli attached to B chromosomes in diplotene cells. Males with Number of Bs inactive Bs Males with active Bs Total % Males with active Bs 1 13 6 19 31.6 2 1 4 5 80 3 0 4 4 100 4 1 0 1 0 Total 15 14 29 48.3 doi:10.1371/journal.pone.0036600.t002 Discussion Cloning and sequencing of the obtained band revealed that it corresponded to the expected ITS2_B region (Figure S1). The PCR analysis on cDNA with the ITSA and ITSB primers in B-lacking individuals, as a negative control, revealed no amplification in both males and females (Figure 2), as expected from the results of the PCR experiments on gDNA. However, the molecular analysis of all B-carrying individuals (34 males and 13 females), showed that the ITS2_B transcript was present in the cDNA of 20 of these males (9 with 1B, 4 with 2B and 7 with 3B) but not in 14 of them (11 with 1B, 2 with 2B and 1 with 4B). Likewise, 10 B-carrying females (2 with 1B and 8 with 2B) showed the presence of the 484 bp ITS2_B transcript, whereas 3 females with 2B failed to show it. The frequency of B-carrying individuals showing ITS2_B transcripts was thus 58.8% in males and 76.9% in females. A number of evidences have shown that B chromosomes in the grasshopper Eyprepocnemis plorans are sometimes attached to a nucleolus, suggesting the possibility of expression of their rDNA. In addition to previous evidences of NOR activity on B chromosomes [36–39], our present cytological analysis, by means of silver impregnation, in the 29 B-carrying males collected in this same population, in 2008, has shown that the frequency of males showing NOR activity in B chromosomes has not changed from 2004 to 2008, being close to 50%. In addition, the average proportion of diplotene cells showing B-NOR activity seemed to be rather stable (about 20%) from 1999 to 2008. This suggests that the phenotypic expression of the ‘‘active B-NOR’’ trait shows high temporal stability in this population. In contrast, expresivity of this trait is highly variable among individuals, i.e. 5–50% (see Table 3). Table 3. Proportion of diplotene cells showing nucleoli attached to B chromosomes in 14 B-carrying males collected in Torrox in 2008 and therefore showing NOR activity in the B chromosome. No. of cells showing % B-NOR activity Number of Bs Male no. B-NOR inactivity B-NOR activity Total 1 54 10 10 20 50.0 49 14 6 20 30.0 58 16 4 20 20.0 67 15 5 20 25.0 52 19 1 20 5.0 45 18 2 20 10.0 Total: 92 28 120 23.3 74 18 2 20 10.0 61 14 6 20 30.0 63 15 5 20 25.0 55 12 8 20 40.0 Total: 59 21 80 23.7 62 15 9 24 37.5 50 13 7 20 35.0 42 17 3 20 15.0 2 3 71 16 4 20 20.0 Total: 61 23 84 26.9 212 72 284 24.7 Total doi:10.1371/journal.pone.0036600.t003 PLoS ONE | www.plosone.org 3 71 May 2012 | Volume 7 | Issue 5 | e36600 A Functional B Chromosome In males, we observed a very high correspondence between the molecular and cytological analyses, i.e. the presence of the ITS2_B transcripts, deduced from the PCR amplification of the 484 bp fragment, and the existence of NOR activity in the B chromosomes, deduced from the presence of nucleoli attached to them. Presence of both evidences for B activity was observed in 18 males, and their absence in 13 males (see Table 4). The exceptions were males no. 43, 72 and 74. In the two former, there were ITS2_B transcripts but no nucleoli were found attached to the B chromosomes at diplotene, whereas the reverse situation was found in male no. 74, i.e. PCR experiments failed to show the presence of the ITS2_B transcripts but two diplotene cells, out of the 20 analysed, showed nucleoli attached to B chromosomes. This indicates that both ways for ascertaining B-NOR activity (i.e. cytological and molecular) may fail when the expression level is low. The situation observed in males 43 and 72 could be explained by early disorganization of nucleoli at diplotene, the existence of a threshold for silver impregnation preventing nucleolus visualization when B-NOR expression is low, or else B activity in an organ other than testes, since molecular analyses where performed in the whole body excepting testes. The possibility of differences in BNOR expression among tissues of a same individual merits future research. The absence of PCR amplification in male 74 might be due to a very low number of ITS2_B transcripts which hampered the final success of transcript detection. Alternatively, the possibility exists that the nucleoli attached to the B chromosomes and the molecular expression of the B rDNA do follow different temporal schedules, since the nucleoli attached to Bs that were observed at pachytene-diplotene were formed during leptotenezygotene, implying that the B-transcripts might have been produced several days before nucleolus observation, so that it is conceivable that a same male may, at a given time, show nucleoli attached to their B chromosomes at pachytene but not ITS2_B transcripts since its production had finished several days before. In females, this correspondence cannot be tested since it is not possible to analyse B-NOR expression cytologically. But the close correspondence between cytological and molecular results, observed in males, allow inferring B-NOR expression in females through the PCR assay only. This showed the presence of the 484 bp fragment in 10 out of the 13 B-carrying females, suggesting that the rRNA genes in the B24 chromosome are active in most females, whereas it is active in only about half of males. The active or inactive status of the rDNA in the B chromosome may depend on epigenetic modifications such as DNA methylation and/or histone methylation or acetylation. In E. plorans, the NOR activity observed by Cabrero et al. [36] in the B2 chromosome fused to the longest autosome was later shown to be related with undermethylation of the rDNA [40]. In addition, it has been shown that B chromosomes in this species are hypoacetylated for lysine 9 in the H3 histone [41]. The role of B-derived rRNA transcripts and the mechanism of transcription of the B repeats remain to be elucidated. A possibility is that these transcripts might have structural functions in the organization and regulation of the Bs themselves [42,43]. But, in E. plorans, B chromosomes in the Torrox population might also contribute to the total rRNA demanded by the cell, since the activity of the B-NOR is associated with a decrease in the activity of the NORs in the A chromosomes, so that total cell nucleolar area does not change [37,38]. Unless the rDNA located in the B chromosome would have preserved functionality, an increase in Bderived rRNA transcripts could lead to an increasing proportion of abnormal rRNA copies that could be detrimental for the fitness of B-carrying individuals. This possibility, however, needs further research to determine the relative amount of the B-rRNA Figure 2. Amplification of the ITS2_B region with the ITSA and ITSB primers on genomic (gDNA) and complementary (cDNA) DNA from representative males with 0–3 B chromosomes (upper panel) and females with 0–2 B chromosomes (lower panel). Note the presence of PCR product on gDNA of B-carrying individuals but absence in the case of B-lacking ones. Also note the presence of PCR product on cDNA of only some B-carrying individuals. Ø = Negative control (with no DNA). C+ = Positive control (gDNA from 1B male). doi:10.1371/journal.pone.0036600.g002 Although nucleoli are usually formed by expression of the rDNA contained in the NOR to which they are attached [6], in the case of non-standard genomic elements like parasitic B chromosomes, the possibility exists that B chromosomes could recruit nucleolar materials from other NORs without the need to expressing their own rDNA. Our present results show that it is possible to detect the presence of rRNA transcripts unequivocally derived from the B chromosome in males showing nucleoli attached to the B chromosome at diplotene cells. We designed primers which specifically amplified a 484 bp region of the ITS2 rDNA in the B chromosome, on the basis of an adenine insertion being exclusive of the B24 chromosome rDNA [39]. PCR amplification with these primers was negative on gDNA in all 20 B-lacking individuals (10 males and 10 females) analysed. However, it was positive on gDNA from all B-carrying individuals analysed (34 males and 13 females), thus showing the high specificity of this reaction for the B chromosome rDNA. When the same assay was performed on cDNA, no amplification was observed in 0B individuals. In B-carrying individuals, however, the 484 bp fragment was obtained in some individuals, suggesting that the B chromosome rDNA is facultatively active. Table 4. Joint cytological and molecular analysis of B chromosome NOR expression in 34 males of the grasshopper E. plorans. Nucleolus attached to the B chromosome Molecular detection of the ITS2_B transcript + + 18 2 2 1 13 2 doi:10.1371/journal.pone.0036600.t004 72 PLoS ONE | www.plosone.org 4 May 2012 | Volume 7 | Issue 5 | e36600 A Functional B Chromosome with important ontogenetic processes such as, for instance, sex determination [23]. transcripts (in respect to those derived from the A chromosomes) and whether the B-rRNA transcripts are completely functional. Given that total cell nucleolar area in B-carrying males does not change despite B chromosome contribution to nucleolus formation, Teruel et al. suggested that cell regulation of rRNA demands should lead to a decrease in the nucleolar area contributed by the A chromosomes [37,38]. Therefore, the presence of rDNA in the B chromosome of E. plorans seems to have implications for the regulation of rDNA expression and its relationship with the genomic amount of this kind of repetitive DNA. Ide et al. have recently suggested that the presence of many copies of rDNA, many of which are transcriptionally inactive, makes genomes less sensitive to DNA damage, because the extra copies facilitate recombinational repair [44]. As shown by these authors, the lower DNA sensivity in yeast strains with high copy number depends on a lower ratio of transcribed rRNA genes than that in strains with low copy number whose rRNA genes are up-regulated. On this basis, the fact that B-NOR activity in E. plorans does not change total cell nucleolar area [37,38] might be the result of a rigid A genome control on rDNA expression, perhaps because excessive activity would decrease individual fitness through a lower protection against DNA-damaging agents. Similar reasons would explain why the grasshopper Stauroderus scalaris carries large amounts of rDNA in all chromosomes but only those in chromosome 3 are active [45]. The case of nucleolar expression in the B chromosomes of E. plorans resembles nucleolar dominance, a phenomenon usually observed in interspecific hybrids, by which the rDNA clusters from one of the parental species are active whereas those from the other parental species are inactive [46]. Nucleolar dominance seems to be reversible since, in some individuals, the silenced rDNA can be reactivated under certain conditions, e.g. in developmental stages demanding more ribosomal synthesis [47]. In E. plorans, the rDNA located in the B2 chromosome is usually silenced [48] whereas that in the three smallest autosomes and the X chromosome is active in a variable proportion of diplotene cells in all males [49]. The B24 chromosome arose from B2 and replaced it in the Torrox population during the 1980’s [50], from where it is currently expanding towards the west [51] and the east [52]. In the last years, for unknown reasons, the rDNA in the B24 chromosome has been derepressed since, in 1999, it showed NOR activity in 31% of males [37], and this figure increased to about 40% in 2003–2004 [38] and 48.3% in 2008 (this paper, Table 2). Therefore, it seems that the ‘‘active B-NOR’’ phenotype is increasing in frequency in this population. Remarkably, however, the proportion of diplotene cells showing the phenotype in B-carrying males was about the same in 1B, 2B and 3B males, thus showing no odd-even pattern for this trait, in contrast to many B chromosome effects (see [53]). The B24 chromosome thus constitutes excellent material to analyse the regulation of rDNA expression at intragenomic level, and the PCR assay described here could contribute significantly to this task because it permits to analyse B-rDNA expression in every cell type, tissue and organ at every developmental stage where RNA can be isolated. Likewise, it permits to test for B-rDNA expression in other populations harbouring other B variants, which is crucial for understanding the biological role of these B chromosomes. B24 showed significant drive in 1992, i.e. when it was finishing the replacement of B2 in Torrox [50], but a few years later it had lost drive [54]. The recurrent expression of its rDNA could thus be a new pathway for B24 evolution in this species, since it is contributing to an important host function, i.e. rRNA production. It also suggests that B chromosomes are not as genetically inert as was previously thought, and they may even contain some protein-coding genes whose expression can interfere PLoS ONE | www.plosone.org Materials and Methods Experimental material A total of 67 males and females of the grasshopper Eyprepocnemis plorans were collected in Torrox (Málaga, Spain) in 2003, 2004, 2007 and 2008 (Table 1). For cytological analysis, males and females were anaesthetized before dissecting out testes and ovarioles, respectively, which were then fixed in freshly prepared 3 1 ethanol-acetic acid and stored at 4uC. Ovarioles were immersed in 5% colchicine in insect saline solution for 3 hours prior to fixation. For molecular analysis, body remains were frozen in liquid nitrogen and stored at 280uC prior to DNA and RNA isolation. Cytological analysis of B-NOR expression The number of B chromosomes in each individual was determined in 2% lactopropionic orcein squash preparations. Cytological evidence for the activity of the B chromosome NOR was obtained from the presence of nucleoli attached to B chromosomes in diplotene cells. For this purpose, testis preparations were submitted to the silver impregnation technique [7] following the procedure described in [55]. These preparations were additionally stained with 1% Giemsa to differentiate the chromatin (blue) from the nucleoli (yellow to deep brown) (Figure 1). At least twenty diplotene cells per male were analysed. Cells were photographed with an Olympus digital camera (DP70). Molecular analysis of B-NOR expression A total of 44 males (10 with 0B, 20 with 1B, 6 with 2B, 7 with 3B and 1 with 4B) and 23 females (10 with 0B, 2 with 1B and 11 with 2B) were analyzed at the molecular level. Each individual body was divided into two hemibodies, each of which was used for genomic DNA and total RNA isolation. Genomic DNA extraction was performed using GenElute Mammalian Genomic DNA Miniprep (Sigma), following manufacturer’s recommendations. Total RNA was extracted with Real Total RNA spin plus (Real), following manufacturer’s recommendations, except increasing DNase I treatment up to 20 units to ensure complete removal of any possible contaminating genomic DNA. After a second cleaning with DNase I, we assessed the quality of the isolated RNA by electroforesis in a MOPS (3-N-morpholinopropanesulfonic acid) denaturing agarose gel, based on the presence of the 28S and 18S ribosomal RNA bands and the absence of low molecular weight fragments. For PCR experiments on genomic (gDNA) and complementary (cDNA) DNA, a primer pair (ITSA and ITSB) was designed on the basis of the ITS2 sequences reported by M. Teruel (accession numbers: JN811827–JN811836 for 0B individuals, and JN811886–JN811902 for microdissected B chromosomes), who showed that an adenine insertion was present only in rDNA obtained from microdissected B chromosomes but was absent in rDNA sequences from 0B individuals [39]. We thus anchored the reverse (ITSB) primer in the ITS2 region including this adenine. PCR reaction with the ‘‘forward ITSA (59 TGGAGCCGTACGACGAAGTG 39)’’ and ‘‘reverse ITSB (59CGTTGTACGAAAGAGTTTGAG 39)’’ primers was adjusted to yield a 484 bp DNA fragment from the desired ITS2 region, only in presence of the inserted adenine in the template (complementary to the underlined T in the ITSB primer). PCR mixture consisted of 200 mM dNTPs, 10 mM each primer, 20 ng genomic DNA and one unit of Taq polymerase (New England, BioLabs) with 16 buffer in a final 5 73 May 2012 | Volume 7 | Issue 5 | e36600 A Functional B Chromosome volume of 25 ml. PCR conditions were the following: an initial denaturation at 94uC for 5 min and 30 cycles of 94uC for 30 s, 62,5uC for 40 s, 72uC for 45 s and final extension of 72uC for 7 min. PCR products were visualized in an electrophoresis 1.5% agarose gel and the amplified fragment was cloned into TOPO TA vector (Invitrogen) and subsequently sequenced in both directions (Macrogen). Searching for sequence homology in databases was performed using BLAST (Basic Local Alignment Search tool) at NCBI site. Alignments were performed with Bioedit software (version 7.0.9.0). Complementary DNA (cDNA) was synthesized from total RNA with SuperScript III First-Strand Synthesis SuperMix (Invitrogen), following manufacturer’s protocol, and it was used as template for PCR experiments with the ITSA and ITSB primers. PCR reactions on cDNA contained 2000 mM dNTPs, 10 mM of each primer, 1U Taq polymerase (New England, BioLabs) and 30 ng cDNA. PCR conditions were as follows: initial denaturation at 94uC for 5 min, 30 cycles of 94uC for 30 s, 62,5uC (males) and 62,7uC (females) for 40 s, 72uC for 45 s and a final extension of 72uC for 7 min. Analysis of PCR products, cloning of amplified fragments, DNA sequencing and homology search in the databases were performed as for genomic DNA (see above). Supporting Information Figure S1 Nucleotide sequence of the DNA amplified with the ITS2A and ITS2B primers. (DOC) Acknowledgments We thank Marı́a Teruel for providing some materials. Author Contributions Conceived and designed the experiments: MRE MDLL JC JPMC. Performed the experiments: MRE JC MDLL. Analyzed the data: MRE MDLL JC JPMC. Contributed reagents/materials/analysis tools: MDLL JC. Wrote the paper: MRE MDLL JC JPMC. References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. Camacho JPM (2005) B chromosomes. In: Gregory TR, ed. The evolution of the genome. New York: Academic Press. pp 223–286. Teruel M, Cabrero J, Perfectti F, Camacho JPM (2010) B chromosome ancestry revealed by histone genes in the migratory locust. Chromosoma 119: 217–225. Green DM (1990) Muller’s Ratchet and the evolution of supernumerary chromosomes. Genome 33: 818–824. Jones RN (1995) Tansley review no. 85: B chromosomes in plants. New Phytol 131: 411–434. Long EO, David IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49: 727–764. Carmo-Fonseca M, Mendes-Soares L, Campos I (2000) To be or not to be in the nucleolus. Nat Cell Biol 2: E107–E112. Rufas JS, Iturra P, de Souza W, Esponda P (1982) Simple silver staining procedure for the localization of nucleolus and nucleolar organizer under light and electron microscopy. Arch Biol 93: 267–274. Roussel P, Belenguer P, Amalric F, Hernandez-Verdun D (1992) Nucleolin is an Ag-NOR protein; this property is determined by its amino-terminal domain independently of its phosphorylation state. Exp Cell Res 203: 259–269. Roussel P, Hernandez-Verdun D (1994) Identification of Ag-NOR proteins, markers of proliferation related to ribosomal gene activity. Exp Cell Res 214: 465–472. Roussel P, Andre C, Comai L, Hernandez-Verdun D (1996) The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J Cell Biol 133: 235–246. Caspersson T (1950) Cell growth and cell function, a cytochemical study. New York: WW Norton and Co, Inc. Busch H, Daskal Y, Gyorkey F, Smetana K (1979) Silver staining of nucleolar granules in tumor cells. Cancer Res 39: 857–863. Okabe Y, Nakamura S, Okumura H, Matano S, Kobayashi K, et al. (1991) The relation of argyrophilic proteins of nucleolar organizer regions (AgNORs) to the proportions of Ki-67 or DNA polymerase a9-reacting cells in non-Hodgkin’s lymphomas. Anticancer Res 11: 2031–2035. Thiele J, Fischer R (1993) Bone marrow tissue and proliferation markers: results and general problems. Virchows Arch A 423: 409–416. Busch H (1997) Nucleolar and nucleolonemal proteins of cancer cells. J Tumor Marker Oncol 12: 5–68. Nakamoto K, Ito A, Watabe K, Koma Y, Asada H, et al. (2001) Increased expression of a nucleolar Nop5/Sik family member in metastatic melanoma cells: evidence for its role in nucleolar sizing and function. Am J Pathol 159: 1363–1374. Mosgoeller W (2004) Nucleolar ultrastructure in vertebrates. In Olson MOJ, ed. The Nucleolus. New York: Kluwer. pp 10–20. Fox DP, Hewitt GM, Hall DJ (1974) DNA replication and RNA transcription of euchromatic and heterocromatic chromosome regions during grasshopper meiosis. Chromosoma 45: 43–62. Ishak B, Jaafar H, Maetz JL, Rumpler Y (1991) Absence of transcriptional activity of the B-chromosome of Apodemus peninsulae during pachytene. Chromosoma 100: 278–281. Carlson WR (1986) The B chromosome of maize. CRC Crit Rev Plant Sci 3: 201–226. Green DM (1988) Cytogenetics of the endemic New Zeland frog, Leiopelma hochstetteri: extraordinary supernumerary chromosome variation and a unique sex-chromosome system. Chromosoma 97: 55–70. Brockhouse C, Bas JAB, Fereday RM, Strauss NA (1989) Supernumerary chromosomes evolution in the Simulium vernum group (Diptera: Simulidae). Genome 32: 516–521. 74 PLoS ONE | www.plosone.org 23. Yoshida K, Terai Y, Mizoiri S, Aibara M, Nishihara H, et al. (2011) B chromosomes have a functional effect on female sex determination in lake Victoria cichlid fishes. PLoS Genet 7(8): e1002203. doi:10.1371/journal.pgen.1002203. 24. Bidau CJ (1986) A nucleolar-organizing B chromosome showing segregationdistortion in the grasshopper Dichroplus pratensis (Melanoplinae, Acrididae). Can J Genet Cytol 28: 138–148. 25. Bidau CJ, Rosato M, Martı́ DA (2004) FISH detection of ribosomal cistrons and assortment-distortion for X and B chromosomes in Dichroplus pratensis (Acrididae). Cytogenet Genome Res 106: 295–301. 26. Stitou S, Zurita F, Dı́az de la Guardia R, Jiménez R, Burgos M (2004) Transmission analysis of B chromosomes in Rattus rattus from Northern Africa. Cytogenet Genome Res 106: 344–346. 27. Baroni S, Lopes CE, de Almeida-Toledo LF (2009) Cytogenetic characterization of Metynnis maculatus (Teleostei; Characiformes): the description in Serrasalminae of a small B chromosome bearing inactive NOR-like sequences. Caryologia 62: 95–101. 28. Poletto AB, Ferreira IA, Martins C (2010) The B chromosomes of the African cichlid fish Haplochromis obliquidens harbour 18S rRNA gene copies. BMC Genet 11: 1. 29. Donald TM, Leach CR, Clough A, Timmis JN (1995) Ribosomal RNA genes and the B chromosome of Brachycome dichromosomatica. Heredity 74: 556–561. 30. Donald TM, Houben A, Leach CR, Timmis JN (1997) Ribosomal RNA genes specific to the B chromosomes in Brachycome dichromosomatica are not transcribed in leaf tissue. Genome 40: 674–681. 31. Marschner S, Meister A, Blattner FR, Houben A (2007) Evolution and function of B chromosome 45S rDNA sequences in Brachycome dichromosomatica. Genome 50: 638–644. 32. Leach CR, Houben A, Bruce F, Pistrick K, Demidov D, et al. (2005) Molecular evidence for transcription of genes on a B chromosome in Crepis capillaris. Genetics 171: 269–278. 33. van Vugt JJFA, de Nooijer S, Stouthamer R, de Jong H (2005) NOR activity and repeat sequences of the paternal sex ratio chromosome of the parasitoid wasp Trichogramma kaykai. Chromosoma 114: 410–419. 34. Carchilan M, Kumke K, Mikolajewski S, Houben A (2009) Rye B chromosomes are weakly transcribed and might alter the transcriptional activity of A chromosome sequences. Chromosoma 118: 607–616. 35. López-León MD, Neves N, Schwarzacher T, Heslop-Harrison JS, Hewitt GM, et al. (1994) Possible origin of a B chromosome deduced from its DNA composition using double FISH technique. Chromosome Res 2: 87–92. 36. Cabrero J, Alché JD, Camacho JPM (1987) Effects of B chromosomes of the grasshopper Eyprepocnemis plorans on nucleolar organizer regions activity. Activation of a latent NOR on a B chromosome fused to an autosome. Genome 29: 116–121. 37. Teruel M, Cabrero J, Perfectti F, Camacho JPM (2007) Nucleolus size variation during meiosis and NOR activity of a B chromosome in the grasshopper Eyprepocnemis plorans. Chromosome Res 15: 755–765. 38. Teruel M, Cabrero J, Perfectti F, Camacho JPM (2009) Quantitative analysis of NOR expression in a B chromosome of the grasshopper Eyprepocnemis plorans. Chromosoma 118: 291–301. 39. Teruel M (2009) Origen, expresión y efectos fenotı́picos de un parásito genómico. PhD. Universidad de Granada. 40. López-León MD, Cabrero J, Camacho JPM (1991) A nucleolus organizer region in a B chromosome inactivated by DNA methylation. Chromosoma 100: 134–138. 6 May 2012 | Volume 7 | Issue 5 | e36600 A Functional B Chromosome 41. Cabrero J, Teruel M, Carmona FD, Jiménez R, Camacho JPM (2007) Histone H3 lysine 9 acetylation pattern suggests that X and B chromosomes are silenced during entire male meiosis in a grasshopper. Cytogenet Genome Res 119: 135–142. 42. Carchilan M, Delgado M, Ribeiro T, Costa-Nunes P, Caperta A, et al. (2007) Transcriptionally active heterochromatin in rye B chromosomes. Plant Cell 19: 1738–1749. 43. Han F, Lamb JC, Yu W, Gao Z, Birchler JA (2007) Centromere function and nondisjunction are independent components of the maize B chromosome accumulation mechanism. Plant Cell 19: 524–533. 44. Ide S, Miyazaki T, Maki H, Kobayashi T (2010) Abundance of ribosomal RNA gene copies maintains genome integrity. Science 327: 693–696. 45. López-León MD, Cabrero J, Camacho JPM (1999) Unusually high amount of inactive ribosomal DNA in the grasshopper Stauroderus scalaris. Chromosome Res 7: 83–88. 46. Pikaard CS (2000) The epigenetics of nucleolar dominance. Trends Genet 16: 495–500. 47. Chen ZJ, Pikaard CS (1997) Transcriptional analysis of nucleolar dominance in polyploidy plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc Nat Acad Sci USA 94: 3442–3447. PLoS ONE | www.plosone.org 48. López-León MD, Cabrero J, Camacho JPM (1995) Changes in DNA methylation during development in the B chromosome NOR of the grasshopper Eyprepocnemis plorans. Heredity 74: 296–302. 49. López-León MD, Cabrero J, Camacho JPM (1995) Changes in NOR activity in the presence of supernumerary heterochromatin in the grasshopper Eyprepocnemis plorans. Genome 38: 68–74. 50. Zurita S, Cabrero J, López-León MD, Camacho JPM (1998) Polymorphism regeneration for a neutralized selfish B chromosome. Evolution 52: 274–277. 51. Manrique-Poyato MI, Muñoz-Pajares AJ, Loreto V, López-León MD, Cabrero J, et al. (2006) Causes of B chromosome variant substitution in the grasshopper Eyprepocnemis plorans. Chromosome Res 14: 693–700. 52. Manrique-Poyato MI (2010) Dinámica espacial y temporal de los cromosomas B del saltamontes Eyprepocnemis plorans. PhD Universidad de Granada. 53. Camacho JPM, Perfectti F, Teruel M, López-León MD, Cabrero J (2004) The odd-even effect in mitotically unstable B chromosomes in grasshoppers. Cytogenet Genome Res 106: 325–331. 54. Perfectti F, Corral JM, Mesa JA, Cabrero J, Bakkali M, et al. (2004) Rapid suppression of drive for a parasitic B chromosome. Cytogenet Genome Res 106: 338–343. 55. Cabrero J, López-León MD, Bakkali M, Camacho JPM (1999) Common origin of B chromosome variants in the grasshopper Eyprepocnemis plorans. Heredity 83: 435–439. 7 75 May 2012 | Volume 7 | Issue 5 | e36600 Figure S1. Nucleotide sequence of the DNA amplified with the ITS2A and ITS2B primers. 76 1 TGGAGCCGTACGACGAAGTGGCGGCGGTTTGTGCTTGCACGACGCCGGCCGCCACACACA 61 TTTGGAACAGGGCCTGTCAAAGGGCCCAGTCCCGCCTATGCAACAGCAGGCTTTGCCTGA 121 CAAGCAAATGTATGAAAAAAGATCACCCAGGACGGTGGATCACTCGGCTCGTGGGTCGAT 181 GAAGAACGCAGCAAATTGCGCGTCGACATGTGAACTGCAGGACACATGAACATCGACGTT 241 TCGAACGCACATTGCGGTCCATGGATTCCGTTCCCGGGCCACGTCTGGCTGAGGGTCGGC 301 TACGTATACTGAAGCGCCAAGGCGTTTCGGAGACTTGGGAGCGTCGTGGTACGCCCGTCG 361 TGCCGCGTCTCCTCAAATGTGGAGTGCGCGCCCGTCGCTCGGGCGGTTCGCATACCGGTA 421 CTGTGTCTCGGTAGCGTGCACAGCTGCCCGGCGGTGCGGCGCGCTCAAACTCTTTCGTAC 481 AACG Capítulo 3. B1 was the ancestor B chromosome variant in the western mediterranean area in the grasshopper Eyprepocnemis plorans 77 78 Original Article B1: the western-mediterranean ancestral variant Cytogenet Genome Res DOI: 10.1159/000356052 Accepted: June 19, 2013 by M. Schmid Published online: November 7, 2013 B1 Was the Ancestor B Chromosome Variant in the Western Mediterranean Area in the Grasshopper Eyprepocnemis plorans J. Cabrero a M.D. López-León a M. Ruíz-Estévez a R. Gómez b E. Petitpierre c J.S. Rufas d B. Massa e M. Kamel Ben Halima f J.P.M. Camacho a Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, b Departamento de Ciencia y Tecnología Agroforestal, E.T.S. de Ingenieros Agrónomos, Universidad de Castilla La Mancha, Albacete, c Departament de Biologia, Laboratorio de Genetica, Universitat de les Illes Balears, Palma de Mallorca, and d Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain; e Dipartimento Scienze agrarie e forestali, Palermo, Italy; f Institut Supérieur Agronomique, Université de Sousse, Sousse, Tunisia Key Words B chromosome · Eyprepocnemis plorans · FISH · Ribosomal DNA · Satellite DNA Abstract We analyzed the distribution of 2 repetitive DNAs, i.e. ribosomal DNA (rDNA) and a satellite DNA (satDNA), on the B chromosomes found in 17 natural populations of the grasshopper Eyprepocnemis plorans plorans sampled around the western Mediterranean region, including the Iberian Peninsula, Balearic Islands, Sicily, and Tunisia. Based on the amount of these repetitive DNAs, 4 types of B variants were found: B1, showing an equal or higher amount of rDNA than satDNA, and 3 other variants, B2, B24 and B5, bearing a higher amount of satDNA than rDNA. The variants B1 and B2 varied in size among populations: B1 was about half the size of the X chromosome in Balearic Islands, but two-thirds of the X in Iberian populations at Alicante, Murcia and Albacete provinces. Likewise, B2 was about one-third the size of the X chromosome in populations from the Granada province but half the size of the X in the populations collected at Málaga province. The widespread geographical distribution of the B1 variant makes it the best candidate for being the ancestor B chromosome in the whole western Mediterranean region. © 2013 S. Karger AG, Basel © 2013 S. Karger AG, Basel 1424–8581/13/0000–0000$38.00/0 E-Mail karger@karger.com www.karger.com/cgr B chromosomes are dispensable supernumerary elements frequently found in many eukaryote genomes in addition to the standard (A) chromosomes. They are mostly composed of repetitive DNAs such as ribosomal DNA (rDNA), satellite DNA (satDNA) and mobile elements [Camacho, 2005]. The grasshopper Eyprepocnemis plorans is an example that harbors all these components [López-León et al., 1994; Montiel et al., 2012]. In addition to the 22 + X0/XX standard chromosomes, more than 50 B chromosome variants have been described in the Iberian Peninsula on the basis of size and C-banding pattern [Henriques-Gil et al., 1984; Henriques-Gil and Arana, 1990; López-León et al., 1993; Bakkali et al., 1999], all of them being mostly made up of the same repetitive DNAs, i.e. rDNA and a 180-bp tandem repeat satDNA, thus suggesting their common descent [Cabrero et al., 1999]. B chromosomes are frequently polymorphic with many species showing 2 or more variants. For instance, Hewitt [1979] called attention on 10 grasshopper species showing more than one kind of B chromosomes, and Jones and Rees [1982], in their seminal B chromosome review, found more than 60 plant and animal species with 2 or more types of B chromosomes. Further cases have been found since then, the review of which is beyond the scope of the present study. Juan Pedro M. Camacho Departamento de Genética, Facultad de Ciencias Universidad de Granada, Avda. Fuentenueva s/n ES–18071 Granada (Spain) E-Mail jpmcamac @ ugr.es 79 Downloaded by: J. Camacho - 59611 Fac Educacion y Humanidades 150.214.61.56 - 11/7/2013 10:02:50 AM a Materials and Methods Adult males of the grasshopper E. plorans plorans were collected at Palermo (Sicily, Italy) and Chott Mariem (Sousse, Tunisia) as well as in 15 Spanish locations: S’Albufereta and S’Esgleieta (Mallorca, Balearic Islands), San Juan (Alicante), Bullas and Cieza (Murcia), Mundo River (Albacete), Otivar and Salobreña (Granada), Maro, Nerja, Torrox, Algarrobo, Torre del Mar, Torremolinos, and Fuengirola (Málaga province). Testes were fixed in 3:1 ethanol:acetic acid and stored at 4 ° C until use. The number of B chromosomes in each male was determined by squashing 2 testis follicles in 2% lacto-propionic orcein and visualizing primary spermatocytes at prophase or metaphase under an optical microscope. This allowed selection of B-carrying males from each population, in which we then performed 2-color fluorescent in situ hybridization (FISH) on chromosome preparations obtained by squashing of 2 testis follicles in 50% acetic acid. We used 2 DNA probes, one for rDNA and the other for the 180-bp tandem repeat satDNA, which are the 2 major constituents of B chromosomes. The technique employed was essentially that described in Cabrero et al. [1999]. Chromosome preparations were analyzed under a BX41 Olympus epifluorescence microscope, and photographs were captured with a DP70 cooled camera. Images were composed and optimized for brightness and contrast with the GIMP freeware. Results and Discussion Dual-color FISH analysis with rDNA and satDNA probes showed that the B chromosomes found in all natural populations sampled were mostly made up of these Cytogenet Genome Res DOI: 10.1159/000356052 2 80 2 tandem repeat DNAs, with the exception of the small short arm (fig. 1), in consistency with previous observations [Cabrero et al., 1999]. Comparative analysis of the FISH pattern and relative size of the X and B chromosomes from the same cell allowed classifying B variants into 4 types (fig. 1; table 1). The first type, B1, is characterized by the presence of similar amounts of both DNA types (see Bs from San Juan, Bullas, Mundo and Cieza in the Iberian Peninsula, and those from Sicily and Tunisia), or else a slightly higher amount of rDNA (see Bs from S’Albufereta and S’Esgleieta in the Balearic Islands). The relative size of the B compared to that of the X chromosome also differed between Balearic and Iberian Bs, the former being about half the size of the X chromosome (likewise those in Tunisia), whereas the Iberian Bs, and those from Sicily, were about two-thirds the X chromosome size. The differences between these 2 types of B1 chromosomes could simply be explained by changes in the amount of satDNA. The remaining B variants observed showed a higher amount of satDNA than rDNA. The second type, B2, shows satDNA and rDNA in about a 2:1 ratio, and its size is about one-third that of the X chromosome in Salobreña and Otívar (Granada province), but about half the size of the X chromosome in Maro, Nerja, Algarrobo, Torre del Mar and Torremolinos (Málaga province). Again, size differences for B2 chromosomes between populations could be explained by changes in the amount of the satDNA, although we cannot rule out the possibility of changes in the amount in rDNA, since the ratio between the 2 types of repetitive DNA remains roughly stable between the 2 types of B2. The third type, B24, is about half the size of the X chromosome and carries satDNA and rDNA in a 3:1 ratio. It was present in Torrox and Algarrobo (Málaga) populations, and it arose from the B2 variant [Henriques-Gil and Arana, 1990; Zurita et al., 1998] after amplification of the satDNA region. The fourth type, B5, is about two-thirds the size of the X chromosome and carries satDNA and rDNA in about a 2:1 ratio. It was only found in Fuengirola (Málaga). It could have arisen from B1 (which is the prevalent B variant in populations surrounding Fuengirola) [Henriques-Gil and Arana, 1990] by amplification of the satDNA region. The former inferences about the size of the B chromosomes are based on the assumption that the size of the X does not vary among populations, since B chromosome size estimations were relative to X chromosome size. When B variants are placed in a map of the western Mediterranean region (fig. 2), it is evident that B1 is present in all geographical zones analyzed (Sicily, Tunisia, Cabrero et al. Downloaded by: J. Camacho - 59611 Fac Educacion y Humanidades 150.214.61.56 - 11/7/2013 10:02:50 AM On the basis of its widest distribution, Henriques-Gil et al. [1984] and Henriques-Gil and Arana [1990] suggested that B1 was the ancestor variant for B chromosomes in the Iberian Peninsula, since it was found in populations from almost the whole Mediterranean coast, excepting the Granada and Western Málaga provinces, where it had been replaced by B2, and Fuengirola, where it had been replaced by B5. In addition, B2 was replaced by B24 in the Torrox population [Zurita et al., 1998]. A comparison with B chromosomes found in eastern Mediterranean (Greece and Turkey) and Caucasian (Armenia and Dagestan) populations showed that B chromosomes from these latter populations were mostly composed of rDNA, with much smaller amounts of satDNA than western B chromosomes [LópezLeón et al., 2008]. However, nothing was known about populations between these 2 extremes. Here, we analyze B chromosomes from Sicily and Tunisia in addition to 15 Spanish populations and conclude that the B1 chromosome is the most widespread variant in the whole western Mediterranean region (including Sicily and Tunisia), which suggests that it was probably the ancestral B variant in this region. B1: the western-mediterranean ancestral variant Fig. 1. Dual-color FISH patterns for the Balearic Islands, and Iberian Peninsula). Bearing in mind that it is also present in Moroccan populations [Cabrero et al., 1999], we can conclude that B1 is the most widely distributed B chromosome variant in the western Mediterranean region. In natural populations to the east of Sicily and Tunisia (e.g. Greece and Turkey), B chromosomes are mostly composed of rDNA, with considerably smaller amounts of satDNA than Western B chromosomes [Abdelaziz et al., 2007; López-León et al., 2008], so that, under the criteria employed here, they are rather different B types. The B1 variant was considered the ancestral B chromosome type in the Iberian Peninsula because it shows the widest geographical distribution along the Mediterranean coast, from Tarragona to Huelva [Henriques-Gil et al., 1984; Henriques-Gil and Arana, 1990]. Our present results suggest that B1 was the ancestral B variant for the whole western Mediterranean region. Recent molecular analysis of a 1,510-bp SCAR (sequence-characterized amplified region) marker specific to the B chromosomes has shown extremely scarce variation in its DNA sequence between Bs from both western (Spain and Morocco) and eastern (Greece, Turkey and Armenia) Mediterranean regions, which, for a dispensable chromosome, probably implies a very recent origin for these B chromosomes [Muñoz-Pajares et al., 2011]. Two additional facts point to the recent origin of B chromosomes in the Iberian Peninsula, both assuming that B chromosomes invaded the Iberian Peninsula through coastal populations in which B chromosomes are universally present. First, B chromosomes are absent around the headwaters of the Spanish Segura River basin, because abrupt geographical barriers have impeded the advance of B-carrying individuals [Cabrero et al., 1997; Manrique-Poyato et al., in preparation]. Second, the Otívar population, by the Verde River in the Spanish Granada province, is located 10 km from the coast and has been invaded by B chromosomes in the last 35 years [Camacho et al., submitted], whereas B invasion had been completed prior to 1977 in 4 other populations closer to the coast [Camacho et al., 1980]. The fact that B B1 Was the Ancestor B Variant in Western E. plorans Cytogenet Genome Res DOI: 10.1159/000356052 3 81 Downloaded by: J. Camacho - 59611 Fac Educacion y Humanidades 150.214.61.56 - 11/7/2013 10:02:50 AM rDNA and satDNA probes found in X and B chromosomes from 17 natural E. plorans populations. X and B chromosomes depicted for each population are from the same diplotene cell. Given that X and B chromosomes show positive heteropycnosis during this meiotic stage, their relative sizes can be compared. Note that B size in respect to X size varies among populations, the B being about half the size of the X in S’Albufereta, S’Esgleieta, Nerja, and Algarrobo (B2), about one-third in Salobreña and Otívar, and about two-thirds in San Juan, Mundo, Cieza, Algarrobo (B24), Torrox, and Fuengirola populations. Note also that the relative amount of rDNA and satDNA varies among B types, being almost equal for the B1 types, except for a slightly larger amount of rDNA in S’Albufereta and S’Esgleieta. The other variants show relatively smaller amounts of rDNA: one-third in B2 and B5 and onefourth in B24. A = Alicante; Ab = Albacete; Ba = Balearic Islands; Gr = Granada; Ma = Málaga; Mu = Murcia. Scale is variable for the different cells used, but the X chromosome in E. plorans is about 5 μm long. Table 1. Geographical location of the 17 populations analyzed, relative size of their B chromosomes in respect to the X chromosome, relative proportions of rDNA and satDNA in the B chromosomes, and B chromosome type Population Altitude, m B/X length rDNA/satDNAa Country Latitude Longitude Chott Mariem Sousse Tunisia 35°52′44′′N 10°35′55′′E 6 1/2 rDNA = satDNA B1 Micciulla Palerm Italy 38°06′20′′N 13°19′12′′E 97 2/3 4/5 rDNA = satDNA rDNA = satDNA B1 B1iso S’Albufereta Balearic Islands Spain 39°51′41′′N 3°05′43′′E 1 1/2 rDNA > satDNA B1 S’Esgleieta Balearic Islands Spain 39°39′12′′N 2°38′33′′E 103 1/2 rDNA > satDNA B1 San Juan Alicante Spain 38°23′45′′N 0°25′19′′E 22 2/3 rDNA = satDNA B1 Bullas Murcia Spain 38°02′30′′N 1°40′06′′W 636 2/3 rDNA = satDNA B1 Cieza Murcia Spain 38°13′58′′N 1°24′58′′W 165 2/3 rDNA = satDNA B1 Mundo Albacete Spain 38°28′01′′N 1°47′22′′W 436 2/3 rDNA = satDNA B1 Salobreña Granada Spain 36°44′20′′N 3°35′31′′W 2 1/3 rDNA < satDNA B2 Otívar Granada Spain 36°48′57′′N 3°40′59′′W 234 1/3 rDNA < satDNA B2 Maro Málaga Spain 36°45′34′′N 3°50′42′′W 114 1/2 1/2 rDNA < satDNA rDNA < satDNA B2 B2i Nerja Málaga Spain 36°44′44′′N 3°53′56′′W 6 1/2 rDNA < satDNA B2 Torrox Málaga Spain 36°44′24′′N 3°57′26′′W 30 2/3 rDNA < satDNA B24 Algarrobo Málaga Spain 36°44′48′′N 4°02′49′′W 5 1/2 2/3 rDNA < satDNA rDNA < satDNA B2 B24 Torre del Mar Málaga Spain 36°45′15′′N 4°06′15′′W 15 1/2 rDNA < satDNA B2 Torremolinos Málaga Spain 36°37′50′′N 4°30′12′′W 53 1/2 rDNA < satDNA B2 Fuengirola Málaga Spain 36°31′59′′N 4°38′29′′W 3 2/3 rDNA < satDNA B5 Type The predominant repetitive DNA in each B chromosome is shown in bold. Fig. 2. Map of the western Mediterranean region showing the geographical distribution of the different B chromosome types found. Note the presence of the B1 variant in all regions analyzed here and also in Morocco as previously shown by Cabrero et al. [1999]. Cytogenet Genome Res DOI: 10.1159/000356052 4 82 invasion continues at current times and the recent origin of these B chromosomes suggest the possibility that B1 spread across the western Mediterranean populations could occur in recent historical times, presumably aided by the increase of Mediterranean commerce, since E. plorans is very common in most Mediterranean cultivations and can be easily transported in plants [Cabrero and Camacho, pers. observation]. It is remarkable that most of the changes that B chromosomes have experienced in the south of the Iberian Peninsula, giving birth to the B24 and B5 variants, have mainly implied changes in the amount of satDNA. It has been shown that the replacement of B2 by B24 in the Torrox population was based on significant drive for B24 but absence of it for B2 [Zurita et al., 1998]. Cabrero et al. [1999] thus suggested that the replacement of ancestral Cabrero et al. Downloaded by: J. Camacho - 59611 Fac Educacion y Humanidades 150.214.61.56 - 11/7/2013 10:02:50 AM a Province B1: the western-mediterranean ancestral variant variants (e.g. B2 by B24 or B1 by B5) could be facilitated by a higher relative amount of satDNA in respect to rDNA. This could be valid for western Mediterranean Bs, where a relative increase in satDNA has been observed in the new variants in respect to the ancestral ones. In eastern Mediterranean Bs, however, this is less clear since Bs are mostly made up of rDNA, with very small amounts of satDNA, and this has not impeded their successful spreading to all regions analyzed [see López-León et al., 2008]. The appearance of new B chromosome variants in the progeny of controlled crosses, where none of the parents carried them, provides an estimate of the mutation rate of B chromosomes, since it can be safely assumed that this new variant arose by mutation of one of the Bs in the parents. Two different estimates point to the high mutability of B chromosomes in E. plorans, with rates ranging from 0.05 to 0.21% in Spanish populations [López-León et al., 1993] and from 0.21 to 9.6% in Moroccan populations [Bakkali and Camacho, 2004]. This explains how a young B chromosome system like this has given rise to so many different B types. Only in the Iberian Peninsula, Henriques-Gil et al. [1984] characterized 14 different B variants, and López-León et al. [1993] found additional variants. Including also the variants reported by Bakkali et al. [1999] in Morocco, Abdelaziz et al. [2007] in Greece, and López-León et al. [2008] in Turkey, Armenia, and Dagestan, more than 50 variants have hitherto been described in this species. Here we show a new B variant in the Maro population (B2i) which presumably arose through a paracentric inversion changing the relative positions of the rDNA and part of the satDNA. Inversion is a frequent chromosome mutation affecting B chromosomes [LópezLeón et al., 1993; Bakkali and Camacho, 2004]. The high incidence of mutations in the B chromosomes opens new evolutionary pathways to B chromosome polymorphism since some of the new variants can show higher transmission rates than their ancestor B and thus replace it, as documented for B24 in the Torrox population [Zurita et al., 1998]. Acknowledgements We thank Karl Meunier for language revision and Camillo Cusimano, Tommaso and Andrea La Mantia for their help in the collection of specimens in Sicily. This study was supported by a grant from the Spanish Ministerio de Ciencia e Innovación (CGL2009-11917) and Plan Andaluz de Investigación (CVI-6649), and was partially performed by FEDER funds. M.R.-E. was supported by a FPU fellowship from the Spanish Ministerio de Ciencia e Innovación. Abdelaziz M, Teruel M, Chobanov D, Camacho JPM, Cabrero J: Physical mapping of rDNA and satDNA in A and B chromosomes of the grasshopper Eyprepocnemis plorans from a Greek population. Cytogenet Genome Res 119:143–146 (2007). Bakkali M, Camacho JPM: The B chromosome polymorphism of the grasshopper Eyprepocnemis plorans in North Africa. III. Mutation rate of B chromosomes. Heredity 92:428–433 (2004). Bakkali M, Cabrero J, López-León MD, Perfectti F, Camacho JPM: The B chromosome polymorphism of the grasshopper Eyprepocnemis plorans in North Africa. I. B variants and frequency. Heredity 83:428–434 (1999). Cabrero J, López-León MD, Gómez R, Castro AJ, Martín-Alganza A, Camacho JPM: Geographical distribution of B chromosomes in the grasshopper Eyprepocnemis plorans, along a river basin, is mainly shaped by nonselective historical events. Chromosome Res 5:194–198 (1997). Cabrero J, López-León MD, Bakkali M, Camacho JPM: Common origin of B chromosome variants in the grasshopper Eyprepocnemis plorans. Heredity 83:435–439 (1999). B1 Was the Ancestor B Variant in Western E. plorans Camacho JPM: B chromosomes, in Gregory TR (ed): The Evolution of the Genome, pp 223– 286 (Academic Press, New York 2005). Camacho JPM, Carballo AR, Cabrero J: The Bchromosome system of the grasshopper Eyprepocnemis plorans subsp. plorans (Charpentier). Chromosoma 80:163–166 (1980). Henriques-Gil N, Arana P: Origin and substitution of B chromosomes in the grasshopper Eyprepocnemis plorans. Evolution 44: 747–753 (1990). Henriques-Gil N, Santos JL, Arana P: Evolution of a complex polymorphism in the grasshopper Eyprepocnemis plorans. Chromosoma 89: 290–293 (1984). Hewitt GM: Grasshopper and crickets, in John B (ed): Animal Cytogenetics, vol. 3, Insecta 1 Orthoptera (Gebrüder Borntraeger, Berlin 1979). Jones RN, Rees H: B Chromosomes (Academic Press, New York 1982). López-León MD, Cabrero J, Pardo MC, Viseras E, Camacho JPM, Santos JL: Generating high variability of B chromosomes in Eyprepocnemis plorans (grasshopper). Heredity 71: 352– 362 (1993). López-León MD, Neves N, Schwarzacher T, Heslop-Harrison JS, Hewitt GM, Camacho JPM: Possible origin of a B chromosome deduced from its DNA composition using double FISH technique. Chromosome Res 2: 87–92 (1994). López-León MD, Cabrero J, Dzyubenko V, Bugrov A, Karamysheva T, et al: Differences in ribosomal DNA distribution on A and B chromosomes between eastern and western populations of the grasshopper Eyprepocnemis plorans plorans. Cytogenet Genome Res 121:260–265 (2008). Montiel EE, Cabrero J, Camacho JPM, LópezLeón MD: Gypsy, RTE and Mariner transposable elements populate Eyprepocnemis plorans genome. Genetica 140: 365–374 (2012). Muñoz-Pajares AJ, Martínez Rodriguez L, Teruel M, Cabrero J, Camacho JPM, Perfectti F: A single, recent origin of the accessory B chromosome of the grasshopper Eyprepocnemis plorans. Genetics 187:853–863 (2011). Zurita S, Cabrero J, López-León MD, Camacho JPM: Polymorphism regeneration for a neutralized selfish B chromosome. Evolution 52: 274–277 (1998). Cytogenet Genome Res DOI: 10.1159/000356052 5 83 Downloaded by: J. Camacho - 59611 Fac Educacion y Humanidades 150.214.61.56 - 11/7/2013 10:02:50 AM References 84 Capítulo 4. Ribosomal DNA is active in different B chromosome variants of the grasshopper Eyprepocnemis plorans 85 86 Genetica DOI 10.1007/s10709-013-9733-6 rDNA transcription in B chromosome variants Ribosomal DNA is active in different B chromosome variants of the grasshopper Eyprepocnemis plorans Mercedes Ruı́z-Estévez • Ma Dolores López-León Josefa Cabrero • Juan Pedro M. Camacho • Received: 16 June 2013 / Accepted: 31 August 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract B chromosomes are considered to be genetically inert elements. However, some of them are able to show nucleolus organizer region (NOR) activity, as detected by both cytological and molecular means. The grasshopper Eyprepocnemis plorans shows a B chromosome polymorphism characterized by the existence of many B variants. One of them, B24, shows NOR activity in about half of B-carrying males in the Torrox population. Molecular data have suggested the recent origin for B chromosomes in this species, and on this basis it would be expected that NOR activity was widespread among the different B variants. Here we test this hypothesis in four different B chromosome variants (B1, B2, B5, and B24) from 11 natural populations of the grasshopper E. plorans covering the south and east of the Iberian Peninsula plus the Balearic Islands. We used two different approaches: (1) the cytological observation of nucleoli attached to the distal region of the B chromosome (where the rDNA is located), and (2) the molecular detection of the rDNA transcripts carrying an adenine insertion characteristic of B chromosome ITS2 sequences. The results showed NOR expression not only for B24 but also for the B1 and B2 variants. However, the level of B-NOR expression in these latter variants, measured by the proportion of cells showing nucleoli attached to the B chromosomes, was much lower than that previously reported for B24. This suggests the possibility that structural or genetic background conditions are enhancing the expressivity of the rDNA in the B24 variant. M. Ruı́z-Estévez Ma. D. López-León J. Cabrero J. P. M. Camacho (&) Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain e-mail: jpmcamac@ugr.es Keywords B chromosome Eyprepocnemis plorans Nucleolus Nucleolus organizer region PCR Ribosomal DNA Transcript Introduction B chromosomes are dispensable supernumerary elements appearing in about 15 % of eukaryotic genomes. They do not recombine with standard (A) chromosomes and usually show drive mechanisms, which provide them with transmissional advantages. They are mostly composed of repetitive DNA of several kinds, with predominance of ribosomal DNA (rDNA), satellite DNA (satDNA) and mobile elements (for review, see Camacho 2005). Other multigenes families have been reported as constituents of B chromosomes as in the case of histones genes, present in B chromosomes of the two grasshopper species Locusta migratoria (Teruel et al. 2010) and Rhammatocerus brasiliensis (Oliveira et al. 2011). In the ascomycetous fungus Nectria haematococca, supernumerary chromosomes have a lower G?C content compared to the other chromosomes and are enriched in repeat sequences and unique and duplicated genes (Coleman et al. 2009). In some canid species, the presence of cancer-associated genes has been shown, and at least one of them (the proto-oncogene cKIT) has been shown to be transcribed and translated into functional KIT protein (Graphodatsky et al. 2005; Yudkin et al. 2007; Becker et al. 2011). Recent research has also shown that rye B chromosomes are rich in gene-derived sequences, many of them being derived from A chromosomes 3R and 7R, but they also accumulate large amounts of specific DNA repeats and insertions of organellar DNA (Martis et al. 2012). 123 87 Genetica One of the repetitive DNAs most frequently harboured by B chromosomes in many species is rDNA. It is composed of repeat units containing the genes for 18S, 5.8S and 28S ribosomal RNAs (rRNAs), separated by two internal transcribed spacers (ITS1 and ITS2) and flanked by external transcribed spacers (ETS) and nontranscribed spacers (NTS) (Long and David 1980). The chromosome location of these genes is known as the nucleolus organizer regions (NORs), and their phenotype, the nucleolus, is cytologically apparent either spontaneoulsy or after using a variety of techniques, the simplest one being silver impregnation (Rufas et al. 1982). This technique reveals the transcriptional machinery of the RNA polimerase I, including the B23, nucleolin, UBF proteins and RNA pol I subunits (Roussel et al. 1992; Roussel and HernandezVerdun 1994; Roussel et al. 1996). It has been shown that nucleolus size is positively correlated with the rate of rRNA synthesis (Mosgoeller 2004), indicating the recruitment of the proteins needed for rDNA transcription (Derenzini 2000). The heterochromatic nature of most B chromosomes appeared to suggest their genetic inertness. In fact, several studies performed in the grasshopper Myrmeleotettix maculatus (Fox et al. 1974), the mouse Apodemus peninsulae (Ishak et al. 1991), the black rat Rattus rattus (Stitou et al. 2000), and the fish Metynnis maculatus (Baroni et al. 2009) and Haplochromis obliquidens (Poletto et al. 2010), pointed to the inactivity of B chromosome rDNA. However, evidence of NOR activity in B chromosomes was found in some species such as the grasshopper Dichroplus pratensis (Bidau 1986) and the mouse A. peninsulae (Boeskorov et al. 1995). At molecular level, indirect evidence of transcription from B chromosome DNA was reported in the frog Leiopelma hochstetteri (Green 1988) and the mosquito Simulium juxtacrenobium (Brockhouse et al. 1989). But the direct presence of rRNA transcripts coming from a B chromosome has been reported in the plant Crepis capillaris (Leach et al. 2005), the parasitic wasp Trichogramma kaykai (van Vugt et al. 2005) and rye (Carchilan et al. 2009). Other B specific-repetitive DNA sequences have been found transcriptionally active in the B chromosome of rye (Carchilan et al. 2007). Eyprepocnemis plorans is a grasshopper species carrying a wide variety of B chromosomes in addition to its standard genome of 22 ? X0/XX chromosomes. More than 50 variants have been differentiated on the basis of size, C-banding pattern and the relative amounts of their two main repetitive DNA components, i.e. rDNA and satDNA (López-León et al. 1993; López-León et al. 1994; Bakkali et al. 1999; Cabrero et al. 1999). Almost all A chromosomes in this species carry rDNA, the largest rDNA clusters being proximally located in the chromosomes X, 9, 10 and 11, although none of these rDNA clusters is as large 123 88 as that in the B chromosome (Cabrero et al. 1999, 2003). NOR activity is mostly found in one or more of the above mentioned A chromosomes, and very rarely in the B chromosomes (Cabrero et al. 1987; López-León et al. 1995). In fact, no NOR activity was found in B chromosomes of E. plorans prior to the finding of a B2 chromosome fused to the longest autosome where a nucleolus was frequently attached to the rDNA of the B chromosome (Cabrero et al. 1987). Remarkably, in the Torrox population (Málaga, Spain) the B24 variant recurrently showed NOR activity in many males collected for several years (Teruel et al. 2007, 2009). In this population, we detected the presence of transcripts that specifically came from the rDNA contained in the B chromosome named ITS2_B (Ruiz-Estévez et al. 2012). This was carried out by means of a pair of specific primers, one of them being anchored in the 30 extreme of the ITS2 region where the B chromosome rDNA carries an adenine insertion apparently absent in 0B individuals (Teruel et al. submitted). Except for the fused B2 mentioned above, nothing more is known about the potential of B variants other than B24 to express their rDNA. Under the hypothesis that B chromosomes in E. plorans are young (Muñoz-Pajares et al. 2011), we predict that most, if not all B variants should potentially conserve the capability to express their rDNA, since there has not been time enough for the occurrence of silencing mutations to inactivate it. To test this hypothesis, we analyze here the expression of the rDNA contained in four different B chromosome variants (B1, B2, B5, y B24) from 11 natural populations collected in the south and east of the Iberian Peninsula and the Balearic Islands by means of cytological and molecular approaches. Materials and methods Biological samples and characterization of B variants Adult males of the grasshopper E. plorans were collected from 11 Spanish populations. In 2010, we sampled the Algarrobo, Nerja (Málaga province), and Salobreña (Granada) populations. In 2011, we sampled Torrox and Fuengirola (Málaga), Cieza (Murcia), San Juan (Alicante), Mundo (Albacete), S’Albufereta and S’Esgleieta (Mallorca, Balearic Islands). In 2012, we sampled the Otı́var population (Granada). The 2010 and 2012 samples were analyzed by both cytological and molecular techniques, whereas the 2011 sample was only analyzed cytologically because of an accidental defrosting of the freezer where the bodies were stored. Testes were fixed in 3:1 ethanol:acetic acid for cytological studies and stored at 48 C until use. Bodies were divided into two hemibodies, frozen in liquid nitrogen, and rDNA transcription in B chromosome variants Genetica stored at -80° C for DNA and RNA isolation. Determination of B chromosome number in each male was performed by squashing two testis follicles in 2 % lactopropionic orcein and visualizing primary spermatocytes at prophase or metaphase under an Olympus microscope. The type of B variant was determined by the double fluorescent in situ hybridization (FISH) technique described in Cabrero et al. (1999). Cytological analysis of rRNA gene expression in B chromosomes Testis follicle preparations of B-carrying males were silver stained as indicated in Rufas et al. (1982) to visualize the nucleoli attached to autosomal bivalents and X and B chromosome univalents at diplotene cells. We stained these preparations with 1 % Giemsa to easily differentiate chromatin (blue-green) from nucleoli (brown). For this purpose, we selected at least 20 diplotene cells per male, which were photographed with an Olympus digital camera (DP70). When the B-NOR was active, we measured the area of the nucleolus attached to the B as well as the area of the X chromosome as a reference to obtain a relative measure of B-nucleoli area which could be compared between individuals and populations with different B chromosome variants. We measured areas with the ImageJ and a GPL3 licensed Python program (pyFIA) (Ruiz-Ruano et al. 2011), and calculated an index of B nucleolus area by dividing it by the X chromosome area. For this analysis, we also measured B nucleolus area in the individuals from the Torrox population reported in Ruiz-Estévez et al. (2012). Chromosome preparations were analysed with a BX41 Olympus epifluorescence microscope and photographs were taken with an associated DP70 cooled camera. Figures were composed and optimized for bright and contrast with The Gimp freeware. Statistical analysis was performed by contingency Chi square and Student t tests with the STATISTICA 8.0 software (StatSoft, Inc. 2007). Molecular analysis of rRNA gene expression in B chromosomes Genomic DNA (gDNA) and total RNA were isolated from frozen hemibodies using ‘‘GenElute Mammalian Genomic DNA Miniprep Kit’’ (Sigma) and ‘‘Real Total RNA Spin Plus kit’’ (Durviz), respectively, following manufacturer’s recommendations. RNA was submitted to an additional 20U DNase (REALSTAR kit, Durviz) post-treatment to eliminate any gDNA contamination. Quantity and quality (absorbance 260:280 nm = 1.9–2) of gDNA and RNA were measured with Tecan’s Infinite 200 NanoQuant and in a denaturing agarose gel to ensure the absence of RNA degradation. Complementary DNA (cDNA) was obtained with random hexamers using SuperScript III First-Strand Shyntesis SuperMix Kit (Invitrogen). PCR amplification of the ITS2_B sequence was performed in an Eppendorf Mastercycler ep Gradient S (Eppendorf) using ITSA (forward) and ITSB (reverse) primers (Ruiz-Estévez et al. 2012) with gDNA, as a positive control for the presence of the ITS2_B, and cDNA to test the presence of rRNA transcripts carrying the ITS2_B. PCR reaction mixtures for both gDNA and cDNA were performed in 25 ll containing 200 mM dNTPs, 10 mM each primer, 20 ng gDNA/30 ng cDNA, 1X buffer and one unit of Taq polymerase (New England, BioLabs). PCR conditions were the following: an initial denaturation at 94 °C for 5 min and 30 cycles of 94 °C for 30 s, 66,4 °C (Algarrobo, Salobreña and Nerja) or 62 °C (Otı́var) for 40 s, 72 °C for 45 s and final extension of 72 °C for 7 min. All PCR experiments on cDNA included a control reaction to exclude the possibility of gDNA contamination of the original RNA samples. PCR products were visualized in 1.5 % electrophoresis agarose gels and the amplified fragment was cloned into the TOPO TA vector (Invitrogen) and subsequently sequenced (Macrogen). We analyzed the sequences with Bioedit software version 7.1.3.0 (Hall 1999), and used BLAST (Basic Local Alignment Search tool) at the NCBI site to search for sequence homology with the sequences reported by Teruel et al. (submitted) (accession numbers: JN811827 to JN811902). Results Silver impregnation analysis showed the sporadic expression of the rDNA contained in the B chromosome, manifested by the presence of nucleoli attached to the distal region of the B chromosome (Fig. 1). This constituted our cytological test for the analysis of B-NOR expression. Table 1 shows that 202 out of the 352 males analyzed carried B chromosomes. The cytological analysis of B-NOR activity was performed in 156 of these males after selecting a representative sample of B-carrying males from each population. A total of 18 males from seven populations showed B-NOR activity, in frequencies ranging from 7.69 % in S’Esgleieta to 28.57 % in San Juan, with an 11.66 % average for the 11 populations (Table 1). Specifically, we found the presence of nucleoli attached to B chromosomes in two males from San Juan, three from Mundo, one from S’Esgleieta, three from Torrox, three from Otı́var, four from Salobreña and two from Algarrobo. In the males from Otı́var, Salobreña Nerja and Algarrobo, we also performed the molecular analysis of B-NOR activity (Fig. 2). We obtained a PCR product for the ITS2_B transcript (454 bp lenght) in the cDNA of five 123 89 Genetica males: two out of the 20 males analyzed from Salobreña (10 %), one out of the 30 males analyzed from Otı́var (3.33 %), and two out of 13 males analyzed from Algarrobo (15.38 %), but in none of the 19 males analyzed from Nerja. On average, 7.18 % (SE = 3.44) of the males in the four populations provided molecular evidence for B-NOR expression. A contingency Chi square test, comparing the total number of males carrying the ITS2_B transcript (5) and those lacking it (79), with the number of males showing nucleoli attached to the B chromosomes (9) and those lacking these nucleoli (70), in these same four populations, showed the absence of significant differences for B-NOR activity obtained by the cytological and molecular methods (v2 = 1.53, df = 1, P = 0.22). Fig. 1 Diplotene cell from an Algarrobo male showing a nucleolus attached to the B chromosome (B = B chromosome; X = X chromosome; nu = nucleolus). Bar = 5 lm The correspondence between cytological and molecular data was not complete. Table 2 shows the cytological and molecular results in the eleven males which showed B-NOR activity by one or the other method. The ITS2_B transcript was detected in only three out of the nine males showing nucleoli attached to the B chromosomes, whereas the reverse was found in the m11 male from Salobreña and the m20 male from Algarrrobo. In order to look for possible explanations, we investigate here whether the degree of B_NOR expression could influence its molecular detectability. For this purpose, we quantified the proportion of diplotene cells showing nucleoli attached to the Bs and also the area of these nucleoli relative to the X chromosome area. We used the X chromosome as reference instead of the B chromosome itself because the X is expected to show much lower size variation between populations. Table 3 shows the proportion of diplotene cells with B-nucleoli in the nine males showing B-NOR activity, as well as the presence of ITS2_B transcript in their cDNA. The results show that molecular detection only worked in three males showing B-nucleoli in 8 % or more of their cells. The six males where molecular detection of B-NOR activity failed showed B-nucleoli in 4–8 % of their diplotene cells. This suggests the existence of a threshold for molecular detection which might be about 8 % of diplotene cells with B-nucleoli. B-nucleolus area was measured in the same nine males, but no clear association with molecular detection was apparent (Table 4). Excepting male m24 from Otı́var, the remaining males showed values close to 0.5, meaning that the B-nucleoli had, on average, about 50 % the area of the X chromosome. Out of the eight males fitting this pattern, only three showed ITS2_B transcripts in their cDNA, Table 1 Number of B-lacking and B-carrying males found in each population Population B-lacking males B-carrying males B variant B-NOR inactive B-NOR active Total % Males with B-NOR active S’Albufereta (Ba) 10 10 B1 10 0 10 S’Esgleieta (Ba) 12 13 B1 12 1 13 7.69 3 7 B1 5 2 7 28.57 San Juan (A) 0 Mundo (Ab) 17 19 B1 16 3 19 Cieza (Mu) 20 7 B1 7 0 7 Salobreña (Gr) 10 21 B2 14 4 18 22.22 Otı́var (Gr) 45 70 B2 Nerja (Ma) 14 21 B2 27 19 3 0 30 19 10 0 3 11 B24 13 13 B2 and B24 3 10 B5 150 202 Torrox (Ma) Algarrobo (Ma) Fuengirola (Ma) Total/mean SE 15.79 0 8 3 11 27.27 10 2 12 16.67 0 10 0 10 138 18 156 11.66 3.37 A sample of B-carrying males was analyzed by silver staining to investigate B-NOR activity inferred from the presence of nucleoli attached to B chromosomes. SE standard error 123 90 rDNA transcription in B chromosome variants Genetica whereas the exceptional male did not show these transcripts despite bearing nucleoli as large as the X chromosome area. This is because its B-nucleoli appear in only 7 % of the cells. In order to get a more general picture on these parameters, we also measured B-nucleoli area in the same diplotene cells where Ruiz-Estévez et al. (2012) reported, for the first time at molecular level, the expression of the B chromosome NOR in the Torrox population. Table 5 shows the proportion of cells with B-nucleoli and B-nucleolus area measured in 14 males. The only male failing molecular detection (m74) showed the lowest proportion of cells with B-nucleoli (10 %), and yielded the second smallest B-nucleoli (38 % the size of the X chromosome). Another male (m45) also showed B-nucleoli in only 10 % of diplotene cells, but it showed B-nucleoli almost as large as the X chromosome and their ITS2_B transcripts were molecularly detected. This might suggests that the threshold for molecular detection of B-NOR activity is about 10 %, with slight modifications depending on the size of the B-nucleoli formed. However, molecular detection was possible in m52 which showed only 5 % of cells with B-nuceloli of size similar to that observed in m74. Since we performed the cytological analysis of tissue only from the testes whereas the molecular detection was done in cDNA obtained from hemibodies (which contain a mixture of transcripts from many tissues), this exception observed in Torrox, and some of those mentioned above for the other populations, could be due to differential expression of the B chromosome rDNA among tissues. A comparison of the average values for these two parameters between the Torrox population (Table 5) and the three other populations (Tables 3, 4) showed that the average area of B-nucleoli was similar in the two kinds of population (Student t test: t = 0.46, df = 21, P = 0.65) but, on the contrary, the proportion of cells showing B-nucleoli was significantly higher in Torrox (t = 3.64, df = 21, P = 0.0015). This higher expression level per male explains the higher success of molecular detection of B-NOR activity in Torrox (13 out of 14 males, i.e.[90 %), in respect to the remaining populations (3 out of 9 males, i.e. 33 %), and is consistent with the fact that B-NOR Fig. 2 Representative results of PCR amplification of the ITS2_B region. The gel shows the ladder, blank, positive control (C?) of the ITS2_B (454 bp) and selected examples of B-carrying individuals from Otı́var, Salobreña and Algarrobo showing different amplification patterns: absence of ITS2_B transcripts (cDNA-), presence of ITS2_B transcripts (cDNA?) and positive control for the presence of the ITS2_B region in the genomic DNA of every B-carrying individual (gDNA) Table 2 Correspondence between cytological (nucleoli attached to the Bs) and molecular (presence of ITS2_B transcripts in the cDNA) analysis of B-NOR activity in males of the grasshopper E. plorans Population Male Cytological Molecular Otı́var’12 m15 ? ? Otı́var’12 m24 ? - Otı́var’12 m27 ? - Salobreña’10 m15 ? - Salobreña’10 m6 ? ? Salobreña’10 m11 - ? Salobreña’10 m17 ? - Salobreña’10 m10 ? - Algarrobo’10 m17 ? ? Algarrobo’10 m20 - ? Algarrobo’10 m4 ? - Total 11 9 5 Table 3 Calculation of the proportion of cells with active and inactive B-NOR, based on the presence or absence of B-nucleoli, in the nine males showing nucleoli attached to the B chromosomes The result of the molecular detection experiment, showing the presence of ITS2_B transcripts, is indicated in the last column on the right. SE standard error Population Male Cells with B-nucleoli Cells without B-nucleoli Total Proportion of cells with B-nucleoli Molecular detection Otı́var’12 m15 2 22 24 0.08 ? Otı́var’12 m24 2 25 27 0.07 - Otı́var’12 m27 1 20 21 0.05 - Salobreña’10 m15 1 25 26 0.04 - Salobreña’10 m6 5 18 23 0.22 ? Salobreña’10 m17 2 24 26 0.08 - Salobreña’10 m10 1 19 20 0.05 - Algarrobo’10 m17 4 28 32 0.13 ? Algarrobo’10 m4 0.04 - Total/mean (SE) 9 1 25 26 19 206 225 0.08 (0.02) 123 91 Genetica Table 4 Relative B-nucleolus area in the nine males showing the presence of nucleoli attached to the B chromosomes in diplotene cells and its correspondence with molecular detection of ITS2_B transcripts Population Male Cell no. B-nucleolus area (a.u.) X chrom. area (a.u.) Otı́var’12 m15 22 10,159 4 2,205 22 27 13,034 8,608 m24 Salobreña’10 Total/mean (SE) Mean relative B-nucleolus area Molecular detection 26,305 0.39 0.51 ? 3,569 0.62 10,219 9,226 1.18 0.93 1.11 - m27 1 1,754 5,408 0.32 0.32 m15 11 10,588 18,253 0.58 0.58 - m6 18 1,246 6,335 0.2 0.43 ? 0.59 - 1 5,049 7,975 0.63 20 2,441 5,313 0.46 22 7,081 14,284 0.5 7 3,696 10,073 0.37 21 2,268 10,817 0.21 7 7,199 7,465 0.96 m10 8 8,433 27,573 0.31 0.31 - m17 10 4,510 15,752 0.29 0.45 ? 1 5,413 11,268 0.48 23 1,835 7,007 0.26 m4 28 22 2,014 5,694 2,602 9,860 0.77 0.58 0.58 - 9 19 m17 Algarrobo’10 Relative B-nucleolus area 0.54 (0.06) SE standard error; a.u. arbitrary units Table 5 Proportion of cells showing B-nucleoli and relative area of the B-nucleolus in respect to the X chromosome area in the same cell in 14 males from the Torrox population collected in 2008 and reported by Ruiz-Estévez et al. (2012) Male Proportion of cells with B-nucleoli Relative B-nucleolus area Molecular detection m54 0.50 0.53 ? m49 0.30 0.40 ? m58 0.20 0.42 ? m67 0.25 0.34 ? m52 m45 0.05 0.10 0.41 0.96 ? ? m74 0.10 0.38 - m61 0.30 0.40 ? m63 0.25 0.68 ? m55 0.40 0.42 ? m62 0.38 0.58 ? m50 0.35 0.57 ? m42 0.15 0.54 ? m71 0.20 0.43 ? Mean (SE) 0.25 (0.04) 0.50 (0.04) Molecular detection of ITS2_B transcripts in these males. SE standard error 123 92 expression was observed in 48 % of B-carrying males from Torrox (Ruiz-Estévez et al. 2012) but only in about 10 % of those analyzed here from the other populations (calculated from Table 1, excluding the Torrox males). Discussion Our present results have shown that the expression of the rDNA contained in the B chromosomes of the grasshopper E. plorans, which had been previously detected in the Torrox population for the B24 variant (Teruel et al. 2007, 2009; Ruiz-Estévez et al. 2012), also takes place in other populations and B variants. The populations where B-NOR activity was detected belong to a broad range of Spanish regions including the South (Torrox, Otı́var, Salobreña and Algarrobo) and the East (Mundo and San Juan) of the Iberian Peninsula, as well as Balearic Islands (S’Esgleieta). It is remarkable that no B-NOR activity was detected in any of the 19 B-carrying males analyzed from Nerja, even though this population is located at only eight Km east of Torrox. However, it was observed in Algarrobo at about 10 km west of Torrox. The different B variants (B2 in Nerja and B24 in Torrox) analyzed in both populations Genetica might account for the different level of B-NOR expression observed. However, B-NOR expression for B2 has been observed in the nearby population of Algarrobo and in the two eastern populations of Salobreña and Otı́var. The frequency of males expressing the B-NOR varied among the populations analyzed here (0–28.57 %) (see Table 1), although the differences did not reach significance (v2 = 13.57, df = 10, P = 0.19). Remarkably, all these frequences were lower than that observed in Torrox in 2008 (48 %) (Ruiz-Estévez et al. 2012). This suggests that B chromosomes in other populations than Torrox are mostly silenced, with only sporadic rDNA activity. The ultimate reasons for B-NOR activity still remain obscure, but rDNA methylation (López-León et al. 1991) and/or H3 acethylation in the B chromosome (Cabrero et al. 2007) are probably involved. Remarkably, NOR activity has hitherto been detected in three of the main B chromosome variants studied in the present work, i.e. B1 (Mundo, San Juan, and S’Esgleieta), B2 (Algarrobo, Otı́var and Salobreña) and B24 (Torrox), but not in B5 (Fuengirola). B chromosomes in E. plorans appear to be of recent origin (Muñoz-Pajares et al. 2011), and the widespread geographical distribution of B-NOR expression on several B variants suggests that this functional feature of these B chromosomes is an ancestral condition. Most B chromosome variants also share their molecular composition, being mostly made of two repetitive DNAs, i.e. rDNA and a 180 bp tandem repeat DNA, on which basis Cabrero et al. (1999) suggested the common origin of all these B variants. The most widespread B chromosome variant in the Iberian Peninsula is B1, for which reason it is considered the ancestral B variant (Henriques-Gil et al. 1984). The fact that this B variant expresses the NOR in both the Iberian Peninsula (Mundo population) and Balearic Islands (S’Esgleieta population) is consistent with the ancestral condition of both the B1 variant and the B-NOR expression. The B24 variant emerged a few decades ago in Torrox, a population surrounded by populations where the most frequent B chromosome was B2 and were devoid of B24 (Henriques-Gil and Arana 1990). B24 replaced B2 in this population (Zurita et al. 1998) and has recently spread towards the west (Algarrobo population) (Manrique-Poyato et al. 2006) and also towards the east (Nerja population) (Manrique-Poyato et al. submitted). The increase in B-NOR expression observed in the B24 chromosome of Torrox (and not in the other B variants) could thus be a consequence of the molecular changes underwent by B2 in Torrox to become into B24. The structural difference between B2 and B24 is mainly due to changes in the relative amount of the two main repetitive DNAs making up these B chromosomes, with amplification of the 180 bp tandem repeat DNA and deletion of part of the rDNA. Change in rDNA transcription in B chromosome variants rDNA amount could be a good candidate to trigger the higher B-NOR activity in B24. Accordingly, higher transcription rates have been observed in yeast for low copy ribosomal DNA strains comparing with high copy strains (Ide et al. 2010). However, other structural changes could increase B-NOR activity, as previously shown for a centric fusion between the B2 chromosome and the longest autosome in the Salobreña population (Cabrero et al. 1987). In this last case, the centric fusion involved the loss of the minute small arm of the B chromosome, and this could imply the activation of the B-NOR. However, B24 has a short arm similar to that shown by B2, suggesting different causes in both cases. Another factor presumably influencing the activity of rRNA genes on different B variants is the level of occupancy of the B-NOR by transposable elements with specific site insertion in ribosomal RNA genes, which might inhibit or hinder the transcription of B-rRNA genes. Indeed, the 28S rRNA genes show higher occupancy for the non-LTR retrotransposon R2 in B24 than B2 (Montiel et al. in preparation). However, R2 ability to limit rDNA expression depends jointly on its copy number and its distribution within the NOR since R2-free large rDNA blocks are preferentially expressed (Eickbush et al. 2008; Zhou and Eickbush 2009). The higher NOR activity for B24 might thus be due to a higher clustering of R2 copies in this variant than in others. Alternatively, this could be a secondary effect of R2 strategy for expression on the basis of the increase in copy numbers from B2 to B24 (Montiel et al. in preparation). The presence in E. plorans B-NORs of other transposable elements specifically targeting rDNA, such as R1 retrotransposons or pokey DNA transposon, (Eickbush 2002; Penton et al. 2002) could also influence B-NOR expression. The molecular detection of the ITS2_B transcripts logically depends on the degree of the B-NOR expression. At cytological level, this dependence is mainly manifested by the proportion of diplotene cells showing nucleoli associated to the distal region of the B (where the rDNA is located). In fact, molecular detection of the ITS2_B transcript is unlikely under a threshold of about 10 % diplotene cells with B-nucleoli (see Table 3). However, the likelihood of molecular detection of B-NOR activity appears to be independent of the size of the B-nucleoli (see Table 4). This is because most B-nucleoli have an area about half the size of the X chromosome, and this area is independent of the number of cells displaying nucleoli. The existence of males where B-NOR activity was detected cytologically but not molecularly, and vice versa, might be explained by the fact that we performed cytological detection on spermatocytes but molecular detection in hemibodies including a random representation of many different tissues, and suggests the possibility that B-NOR 123 93 Genetica expression varies between different tissues within a same individual. This is an interesting question to explore in future research. The existence of a residual level of rRNA gene expression in the B chromosomes from most E. plorans populations indicates that some of the rRNA transcripts in B-carrying males are B-derived. The possible biological role of the B-derived transcripts will logically depend on both their functionality and their abundance. We unknow whether they are fully functional, but the low frequency of males showing them, in most populations, suggests that these parasitic B chromosomes are mostly repressed. Acknowledgments We thank FJ Ruı́z-Ruano and T. López for technical assistance, and Karl Meunier for language revision. This study was supported by a grant from the Spanish Ministerio de Ciencia e Innovación (CGL2009-11917) and Plan Andaluz de Investigación (CVI-6649), and was partially performed by FEDER funds. M Ruı́z-Estévez was supported by a FPU fellowship from the Spanish Ministerio de Ciencia e Innovación. References Bakkali M, Cabrero J, López-León MD, Perfectti F, Camacho JPM (1999) The B chromosome polymorphism of the grasshopper Eyprepocnemis plorans in North Africa I. B variants and frequency. Heredity 83:428–434 Baroni S, Lopes CE, de Almeida-Toledo LF (2009) Cytogenetic characterization of Metynnis maculatus (Teleostei: Characiformes): the description in Serrasalminae of a small B chromosome bearing inactive NOR-like sequences. Caryologia 62:95–101 Becker SED, Thomas R, Trifonov VA, Wayne RK, Graphodatsky AS, Breen M (2011) Anchoring the dog to its relatives reveals new evolutionary breakpoints across 11 species of the Canidae and provides new clues for the role of B chromosomes. Chromosome Res 19:685–708 Bidau CJ (1986) A nucleolar-organizing B chromosome showing segregation-distortion in the grasshopper Dichroplus pratensis (Melanoplinae, Acrididae). Can J Genet Cytol 28:138–148 Boeskorov GG, Kartavtseva IV, Zagorodniuk IV, Belianin AN, Liapunova EA (1995) Nucleolus organizer regions and B-chromosomes of field mice (Mammalia, Rodentia, Apodemus). Genetika 31(2):185–192 Brockhouse C, Bas JAB, Fereday RM, Strauss NA (1989) Supernumerary chromosomes evolution in the Simulium vernum group (Diptera: Simulidae). Genome 32:516–521 Cabrero J, Alché JD, Camacho JPM (1987) Effects of B chromosomes of the grasshopper Eyprepocnemis plorans on nucleolar organizer regions activity. Activation of a latent NOR on a B chromosome fused to an autosome. Genome 29:116–121 Cabrero J, López-León MD, Bakkali M, Camacho JPM (1999) Common origin of B chromosome variants in the grasshopper Eyprepocnemis plorans. Heredity 83:435–439 Cabrero J, Bugrov A, Warchałowska-Sliwa E, López-León MD, Perfectti F, Camacho JPM (2003) Comparative FISH analysis in five species of Eyprepocnemidine grasshoppers. Heredity 90:377–381 Cabrero J, Teruel M, Carmona FD, Jiménez R, Camacho JPM (2007) Histone H3 lysine 9 acetylation pattern suggests that X and B chromosomes are silenced during entire male meiosis in a grasshopper. Cytogenet Genome Res 119:135–142 123 94 Camacho JPM (2005) B chromosomes. In: Gregory TR (ed) The evolution of the genome. Academic Press, New York, pp 223–286 Carchilan M, Delgado M, Ribeiro T, Costa-Nunes P, Caperta A et al (2007) Transcriptionally active heterochromatin in rye B chromosomes. Plant Cell 19:1738–1749 Carchilan M, Kumke K, Mikolajewski S, Houben A (2009) Rye B chromosomes are weakly transcribed and might alter the transcriptional activity of A chromosome sequences. Chromosoma 118:607–616 Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC et al (2009) The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet 5(8):e1000618. doi:10.1371/journal.pgen.1000618 Derenzini M (2000) The AgNORs. Micron 31:117–120 Eickbush TH (2002) R2 and related site-specific non-long terminal repeat retrotransposons. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. ASM Press, Washington, DC, pp 813–835 Eickbush DG, Ye J, Zhang X, Burke WD, Eickbush TH (2008) Epigenetic regulation of retrotransposons within the nucleolus of Drosophila. Mol Cell Biol 28:6452–6461 Fox DP, Hewitt GM, Hall DJ (1974) DNA replication and RNA transcription of euchromatic and heterocromatic chromosome regions during grasshopper meiosis. Chromosoma 45:43–62 Graphodatsky AS, Kukekova AV, Yudkin DV et al (2005) The protooncogene C-KIT maps to canid B-chromosomes. Chromosome Res 13:113–122 Green DM (1988) Cytogenetics of the endemic New Zeland frog, Leiopelma hochstetteri: extraordinary supernumerary chromosome variation and a unique sex-chromosome system. Chromosoma 97:55–70 Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98 Henriques-Gil N, Arana (1990) Origin and substitution of B chromosomes in the grasshopper Eyprepocnemis plorans. Evolution 44:747–753 Henriques-Gil N, Santos JL, Arana P (1984) Evolution of a complex polimorphism in the grasshopper Eyprepocnemis plorans. Chromosoma 89:290–293 Ide S, Miyazzaki T, Maki H, Kobayashi T (2010) Abundance of ribosomal RNA gene copies maintains genome integrity. Science 327:693–696 Ishak B, Jaafar H, Maetz JL, Rumpler Y (1991) Absence of transcriptional activity of the B-chromosome of Apodemus peninsulae during pachytene. Chromosoma 100:278–281 Leach CR, Houben A, Bruce F, Pistrick K, Demidov D et al (2005) Molecular evidence for transcription of genes on a B chromosome in Crepis capillaris. Genetics 171:269–278 Long EO, David IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764 López-León MD, Cabrero J, Camacho JPM (1991) A nucleolus organizer region in a B chromosome inactivated by DNA methylation. Chromosoma 100:134–138 López-León MD, Cabrero J, Pardo MC, Viseras E, Camacho JPM, Santos JL (1993) Generating high variability of B chromosomes in Eyprepocnemis plorans (grasshopper). Heredity 71:352–362 López-León MD, Neves N, Schwarzacher T, Heslop-Harrison JS, Hewitt GM et al (1994) Possible origin of a B chromosome deduced from its DNA composition using double FISH technique. Chromosome Res 2:87–92 López-León MD, Cabrero J, Camacho JPM (1995) Changes in NOR activity in the presence of supernumerary heterochromatin in the grasshopper Eyprepocnemis plorans. Genome 38:68–74 Genetica Manrique-Poyato MI, Muñoz-Pajares AJ, Loreto V, López-León MD, Cabrero J et al (2006) Causes of B chromosome variant substitution in the grasshopper Eyprepocnemis plorans. Chromosome Res 14:693–700 Martis MM, Klemme S, Ali Mohammad Banaei-Moghaddam AM et al (2012) Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc Natl Acad Sci USA 109(33):13343–13346 Mosgoeller W (2004) Nucleolar ultrastructure in vertebrates. In: Olson MOJ (ed) The Nucleolus. Kluwer, New York, pp 10–20 Muñoz-Pajares AJ, Martı́nez-Rodrı́guez L, Teruel M et al (2011) A single, recent origin of the accessory B chromosome of the grasshopper Eyprepocnemis plorans. Genetics 187:853–863 Oliveira NL, Cabral-de-Mello RochaMF, Loreto V, Martin C, Moura RC (2011) Chromosomal mapping of rDNAs and H3 histone sequences in the grasshopper Rhammatocerus brasiliensis (acrididae, gomphocerinae): extensive chromosomal dispersion and co-localization of 5S rDNA/H3 histone clusters in the A complement. Mol Cytogenet 4:24 Penton EH, Sullender BW, Crease TJ (2002) Pokey, a new DNA transposon in Daphnia (Cladocera: Crustacea). J Mol Evol 55(6):664–673 Poletto AB, Ferreira IA, Martins C (2010) The B chromosomes of the African cichlid fish Haplochromis obliquidens harbour 18S rRNA gene copies. BMC Genet 11:1 Roussel P, Hernandez-Verdun D (1994) Identification of Ag-NOR proteins, markers of proliferation related to ribosomal gene activity. Exp Cell Res 214:465–472 Roussel P, Belenguer P, Amalric F, Hernandez-Verdun D (1992) Nucleolin is an Ag-NOR protein; this property is determined by its amino-terminal domain independently of its phosphorylation state. Exp Cell Res 203:259–269 Roussel P, Andre C, Comai L, Hernandez-Verdun D (1996) The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J Cell Biol 133:235–246 Rufas JS, Iturra P, de Souza W, Esponda P (1982) Simple silver staining procedure for the localization of nucleolus and nucleolar organizer under light and electron microscopy. Arch Biol 93:267–274 rDNA transcription in B chromosome variants Ruiz-Estévez M, López-León MD, Cabrero J, Camacho JPM (2012) B-Chromosome Ribosomal DNA is functional in the grasshopper Eyprepocnemis plorans. PLoS ONE 7(5):e36600. doi:10. 1371/journal.pone.0036600 Ruiz-Ruano FJ, Ruiz-Estévez M, Rodrı́guez-Pérez J, López Pino JL, Cabrero J, Camacho JPM (2011) DNA amount of X and B chromosomes in the grasshoppers Eyprepocnemis plorans and Locusta migratoria. Cytogenet Genome Res 134:120–126 StatSoft, Inc. (2007) STATISTICA (data analysis software system), version 8.0. www.statsoft.com Stitou S, Dı́az de la Guardia R, Jiménez R, Burgos M (2000) Inactive ribosomal cistrons are spread throughout the B chromosomes of Rattus rattus (Rodentia, Muridae). Implications for their origin and evolution. Chromosome Res 8(4):305–311 Teruel M, Cabrero J, Perfectti F, Camacho JPM (2007) Nucleolus size variation during meiosis and NOR activity of a B chromosome in the grasshopper Eyprepocnemis plorans. Chromosome Res 15:755–765 Teruel M, Cabrero J, Perfectti F, Camacho JPM (2009) Quantitative analysis of NOR expression in a B chromosome of the grasshopper Eyprepocnemis plorans. Chromosoma 118:291–301 Teruel M, Cabrero J, Perfectti F, Camacho JPM (2010) B chromosome ancestry revealed by histone genes in the migratory locust. Chromosoma 119:217–225 van Vugt JJFA, de Nooijer S, Stouthamer R, de Jong H (2005) NOR activity and repeat sequences of the paternal sex ratio chromosome of the parasitoid wasp Trichogramma kaykai. Chromosoma 114:410–419 Yudkin DV, Trifonov VA, Kukekova AV et al (2007) Mapping of KIT adjacent sequences on canid autosomes and B chromosomes. Cytogenet Genome Res 116:100–103 Zhou J, Eickbush TH (2009) The pattern of R2 retrotransposon activity in natural population of Drosophila simulans reflects the dynamic nature of rDNA locus. PLoS Genet 5:e1000386 Zurita S, Cabrero J, López-León MD, Camacho JPM (1998) Polymorphism regeneration for a neutralized selfish B chromosome. Evolution 52:274–277 123 95 96 Capítulo 5. B chromosomes in Eyprepocnemis plorans are present in all body parts analyzed and show extensive variation for rDNA copy number 97 98 B chromosomes in Eyprepocnemis plorans are present in all body parts analyzed and show extensive variation for rDNA copy number Mercedes Ruíz-Estévez, Mª Dolores López-León, Josefa Cabrero Hurtado, Juan Pedro M Camacho* Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain Short title: Mitotic stability of B chromosomes Key words: B chromosomes, FISH, mitotic stability, qPCR, rDNA 99 Abstract B chromosomes in the grasshopper Eyprepocnemis plorans are considered to be mitotically stable because all cells analyzed in meiotic (primary spermatocytes and oocytes) or mitotic (embryos, ovarioles and gastric caecum) cells within a same individual show the same number of them. Nothing is known, however, the body parts containing somatic tissues with no mitotic activity in adult individuals, which constitute the immense majority of their body. The development of two B-specific molecular markers has provided the opportunity to test for B chromosome presence in any body part, even those lacking cell division activity. Therefore, we focused on two main objectives: i) ascertaining whether B chromosomes are present in 8 different somatic body parts from both sexes (head, cerebral ganglion, antennae, wing muscles, hind legs, gastric caecum, Malphigian tubules and male accessory gland) as well as ovarioles in females and testes in males, by means of PCR analysis, and ii) elucidating the number of B chromosomes that an individual carries through quantifying its B-rDNA copy number by qPCR. Our results indicated the amplification of both B-specific markers in all analyzed body parts from B-carrying males, but not in those from B-lacking males. However, we failed in our second objective due to high variation found between males for the estimated number of rDNA units present in the B chromosomes. These results demonstrate the presence of B chromosomes in all body parts of individuals and suggest the occurrence of high variation in the rDNA content of the B chromosomes carried by different individuals from a same population, presumably due to unequal crossovers during meiosis. Introduction Supernumerary (B) chromosomes are dispensable extra chromosomes representing specific kind of selfish genetic elements, appearing in about 15% of eukaryotic genomes. They do not recombine with the standard (A) genome, are rich in repetitive DNA such as satellite DNA, ribosomal DNA (rDNA) and mobile elements, and show drive mechanisms guaranteeing their maintenance in natural populations (for review, see Camacho 2005). Since mitotical instability constitutes the drive mechanism in many B chromosome systems, the number of B chromosomes in the germ line becomes higher than that in the somatic line (for review, see Jones, 1995), a thorough knowledge of mitotic stability of B chromosomes is necessary in order to understand their biological role. Of course, a decay of B chromosome numbers in somatic tissues could actually make them less harmful for the host genome. In fact, the presence of higher B frequency in the germ line than in the somatic line constitutes a common drive mechanism for B chromosomes in both plants (e.g. Crepis capillaris, see Rutishauser and Röthlisberger, 1966) and animals (e.g. Locusta migratoria, see Kayano, 1971). In extreme cases, B chromosomes are apparently restricted to the germ line, as is the case 100 Mitotic stability of B chromosomes of the plants Aegilops mutica (Mochizuki, 1957; Ohta, 1986) and A. speltoides (Mendelson and Zohari, 1972) where Bs are absent from roots but present in flowers. The classical cytological analysis depends on the availability of tissues showing mitotic (or meiotic) activity. In grasshoppers, B chromosome presence has traditionally been analyzed in testes, ovarioles and gastric caecum, in adult as well as embryos. This has shown that B chromosomes are mitotically stable (and thus show the same number in all cells analyzed from a same individual) in Myrmeleotettix maculatus (John and Hewitt 1965), Phaulacridium vittatum (Jackson and Cheung, 1967), Eyprepocnemis plorans (Camacho et al., 1980) and Dichroplus pratensis (Bidau et al., 2004), but mitotically unstable (thus showing different B numbers among cells within a same individual) in Locusta migratoria (Nur, 1969; Kayano, 1971; Pardo et al., 1995), Camnula pellucida (Nur 1969), and Dichroplus elongatus (Remis et al., 2004). In no case it is known whether B chromosomes are eliminated from some somatic body parts. In one of the species showing mitotically stable B chromosomes, E. plorans, we have recently developed two molecular markers specific to B chromosomes, which represent an opportunity to test for B presence in all kinds of somatic body parts through PCR tests. These were a SCAR marker constituting part of the external spacer of the 45S rDNA (Muñoz-Pajares et al., 2011), and an adenine insertion in the ITS2 region of the rDNA from the B chromosomes (ITS2_B marker) (Teruel, 2009; RuizEstévez et al., 2012; Teruel et al., submitted). These molecular markers have allowed us to test the two following hypotheses: 1) Are B chromosomes present in all body parts? 2) Is B chromosome composition similar in all males from a same population, so that the number of rDNA units in an individual could serve to infer the number of Bs it carries? In this work, we test both hypotheses by analyzing, with these molecular markers, the presence of B chromosomes in 10 different body parts, and estimating the number of rDNA units in individuals from two natural populations carrying different B variants. Materials and methods Biological material preparation We collected 41 males and 7 females of E.plorans in Torrox (Málaga, Spain), and 12 males in Salobreña (Granada, Spain). They were anesthetized and dissected under binocular microscope to take out a portion of the gonads, which was fixed in 3:1 ethanol-acetic acid (ovarioles were pretreated with 0,075% colchicine for 2h prior to fixation) and stored at 4ºC. We froze in liquid nitrogen the whole bodies of 28 males from Torrox and all of those from Salobreña, which were used in B-rDNA copy number estimation. The remaining individuals were used in both B-rDNA copy number and B presence analyses in different body parts, for which we froze them in different parts (antenna, cerebral ganglia, head, hind leg, wing muscle, gonad, Malpighian tubules, 101 gastric caeca and male accessory gland) in liquid nitrogen, and stored at -80ºC. The number of B chromosomes of each male was determined by squashing two testis follicles in 2% lacto-propionic orcein. In females, we performed C-Banding on squash preparations of two ovarioles in 50% acetic acid (Camacho and Cabrero, 1983). Genomic DNA (gDNA) was extracted from every tissue by using the “GenElute Mammalian Genomic DNA Miniprep Kit” (Sigma) following manufacturer’s recommendations, and DNA quality and quantity was measured with Tecan'sInfinite 200 NanoQuant. B presence in the body parts B chromosome presence was assessed in all body parts by PCR analysis of the SCAR and ITS2_B markers, whose PCR products have 1510 bp and 484 bp, respectively, following the protocols described in Muñoz-Pajares et al. (2011) and Ruiz-Estévez et al. (2012). PCR products were visualized by electrophoresis in 1.5% agarose gels, the amplified fragments were cloned into TOPO TA vector (Invitrogen) and subsequently sequenced (Macrogen) to confirm sequence identity. We analyzed DNA sequences with Bioedit software version 7.1.3.0 (Hall, 1999), and used BLAST (Basic Local Alignment Search tool) at the NCBI site to search for sequence homology with the sequences reported by Muñoz-Pajares et al. (2011) (accession number: FR681612) and Teruel et al. (submitted) (accession numbers: JN811827-JN811902). B-rDNA copy number estimation at the individual and body part levels On the basis of the ITS2_B marker sequence, we designed a new F primer anchored closer to the R one, in order to obtain a smaller PCR product appropriate for qPCR (we named qITS2_B this shorter marker). To estimate rDNA copy number in the B chromosome, we performed quantitative PCR (qPCR) on genomic DNA (gDNA) from every individual and the results were analysed by means of the “Linear Regression PCR” software (LingRegPCR; Feng et al., 2008). We previously compared this method with the “Linear Regression of Efficiency” method (LRE; Rutledge et al., 2008), which uses lambda gDNA as Calibrator Factor, and observed that LinRegPCR showed higher reproducibility in most of the replicate runs, and had three advantages: 1) the Calibration Factor carries your target sequence, 2) the software performs specific quality checks in every single amplification curve, and 3) it gives a statistically analyzed mean amplification efficiency value (Sommeregger et al., 2013). Reaction mixtures contained 5µl 2X SensiMixTM SYBR Mastermix (SensiMixTM SYBR Kit, Bioline), 0.7µM each forward (ITSD: 5’ ACTTGGGAGCGTCGTGGTA 3’) and reverse primer (ITSA: 5’ CGTTGTACGAAAGAGTTTGAG 3’) and 25ng gDNA, in a final volume of 15µl. Reactions were made in triplicate and, in each run, we included a negative control without gDNA to ensure that the reagents were free of contaminating DNA. qPCR 102 Mitotic stability of B chromosomes program consisted of an initial denaturation at 95ºC for 10 min, 40 cycles of 94ºC for 30 s, 63ºC for 15 s, 72ºC for 15 s, and a final dissociation step to identify the unique and specific amplification of the target sequence. The program was run in a Chromo4 (BioRad) thermal cycler and the Opticon Monitor v3.1 software was used to export the raw data. Fluorescent in situ hibridization (FISH) We performed FISH on chromosome preparations obtained by squashing of two testis follicles in 50% acetic acid, using a 1113 bp DNA probe from E.plorans 18S ribosomal DNA (rDNA). This fragment was obtained using the 18S-E and 1100R primers designed by Timothy et al (2000) with the following PCR conditions: an initial denaturation at 94ºC for 3 min and 30 cycles of 94ºC for 30 s, 45ºC for 1 min, 72ºC for 2 min, and final extension of 72ºC for 7 min. Probe labeling and FISH protocol employed was essentially that described in Cabrero et al. (1999). rDNA array size was analysed under the BX41 Olympus epifluorescence microscope and photographs were captured with a DP70 cooled camera. Images were composed and optimized for bright and contrast with The Gimp freeware. Statistical analyses For statistical analysis, we first tested whether the variables assayed fitted a normal distribution with the Kolmogorov-Smirnov test and, when necessary, they were log transformed. Parametric analyses were then performed: Student t-test, one-way ANOVA and mixed-model ANOVA were performed with the Statistica 6.0 software (Statsoft Inc.). Results Analysis of B chromosome presence The cytological analysis in the gonads of the individuals collected for the study of B chromosome presence in different body parts showed that two females and seven males lacked B chromosomes, whereas five females and six males carried them. After PCR analysis, the two molecular markers of B chromosome presence (SCAR and ITS2_B) showed amplification in all body parts analyzed (antenna, cerebral ganglia, head, hind leg, wing muscle, testes, ovaries, Malpighian tubules, gastric caecum and male accessory gland) on gDNA from B-carrying individuals, but not from B-lacking individuals (Fig. 1). 103 Fig. 1 Agarose electrophoresis gels showing the presence of the 1510 bp SCAR (a) and the 484 bp ITS2_B fragments (b) after PCR amplification in the gDNA from the different body parts in representative B-carrying males (m1 +B and m2 +B in a) and females (f1 +B and f2 +B in b), and its absence in a B-lacking male (m3 0B in a) and female (f3 0B in b) (he: head; ga: ganglion; an: antenna; Mt: Malphigian tubules; cae: gastric caeca; tes: testis; le: hind leg; ag: accessory gland; ov: ovariole; wm: wing muscles). B-rDNA copy number estimation in male bodies The estimation of rDNA copy number (qITS2_B) for the B24 chromosome was performed on 28 males from the Torrox population, 5 of which lacked B chromosomes and the remaining 23 carrying them (8 with 1B, 8 with 2B and 7 with 3B) (Table 1). Surprisingly, there were 142 qITS2_B copies on average in B-lacking males, suggesting the presence of a few copies in the standard A chromosomes. In the B-carrying males, however, the number of qITS2_B copies was much higher,ranging from 557 (in a 2B male) to 6434 (in a 3B male). This high variation was observed even between males carrying the same number of B chromosomes (see Table 1). The number of qITS2_B copies per B chromosome was calculated by subtracting the 142 copies observed in 0B males and then dividing the remaining copies between the number of B chromosomes in the same male. The estimated number of copies per B chromosome thus ranged from 208 to 3970, and there were not significant differences between 1B (mean= 1778, N= 8, SD= 1311), 2B (mean= 1354, N= 8, SD= 683) and 3B males (mean= 1352, N= 7, SD= 638) for this parameter (One-way ANOVA: F= 0.53, df= 2, 20, P= 0.60). The average copy number in the 23 B-carrying males was 1501 (SD= 921). 104 Mitotic stability of B chromosomes Table 1 Number of qITS2_B copies per genome in different males from Torrox and number of copies corresponding to one B 24 in each male. The numbers in red correspond to the males where the FISH was also performed. Id Bs qITS2_B TII'08 m70 TII'08 m53 TII'12 m8 TII'12 m12 TII'12 m32 Mean TII'08 m49 TII'12 m1 TII'12 m3 TII'12 m5 TII'08 m66 T0'12 m2 TII'08 m69 TII'08 m24 TII'12 m2 T03 m8 TII'12 m14 TII'12 m13 TII'08 m63 TII'08 m55 TII'12 m11 TII'12 m9 T04 m110 TII'08 m62 T0'12 m1 TII'08 m50 TII'08 m42 TII'08 m71 T'04 m105 0 0 0 0 0 165 178 98 114 153 142 567 934 966 969 1881 2513 3420 4112 557 1613 1912 2720 3837 3866 4078 4217 1540 2343 3534 3732 5780 6020 6434 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 Discounting 0B copies qITS2_B per B chromosome 425 792 824 827 1739 2371 3278 3970 415 1471 1770 2578 3695 3724 3936 4075 1398 2201 3392 3590 5638 5878 6292 425 792 824 827 1739 2371 3278 3970 208 736 885 1289 1848 1862 1968 2038 466 734 1131 1197 1879 1959 2097 We also estimated the number of qITS2_B copies for the B 2 chromosome in 12 males from the Salobreña population (3 with 0B, 5 with 1B and 4 with 2B). B2 chromosomes showed higher amounts of qITS2_B copies, ranging from 4818 to 13658 (Table 2), with average (8595; SD= 3075) being almost six times larger than the figure observed in Torrox (t= 10.18, df= 30, P<0.000001). However, there were not significant differences in copy number estimations per B between 1B (mean= 8387, N= 5, SD= 2874) and 2B (mean= 8856, N= 4, SD= 3746) males (t= 0.21, df= 7, P= 0.42). 105 Table 2 Number of qITS2_B copies per genome in different males from Salobreña and number of copies corresponding to one B2 in each male. Id Bs qITS2_B Discounting qITS2_B per B chromosome 0B copies Sal'10 m7 0 81 Sal'08 m3 0 89 Sal'10 m23 0 96 Mean 89 Sal'10 m1 1 4907 4818 4818 Sal'10 m11 1 7195 7106 7106 Sal'10 m25 1 7698 7609 7609 Sal'10 m10 1 10237 10148 10148 Sal'10 m16 1 12343 12254 12254 Sal'10 m8 2 10779 10690 5345 Sal'10 m13 2 13081 12992 6496 Sal'10 m2 2 19938 19849 9925 Sal'10 m19 2 27405 27316 13658 In order to test the reliability of this result, we performed FISH analysis in six males (three from each population) with disparate qITS2_B copy number estimations (highlighted in red in Tables 1 and 2). Even though FISH is not a quantitative technique, it was apparent that the B chromosomes with higher copy numbers showed larger FISH signals with rDNA probe (Fig. 2). Fig. 2 FISH with a 18S rDNA probe (green) and DAPI counterstaining (blue) for X (left) and B (right) chromosomes from three males collected at Torrox (upper panel) and three other collected at Salobreña (lower panel). In each male, the X chromosome came from the same cell as the B chromosome, and is included here for size comparison. Note that the differences between males for the size of the rDNA cluster in the B chromosome are parallel to the difference in the number of rDNA units per B chromosome. 106 Mitotic stability of B chromosomes No qITS2_B copy number variation among body parts In order to analyze whether the huge variation in the number of qITS2_B copies was generated during ontogeny, we analyzed six somatic body parts (antenna, head, gastric caecum, wing muscle, hind leg and Malphigian tubules) in the same 13 males and 7 females from Torrox where we performed the B presence analysis. Copy number was transformed to natural logarithms and thus showed a normal distribution (KolmogorovSmirnov test: P>0.20). A mixed-model ANOVA showed the absence of significant differences in qITS2_B copy numbers among sexes or body parts, but it depended significantly on the number of B chromosomes, and there was significant interaction between sex and B number because the sample of males showed higher B frequency (Table 3). This result indicates the absence of significant variation for the number of qITS2_B copies during ontogeny of the somatic line. Table 3 Mixed-model ANOVA of qITS2_B copies in 7 females and 13 males of E. plorans, with sex and number of B chromosomes (Bs) as fixed factors, and body part (b.part) as random factor. Six somatic body parts were analyzed in both sexes: antenna, head, gastric caecum, wing muscle, hind leg and Malphigian tubules. {1}sex {2}Bs {3}b.part 1*2 1*3 2*3 1*2*3 Effect *Fixed *Fixed *Random Fixed Random Random Random df 1 3 5 1 5 15 5 MS 0.68 68.32 2.56 16.57 0.30 0.41 0.35 df 4.70 12.91 1.26 4.14 5.94 5.74 67.00 MS 0.30 0.40 0.31 0.33 0.32 0.36 0.77 F 2.23 169.18 8.36 50.79 0.94 1.15 0.45 P value 0.198932 <0.000001 0.201124 0.001805 0.517548 0.465627 0.809379 Discussion Eyprepocnemis plorans is a grasshopper in which B chromosomes have profusely been cytologically analyzed in a few body parts showing cell division activity, i.e. testes, ovarioles and gastric caecum in adults, and ten-day old embryos. The absence of intraindividual variation for the number of B chromosomes in these body parts indicates that these Bs are mitotically stable (Camacho et al., 1980; Henriques-Gil et al., 1986). However, what happens in the rest of the body parts remained unknown. Our present results clearly indicate that B chromosomes are present in all eight somatic body parts analyzed (antenna, cerebral ganglion, head, hind leg, wing muscle, Malpighian tubules, gastric caecum and male accessory gland) in addition to the gonads in both sexes. No such comprehensive analysis of intraindividual presence of B chromosomes had hitherto been done in any organism. This leads to the inference that B chromosomes in the grasshopper E. plorans are present in all body parts, and that they are not eliminated 107 from any somatic body part, thus behaving in a regular way during the mitotic development of individuals. Knowing this is very important to assess the possible harmful effects of B chromosomes at the level of the different phenotypic traits, and allows us to conclude that B chromosomes in this species can potentially exert effects on every organ or tissue. Our analysis of copy number for the qITS2_B sequence has revealed several interesting facts. First, we hitherto believed that this sequence is B-specific because, by conventional PCR analysis, it was amplified only in B-carrying genomes (Ruíz-Estévez et al., 2012). However, qPCR has shown the possible presence of a few copies (142 on average) in the A genome (i.e. in B-lacking individuals). This is suggestive for the presence of the adenine insertion, on which the R primer was based, in at least one of the A chromosomes, presumably those from which the B chromosome arose. This needs further research. Second, the copy number estimations showed a very high range of variation among B-carrying individuals (208-3970 per B24, and 4818-13658 per B2). These non-overlapping ranges for both B variants clearly show the dynamic nature of the rDNA present in the E. plorans B chromosomes, and support previous suggestions that B24 derived from B2, and that this implied loss of rDNA (Henriques-Gil and Arana 1990; Zurita et al., 1998; Cabrero et al., 1999). Third, the analysis of six somatic body parts in 7 females and 13 males from Torrox has shown that the number of qITS2_B copies increases significantly with B chromosome number, but there was not significant variation among body parts, thus suggesting that ontogeny does not contribute significantly to increase B chromosome variation for rDNA amount in the somatic line. The origin of such an extensive variation for rDNA amount in the B chromosomes of E. plorans, a fact observed in the two natural populations analyzed, most likely have something to do with meiosis since it is clearly a population fact which does not occur in somatic body parts within individuals (see above). It has been shown that B chromosomes in this species do form bivalents when two or more of them are present during meiotic prophase, and chiasmata are exclusively observed at two positions (Henriques-Gil et al., 1984). Most frequently, chiasmata are interstitially located between two C-bands, composed of a 180 bp tandem repeat (López-León et al., 1994, 1995), but chiasmata can also be observed at distal locations, i.e. where the rDNA is located. The mean chiasma frequency estimated by Henriques-Gil et al. (1984) was 0.49 and 0.08 for interstitial and distal locations on the B1 chromosome, whereas these figures were 0.54 and 0.04 for the B 2 one. This gives a chance for unequal crossover to generate changes in the amount of rDNA carried by B chromosomes of different individuals from the same population. A corollary of our present results is that the number of qITS2_B copies can not be used to ascertain how many B chromosomes there are in a given individual due to the extensive variation shown by the B chromosomes carried by different individuals. At cytological level, most B chromosomes observed in different individuals appear to be the same, but detailed FISH analysis has shown that those found in different individuals show conspicuous differences in the size of the rDNA FISH signal on the B chromosome, and that they are roughly correlated with the number of qITS2_B copies 108 Mitotic stability of B chromosomes estimated by qPCR (see Fig. 2). Previous differential amplification of rDNA has been reported in barley translocation and duplication lines (Subrahmanyam et al., 1994). It is also conceivable that extensive variation in rDNA amount can be masked by the high degree of compaction that the B chromosomes show during cell division, especially at meiotic stages where they are usually observed. Our present results have not detected significant differences in the number of qITS2_B copies among six somatic body parts, suggesting that a B chromosome essentially carries the same number of copies in all cells within a same individual. This contrasts with previous observations by Fox (1970) suggesting differential nuclear DNA replication among different tissues in Schistocerca gregaria and Locusta migratoria, and with copy number differences for ribosomal genes found among tissues of the same individual of several plant species (Rogers and Bendich, 1989). But the fact that B chromosomes sometimes contribute some rDNA transcripts to cells (Ruiz-Estévez et al., 2012, 2013) opens the possibility that this behavior might differ among tissues, with varying effects depending on whether these transcripts are fully functional or not. This is an interesting topic for future research. In conclusion, we show here how B chromosome presence in the different body parts from the same individual can be investigated by means of B-specific molecular markers. We have applied this approach to a mitotically stable B chromosome, and it has showed that B chromosomes are present in all body parts analyzed. This approach is even more crucial for mitotically unstable B chromosomes, since it can reveal whether B chromosome mitotic instability leads to their elimination from any somatic tissue with the consequent relief of B chromosome harboring and the attenuation of its harmful effects. Moreover, we have revealed by qPCR and FISH that there is extensive variation in B-rDNA copy number, for which reason the molecular approach was not useful for estimating the number of B chromosomes in an individual, or whether all body parts within an individual carry the same number of B chromosomes. References Bidau CJ, Rosato M, Martí DA (2004) FISH detection of ribosomal cistrons and assortment-distortion for X and B chromosomes in Dichroplus pratensis (Acrididae). Cytogenet Genome Res 106:295–301. doi: 10.1159/000079302 Cabrero J, López-León MD, Bakkali M, Camacho JPM (1999) Common origin of B chromosome variants in the grasshopper Eyprepocnemis plorans. Heredity 83:435-439 Camacho JPM, Carballo AR, Cabrero J (1980) The B chromosome system of the grasshopper Eyprepocnemis plorans sub. Plorans (Charpentier). Chromosoma 80:163-166 Camacho JPM, Cabrero J (1983) Karyological differences between two species of grasshoppers genus Acrotylus (Acrididae: Oedipodinae). Caryologia 36 (2): 121127 109 Camacho JPM (2005) B chromosomes. In: Gregory TR, ed. The evolution of the genome. New York: Academic Press. pp 223–286 Feng J, Zeng R, Chen J (2008) Accurate and efficient data processing for quantitative real-time PCR using a tripartite plant virus as a model. BioTechniques 44:901912 Fox DP (1970) A non-doubling DNA series in somatic tissues of the locusts Schistocerca gregaria (Forskål) and Locusta migratoria (Linn.). Chromosoma 29:446-61 Hall, TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp Ser 41:95-98 Henriques-Gil N, Arana P, Santos JL (1984) Factors affecting the meiotic pairing behaviour of B chromosomes in the grasshopper Eyprepocnemis plorans. Can. J. Genet. Cytol. 26: 664-668. Henriques-Gil N, Jones GH, Cano MI, Arana P, Santos JL (1986) Female meiosis during oocyte maturation in Eyprepocnemis plorans (Orthoptera: Acrididae). Can J Genet Cytol 28:84-87 Henriques-Gil N, Arana P (1990) Origin and substitution of B chromosomes in the grasshopper Eyprepocnemis plorans. Evolution 44:747-753 Jackson WD, Cheung DSM (1967) Distortional meiotic segregation of a supernumerary chromosome producing differential frequencies in the sexes in the short-horned grasshopper Phaulacridium vittatum. Chromosoma 23(1):24-37 John B, Hewitt GM (1965) The B-chromosome system of Myrmeleotettix maculatus (Thunb.). I. The mechanics. Chromosoma 16(5): 548-578 Jones RN (1995) Tansley review no. 85: B chromosomes in plants. New Phytol 131: 411-434 Kayano H (1971) Accumulation of B chromosomes in the germ-line of Locusta migratoria. Heredity 27:119–123 Lima-de-Faria A (1959) Differential uptake of tritiated thymidine into hetero- and euchromatin in Melanoplus and Secale. J Biophys Biochem Cytol 6:457–466 López-León MD, Neves N, Schwarzacher T, Heslop-Harrison TS, Hewitt GM, Camacho JPM (1994). Possible origin of a B chromosome deduced from its DNA composition using double FISH technique. Chromosome Res. 2:87–92. López-León MD, Vázquez P, Hewitt GM, Camacho JPM (1995). Cloning and sequence analysis of an extremely homogeneous tandemly repeated DNA in the grasshopper Eyprepocnemis plorans. Heredity 75:370-375. Mendelson D, Zohary D (1972) Behaviour and transmission of supernumerary chromosomes in Aegilops speltoides. Heredity 2:329-339 Mochizuki A (1957) B chromosomes in Aegilops mutica Boiss. Wheat Inform. Serv. 5:9-11 Muñoz-Pajares AJ, Martínez-Rodríguez L, Teruel M, Cabrero J, Camacho JPM, Perfectti F (2011). A Single, recent origin of the accessory B chromosome of the grasshopper Eyprepocnemis plorans.Genetics 187:853–863 Nur U (1969) Mitotic instability leading to an accumulation of B-chromosomes in grasshoppers. Chromosoma 27(1):1-19 Ohta S (1986) A study on B chromosomes in Aegilops mutica Boiss. 1. Distribution within individuals and transmission. Jpn J Genet 6:608-609 Pardo MC, Lopez-Leon MD, Viseras E, Cabrero J, Camacho JPM (1995) Mitotic instability of B chromosomes during embryo development in Locusta migratoria. Heredity 74:164–169. doi:10.1038/hdy.1995.24 110 Mitotic stability of B chromosomes Remis MI, Vilardi JC (2004) Mitotically unstable B chromosome polymorphism in the grasshopper Dichroplus elongatus. Cytogenet Genome Res 106(2-4):359364 Rogers SO, Bendich AJ (1987) Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Molcelular Biology 9:509-520 Ruiz-Estévez M, López-León MD, Cabrero J, Camacho JPM (2012) B-Chromosome Ribosomal DNA is functional in the grasshopper Eyprepocnemis plorans. PLoS ONE 7(5): e36600. doi:10.1371/journal.pone.0036600 Ruíz-Estévez M, López-León MD, Cabrero J, Camacho JPM (2013) Ribosomal DNA is active in different B chromosome variants of the grasshopper Eyprepocnemis plorans. Genetica 141:337-345 Rutishauser A, Röthlisberger E (1966) Boosting mechanism of B chromosomes in Crepis capillaris. Chromosomes Today 1:28–30 Rutledge RG, Stewart D (2008) A kinetic-based sigmoidal model for the polymerase chain reaction and its application to high-capacity absolute quantitative real-time PCR.BMC Biotechnol 8:47 Sommeregger W, Prewein B, Reinhart D, Mader A, and Kuner R (2013) Transgene copy number comparison in recombinant mammalian cell lines: critical reflection of quantitative real-time PCR evaluation. Cytotechnology 65:811–818 Subrahmanyam NC, Bryncelsson T, Hagberg P, Hagberg A (1994) Differential amplification of rDNA repeats in barley translocation and duplication lines: role of a specific segment. Hereditas 121:157-170 StatSoft, Inc. (2007) STATISTICA (data analysis software system), version 8.0. www.statsoft.com Taylor JH (1960) 464 Asynchronous duplication of chromosomes in cultured cells of Chinese hamster. J Biophys Biochem Cytol 7:455–464 Teruel M, Cabrero J, Perfectti F, Camacho JPM (2007) Nucleolus size variation during meiosis and NOR activity of a B chromosome in the grasshopper Eyprepocnemis plorans. Chromosome Res 15:755–765 Teruel M (2009) Origen, expresión y efectos fenotípicos de un parásito genómico. PhD. Universidad de Granada Timothy D, Littlewood J, Olson PD (2000) Small subunit rDNA and the platyhelminthes: signal, noise, conflict and compromise. In: Interrelationships of the Platyhelminthes (eds. D.T.J. Littlewood & R.A. Bray). CRC Press. UK. 380 pp Zurita S, Cabrero J, López-León MD, Camacho JPM (1998) Polymorphism regeneration for a neutralized selfish B chromosome. Evolution 52:274–277 111 112 Capítulo 6. Ribosomal DNA on a B chromosome shows differential expression level in several body parts of the grasshopper Eyprepocnemis plorans 113 114 Ribosomal DNA on a B chromosome shows differential expression level in several body parts of the grasshopper Eyprepocnemis plorans Mercedes Ruiz-Estévez1, Jozef Vanden Broeck2, Francisco Perfectti1, Mª Dolores López-León1, Josefa Cabrero1, Juan Pedro M. Camacho1* 1 Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain 2 Animal Physiology and Neurobiology, Zoological Institute, K.U. Leuven, Naamsestraat, 59, B-3000 Leuven, Belgium Short title: rDNA differential expression in body parts Keywords: B chromosome, rDNA, differential expression, qRT-PCR 115 Abstract Ribosomal DNA (rDNA) plays a main role in ribosome biogenesis, a central process in cellular biology influencing cell growth and development. rDNA is also one of the two main repeated DNA sequences composing the supernumerary (B) chromosomes of the grasshopper Eyprepocnemis plorans. The heterochromatic nature of these B chromosomes suggested their genetic inertness, but the activity of their rDNA detected by cytological and molecular methods have completely changed this view. Here we test, by means of qRT-PCR for a target sequence specific to B chromosomes, whether the BrDNA is active in six different body parts of nine B-carrying males where B-rDNA activity had previously been detected. We found that B-rRNA transcripts were present in RNA extracted from all six body parts analyzed (head, hind leg, wing muscle, testis, accessory gland and gastric caecum) and that their frequency increases with B chromosome number. There were also significant differences in relative quantification (RQ) values between the six body parts analyzed, with three of them (testis, accessory gland and wing muscle) showing three times higher RQ than the three other, presumably due to higher rRNA requirements in the moment at which they were frozen. It was remarkable that two of the body parts showing higher contribution of rRNA by the B chromosome (testis and accessory gland) are involved in male reproduction, whereas the third (wing muscle) is important for survival. The possible meanings of these apparently beneficial effects on males are discussed in the light of the current theories of B chromosome evolution. Introduction In eukaryotes, 45S ribosomal DNA (rDNA) is one of the most abundant tandem repetitive DNAs in the genome. Each cistron contains three ribosomal (rRNA) genes, 18S, 5.8S and 28S, separated by the Internal Transcribed Spacers 1 and 2 (ITS1 and ITS2) and flanked by the External Transcribed Spacers (ETSs) and the Intergenic Spacer (IGS) (Long and David, 1980). After transcription, the rRNA gene products will form part of the two ribosome subunits and the ITSs are eliminated during transcript maturation (Sollner-Webb y Tower, 1986). The rDNA array is placed at the secondary constrictions of the chromosomes, where the Nucleolar Organizer Regions (NORs) are located (Heitz, 1931; McClintock, 1934). Activation of rDNA transcription is dependent on cell status, with high energetic requirements being accompanied by high transcription rates. However, only about 50% of the rDNA repeats are usually transcribed (Reeder, 1999) at a given moment. The phenotypic visualization of rRNA transcription is the nucleolus, which appears attached to the NORs. The size of the nucleolus is positively correlated with the rate of rRNA synthesis (Mosgoeller, 2004). Since the nucleolus is constituted by acidic and highly argyrophilic proteins, a simple silver impregnation technique is enough to visualize them (Rufas at al., 1982). This technique specifically reveals the transcriptional 116 rDNA differential expression in body parts machinery of the RNA polimerase I, including the B23, nucleolin, UBF proteins and RNA pol I subunits (Roussel at al., 1992; Roussel and Hernandez-Verdun 1994; Roussel at al., 1996). Eyprepocnemis plorans is a grasshopper species which possesses an extra amount of rDNA located in supernumerary (B) chromosomes. This species shows a standard (A) genome composed by 22 + X0/XX chromosomes, and a high variety of B chromosomes, i.e. dispensable chromosomes which do not recombine with A chromosomes and do not follow Mendelian rules (for review, see Camacho at al., 2003; Camacho, 2005). B chromosomes are mainly composed of repetitive DNA sequences, such as ribosomal DNA (rDNA), satellite DNA (satDNA) and transposable elements. Due to the heterochromatic nature of B chromosomes, they were considered for long as genetically inert elements. Activity of the B-rDNA in E.plorans was first reported by Cabrero at al. (1987) in a male carrying the B chromosome fused to the longest autosome. Teruel at al. (2007) later showed that this was not a unique case, by finding recurrent B-NOR activity in the Torrox population, a fact that has been corroborated by detecting B-specific ITS2 rDNA transcripts (Ruiz-Estévez at al., 2012), based on a characteristic adenine insertion being found only in ITS2 sequences obtained from microdissected B chromosomes (Teruel et al., submitted). More recently, it has been shown that B chromosomes belonging to other variants also show B-NOR activity in several Spanish populations although at rates lower than that observed in Torrox (RuizEstévez at al., 2013). All previous studies of B-rDNA activity in E.plorans have been performed cytogenetically in testes and molecularly in samples of the whole body without distinguishing among body parts, so it was impossible to know whether B activity was a general characteristic or else there are differences among cell types. Here, our main aim is to answer the questions: Is B-rDNA expression a phenomenon occurring in all body parts of a male? If the answer is yes, is there differential expression between body parts? The first example of differential rDNA expression was detected in Plasmodium berghei, where different rRNA “types” were transcribed depending on the stage of the life cycle (Gunderson at al., 1987). Previous results have shown that 18S transcription is regulated in different cell and tissue types, depending on the protein synthesis required by the individual (Hanna at al., 1998). Differential rDNA expression between tissues has recently been detected in abalone Haliotis tuberculata (Van Wormhoudt at al., 2011). However, the possibility of B-rDNA differential expression among body parts has not yet been analyzed in any animal. However, differential expression of B chromosome sequences between plant tissues has recently been reported in rye, in a study focused on pseudogene-like fragments residing in a B chromosome (Banaei-Moghaddam at al., 2013). Here we analyze molecularly the differential rDNA expression of the B 24 chromosome in several body parts (head, hind leg, wing muscle, testis, accessory gland and gastric caecum) of males where previously we had detected active B-NORs in the gonads by silver impregnation. We detected the presence of B-rDNA transcripts in all body parts analyzed and the relative quantity of B-specific transcripts varied among them. 117 Materials and methods Biological samples A sample of 23 males of the grasshopper Eyprepocnemis plorans was collected in the Torrox population (Málaga, Spain). At the laboratory, they were anesthetized and dissected to remove a portion of each testicle which was then fixed in freshly prepared 3:1 ethanol–acetic acid and stored at 4°C for cytological analysis. At the same time, we dissected, under a stereomicroscope, different body parts (head, hind leg, wing muscle, testes, accessory gland and gastric caecum), which were frozen in liquid nitrogen and stored at -80ºC for molecular studies. Determination of B number in each male was performed by squashing two testis tubules in 2% lacto-propionic orcein. rDNA expression of the B chromosome was first analyzed by submitting testis follicles to silver impregnation following the protocol described in Rufas at al. (1982), with an additional 1% Giemsa stain step to differentiate the chromatin (blue-green) from the nucleoli (brown). In both techniques, we visualized primary spermatocytes at prophase or metaphase I under an Olympus microscope (DP70). At least 20 diplotene cells per male were visualized to analyze B-rDNA expression, manifested by the presence of nucleoli attached to the B chromosomes. Total RNA extractions and complementary DNA (cDNA) synthesis Total RNA extractions from frozen body parts were performed using Lipid Tissue Mini Kit (Qiagen) following manufacturer’s recommendations. After extraction, we submitted the RNA to another 20U DNase post-treatment (RNase-Free DNase Set, Qiagen) to discard any genomic DNA contamination. Quantity and purity of the RNA were measured with a NanoDrop spectrophotometer (version 3.1.2., NanoDrop Technologies, Inc. Wilmington, DE. USA), and the quality was checked in a denaturing agarose gel to ensure the absence of nucleic acid degradation. We reverse-transcribed 100 ng per sample of total RNA (PrimeScript™ RT reagent Kit, Perfect Real Time, Takara) using a combination of random and oligo dT primers. The resulting cDNA was diluted in RNase-DNase free water 1:10 (work solution). B-rDNA expression in different body parts Target and housekeeping genes primers B-rDNA expression analysis was performed in the six body parts of 9 males showing active B-NOR in the testis. For this purpose, we amplified in the cDNA the qITS2_B target sequence, which is part of the ITS2_B, a DNA sequence being specific to B chromosomes (Teruel et al., submitted; Ruiz-Estévez et al., 2012), but with primers designed to yield a short sequence of only 152 bp, which is more appropriate for qPCR. 118 rDNA differential expression in body parts qIT2_B was amplified using the same reverse primer as the ITS_B sequence and a new forward primer (ITSD: 5’ ACTTGGGAGCGTCGTGGTA 3’), designed using the Primer 3 v.0.4.0 software. To amplify the housekeeping genes (HKGs), we used the primers provided by Van Hiel et al. (2009) and Chapuis at al. (2011) for Tubulin (TubA1), Armadillo (Arm), Actin (Act), GAPDH, Ubiquitin (Ubi), Elongation Factor 1α (EF1α), Ribosomal Protein 49 (RP49) and CG13220. Primers for both target and HKGs were tested by quantitative retrotranscription-polymerase chain reaction (qRTPCR) with different conditions (see below). PCR products were visualized in a 1.5% agarose gel, cleaned with Gen EluteTM PCR Clean-Up Kit (Sigma), sequenced by Macrogen Inc, and analyzed with BioEdit software (version 7.1.3.0.) (Hall 1999) before searching for sequence homologies at the NCBI site using BLAST (Basic Local Alignment Search tool). Housekeeping reference genes validation and relative quantification of B-rDNA expression After ensuring the specificity of the HKGs primers, we determined the most stable HKGs in our samples carrying out a geNorm analysis. Standard curves were used to determine the efficiency of the selected HKGs. Then we estimated the relative expression level of qITS2_B in the body parts performing qRT-PCR. The reaction mixtures contained 5µl 2X SensiMixTM SYBR Mastermix (SensiMixTM SYBR Kit, Bioline), 0.7µM each forward and reverse primer and 5ng cDNA, in a final volume of 15µl. We performed two types of qRT-PCRs due to the need of different PCR conditions, one for HKGs and other for target gene amplifications, since the latter required fine tuning of the reverse primer and high melting temperature to avoid unspecific amplification. We amplified the same calibrator sample (comprising cDNA synthesized from RNA of different body parts) in each run to ensure that data resulting from the experimental samples were comparable. qRT-PCR assays were run in the Chromo4 Real Time PCR thermocycler (BioRad), and PCR conditions were the following: an initial denaturation at 95ºC for 10 min, 40 cycles of 94ºC for 30 s, 60ºC for 30 s (HKGs) or 73.2ºC for 15 s (target sequence), 72ºC for 15 s, and a melting curve step to check the specificity of the reaction. We included a negative control without cDNA to ensure that the reagents were free of contaminating DNA. Where possible, reagents were combined in mixed solutions to minimize the number of manipulations, and each sample was amplified in triplicate and the entire experiment was done in duplicate. Opticon Monitor v3.1. software was used to export the qRT-PCR raw data from the Chromo4 instrument and Relative Quantification (RQ) of the transcript was obtained following the “Efficiency calibrated mathematical method for the relative expression ratio in real-time PCR” (Roche Applied Science, Technical Note No. LC 13/2001). 119 Statistical analysis To compare RQ levels between the six body parts analyzed from nine males with two replicates, we performed a generalized randomized block design, with individual as a random block and body part as a fixed factor. The statistical analysis was made in R (R Development Core Team, 2008) by means of a linear mixed-effects model (LMM), with post-hoc multiple comparisons by Tukey contrasts. Results and discussion To analyze the relative B-rDNA expression between body parts, by qRT-PCR, we chose 9 males with active B-NOR, i.e., showing nucleoli attached to a B chromosome in diplotene cells (Fig. 1). Four of these males carried 1B, three 2B, one 3B and one 4B. Fig. 1 Diplotene cell from a Torrox male carrying 3B chromosomes, one of them showing an attached nucleolus (B= B chromosome; X= X chromosome; nu= nucleolus). Bar= 5µm. Total RNA extracted from the body parts of the 9 males and subsequently DNase retreated showed high purity as was indicated by the absorbance ratio 260:280 nm (=1.9-2). Some of the HKGs showed two peaks (unspecific amplification) in the melting curve graph (results not shown), for which reason they were rejected as reference genes. After sequencing and confirming the three remaining HKGs (RP49, Tub1A and Armadillo), the geNorm analysis determined that Tub1A and Armadillo were the most stable HKGs in our samples. HKGs and target primers showed amplification efficiency values of 95-105%. The target sequence qITS2_B had homology with the ITS2 120 rDNA differential expression in body parts sequences reported by Teruel at al. (submitted) for this species (accession numbers: JN811827 to JN811902). We obtained amplification of the qITS2_B sequence in the cDNA of each body part of the nine males (see Table S1), with the single exception of the gastric caecum of one of the 1B males. This suggests that the expression of the rDNA of the B chromosome takes place in all body parts analyzed, and is not restricted to the gonads only. The RQ values for qITS2_B expression showed significant differences between the body parts of the 9 males (LMM: F= 8.21, df= 5, 92, P<0.0001), with three of them (testis, male accessory gland and wing muscle) showing RQ values about three times higher than those of the three remaining ones (hind leg, gastric caecum and head) (Figure 2). Multiple post-hoc comparisons, by means of Tukey contrasts, indicated that the differences between these two kinds of body parts were significant (Table S2). 3,0 2,5 RQ 2,0 1,5 1,0 0,5 0,0 H HL WM T AG GC M ean M ean±SE M e a n ± 1 ,9 6 *S E Fig. 2 Expression levels of the qITS2_B in six body parts of 9 males carrying active B 24 chromosomes. (H= Head, HL= Hind leg, WM= Wing muscle, T= Testis, AG= Accessory gland, GC= Gastric caecum). It is conceivable that this differential expression of the B-rDNA between body parts could have something to do with higher demands for rRNA in them, at least at the moment at which they were frozen. It has been shown in E.plorans testis that total cell nucleolar area (NA) did not show intraindividual significant difference between cells showing active B-NORs and those showing inactive ones, suggesting that total cell 121 demands for rRNA are tightly regulated, irrespectively of how many chromosomes are contributing rRNA (Teruel at al., 2007, 2009). Therefore, it is possible that some tissues at certain moments of higher metabolic activity (in terms of protein synthesis) could take advantage of the rRNA produced in the nucleoli organized by the B chromosome. Differential expression of the qITS2_B (i.e. B-rDNA) could be due to structural and/or epigenetic changes in the DNA or chromatin, among other causes. For instance, differential amplification of B-rDNA repeats in some tissues could result in different rDNA copy number between tissues, and the differential expression could simply be dependent on copy number. Differential amplification of rDNA repeats has been reported in barley (Subrahmanyam at al., 1994), but this possibility has not been tested in E.plorans. In the second case, epigenetic systems are memory mechanisms that are inherited between generations and establish gene function. The most known epigenetic marks (DNA methylation and histone modification) are involved in the expression of some genes and transcription factors specific to cell or tissue types (Shen and Maniatis, 1980; Cho at al., 2001; Imamura at al., 2001; Hattori at al., 2004b, 2007; Nishino at al., 2004). It has been shown that each cell or tissue type has its own methylation pattern (Ohgane at al., 1998; Shiota at al., 2002; Strichman-Almashanu at al., 2002) in association with tissue-specific function. In the mice, for instance, there are hypomethylated regions in the liver in genes specifically expressed in that tissue, and this methylation profile is different from the ones in kidney and spleen (Yagi at al., 2008). Some studies on human promoter regions have suggested that DNA methylation status is correlated with transcription activity of some genes (Weber at al., 2005, 2007). On the other hand, histone modifications or the presence of specific histone variants influence the interactions between the transcription factors and the chromatin fiber (Ruthenburg at al., 2007). In mammals, embryonic development requires a tissuespecific expression of different genes, and it is regulated by enhancers showing histone modifications (Cotney at al., 2012). Furthermore, histone modification has been reported to affect DNA methylation in a locus-specific manner (Ikegami at al., 2007). In this context, B chromosomes in E. plorans have shown to be differentially methylated in the B-rDNA region, which explained their usual lack of NOR activity (López-León et al., 1991, 1995). In addition, they are differentially hypoacetylated for lysine 9 in the H3 histone (Cabrero et al. 2007). It would thus be interesting to investigate whether B-rDNA is subject to differential degrees of epigenetic silencing mechanisms in the body parts analyzed here. Taken together, our results have revealed that the rDNA of the B 24 chromosome is active not only in the gonad, but also in somatic body parts; with significantly higher expression levels in testis, accessory gland and wing muscle, thus implying the B chromosome’s apparent contribution to grasshopper reproduction and survival. This is puzzling for B chromosomes behaving as true parasites in females, where they show meiotic drive (Herrera et al., 1996) and significantly reduce egg fertility (Zurita et al., 1998). The biological meaning of B chromosomes contribution of rRNA in male body parts will logically depend on whether the rRNA sequences provided by the B are fully functional and on the proportion they represent within the total rRNA molecules 122 rDNA differential expression in body parts produced by the A chromosomes in the same body parts. The latter proportion appears to be low since the frequency of B-carrying males showing B-NOR activity is usually lower than 50% and, within these males, the proportion of cells showing nucleoli produced by the B chromosome is not higher than 29% (Teruel et al., 2007, 2009; RuízEstévez et al., 2012, 2013). Our recent analysis of the ITS2 region and part of the coding regions in the 5.8S and 28S rRNA genes, by means of 454 amplicon sequencing (Ruíz-Estévez et al., in preparation), suggests that the rRNA sequences produced by the B chromosome are fully functional. Therefore, if the B chromosome is contributing functional rRNA to cells, we could argue that its parasitic role is diminished (by tending to be beneficial to males) because it is actually promoting host reproduction through its contribution of rRNA in testes and male accessory gland, as well as escape from predators through flight, by its contribution of rRNA in wing muscle. In strictly vertical parasites, like B chromosomes, the parasite fitness is completely linked to host fitness (Muñoz et al., 1998), and any contribution of a B chromosome to host survival and reproduction logically also benefits the parasite itself. In any case, it would be interesting to measure the transcendence of this molecular contribution of the B chromosome to male fitness, a task to be undertaken in future research. Acknowledgements We thank Karl Meunier for language revision. This study was supported by a grant from the Spanish Ministerio de Ciencia e Innovación (CGL2009-11917) and Plan Andaluz de Investigación (CVI-6649), and was partially performed by FEDER funds. M RuízEstévez was supported by a FPU fellowship from the Spanish Ministerio de Ciencia e Innovación. The authors also gratefully acknowledge the KU Leuven Research Foundation (GOA/11/02) and the Research Foundation of Flanders (Belgium) for financial support. References Banaei-Moghaddam AM, Meier K, Karimi-Ashtiyani R, and Houben A (2013) Formation and expression of pseudogenes on the B chromosome of rye. The Plant Cell 25:2536–2544 Cabrero J, Alché JD, Camacho JPM (1987) Effects of B chromosomes of the grasshopper Eyprepocnemis plorans on nucleolar organizer regions activity. Activation of a latent NOR on a B chromosome fused to an autosome. Genome 29:116–121 Cabrero J, Teruel M, Carmona FD, Jiménez R, Camacho JPM (2007) Histone H3 lysine 9 acetylation pattern suggests that X and B chromosomes are silenced during entire male meiosis in a grasshopper. Cytogenet Genome Res 119:135–142 Camacho JPM., Cabrero J, López-León MD, Bakkali M, and Perfectti F (2003) The B chromosomes of the grasshopper Eyprepocnemis plorans and the intragenomic conflict. Genetica 117:77-84 Camacho JPM (2005) B Chromosomes. In: Gregory TR, ed., The Evolution of the Genome. San Diego: Elsevier, pp. 223Y286 123 Chapuis MP, Tohidi-Esfahani D, Dodgson TBlondin L, Ponton F, Cullen D, Simpson SJ, Sword GA (2011) Assessment and validation of a suite of reverse transcriptionquantitative PCR reference genes for analyses of density-dependent behavioural plasticity in the Australian plague locust. BMC Mol Biol 12:7 Cho J, Kimura H, Minami T, Ohgane J, Hattori N, Tanaka S, and Shiota K (2001) DNA methylation regulates placental lactogen I gene expression. Endocrinology 142:3389-3396 Cotney J, Leng J, Oh S, DeMare LE, Reilly SK, Gerstein MB, and Noonan JP (2012) Chromatin state signatures associated with tissue-specific gene expression and enhancer activity in the embryonic limb Genome Res 22:1069-1080 Gunderson JH, Sogin ML, Wollett G, Hollingdale de la Cruz VF, Waters AP, McCutchan TF (1987) Structurally distinct, stagespecific ribosomes occur in Plasmodium. Science 238:933-937 Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98 Hannan KM, Hannan RD, Rothblum LI (1998) Transcription by RNA polymerase I. Front Biosci 3:376-398 Hattori N, Nishino K, Ko Y, Hattori N, Ohgane J, Tanaka S, and Shiota K (2004b) Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J Biol Chem 279:17063-17069 Hattori N, Imao Y, Nishino K, Hattori N, Ohgane J, Yagi S, Tanaka S, and Shiota K (2007) Epigenetic regulation of Nanog gene in embryonic stem and trophoblast stem cells. Genes Cells 12:387-396 Heitz E (1931) Die Ursache der gesetzmässigen Zahl, Lage, From und Grösse pflanzlicher Nukleolen. Planta 12:775-844 Herrera JA, López-León MD, Cabrero J, Shaw MW, and Camacho JPM (1996) Evidence for B chromosome drive suppression in the grasshopper Eyprepocnemis plorans. Heredity 76:633-639 Ikegami K, Iwatani M, Suzuki M, Tachibana M, Shinkai Y, Tanaka S, Greally J, Yagi S, Hattori N, and Shiota K (2007) Genome-wide and locus-specific DNA hypomethylation in G9a deficient mouse embryonic stem cells. Genes Cells 12: 111 Imamura T, Ohgane J, Ito S, Ogawa T, Hattori N, Tanaka S, and Shiota K (2001) CpG island of rat sphingosine kinase-1 gene: Tissue-dependent DNA methylation status and multiple alternative first exons. Genomics 76:117–125 Long EO, David IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727764 López-León MD, Cabrero J, and Camacho, JPM (1991) Meiotic drive against an autosomal supernumerary segment promoted by the presence of a B chromosome in females of the grasshopper Eyprepocnemis plorans. Chromosoma 100:282-287 López-León MD, Vázquez P, Hewitt GM, and Camacho JPM (1995) Cloning and sequence analysis of an extremely homogeneous tandemly repeated DNA in the grasshopper Eyprepocnemis plorans. Heredity 75:370-375 McClintock DJL (1934) The relation of a particular chromosomal element to the development of the nucleoli in Zea mays. Z. Zellforsch. Mikrosk. Anat. 21:294328 Mosgoeller W (2004) Nucleolar ultrastructure in vertebrates. In: Olson MOJ, ed., The Nucleolus. New York: Kluwer, pp. 10-20 124 rDNA differential expression in body parts Muñoz E, Perfectii F, Martín-Alganza A, and Camacho JPM (1998) Parallel effect of a B chromosome and a mite decreasing female fitness in the grasshopper Eyprepocnemis plorans. Proc R Soc Lond Ser B. 265:1903-1909 Nishino K, Hattori N, Tanaka S, and Shiota K (2004) DNA methylation-mediated control of Sry gene expression in mouse gonadal development. J Bio Chem 279: 22306–22313 Ohgane J, Aikawa J, Ogura A, Hattori N, Ogawa T, and Shiota K (1998) Analysis of CpG islands of trophoblast giant cells by restriction landmark genomic scanning. Dev Genet 22:132–140 R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3900051-07-0. www.R-project.org. Reeder RH (1999) Regulation of RNA polymerase I transcription in yeast and vertebrates. Prog Nucleic Acid Res Mol Biol 62:293-327 Roussel P, Belenguer P, Amalric F, Hernandez-Verdun D (1992) Nucleolin is an AgNOR protein; this property is determined by its amino-terminal domain independently of its phosphorylation state. Exp Cell Res 203:259–269 Roussel P, Hernandez-Verdun D (1994) Identification of Ag-NOR proteins, markers of proliferation related to ribosomal gene activity. Exp Cell Res 214:465–472 Roussel P, Andre C, Comai L, Hernandez-Verdun D (1996) The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J Cell Biol 133:235–246 Rufas JS, Iturra P, de Souza W, Esponda P (1982) Simple silver staining procedure for the localization of nucleolus and nucleolar organizer under light and electron microscopy. Arch Biol 93:267–274 Ruiz-Estévez M, López-León MD, Cabrero J, Camacho JPM (2012) B-Chromosome Ribosomal DNA is functional in the grasshopper Eyprepocnemis plorans. PLoS ONE 7(5):e36600. doi:10.1371/journal.pone.0036600 Ruiz-Estévez M, López-León MD, Cabrero J, Camacho JPM (2013) Ribosomal DNA is active in different B chromosome variants of the grasshopper Eyprepocnemis plorans. Genetica. doi: 10.1007/s10709-013-9733-6 Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nature Reviews Mol Cell Bio 8:983– 994 Shen C, and Maniatis T (1980) Tissue-specific DNA methylation in a cluster of rabbit beta-like globin genes. Proc Natl Aca. Sci 77: 6634–6638 Shiota K, Kogo Y, Ohgane J, Imamura T, Urano A, Nishino K, Tanaka S, and Hattori N (2002) Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. Genes Cells 7:961–969 Sollner-Webb B, Tower J (1986) Transcription of cloned eukaryotic ribosomal RNA genes. Annu Rev Genet 55:801-830 StatSoft, Inc. (2007) STATISTICA (data analysis software system), version 8.0. www.statsoft.com Strichman-Almashanu LZ, Lee RS, Onyango PO, Perlman E, Flam F, Frieman MB, and Feinberg AP (2002) A genome-wide screen for normally methylated human CpG islands that can identify novel imprinted genes. Genome Res. 12:543–554 Subrahmanyam NC, Bryngelsson T, Hagberg P, Hagberg A (1994) Differential amplification of rDNA repeats in barley translocation and duplication lines: role of a specific segment. Hereditas 121:157–170 125 Teruel M, Cabrero J, Perfectti F, Camacho JPM (2007) Nucleolus size variation during meiosis and NOR activity of a B chromosome in the grasshopper Eyprepocnemis plorans. Chromosome Res 15:755–765 Teruel M, Cabrero J, Perfectti F, Camacho JPM (2009) Quantitative analysis of NOR expression in a B chromosome of the grasshopper Eyprepocnemis plorans. Chromosoma 118:291–30 Van Hiel MB, Van Wielendaele P, Temmerman L, Van Soest S, Vuerinckx K, Huybrechts R, Broeck JV, Simonet G (2009) Identification and validation of housekeeping genes in brains of the desert locust Schistocerca gregaria under different development conditions. BMC Mol Biol 10:56. doi: 10.1186/1471-2199-10-56 Van Wormhoudt A, Gaume B, Le Bras Y, Roussel V, Huchette S (2011) Two different and functional nuclear rDNA genes in the abalone Haliotis tuberculata: tissue differential expression. Genetica 139:1217–1227 Weber M, Davies J, Wittig D, Oakeley E, Haase,M, Lam W, and Schübeler D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862 Weber M, Hellmann I, Stadler M, Ramos L, Pääbo S, Rebhan M, and Schübeler D (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39:457–466 Yagi S, Hirabayashi K, Sato S, Li W, Takahashi Y, Hirakawa Y, Wu G, Hattori N, Hattori N, Ohgane J, Tanaka S, Liu XS, and Shiota K (2008) DNA methylation profile of tissue-dependent and differentially methylated regions (T-DMRs) in mouse promoter regions demonstrating tissue-specific gene expression. Genome Res 18:1969-1978 Zurita S, Cabrero J, López-León MD, and Camacho JPM (1998) Polymorphism regeneration for a neutralized selfish B chromosome. Evolution 52:274–277 126 rDNA differential expression in body parts Supporting Information Table S1 Relative Quantification values of the qITS2_B in 6 different body parts of the nine E.plorans males analyzed. These males carried active B 24 in the gonads. H= Head, HL= Hind leg, WM= Wing muscle, T= Testis, AG= Accessory gland, GC= Gastric caecum. RQ values of qITS2_B in different body parts of E.plorans Id Nº Bs H HL WM T AG GC TII'10 m12 1 1.529 1.611 1.044 0.164 0.004 0.136 TII'11 m9 1 0.222 0.033 1.425 3.588 3.636 0.076 T0'11 m7 1 0.323 0.248 1.943 1.698 0.470 0.501 TII'11 m1 1 0.080 0.006 0.244 0.450 1.042 0.000 T0'11 m4 2 0.148 0.250 0.338 0.718 0.253 1.305 TII'11 m8 2 - 0.007 3.366 2.099 1.181 0.007 TII'11 m4 2 0.078 0.803 2.525 3.710 3.669 0.101 TII'10 m16 3 0.210 1.044 1.364 2.828 3.212 1.741 TII'10 m14 4 1.250 1.016 2.914 1.651 2.802 1.370 Mean 0.480 0.558 1.685 1.879 1.808 0.582 Table S2 Multiple post-hoc comparisons among the six body parts by means of Tukey contrasts. Z and P values are placed above and below diagonal, respectively. H= Head, HL= Hind leg, WM= Wing muscle, T= Testis, AG= Accessory gland, GC= Gastric caecum. Significant P values are in bold-type letter. H H HL WM T AG GC 0.99994 0.00704 <0.001 0.0018 0.99974 HL 0.216 0.01007 0.00111 0.00262 1 WM 3.463 3.362 0.99245 0.99913 0.01285 T 4.022 3.94 0.579 0.99994 0.00157 AG 3.818 3.729 0.367 0.211 GC 0.286 0.073 3.289 3.867 3.656 0.00346 127 128 Capítulo 7. HP1 knockdown is associated with abnormal condensation of almost all chromatin types 129 130 HP1 knockdown affects both eucromatin and heterochromatin HP1 knockdown is associated with abnormal condensation of almost all chromatin types Mercedes Ruiz-Estévez, Mohammed Bakkali, Josefa Cabrero, Juan Pedro M. Camacho, María Dolores López-León Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain Short title: HP1 knockdown affects both eucromatin and heterochromatin. Keywords: Heterochromatin protein 1; RNAi; eucromatin; heterochromatin; Eyprepocnemis plorans; qRT-PCR. 131 Abstract Heterochromatin protein 1 (HP1) is a highly conserved family of eukaryotic proteins required for heterochromatic gene silencing and euchromatic gene transcription regulation. In addition, HP1 is involved in chromatin organization and protection of chromosome integrity during cell division. Here, we present a cytological and molecular analysis of the effects HP1 knockdown in Eyprepocnemis plorans, a grasshopper species polymorphic for supernumerary heterochromatic chromosomes. Our results revealed contrasting effects of HP1 knockdown on gene activity. While the Bub1 gene decreased in expression level in HP1 knockdown animals, NOR activity, rRNA and, contrarily to previous reports in Drosophila, Hsp70 gene expression remained unchanged. Furthermore, HP1 knockdown resulted in abnormal chromatin condensation, chromosomal bridges, higher frequency of macroespermatids, loss of muscle mass and hemolymph amount as well as a low number of dividing cells and survival reduction. All these phenotypes are very likely due to the characteristic pattern of chromatin condensation disruption observed for almost all kinds of chromatin. Introduction Heterochromatin protein 1 (HP1) is a eukaryotic non-histone chromosome-associated protein initially identified in Drosophila melonogaster (James and Elgin, 1986). Although HP1 preferentially binds to the constitutive heterochromatin of centromeres and telomeres, it has also been observed binding to euchromatic regions (Fanti et al., 2003). It has been identified in organisms ranging from yeast to humans and was found to be a highly conserved protein (Wang et al., 2000) that interacts with many other proteins (Essenberg and Elgin, 2000), suggesting an essential role in genome organization and function. Accordingly, HP1 was initially described as a heterochromatin assembly and maintenance protein, but different lines of evidence have recently established its high versatility and involvement in a wide range of processes such as nuclear assembly, chromatin organization, activation of replication origins, DNA replication timing, chromosome segregation, telomere maintenance, DNA damage response, and DNA repair or gene expression modulation (Eissenberg and Elgin, 2000; Fanti et al., 2008; Dinant and Luijsterburg, 2009; Vermaak and Malik, 2009; Hayashi et al., 2009; Schwaiger et al., 2010). At the chromosomal level, HP1 plays a significant role due to its crucial involvement in chromatid cohesion, chromosome segregation, and the protection of chromosome integrity during cell division (Nonaka et al., 2002; Fanti et al., 1998), the latter ensuring cell cycle progression (De Lucia et al., 2005). Besides its association with heterochromatic and euchromatic domains, HP1 is required for telomere function by preserving its stability (Fanti and Pimpinelli, 2008). Hence, HP1 mutations in Drosophila are associated with telomeric fusions, chromosome breakage and elimination, and abnormal cell division (Kellum et al., 1995). Loss-of-function HP1 mutants have been reported to have impaired development 132 HP1 knockdown affects both eucromatin and heterochromatin or embryo lethality. For instance, Aucott et al. (2008) disrupted the murine Cbx1 gene for HP1- protein in mice and reported perinatal lethality due to defective development of the cerebral neocortex and the neuromuscular junctions. Likewise, in Caenorhabditis elegans, double hpl-1/hpl-2 mutants showed larval lethality (Schott et al., 2006) and, in D. melanogaster, HP1 depletion has a sex dependent deleterious effect leading to lethality in male flies (Liu et al., 2005). Most species possess multiple HP1 isoforms that differ in their genome distribution and functionalities. For instance, mammals and D. melanogaster have three main different isoforms (HP1α, HP1β and HP1γ, and HP1a, HP1b and HP1c, respectively), whereas in C. elegans there are only two isoforms (HPL-1 and HPL-2). Drosophila HP1a and HP1b (and mammalian HP1α and β) bind to heterochromatin and both heterochromatin and euchromatin, respectively, whereas HP1c (and HP1γ) localizes exclusively in euchromatin and telomeres (Motamedi et al., 2008; Canudas et al., 2011). However, this chromatin specificity does not seem to be strict, as distinct isoforms have been found to bind to the same chromatin domain but at different moments of the cell cycle (Hayakawa et al., 2003). Although HP1 is mainly known as a key component of heterochromatin where it promotes gene silencing, this protein seems more versatile as it also modulates euchromatic and heterocromatic genes, up-down regulating their transcriptional activities (for review, see Vermaak and Malik, 2009). In fact, in euchromatic genes, HP1 mainly acts as a positive regulator (Piacentini et al., 2009; Kwon and Workman, 2011). Due to this multifunctionality, HP1 depletion or loss of function affects a large set of genes, including those for ribosomal RNA (rRNA) (Horáková et al., 2010; Larson et al., 2012), the budding uninhibited by benzimidazoles 1 (Bub1) (De Lucia et al., 2005) and the 70 kilodatons heat shock protein (Hsp70) (Kwon and Workman 2011). rRNA genes are located at specific chromosome sites named nucleolus organizing regions (NORs), which contain the ribosomal DNA (rDNA). The phenotype resulting from the expression of these genes is the nucleolus, which can be revealed cytologically at interphase and first meiotic prophase by means of the silver impregnation technique (Rufas et al., 1982). Bub1 (budding uninhibited by benzimidazole kinase protein) codes a component of the spindle assembly checkpoint (SAC) whose mutations cause chromatin bridges extending between the separating groups of chromosomes and an extensive chromosome fragmentation in anaphase cells (Basu et al., 1999). Depletion of BUB1 in Schizosaccharomyces pombe resulted in an increase in the frequency of chromosome mis-segregation, whereas in Saccharomyces cerevisiae the result was higher chromosome loss accompanied by slower growth (Bernard et al., 1998; Warren et al., 2002). Furthermore, germline mutations that reduce the amount of BUBR1 (found in higher eukaryotes) produce aneuploidy, shorten lifespan, and cause cancer and premature aging phenotypes in both mice and humans (Baker et al., 2013). It has been reported that this gene is down-regulated in the absence of HP1 (De Lucia et al., 2005). The same occurs with the Hsp70 gene, where Kwon and Workman (2011) reported that reduced dosage of HP1α caused lower levels of heat shock mRNA. Experiments performed in D. melanogaster showed that after a heat 133 shock, mutant larvae that lack HP1 showed lower Hsp70 transcription levels compared with wild-type larvae (Piacentini et al., 2003). Heterochromatin is the main component of a kind of additional dispensable chromosome, called supernumerary or B chromosome, which forms part of the genomes of many eukaryotic species (for review, see Camacho 2005). The heterochromatic nature of these chromosomes has led to considered them genetically inert for a long time (Ishak et al., 1991, Stitou et al. 2000, Baroni et al., 2009, Poletto et al., 2010), but some evidences of B-NOR activity (Bidau et al. 1986, Boeskorov et al. 1995) and molecular B-transcripts detection (Leach et al., 2005, van Vugt et al., 2005, Carchilan et al., 2009, Ruiz-Estévez et al., 2012; Banaei-Moghaddam et al., 2013) have recently been reported. Eyprepocnemis plorans is a paradigm model for studies on supernumerary chromosomes. This grasshopper species has a standard (A) genome composed of 22 autosomes plus X0/XX sex chromosomes, with constitutive heterochromatin mostly located in the vicinity of centromeric regions (Camacho et al., 1991). As in other grasshoppers, the ninth autosome pair in order of decreasing size (S9) behaves as the typical heteropycnotic megameric bivalent during meiosis (Corey, 1938). Although extensive variation for B chromosomes has been reported in this species (see Henriquez-Gil et al., 1984, López-León et al., 1993, Bakkali et al., 1999), all B variants were heterochromatic and mainly composed of two kinds of repetitive DNA sequences: a 180 bp tandem repeat DNA (satDNA) and 45S rDNA (Cabrero et al., 1999). Prior to the observation of a nucleolus attached to a B chromosome fused to the longest autosome in E. plorans (Cabrero et al., 1987), the supernumerary chromosomes in this species were perceived as junk and devoid of genes. The presence of rDNA (LópezLeón et al., 1994) and the cytological absence of nucleoli attached to B chromosomes (López-León et al., 1995) indicated the silenced nature of these B chromosomes. However, recurrent expression of B chromosome rDNA (B-rDNA) has recently been shown in a Spanish population (Teruel et al., 2007, 2009; Ruiz-Estévez et al., 2012). Furthermore, a recent study of a wide range of Spanish populations has revealed a residual expression level of B-rDNA in most Spanish populations (Ruiz-Estévez et al., 2013). With these precedents, E.plorans provides an exceptional arena to study the consequences of HP1 knockdown, since effects can be differentially assessed at the level of euchromatin, constitutive heterochromatin (pericentromeric regions of all A chromosomes and B chromosomes) and facultative heterochromatin (the S9 autosome and the X chromosome) genomic regions. Furthermore, the three above mentioned genes, which could putatively be affected by HP1 knockdown, are worth analyzing in E. plorans because: 1) rRNA genes reside in constitutive heterochromatin in both A and B chromosomes, 2) Bub1 is related with cell division, and its changes in expression level could differentially affect the different kinds of chromatin in E.plorans, and 3) the amount of HSP70 protein decreases in individuals carrying B chromosomes (Teruel et al., 2011). In the present work, we explore the effect of HP1 knockdown in E. plorans at the cytological and molecular levels. Our cytological results suggest that all kinds of 134 HP1 knockdown affects both eucromatin and heterochromatin chromatin were affected by the HP1 gene knockdown, with general chromatin decondensation in meiotic cells following a characteristic chromatin-type depending sequence of events. In addition, HP1 knockdown had opposing effects on the three genes analyzed, with Bub1 decreasing in gene activity but rRNA and Hsp70 gene expressions not changing significantly. The overall cytological and physiological effects of HP1 gene knockdown included the presence of chromosomal bridges, bivalent decondensation, increased macrospermatid frequency, low number of dividing cells, and reduced survival. Materials and methods Biological samples We collected 17 males of the grasshopper species E. plorans from a Spanish population at Jete (Granada, Spain). We chose this population because no nucleolar activity had previously been observed in the B chromosomes from this population, which makes it a good material for trying to activate the rDNA in the B chromosome through HP1 gene knockdown. After anesthesia, a hind leg was taken from each male and the wound was disinfected with absolute ethanol. After recovery from anesthesia, animals were placed in culture cages and fed normally to perform the RNAi experiment. The remaining hind leg and testes of each animal were processed after HP1 gene silencing. We chose hind leg muscles as the experimental tissue because grasshoppers can loss one of their hind legs with no effect on viability, and this allowed us to carry out pre- and post-treatment analyses on the same animals. Legs were frozen in liquid nitrogen and stored at -80ºC for DNA and RNA extraction and testes were fixed in freshly prepared 1:3 acetic acidethanol and stored at 4ºC for cytological analyses. Molecular analyses Nucleic acid isolation and genotyping Total RNA and genomic DNA (gDNA) were extracted from the hind leg muscle using the RNeasy Lipid Tissue Mini Kit (Qiagen) and the GenElute Mammalian Genomic DNA Miniprep Kit (Sigma), respectively. After RNA extraction, the samples were submitted to a second DNase I treatment (REAL Star Kit, Durviz), to ensure the absence of contaminating gDNA traces. RNA quantity was measured using Tecan'sInfinite 200 NanoQuant and its quality assessed in a denaturing agarose gel. For each sample, 100 ng RNA was retrotranscribed into complementary DNA (cDNA) using the combination of random and oligo dT primers of the PrimeScript™ RT reagent -Perfect Real Time- Kit (Takara) and following manufacturer’s recommendations. For each analysis, a negative control devoid of reverse transcriptase was included to test for contaminating DNA. The presence of B chromosomes in males was determined by PCR 135 amplification of the B specific SCAR marker in genomic DNA following the protocol described in Muñoz-Pajares et al. (2011). HP1 gene amplification, dsRNA synthesis and delivery The HP1 sequence of E. plorans was identified using tblastn searches of insect HP1α protein sequences against our local E. plorans transcriptome library. The retrieved DNA sequences were confirmed using blastx searches against the nr database at the NCBI. Specific primers to amplify a 194 bp fragment of the E .plorans HP1 gene were designed using the Fast PCR software (Kalendar et al. 2009). PCR reaction mixture contained 30 ng cDNA, 200 mM dNTPs, 10 mM each forward (5’ GGCGGCGACGCCCAGTTGGTTTGTTGCTTT 3’) and reverse (5’ CGCGGGCGACCCATCAGGTCTCACATGCAC 3’) primers, and 1 unit of Taq polymerase (New England, BioLabs) in a final volume of 25 µl. The PCR was performed in an Eppendorf Mastercycler ep gradient S (Eppendorf) thermocycler using the following conditions: initial denaturation for 5 min at 94ºC, 30 cycles of 15 s at 94ºC, 15 s at 60ºC and 15 s at 72ºC, followed by a final extension of 5 min at 72ºC. PCR products were visualized in a 1.5% agarose gel, cleaned with Gen EluteTM PCR Clean-Up Kit (Sigma) and sequenced by Macrogen Inc. To obtain double stranded RNA (dsRNA), a transcription promoter was inserted at the ten nucleotides of the 5’ end of each primer (which do not form part of the gene) and HP1 sense and anti-sense RNA was obtained following the recommended AmbionLifetechnologies T7 RNA polymerase transcription protocol (as in Cabrero et al., 2013). One week after leg removal, animals were injected with 5 μg dsRNA at the testes level of the abdomen. Nine males were treated with the dsRNA and the remaining eight were injected with insect saline solution and used as control. After 11 days from the first injection (dffi), a second injection was carried out to ensure efficient HP1 knockdown. HP1 silencing analysis After the RNAi treatment period, males were anesthetized and their testes and the remaining hind leg were processed. Testis fixation, gDNA and total RNA extraction from each leg and cDNA synthesis were carried out as described above, and the resulting cDNA was diluted in RNase-DNase free water at a 1:10 ratio. To determine the most stable reference genes for our gene expression analyses, a geNorm analysis was carried out in order to test the housekeeping genes (HKGs) suggested in Van Hiel et al. (2009) and in Chapuis et al. (2011). Standard curves were used to determine the efficiency of each HKG. The expression level of the HP1 gene was estimated before (pre-injection) and after (post-injection) the RNAi experiment, both for the dsRNA-injected and control males, using quantitative retrotranscriptionpolymerase chain reaction (qRT-PCR). The reaction mixtures contained 5µl 2X SensiMixTM SYBR Mastermix (SensiMixTM SYBR Kit, Bioline), 0.7 µM each 136 HP1 knockdown affects both eucromatin and heterochromatin forward and reverse primer and 5ng cDNA (pre- or post- injection), in a final volume of 15µl. PCR conditions were as follows: an initial denaturation at 95ºC for 10 min, 40 cycles of 94ºC for 30 s, 62ºC for 15 s, 72ºC for 15 s. A final dissociation step was always added at the end of each qRT-PCR experiment to identify the unique and specific amplification of the target sequence. Reactions were carried out in triplicate in a Chromo4 Real Time PCR thermocycler (BioRad) and, for each run, we included a negative control without cDNA to ensure that the reagents were free of contaminating DNA. The data were exported using the Opticon Monitor v3.1 software (Biorad) and Relative Quantification (RQ) values from the different transcripts were obtained following the “Efficiency calibrated mathematical method for the relative expression ratio in real-time PCR” (Roche Applied Science, Technical Note No. LC 13/2001). Analysis of rDNA, Bub1 and Hsp70 genes expression patterns after HP1 knockdown qRT-PCR was also performed to estimate the expression levels of the rRNA, Bub1 and Hsp70 genes from pre- and post-injection male samples. The primers used for amplifying Bub1 (forward: 5’ CGATGGTTTAGGAGGGTGAA 3’; reverse: 5’ GGCTGAAAATGACCCTGAAA 3’) and Hsp70 (forward: 5’GTGTTGGTGGGTGGGTCAACTCG 3’; reverse: 5’ ACGTCAAGCAGCAGCAGGTCC 3’) were designed using the Primer3 software. For the rDNA, we amplified the ITS2 sequence by means of two different primer pairs: 1) those anchoring in the differential region of the ITS2 (forward: 5’ ACTTGGGAGCGTCGTGGTA 3’; reverse: 5’ CGTTGTACGAAAGAGTTTGAG 3’) which yield an amplicon specific to the B chromosome (qITS2_B) and it is a part of the ITS2_B (Ruiz-Estévez et al., 2012); 2) the ITS3-4 primers anchored in the 5’8S and 28S rRNA genes (forward: 5’GCATCGATGAAGAACGCAGC 3’; reverse: 5’ATATGCTTAAATTCAGCGGG 3’). With the first primer pair we could assess changes in the expression of the rDNA in the B chromosomes, and with the second pair we could detect general changes for rRNA gene expression in all (A and B) chromosomes. The HKGs, reaction mixtures and conditions were the same as above, with the exception of the annealing step: 60ºC for ITS3-4, Bub1 and Hsp70, and 73.5ºC for qITS2_B. Cytological techniques Chromosome analyses were carried out to evaluate the effect of HP1 gene knockdown on chromatin organization, chromosomal behaviour and NOR expression. Meiotic preparations were obtained from testis follicles as described in Cabrero et al., (1999). Chromosome preparations were analyzed using a BX41 Olympus epifluorescence microscope and cell images were taken using a DP70 digital camera. Images were composed and optimized for bright and contrast with The Gimp freeware. 137 Silver Stain To visualize the nucleoli and measure their areas in diplotene and zygotene cells, respectively, we silver stained meiotic preparations of testis follicles from males at 1728 days from the first injection (dffi). For this purpose, we used the method described in Rufas et al. (1982) and, to differentiate the nucleoli (brown) from the chromatin (blue), a final 5% Giemsa staining step was performed. To search for anomalies in nucleoli appearance and to check whether the B chromosome showed any NOR activity we analyzed 20 diplotene cells from the control males and all the available cells from the experimental males. In addition, the total nucleolus area per cell was measured and analyzed in 20 zygotene cells from experimental and control males using the ImageJ software (Schneider et al., 2012) and the GPL3 licensed Python pyFIA software (RuizRuano et al., 2011). C-Banding This technique was performed on chromosome preparations from males at 21-30 dffi, following the protocol described in Camacho et al. (1991), with the following slight modifications: Ba(OH)2 for 3.5 min and 5% Giemsa. This assay was performed in order to analyze possible effects of HP1 knockdown on heterochromatin organization and chromosome behaviour during meiosis. We also scored 200 spermatids, classifying them into three groups: normal, micro- and macrospermatids. We also scored the frequency of abnormal meiotic cells in preparations submitted to these two last techniques. Fluorescent in situ hybridization (FISH) Meiotic cells were permeabilized by submitting preparations to 100 µl of 50 μg/ml pepsine in 0.01 N HCl for 10 min at 37ºC. After three vigorous washes in distilled water, slides were dehydrated through a series of 70%, 90% and 100% ethanol for 3, 3 and 5 min, respectively, and they were stored at 60ºC overnight. RNase treatment, paraformaldehyde fixation and FISH assay were performed as described in Cabrero et al. (2003). We used fluorescein-labelled (GGTTA)7 and (TAACC)7 synthetic deoxyoligomers as telomeric probes (Meyne et al., 1995). Immunofluorescence analysis Fixation of testis follicles and squash preparations were performed as described in Cabrero et al. (2007a). Immunofluorescence analysis of the Ku70 protein was performed following the methods described in Cabrero et al. (2007b; 2013), using H308 (Santa Cruz Biotechnology Inc., CA, USA), a rabbit antibody rose against aminoacids 302-609 of the human Ku70. 138 HP1 knockdown affects both eucromatin and heterochromatin Statistical Analyses Normality of all variable distributions was tested by the Shapiro-Wilk test, and parametric Student t tests were used for those fitting a normal distribution, whereas nonparametric (Mann-Whitney and contingency chi square) tests were used for those variables failing to show a normal distribution. All tests were performed using the STATISTICA 8.0 software (StatSoft, Inc. 2007) (www.statsoft.com). Results HP1 knockdown was effective in RNAi males PCR analysis using the B-specific SCAR primers showed the presence of seven Bcarrying and one B-lacking (no. 4) males in the control group, and eight B-carrying and one B-lacking (no. 29) males in the dsRNA injected group. PCR amplification of HP1 in the 17 males yielded a 194 bp fragment which was sequenced and tested by alignment to the E. plorans HP1α sequence from our transcriptome library. The alignment confirmed that the 194 bp fragment was part of the HP1α gene (Fig. S1). Seven days after the first injection (dffi), RNAs from three experimental and three control males were analyzed by qRT-PCR using RP49 and Armadillo as HKGs. The average post-/pre-injection ratio of HP1 expression was 1.16 in the control males and 0.87 in the experimental ones (Table 1), but this difference was not significant (Mann-Whitney U test; U=4. Z= -0.22. P= 0.83). For this reason, we performed a second injection to the 11 remaining males at 11 dffi. Table 1. Levels of HP1 transcript at 7 days from first injection (dffi). Control= control males; Exp= experimental males; SE= Standard Error. PrePostMean Male type Male no. injection injection Post-/Pre(SE) 13 1.05 1.03 0.98 Control 2 3.64 1.02 0.28 1.16 (0.67) 24 0.6 1.33 2.23 20 0.53 0.69 1.32 Exp 30 3.41 1.48 0.43 0.87 (0.25) 6 0.68 0.57 0.84 After this second injection, the remaining males became weaker as the days passed. To avoid loss of material, the weakened males were processed once they showed symptoms of possible death. Only two out of the 11 males (no. 12 and 14) did not show the former symptoms. Table 2 shows the dffi at which these 11 males were processed and their pre- and post-dsRNA injection levels of HP1 expression. In this 139 case, a significant decrease in HP1 transcription level was detected in experimental males in respect to the control ones (Mann-Whitney test; Z=-2.56, P= 0.01) (Fig. 1). Table 2. Post-/pre-injection ratio of HP1 transcript levels and dffi in which the 11 double injected males were processed. Control= control males; Exp= experimental males; Dffi= days from the first injection; SE= Standard Error. PostPre/PreMean Male type Male no. Dffi injection Post-injection ratio (SE) 5 21 0.70 0.17 0.24 Control 8 21 1.46 0.10 0.07 4 25 0.39 0.17 0.44 0.5 (0.22) 25 27 0.25 0.14 0.58 18 28 0.24 0.28 1.16 29 17 0.38 0.07 0.18 Exp 15 21 0.52 0.03 0.06 14 21 0.29 0.01 0.04 0.06 (0.03) 11 24 0.55 0.02 0.03 3 25 0.74 0.02 0.03 12 28 0.29 0.01 0.04 Fig. 1 Levels of HP1 transcripts in control and experimental (exp) males after one (1) or two (2) injections and analyzed at 7 or 17-28 dffi, respectively. Bars represent Standard Error (SE). 140 HP1 knockdown affects both eucromatin and heterochromatin Influence of HP1 knockdown on the activity of other genes We analyzed the pre- and post-injection expression levels of three of the genes reported elsewhere as putatively depending on HP1, i.e. rRNA, Bub1 and Hsp70. As Table 3 shows, Bub1 showed a significant decrease in expression in HP1 RNAi treated animals, but no significant effect was noticed for the two other genes. Table 3. ITS3-4, qITS2_B, Bub1 and Hsp70 Post-/Pre-injection transcription levels in control and experimental males where the HP1 was knocked down. Control= control males; Exp= experimental males; Dffi= days from the first injection; SE= Standard Error. Male ITS3-4 qITS2_B Bub1 Post- Hsp70 PostMale type no. Dffi Post-/Pre- Post-/Pre/Pre/PreControl 5 21 0.62 0,00 0.76 6.29 8 21 0.82 0.38 0.52 1.04 4 25 1.74 4.77 0.53 0.68 25 27 0.45 2.28 1.24 0.19 18 28 2.18 3.42 0.61 0.73 1.16 2.17 0.73 1.79 Mean 0.34 0.90 0.13 1.13 SE Exp 29 17 1.17 0.29 0.45 0.55 15 21 1.55 0.81 0.91 1.17 14 21 0.71 0 0.4 0.35 11 24 1.09 0.16 0.46 1.24 3 25 1.08 0.45 0.5 0.64 12 28 1.93 4.8 0.39 0.72 1.26 1.09 0.52 0.78 Mean 0.17 0.75 0.08 0.14 SE Z-value 0.55 0.73 2.01 0.37 P-value 0.58 0.47 0.04 0.72 To test for the possible association between HP1 and the large centromeric KU70 foci observed in metaphase and anaphase cells of E. plorans, which was speculated about in Cabrero et al. (2013), immunofluorescence with the anti-KU70 antibody used by these authors was performed to detect the presence of KU70 at the centromeres of HP1 knockdown males. Fig. S2 shows how HP1 knockdown did not abolish KU70 association with the centromeric regions of the E. plorans chromosomes. Our results thus suggest the absence of a centromere-related functional relationship between these two proteins. Physiological effects of HP1 knockdown HP1 knockdown was associated with a succession of four remarkable physiological and phenotypic effects: i) An initial extreme decay of activity, so that males were unable to 141 jump after mechanical stimulus, ii) signs of imminent death, suggesting that HP1 is a vital protein in E. plorans, iii) once sacrificed, experimental males showed conspicuously smaller muscle mass in the leg and much less hemolymph, compared to the pre-injection leg, and also to control males and, iv) they also had fewer dividing cells in the testes compared to control males. Cytological effects of HP1 knockdown Overall, a lower proportion of dividing cells was observed in experimental males with respect to control males, which suggests an effect of HP1 knockdown on cell cycle progression. For the silver stain analysis, we obtained 18 diplotene cells from the male no. 29, 20 cells from no. 15, 11 from no. 14, 5 from no. 11, 3 from no. 13, none from no. 3, and 20 from each control male. While apparently normal nucleoli were associated with the autosomes S9 , S10 and S11 and the X chromosome, no nucleolus was attached to the B chromosomes either in experimental or control males (Fig. 2 a, b), which suggests the inactivity of the rDNA of B chromosomes irrespectively of HP1 expression level. Fig. 2 Normal (a) and abnormal (b-i) spermatocytes from experimental HP1 knockdown males. Three types of abnormal cells were observed: i) cells with only the S9 bivalent less condensed (b, c), ii) cells showing a progressive disruption of all chromatin types condensation (d-f) and iii) cells showing chromatin bridges between chromosomes (g-i). Arrows in b and c show the poorly condensed S9 bivalent. Bars are equivalent to the X chromosome size (5µm). SS= Silver Stain, CB= C-Banding, X= X chromosome, B= B chromosome. 142 HP1 knockdown affects both eucromatin and heterochromatin Furthermore, the total area of the nucleoli analyzed in zygotene cells indicated that there was no significant difference between experimental and control males (t-test= 0.27, df= 9, P= 0.79) (Table 4), suggesting that HP1 knockdown had no direct implications on the total nucleolar area per cell. Table 4. Mean total cell nucleolus area in control and HP1 knocked down RNAi males. The analysis was carried out in 20 zygotene cells per male. Control= control males; Exp= experimental males; Dffi= days from the first injection; px= pixel; SE= Standard Error. Mean of total nucleoli area Male type Male no. Dffi per cell (px) Control 5 21 15248.80 8 21 13315.15 4 25 9008.15 25 27 13142.90 18 28 14691.50 13081.30 Mean 1094.07 SE Exp 29 17 7691.30 15 21 17608.40 14 21 16141.00 11 24 10662.80 3 25 14104.05 12 28 15436.88 13607.40 Mean 1524.16 SE t-value 0.27 P-value 0.79 After C-banding, the normal pattern of C-bands on the pericentromeric region of all A chromosomes and on the whole B chromosomes (Fig. 2c) was observed in 100% of the cells from the control males, but only in 24.3% of cells from the experimental males. In the latter case, we recorded three types of abnormal cells (Table 5): i) 7.3% of the diplotene cells showed the S9 bivalent less condensed than the other bivalents, thus losing its megameric condition (Fig. 2 b,c), ii) 8.6% of the cells showed generalized abnormal chromatin condensation affecting the facultatively heterochromatic A chromosomes (i.e. the X and megameric S9 chromosomes) and the constitutively heterochromatic pericentromeric regions (reduced to small C-bands) and the B chromosome (Fig. 2d-f), and iii) 59.8% of the cells showed chromatin bridges between chromosomes (Fig. 2g-i). 143 Table 5. Percentage of the different types of meiotic cells found in the experimental males. Dffi= days from the first injection; N= number of analyzed cells; SE= Standard Error; abnormal cell type I= S9 bivalent less condensed; abnormal cell type II= generalized abnormal chromosome condensation; abnormal cells type III= chromosomes with chromatin bridges. % % % % Male abnormal abnormal Dffi N normal abnormal no. cells type cells type cells cells type I II III 29 17 195 25.83 9.03 4.58 60.56 14 21 199 33.67 5.53 7.04 53.77 15 21 206 23.79 12.62 2.91 60.68 11 24 74 15.69 3.27 2.61 78.43 3 25 153 32.89 11.84 9.21 46.05 12 28 174 13.79 1.72 25.29 59.2 Mean (SE) 166.8 (20.2) 24.3 (3.4) 7.3 (1.8) 8.6 (3.5) 59.8 (4.4) A score of about 200 spermatids per male in four experimental and four control males (Table 6) showed that the frequency of macrospermatids (Fig. 3) was higher in experimental males (contingency χ2= 11.73, df= 1, P= 0.0006), but no significant difference was detected for the frequency of microspermatids (χ2= 0.19, df= 1, P= 0.6643). Table 6. Number of macro-, micro-, and normal spermatids in control and experimental HP1 knockdown males. Control Experimental Total 45 90 135 Macrospermatids 6 8 14 Microspermatids 756 797 1553 Normal spermatids Fig. 3 The three types of spermatids found in the experimental and control males: Macrospermatids (M), microspermatids (m) and normal spermatids (n). 144 HP1 knockdown affects both eucromatin and heterochromatin The FISH analysis performed with the telomeric probe in both experimental and control males resulted in a similar pattern, with telomeric signals in the two chromosome ends, even when chromosome bridges were formed (Fig. S3). Although, we can not discard that a slight and not detectable telomeric sequence loss could have occurred in the HP1 knockdown males, we can conclude that telomeric DNA sequences remain in the chromosomes of the cytologically abnormal cells observed. Discussion The HP1α knockdown performed through RNAi, based on dsRNA, led to a statistically significant reduction of HP1 transcript levels and also resulted in a significant reduction in Bub1 gene expression, loss of chromosome integrity, abnormal chromatin condensation, and some remarkable phenotypic and physiological effects. However, no changes for rRNA and Hsp70 gene expressions were observed. Our results are consistent with the Bub1 gene downregulation observed in the absence of HP1 by De Lucia et al., (2005) in Drosophila, and support the essential role of these two genes in chromosome behaviour and integrity (Fanti et al., 1998; Basu et al., 1999). Accordingly, 75.7% of the meiotic cells in dsRNA treated individuals were aberrant (see Table 5), with phenotypes including less condensation of the S9 bivalent alone or else of all chromosomes, and the presence of chromatin bridges between chromosomes. HP1 knockdown individuals showed an unique altered pattern of chromosome condensation, with 7.3% of the diplotene cells showing abnormal low condensation of the megameric S9 bivalent alone, and an additional 8.6% of cells showing a disruption of normal chromatin condensation of all the chromosomes, including the S9 (megameric), the X and the B chromosomes, which in normal cells are positively heteropycnotic. This result implies an effect of HP1 knockdown on the condensation level of different chromatin types which is first noted at the facultative heterochromatin of the S9, (see Fig 2b, c), then at the euchromatin of all the chromosomes (see Fig. 2d), followed by the facultative heterochromatin of the sex chromosome and most of the constitutive heterochromatin of A (pericentromeric regions) (see Fig. 2e) and B chromosomes (see Fig. 2f). Hence, abnormal cells showed less condensed S 9 bivalents, reduced pericentromeric C bands and unidentifiable X and B chromosomes due to poor level of chromatin condensation and lack of positive heteropycnosis. In consistency with these results, HP1 knockdown causes decondensation of the X chromosome in Drosophila males (Spierer et al., 2005). There was, however, a small pericentromeric region which was highly condensed in both normal and abnormal cells, presumably due to centromeric proteins protection. The observed chromatin-type dependent pattern of abnormal condensation of the chromosomes in HP1 knockdown E. plorans further demonstrates that HP1 has effects that go beyond the heterochromatin and broadens the well known role of HP1 in chromatin assembly (Eissenberg and Elgin, 2000). The interruption of chromatin 145 condensation during meiotic prophase I might account for the effects induced by HP1 knockdown in E. plorans. Alternatively, a failure in the maintenance of the condensed state of chromatin leading to chromosome decondensation, could not be ruled out, but the ultimate molecular regulatory mechanisms remain to be unveiled. It has been shown that chromosome bridges can result from telomere-telomere fusions produced by HP1 inactivation (Fanti et al., 1998) and the missregulation in the expression of telomere-related genes as Bub1(Basu et al 1999). The molecular basis for the chromosome bridges in E. plorans does not seem to be related with a complete loss of telomeric DNA sequences, given that FISH experiments showed the presence of telomeric sequences in the experimental male chromosomes (see Fig. S3). Alternatively, this abnormal chromosome behaviour might also be the consequence of an impaired HP1-telomere interaction due to HP1 knockdown. Indeed, it is known that HP1 is an important structural component of the centromere and telomere heterochromatin and is involved in the control of telomere elongation and behaviour, interfering with hTERTTelomere interactions (Fanti et al., 1998; Savitsky et al., 2002; Sharma et al., 2003). The observation of aberrant chromosome configurations during cell division allows predicting possible failures in chromosome segregation leading to impaired cytokinesis and the subsequent production of polyploidy cells. Indeed, bridges between all non-homologous chromosomes (see Fig. 2) were frequently observed, suggesting generalized missegregation and cytokinesis arrest. This might explain the significant increase in the frequency of macrospermatids observed in HP1 knockdown males as compared to control ones. Segregation failure of specific chromosomes is not likely to occur in this case because this would predict an increase in the frequency of microspermatids, but it was not observed. In contrast to the repressive effect of HP1 knockdown on the Bub1 gene, which is in agreement with the results reported by De Lucia et al. (2005) in Drosophila, we did not observe any effect of HP1 knockdown either on rRNA or on Hsp70 genes transcriptional level. HP1 plays a role in the transcriptional regulation of rRNA genes in some species, and our result is in agreement with the species-dependent effects that have been previously observed. For instance, in mice, HP1β colocalizes with RNA pol I and modulates transcriptional activity of rRNA genes, so that reduced levels of HP1β are correlated with reduced levels of the large subunit of the RNA pol I (Horáková et al., 2010). In Drosophila, however, HP1 has a predominantly repressive role on rRNA gene activity, so that HP1 loss leads to a transcriptional enhancement of these genes (Larson et al., 2012). In E. plorans, qRT-PCR amplification revealed no effect of the HP1α knockdown, neither on the ITS3-4 or the ITS2-B transcripts levels (see Table 3). Accordingly, we neither observed significant changes in NOR expression at the S 9, S10, S11 and X chromosomes of the silver stained diplotene cells. B chromosomes also lacked NOR activity in both RNAi and control males, as previously reported in this population (López-León et al., 1995), suggesting that the rDNA in the B chromosomes is inactive due to other reasons than HP1 knockdown. In addition, the mean of total cell nucleolus area, a parameter found to be related with the level of rRNA gene expression 146 HP1 knockdown affects both eucromatin and heterochromatin (for review, see Teruel et al., 2007), did not differ between RNAi and control males (see Table 4). These results indicate that HP1 knockdown in E. plorans did not influence rRNA gene expression. A possible explanation is that a putative increase in transcription level of these genes in injected males could have been counteracted by an opposite downregulation effect derived from the aging symptoms induced by HP1 depletion. Perhaps the NOR activity increase could have derived from decrease in heterochromatin amount (Larson et al., 2012). Alternatively, the apparent absence of effect of HP1 knockdown on rRNA gene activity could have something to do with the so-called “chromatin states of rRNA genes” (Lucchini and Sogo, 1998; Hamperl et al., 2013), since constitutive heterochromatin, where these genes are immersed in E. plorans, appears to be the last chromatin compartment to be affected in RNAi males. Whatever the case, our results is a further prove that the effect of HP1 knockdown may be different depending on the HP1 variant and/or the species considered (Serrano et al., 2009; Lee et al., 2013). Our experiments also failed to detect any effect of HP1 knockdown on the expression of the Hsp70 gene. This result apparently contradicts the decrease in Hsp70 mRNA associated with reduced levels of HP1 and the enhancing effect that HP1 overexpression has on Hsp70 gene expression (Piacentini et al., 2003). Yet our result might also be another proof in favour of the gene and species dependent roles of HP1. The lack of effect of HP1 knockdown on the activity of two out of the three genes analyzed in this work might be puzzling, especially since they were reported to interact with HP1 in other species. However, with HP1 having potentially speciesdependent effects, it is conceivable that, in E. plorans, any real interaction between HP1 and these two genes might be shadowed by the effect of HP1 knockdown on other genes that also interact with rRNA and Hsp70 genes (for instance if HP1 knockdown downregulates a gene at the same time as it up-regulates its activator, and vice versa). Such possibility is especially plausible for genes that have a wide range of gene interactions so that impairment of their activity results in a global maladjustment of many genes activity. A DNA microarray profiling of differentially regulated genes for the three different HP1 variants present in Drosophila suggests that HP1 is indeed a wide-range acting protein (see Lee et al., 2013). This would also explain the potentially speciesdependent effect of the HP1 knockdown on gene activity, since the effect of the wideacting HP1 knockdown on a gene would depend on the entire network of affected genes and on the position and interactions of that gene within its network which is also species-dependent. Although HP1 is generally considered a heterochromatin marker protein, it can affect both heterocromatin and euchromatin gene expression, producing both global and gene specific effects (for review, see Vermaak and Malik, 2009). Accordingly, the HP1 dsRNA-knockdown performed in E. plorans males caused major phenotypic and physiological effects on treated individuals decreasing their mobility and vitality (as reflected by their lethargy and inability to jump in response to mechanical stimulus), muscle mass, hemolymph amount, cell divisions and survival. These are all phenotypic 147 signs that fit a scenario of gradual debilitation that ultimately leads to death. Lethality related to HP1 inactivation has been reported in Drosophila melanogaster at larval stages, so that individuals with a 90% reduction of HP1α rarely reach the adult stage (Liu et al., 2005). Nonetheless, similar effect on survival has not been found in Caenorhabditits elegans where HLP-1 and HLP-2 deficient nematodes are viable (Studencka et al., 2012). A deleterious effect of HP1 knockdown in E. plorans could be produced by loss or impairment of heterochromatin formation. In fact, a relationship between HP1α and myogenic gene expression in myoblasts has been observed in mice in such a way that its depletion produces anomalous skeleton muscle differentiation (Sdek et al., 2013). Moreover, Larson et al., (2012) pointed out that the maintenance of normal level of heterocromatin in chromosomes is an essential requirement to conserve muscle integrity and lifespan, and one of the causes of why aged Drosophila individuals die is sarcopenia (muscle degeneration). This fact has also been observed in C. elegans (Herndon et al., 2002). Even the premature aging observed in human progeric syndromes is correlated with loss of heterochromatin (Liu et al., 2011). Modification of heterochromatin organization might not be the sole cause for the observed deleterious effect. Changes in euchromatin organization and misregulation of euchromatic genes might also be contributing. In fact, our results point towards euchromatin decondensation in HP1 knockdown cells, which further supports that HP1 is a wideinteracting protein that promotes up and down regulation of heterocromatic as well as euchromatic genes. Furthermore, this protein family is mainly located at centromeric heterochromatin but its association with euchromatin has also been reported (Piacentini et al., 2009). In addition, alterations in DNA damage response (Dinant and Luijsterburg, 2009; Luijsterburg et al., 2009) could also be responsible for the deleterious effects shown by HP1 knockdown in E. plorans individuals. HP1 is necessary for proper chromosome condensation dynamics, adequate heterochromatinization and chromosome segregation. We conclude that HP1 is a wide acting gene whose knockdown, and the consequent reduction of its transcript level, results in abnormal condensation of almost all chromatin types with the consequent gene mis-expression, chromosome bridges, cell division anomalies and, ultimately, a wide range of phenotypic and physiological changes leading to death. The specific effect observed in a given cell will probably depend on the cell cycle stage at which the HP1 knockdown takes effect. Acknowledgements We thank T. López for technical assistance and Karl Meunier for language revision. This study was supported by a grant from the Spanish Ministerio de Ciencia e Innovación (CGL200911917) and Plan Andaluz de Investigación (CVI-6649), and was partially performed by FEDER funds. M Ruíz-Estévez was supported by a FPU fellowship from the Spanish Ministerio de Ciencia e Innovación. M. Bakkali wishes to thank the Spanish Ministerio de Ciencia e Innovación both for the grant (BFU2010-16438) and for the Ramón y Cajal Fellowship. 148 HP1 knockdown affects both eucromatin and heterochromatin References Aucott R, Bullwinkle J, Yu Y et al (2008) HPI- is required for development of cerebral neocortex and neuromuscular junctions. J Cell Biol 183: 597-606 Baker DJ, Dawlaty MM, Wijshake T et al (2013) Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan. Nat Cell Biol 15(1):96-102 Bakkali M, Cabrero J, López-León MD, Perfectti F, Camacho JPM (1999) The B chromosome polymorphism of the grasshopper Eyprepocnemis plorans in North Africa I. B variants and frequency. Heredity 83:428-434 Banaei-Moghaddam AM, Meier K, Karimi-Ashtiyani R, Houben A (2013) Formation and expression of pseudogenes on the B chromosome of rye. The Plant Cell, Vol. 25: 2536–2544 Baroni S, Lopes CE, de Almeida-Toledo LF (2009) Cytogenetic characterization of Metynnis maculatus (Teleostei; Characiformes): the description in Serrasalminae of a small B chromosome bearing inactive NOR-like sequences. Caryologia 62:95–101 Basu J, Bousbaa H, Logarinho E et al (1999) Mutations in the essential splindle checkpoint gene Bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J Cell Biol 146(1):13-28 Bernard P (1998) Fission yeast bub1 is a mitotic centromere protein essential for the spindle checkpoint and the preservation of correct ploidy through mitosis. J Cell Biol 143:1775–1787 Bidau CJ (1986) A nucleolar-organizing B chromosome showing segregation-distortion in the grasshopper Dichroplus pratensis (Melanoplinae, Acrididae). Can J Genet Cytol 28:138–148 Boeskorov GG, Kartavtseva IV, Zagorodniuk IV, Belianin AN, Liapunova EA (1995) Nucleolus organizer regions and B-423 chromosomes of field mice (Mammalia, Rodentia, Apodemus). Genetika 31(2):185-192 Cabrero J, Alché JD, Camacho JPM (1987) Effects of B chromosomes of the grasshopper Eyprepocnemis plorans on nucleolar organizer regions activity. Activation of a latent NOR on a B chromosome fused to an autosome. Genome 29:116–121 Cabrero J, López-León MD, Bakkali M, Camacho JPM (1999) Common origin of B chromosome variants in the grasshopper Eyprepocnemis plorans. Heredity 83:435-439 Cabrero J, Bugrov A, Warchalowska-Sliwa E, López-León MD, Perfectti F, Camacho JPM (2003) Comparative FISH analysis in five species of Eyprepocnemidine grasshoppers. Heredity 90:377-381 Cabrero J, Teruel M, Carmona FD, Camacho JPM (2007a) Histone H2AX phosphorylation is associated with most meiotic events in grasshopper. Cytogenet Genome Res 116:311-315. Cabrero J, Palomino-Morales RJ, Camacho JPM (2007b) The DNA-repair Ku70 protein is located in the nucleus and tail of elongating spermatids in grasshoppers. Chromosome Res 15:1093-1100 Cabrero J, Bakkali M, Navarro-Dominguez B et al (2013) The Ku70 DNA-repair protein is involved in centromere function in a grasshopper species. Chromosome Res 21: 393-406 149 Camacho JPM, Cabrero J, Viseras E, López-León MD, Navas-Castillo J, Alché JD (1991) G-banding in two species of grasshoppers and its relationship to C, N and fluorescence banding techniques. Genome 34:638-643. doi:10.1139/g91097 Camacho JPM (2005) B chromosomes. In: Gregory TR, ed. The evolution of the genome. New York: Academic Press. pp 223–286 Canudas S, Houghtaling BR, Bhanot M et al (2011) A role for heterochromatin protein 1 at human telomeres. Genes and Development 25:1807-1819 Carchilan M, Kumke K, Mikolajewski S, Houben A (2009) Rye B chromosomes are weakly transcribed and might alter the transcriptional activity of A chromosome sequences. Chromosoma 118:607–616 Chapuis MP, Tohidi-Esfahani D, Dodgson T et al (2011) Assessment and validation of a suite of reverse transcription-quantitative PCR reference genes for analyses of density-dependent behavioural plasticity in the Australian plague locust BMC Mol Biol 12:7 Corey HI (1938) Heteropycnotic elements of orthopteran chromosomes. Arch Biol 49:159-172 De Lucia F, Ni JQ, Vaillant C, Sun FL (2005) HP1 modulates the transcription of cellcycle regulators in Drosophila melanogaster. Nucleic Acids Res 33(9):28522858 Dinant C and Luijsterburg MS (2009) The emerged role of HP1 in the DNA damage response. Mol Cell Biol 29(4):6335-6340 Eissenberg JC and Elgin SC (2000) The HP1 protein family: getting a grip on chromatin. Curr Opin Genet Dev 10:204-210 Fanti L, Giovinazzo G, Berloco M, Pimpinelli S (1998) The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol Cell 2(5):527-538 Fanti L, Berloco M, Piacentini L, Pimpinelli S (2003) Chromosomal distribution of heterochromatin protein 1 (HP1) in Drosophila: a cytological map of euchromatic HP1 binding sites. Genetica 117:135-147 Fanti L and Pimpinelli S (2008) HP1: a functionally multifaceted protein. Curr Opin Genet Dev 18(2):169-174. doi:10.1016/j.gde.2008.01.009 Hamperl S, Wittner M, Babl V, Perez.Fernandez J, Tschochner H, Griesenbeck J (2013) Chromatin states at ribosomal DNA loci. Biochimica et Biophysica Acta 1829:405-417 Hayakawa T, Haraguchi T, Masumoto H, Hiraoka Y (2003) Cell cycle behaviour of human HP1 subtypes: Distinct molecular domains of HP1 are required for the centromeric localization during interphase and metaphase. J Cell Sci 116:33273338 Hayashi MT, Takahashi TS, Nakagawa T, Nakayama J, Masukata H (2009) The heterochromatin protein Swi6/HP1 actives replication origins at the pericentromeric region and silent mating-types locus. Nat Cell Biol 11:357-362 Henriques-Gil N, Santos JL, Arana P (1984) Evolution of a complex polimorphism in the grasshopper Eyprepocnemis plorans. Chromosoma 89:290-293 Herndon LA, Schmeissner PJ, Dudaronek JM et al (2002) Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419(6909):808814 Horáková AH, Bártová E, Galiová G, Uhlírová R, Matula P, Kozubek S (2010) SUV39h-independent association of HP1 beta with fibrillarin-positive nucleolar regions. Chromosoma 119(3):227-241. doi:10.1007/s00412-009-0252-2 150 HP1 knockdown affects both eucromatin and heterochromatin Ishak B, Jaafar H, Maetz JL, Rumpler Y (1991) Absence of transcriptional activity of the B-chromosome of Apodemus peninsulae during pachytene. Chromosoma 100:278–281 James TC and Elgin SC (1986) Identification of a non histone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6:3862-3872 Kellum R, Raff JW, Alberts BM (1995) Heterochromatin protein 1 distribution during development and during the cell cycle in Drosophila embryos. Journal of cell science 108(4):1407-1418 Kwon SH and Workman JL (2011) The changing faces of HP1: From heterochromatin formation and gene silencing to euchromatic gene expression: HP1 acts as a positive regulator of transcription. Bioessays 33(4):280-289. doi:10.1002/bies.201000138 Larson K, S J Yan, Tsurumi A et al (2012) Heterochromatin formation promotes longevity and repress ribosomal RNA synthesis. PLoS Genetics 8(1): e1002473. doi:10.1371/journal.pgen.1002473 Leach CR, Houben A, Bruce F et al (2005) Molecular evidence for transcription of genes on a B chromosome in Crepis capillaris. Genetics 171:269–278 Lee DH, Li Y, Shin DH et al (2013) DNA microarray profiling of genes differentially regulated by three heterochromatin protein 1 (HP1) homologs in Drosophila. Biochem Biophys Res Commun 434(4):820-828 Liu LP, Ni JQ, Shi YD, Oakeley EJ, Sun FL (2005) Sex-specific role of Drosophila melanogaster HP1 in regulating chromatin structure and gene transcription. Nature Genetics 37:1361-1366 Liu GH, Barkho BZ, Ruiz S et al (2011) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472(7342):221-5 López-León MD, Cabrero J, Pardo MC, Viseras E, Camacho JPM, Santos JL (1993) Generating high variability of B chromosomes in Eyprepocnemis plorans (grasshopper). Heredity 71:352-362 López-León MD, Neves N, Schwarzacher T, Heslop-Harrison JS, Hewitt GM, Camacho JPM (1994) Possible origin of a B chromosome deduced from its DNA composition using double FISH technique. Chromosome Res 2: 87-92 López-León MD, Cabrero J, Camacho JPM (1995) Changes in NOR activity pattern in the presence of supernumerary heterochromatin in the grasshopper Eyprepocnemis plorans. Genome 38:68-74 Lucchini R and Sogo JM (1998) The Dynamic Structure of Ribosomal RNA Gene Chromatin. In: M.R. Paule (Ed.), Transcription of Ribosomal RNA Genes by Eukaryotic RNA Polymerase I, 1st ed., Springer, pp: 255–276 Luijsterburg MS, Dinant C, Lans H et al (2009) Heterochromatin protein 1 is recruited to various types of DNA damage. J Cell Biol 185(4):577-586 Meyne J, Hirai H, Imai HT (1995) FISH analysis of the telomere sequences of bulldog ants (Myrmecia: Formidae). Chromosoma 104: 4-18 Motamedi MR, Hong EJ, Li X et al (2008) HP1 proteins form distinct complexes and mediate heterochromatic gene silencing by nonoverlapping mechanisms. Mol Cell 32(6):778-790 Muñoz-Pajares J, Martínez-Rodríguez L, Teruel M, Cabrero J, Camacho JPM, Perfectti F (2011) A single, recent origin of the accessory B chromosome of the grasshopper Eyprepocnemis plorans. Genetics 187: 853-863 Nonaka N, Kitajima T, Yokobayashi S et al (2002) Recruitment of cohesion to heterocromatin regions by Swi6/HP1 in fission yeast. Nat Cell Biol 4:89-93 151 Piacentini L, Fanti L, Berlocc M, Perrini B, Pipinelli S (2003). Heterochromatin protein 1 (HP1) is associated with induced gene expression in Drosophila euchromatin. J Cell Biol 161:707- 714 Piacentini L, Fanti L, Negri R et al (2009) Heterochromatic protein 1 (HP1a) positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila. PLoS Genetics 5(10):e1000670. doi:10.1371/journal.pgen.1000670 Poletto AB, Ferreira IA, Martins C (2010) The B chromosomes of the African cichlid fish Haplochromis obliquidens harbour 18S rRNA gene copies. BMC Genet 11:1 Rufas JS, Iturra P, de Souza W, Esponda P (1982) Simple silver staining procedure for the localization of nucleolus and nucleolar organizer under light and electron microscopy. Arch Biol 93:267–274 Ruiz-Estévez M, López-León MD, Cabrero J, Camacho JPM (2012) B-Chromosome Ribosomal DNA is functional in the grasshopper Eyprepocnemis plorans. PLoS ONE 7(5): e36600. doi:10.1371/journal.pone.0036600 Ruiz-Estévez M, López-León MD, Cabrero J, Camacho JPM (2013) Ribosomal DNA is active in different B chromosome variants of the grasshopper Eyprepocnemis plorans. Genetica. doi: 10.1007/s10709-013-9733-6 Ruiz-Ruano FJ, Ruiz-Estévez M, Rodríguez-Pérez J, López Pino JL, Cabrero J, Camacho JPM (2011) DNA Amount of X and B Chromosomes in the grasshoppers Eyprepocnemis plorans and Locusta migratoria. Cytogenet Genome Res 134:120–126 Savitsky M, Kravchuk O, Melnikova L, Georgiev P (2002) Heterochromatin Protein 1 is involved in control telomere elongation in Drosophila melanogaster. Mol and Cel Biol 22:3204-3218 Schott S, Coustham V, Simonet T, Bedet C, Palladino F (2006) Unique and redundant functions of C. elegans HP1 proteins in post-embryonic development. Developmental Biology 298:176-187 Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671-675 Schwaiger M, Kohler H, Oakeley EJ, Stadler MB, Schübeler D (2010) Heterochromatin protein (HP1) modulates replication timing of Drosophila genome. Genome Research 20:771-780 Sdek P, Oyama K, Angelis E, Chan SS, Schenke-Layland K, MacLellan WR (2013) Epigenetic regulation of myogenic gene expression by heterocromatic protein 1 alpha. PLoS ONE 8(3): e58319. doi:10.1371/journal.pone.0058319 Serrano A, Rodríguez-Corsino M, Losada A (2009) Heterochromatin Protein 1 (HP1) do not drive pericentromeric cohesin enrichment in human cells. PLoS One 4(4): e5118. doi:10.1371/journal.pone.0005118 Sharma GG, Hwang KK, Pandita et al (2003) Human heterochromatin protein 1 isoforms HP1Hs alpha and HP1Hs beta interfere with hTERT-telomere interactions and correlate with changes in cell growth and response to ionizing radiation. Mol and Cel Biol 23(22):8363-8376 Spierer A, Seum C, Delattre M, Spierer P (2005) Loss of the modifiers of variegation Su(var)3–7 or HP1 impacts male X polytene chromosome morphology and dosage compensation. J Cell Sc.118:5047–5057 Stitou S, Díaz de la Guardia R, Jiménez R, Burgos M (2000) Inactive ribosomal cistrons are spread throughout the B chromosomes of Rattus rattus (Rodentia, Muridae). Implications for their origin and evolution. Chromosome Res 8(4):305-311 152 HP1 knockdown affects both eucromatin and heterochromatin StatSoft, Inc. (2007) STATISTICA (data analysis software system), version 8.0. www.statsoft.com Studencka M, Wesolowski R, Opitz L, Salinas-Riester G, Wisniewski JR, Jedrusik-bode M (2012) Transcriptional repression of Hox genes by C. elegans HP1/HPL and H1/HIS-24. PLoS Genet 8(9): e1002940.doi:10.1371/journal.pgen.1002940 Teruel M, Cabrero J, Perfectti F, Camacho JPM (2007) Nucleolus size variation during meiosis and NOR activity of a B chromosome in the grasshopper Eyprepocnemis plorans. Chromosome Res 15:755–765 Teruel M, Cabrero J, Perfectti F, Camacho JPM (2009) Quantitative analysis of NOR expression in a B chromosome of the grasshopper Eyprepocnemis plorans. Chromosoma 118:291–301 Teruel M, Sørensen JG, Loeschcke V, Cabrero J, Perfectti F, Camacho JP (2011) Level of heat shock proteins decreases in individuals carrying B-chromosomes in the grasshopper Eyprepocnemis plorans. Cytogenet Genome Res 132(1-2):94-99 Van Hiel MB, Van Wielendaele P, Temmerman L et al (2009) Identification and validation of housekeeping genes in brains of the desert locust Schistocerca gregaria under different developmental conditions. BMC Mol Biol 10:56. doi: 10.1186/1471-2199-10-56 Van Vugt JJFA, de Nooijer S, Stouthamer R, de Jong H (2005) NOR activity and repeat sequences of the paternal sex ratio chromosome of the parasitoid wasp Trichogramma kaykai. Chromosoma 114:410–419 Vermaak D and Malik HS (2009) Multiple roles for heterochromatin protein 1 genes in Drosophila. Annu Rev Genet 43:467-492 Wang G, Ma A, Chow CM et al (2000) Conservation of heterochromatin protein 1 function. Mol Cell Biol 20(18):6970-6983 Warren CD (2002) Distinct chromosome segregation roles for spindle checkpoint proteins. Mol Biol Cell 13:3029–3041 153 Supporting Information Fig. S1 The HP1α gene contig from our E. plorans transcriptome library. The region used for dsRNA is noted in red colour. 5’TAGAAGCTGGAGCACAGTTTCATCCCGCCAACCCTTCTTTGGCGCCGAAA AATTCCTGAAGCTTCGAATCAGTTAAAGAAAGAGAAGATTTGTAGCTGTTT GAAACCCTTTTCGCTACGAGTCGCAACATGTCAAAAATGGAAGGGCCAAAT CGGAAGACAAAAGATAAGGATGCTGCAGGAAATAATGCAGATGGGGAAGA GCCAGAGGAAGAGTACTCAGTTGAGAAAGTACTGGACAAGAGAATACGAA ATGGCAAAGTGGAGTACTTATTGAAGTGGAAGGGGTATTCAAATGAAGATA ACACGTGGGAACCAGAGGAGAATCTCGACTGCCCGGACCTCATCAGCGAAT ACGAGTCGAAGAGGGCGGAGAGCAAGAAGGGTGGCAGCGGCAGTGACACA GGGTCGACTGGTGTGAAGAAAGAAGACCGTAAGCGCAAGTCGAGTGCTGTC ACCGAGGAGAAGAAAGGTTCCAGCAAGAAGAAGCACACTGAGGAAGATAA CAAACCAAGGGGTTTTGAACGTGGTTTGGAACCAGAGAAGATTATTGGGGC CACAGATTCAAGTGGAGAGCTAATGTTCCTAATGAAATGGAAAGGCACTGA CGAAGCAGACCTCGTGCCTTCGAGCCAGGCCAATGTGAAGTGTCCGCAGAT TGTGATAAAGTTCTACGAAGAGCGACTGACCTGGCACACCTCGAGCCACGA TGAGGAGGAAGGTGGCAAAGGCGAGGGGGCGGCCTAAGTGTGGACACGGT TGACACTCGCAGTGCACTGCAGCAGAGTTACTTCTTCTGGCTCCATAACTAG TTCTAAGACAAATTCCCTTTAAATATTTTAGATCGGTTTTCACTTTTGATCCA TAATGTTCACACAACGTACACCAGAGTGATTTTTATTTGAGCTGAGCACTTG GAAGTGTGAAATTGAGACTGCACTAAATTTTTCAGTGTTGACGTTTTTGACC GTGTTCCCGTAGGCTGCAAAATAAATCACACAGAATAGTAGCTTTAGGGTA AGGAATACAATGACTGAAGAGTGACTTTTAAGAGGAGGTAGTGGTCAGAGA TTCTGAATTGATTGAGGTCTTCTGGAAGTTCTTCATTTGTGCTGCATTTCTTT TTTTGTTTCCCTTAGATTTGCCATATTTGCAATTTTAAGTGTTTGAAGTAGCA GTGTTGATGTTAATTGTGGGTAGTCAATAAATCGATGGTGGAAAGGTAAAA GGTTGTAATCCCTATTAGAATACATTGGGGTTACAACCTTTTACCTTTCAAC CGTCGAAATCGTCTGATTAACTGTAATATTGTATCACCCATTTGGAGAGATG ACATGTGAAAAATCTTGTGTGTTTATTCTGTAGTCCCCATCACATAGTTCCA CTTTTGCATGTGATAATTGTCC 3’ 154 HP1 knockdown affects both eucromatin and heterochromatin Fig. S2 Metaphase I cell submitted to immunofluorescence with a Ku70 antibody (red) merged with DAPI staining to show chromatin, from a male injected with RNAi for HP1. Note the presence of one centromeric Ku70 focus per homologous chromosome, and the distal associations between different bivalents (arrows). Ku70 was present in both RNAi and control males. Fig. S3 Metaphase I cell submitted to FISH with telomeric probe (green) merged with DAPI (blue) from an RNAi male. Note the presence of apparently normal telomeric signals in all bivalents, and how several signals are mixed together in the chromatin bridges (arrow). 155 156 Capítulo 8. High variation of ITS2 rDNA region and non-random expression of rDNA units in a grasshopper genome 157 158 High variation of ITS2 rDNA region and non-random expression of rDNA units in a grasshopper genome Mercedes Ruiz-Estévez*, Francisco Ruiz-Ruano*, Josefa Cabrero, Mohammed Bakkali, Francisco Perfectti, Mª Dolores López-León, Juan Pedro M. Camacho Departamento de Genética, Universidad de Granada, 18071 Granada, Spain *: These authors contributed equally to this work Short title: High variable and non-randomly expressed rDNA Key words: 454 amplicon sequencing, B chromosomes, cDNA, concerted evolution, gDNA, gigantic genomes, homogenization, rDNA expression, rDNA, tagged PCR 159 Abstract Concerted evolution is an evolutionary pattern by which some repetitive DNA arrays show little or no intraspecific genetic diversity. One of the repetitive DNAs best fitting concerted evolution is ribosomal DNA (rDNA), but the recent finding of extensive intragenomic variation for rDNA non-coding regions in some organisms has challenged the efficiency of concerted evolution as homogenizing mechanism. Here we analyze intragenomic variation in the ITS2 rDNA region in two grasshopper species with gigantic genomes (2-3 fold the human genome), by means of tagged PCR 454 amplicon sequencing, and found highly contrasting patterns in them. The use of short coding regions (5.8S and 28S rDNA) flanking the ITS2 proved to be an appropriate internal control for haplotype selection. Whereas Locusta migratoria showed very high homogenization, with a single ITS2 haplotype in 98.52% of the reads obtained, six different haplotypes coexisted in a single population of Eyprepocnemis plorans, suggesting efficient homogenization in the former but poor in the latter. In E. plorans, one of the ITS2 haplotypes (Hap4) was specific to B chromosomes. The simultaneous analysis of genomic DNA (gDNA) and complementary DNA (cDNA) allowed the analysis of relative expression efficiency (REE) for the different haplotypes, and showed different expression profiles between body parts which were consistent at population level. Remarkably, Hap5 showed the highest REE and also carried the most conserved flanking 5.8-28S coding regions, whereas Hap4 showed the lowest conservation of the accompanying coding region and showed the lowest REE. The meaning of these results in the context of B chromosome silencing and genomic homogenization of rDNA arrays is discussed. Introduction Among a high variety of repetitive DNA sequences making up eukaryote genomes (Britten and Kohne, 1968), ribosomal DNA (rDNA) is one of the most abundant tandem repeats, and this facilitates synthesizing massive numbers of ribosomes during rapid growth periods (Eickbush and Eickbush, 2007). Each 45S cistron of this multigene family is constituted by three rRNA genes (18S, 5.8S and 28S) separated by two internal transcribed spacers (ITS1 and ITS2) and preceded by the external transcribed spacer (ETS) and the intergenic spacer (IGS) (Long and David, 1980). For many years, it was believed that every copy in the rDNA arrays showed an identical sequence (Goffeau et al., 1996), because natural selection would constrain the evolution of the coding regions (Nei et al., 1997). But the finding of high sequence resemblance among rDNA units also in the non-coding regions, suggested the existence of a mechanism for their active homogenization. Brown et al. (1972) first proposed that the rRNA gene copies evolved “horizontally”, with novel variants arising by mutation and spreading to other units. This homogenization process was later called “concerted evolution” (Zimmer et al., 1980), and it was suggested to occur through unequal crossover and 160 High variable and non-randomly expressed rDNA gene conversion (Dover, 1982). Although the role of unequal crossover is universally accepted, that of gene conversion has generated some doubts (Eickbush and Eickbush, 2007). Concerted evolution was first though to fit all kinds of repetitive DNA sequences, but some multigene families have been shown to best fit an alternative evolutionary model, namely the birth-and-death model proposed by Nei and Hughes (1992) for the Major Histocompatibility Complex (MHC) loci. This model has gained later support for other gene families (Ota and Nei, 1994; Nei et al., 1997; Date et al., 1998; Michelmore and Meyers 1998; Sitnikova and Nei, 1998; Gu and Nei, 1999; Nei et al., 2000; Zhang et al., 2000; Rooney et al., 2002; Rooney and Ward, 2005). One of the main differences between the birth-and-death and concerted evolution models is the presence of pseudogenes in the first case (Eickbush et al., 1997). In some organisms, including prokaryotes, plants, animals, and fungi, extensive intragenomic variation has been reported for the ITS regions (Mayol and Rosselló, 2001; Feliner et al., 2004; Wörheide et al., 2004; Stage and Eickbush, 2007; Stewart and Cavanaugh, 2007; Simon and Weiss, 2008; James et al., 2009; Pilotti et al., 2009; Alper et al., 2011; Hřibová et al., 2011; Matyášek et al., 2012; Song et al., 2012; Vydryakova et al., 2012; Li et al., 2013). This has suggested caution in using these genomic regions in studies of species richness in environmental studies (Lidner et al., 2013), or in trying to use them as universal barcodes (Alper et al., 2011; Song et al., 2012). The absolute level of sequence variation in the rDNA repeated arrays can be analyzed by Whole Genome Shotgun Sequencing, but only when the studied genomes are relatively small. Using this approach, Ganley et al. (2007) determined that the level of rDNA copy variation was extremely low in five fungi species, even in the IGS region. They proposed a model of rapid homogenization based on concerted evolution, where a polymorphism in an individual represents a mutation which the homogenization mechanism has spread to all repeats in the array, thus becoming fixed. Another appropriate method for thorough analysis of rDNA intragenomic variation is Next Generation Sequencing (NGS) (Margulies et al., 2005; Sogin et al., 2006; Keller et al., 2008; Meyer et al., 2008; Van Tassell et al., 2008; Druley et al., 2009; Wang et al., 2011; Song et al., 2012; Lindner et al., 2013; Zavodna et al., 2013). Although NGS analysis provides information that exceeds the traditional methods (e.g. Sanger sequencing) in several orders of magnitude, some recent studies have revealed that the results from the NGS platforms (454 and Illumina) are comparable to the traditional ones (Hřibová et al., 2011; Matyášek et al., 2012). At the same time, other studies have detected much higher polymorphism for NGS compared to Sanger sequencing (Tedersoo et al., 2010; Kautz et al., 2013). These studies have also highlighted the need to control for sequencing errors in order to avoid false positives (Gilles et al., 2011; Brodin et al., 2013; et al., 2013; Niklas et al., 2013). Eukaryotes show extensive variation among species for both genome size and the amount of ribosomal DNA (rDNA). Although these two parameters are positively correlated, there is no simple explanation for this relationship (Prokopowich et al., 161 2003) since only part of the rDNA copies are usually active (Reeder 1999). Even more puzzling is the finding of extensive intraspecific variation in the amount of rDNA without changes in the number of protein-coding genes. The grasshopper Eyprepocnemis plorans shows dramatical variation in the number of rDNA units among populations, from only two chromosome pairs carrying rDNA in Dagestan to all chromosomes carrying it in Morocco (López-León et al., 2008). The genome of this species is about three times larger than the human genome and, in some Spanish populations, may carry more than 40,000 rDNA units in individuals carrying supernumerary (B) chromosomes (Montiel et al., submitted), a figure being among the largest ever found. B chromosomes in this species are very rich in a 180 bp satDNA and 45S rDNA (Cabrero et al., 1999). Recently, Montiel et al. (submitted) have estimated that B-lacking males from the Torrox (Málaga, Spain) population (the one analyzed here) carry 15,000 rDNA units which, by fluorescent in situ hybridization (FISH) can be observed in seven A chromosome pairs (Cabrero et al., 2003). The most conspicuous rDNA clusters are located in the three smallest autosomes (9, 10 and 11) as well as in the X chromosome (X0/XX sex determinism). But the largest rDNA cluster is located on the B chromosome (López-León et al., 1994; Cabrero et al., 1999). In most males, all rDNA-carrying A chromosomes can eventually be visualized organizing a nucleolus during meiotic prophase, but NOR activity in the B chromosomes is rarely observed (Cabrero et al., 1997; López-León et al., 1995; Ruíz-Estévez et al., 2013), except in the Torrox population (Teruel et al., 2007; 2009; Ruiz-Estévez et al., 2012). The grasshopper Podisma pedestris, a species with a gigantic genome (18.15 Gb), also shows extensive intraspecific variation in the number of rDNA repeats (Veltsos et al., 2009) which show high sequence heterogeneity, suggesting low efficiency of concerted evolution (Keller et al., 2006, 2008). To investigate whether this is a general property of grasshoppers or if it is a characteristic of large genomes, we performed tagged PCR and 454 amplicon sequencing to analyze variation for the ITS2 region in two other grasshopper species (Locusta migratoria and Eyprepocnemis plorans) showing genomes not as large as P. pedestris (5.56 Gb and 10.26 Gb, respectively; see Ruiz-Ruano et al., 2011), and differing in the number of rDNA clusters visualized by FISH, with only three chromosome pairs in L. migratoria and seven in E. plorans (Cabrero et al., 2003; Teruel et al., 2010). Since preliminary experiments showed extensive ITS2 variation in the latter species, we performed additional experiments to characterize intragenomic ITS2 variation at body part and population levels by analyzing both genomic DNA (gDNA) and complementary DNA (cDNA) from the same individuals. This allowed us to detect the presence of a B-specific haplotype and analyzing relative expression level among haplotypes which revealed strong silencing of the rDNA contained in the B chromosome. 162 High variable and non-randomly expressed rDNA Materials and methods Biological samples and karyotypic characterization We collected 21 adult males of the grasshopper E.plorans in the Torrox population (Málaga, Spain) and one Locusta migratoria male from our B-lacking laboratory culture. They were anesthetized prior to dissection to take out the testes which were fixed in freshly prepared 3:1 ethanol:acetic acid and stored at 4ºC for cytological analysis. The bodies of 18 E.plorans males were divided into two somatic hemibodies for separate extraction of DNA and RNA. One male was dissected under a binocular microscope into six body parts (head, hind leg, wing muscle, testis, accessory gland and gastric caecum). These hemibodies, the mentioned body parts, and body remains of one L.migratoria male and two E.plorans males were frozen in liquid nitrogen and stored at -80º C until DNA and RNA extraction. Determination of the number of B chromosomes in each E. plorans male was performed by squashing two testis follicles in 2% lacto-propionic orcein and visualizing primary spermatocytes at first meiotic prophase or metaphase, under a BX41 Olympus microscope coupled to a DP70 digital camera. gDNA and RNA extractions, cDNA synthesis and B-NOR activity analysis Genomic DNA (gDNA) and total RNA extractions from frozen hemibodies and dissected body parts were performed using “GenElute Mammalian Genomic DNA Miniprep Kit” (Sigma) and “Real Total RNA Spin Plus kit” (Durviz), respectively, following manufacturer’s recommendations. We submitted total RNA to a second 20U DNase treatment (REALSTAR kit, Durviz) after extraction to eliminate any traces of gDNA contamination. Quantity and quality (absorbance 260:280 nm = 1.9-2) of gDNA and RNA were measured with Tecan's Infinite 200 NanoQuant and in a denaturing agarose gel to ensure the absence of RNA degradation. Complementary DNA (cDNA) was obtained with random hexamers using SuperScript III First-Strand Synthesis SuperMix Kit (Invitrogen). B-NOR activity was analyzed by Silver Impregnation of testis follicles following the protocol reported by Rufas et al. (1982) and by PCR amplification of the ITS2_B sequence (preferentially found in the B-rDNA) following the protocol described in Ruiz-Estévez et al. (2012). Tagged PCR and amplicon NGS sequencing We amplified the ITS2 region in four separated 454 runs in: 1) gDNA from a L. migratoria male, 2) gDNA from a 1B E.plorans male, 3) gDNA and cDNA of the six body parts from a 0B E.plorans male, and 4) gDNA and cDNA from 18 E.plorans males with different number of B chromosomes. The ITS2 amplicons in 1) and 2) were sequenced as part of 1/4 of plate along with other PCR products not analyzed here, and samples 3) and 4) were sequenced in 1/8 of a plate each. We used forward ITS3 (5’ GTCGATGAAGAACGCAGC 3’) and reverse ITS4 163 (5’ATATGCTTAAATTCAGCGGG 3’) primers (anchored in the 5.8S and the 28S genes, respectively) with 6mer-length tags in the 5’ end of both primers. For each different sample we used a specific combination of both forward and reverse tagged primers to separate them in silico. We designed six tags using EDITTAG (Faircloth and Glenn, 2012), five of them with an edit distance of 5 and one with 4 (Table S1) and we amplified 36 samples (18 gDNAs and 18 cDNAs). We ordered 12 tagged primers and combined them to obtain 12 and 36 tagged amplicon samples in the body part and population experiments, respectively. By doing this in our laboratory, costs were diminished. PCR reactions contained 20ng gDNA or 30ng cDNA, 0,4µM of each forward and reverse tagged primer (Tables S2 and S3), 0,2 mM dNTPs, 5µl of 5X Phusion HF Buffer and 0,4U Phusion® High-Fidelity DNA Polymerase (Thermo Scientific) in a final volume of 25µl. PCR amplification of the ITS2 sequence was performed in an Eppendorf Mastercycler ep Gradiente S (Eppendorf) with the following conditions: initial denaturation for 30 s at 98ºC, 30 cycles of 15 s at 98ºC, 30 s at 60ºC and 10 s at 72ºC, followed by a final extension of 7 min at 72ºC. The results were visualized by electrophoresis in a 1.5% agarose gel, and the bands of about 350 bp were excised, and purified with the GenElute Gel Extraction Kit (Sigma-Aldrich). We performed two separated reactions with the same combination of tags for each sample to reduce PCR bias, and mixed the product in equimolar amounts for sequencing in a 454 GS FLX Titanium equipment (Roche Diagnostics). Data analysis We used a series of custom scripts written in Python to count the number of reads in each sample for the different types of sequences found. We performed it in five consecutive steps: 1) We searched in the first half of the read the sequence of both forward and reverse primers in the complete read collection by performing a local alignment with the Smith-Waterman algorithm implemented in the EMBOSS suite (Rice et al., 2000). We only considered reads with high identity with at least one primer in any orientation. 2) We then made a local alignment for the tagged primers used in the experiment in order to eliminate those reads showing more than three differences in the sequence of both primers (F and R), and the remaining reads were assigned to every sample according to tag combination (see tables S2 and S3). 3) After correcting some sequencing errors with the Acacia software (Bragg et al., 2012), we created a file with sequence types and number of reads, and then we searched for chimeric sequences with UCHIME (Edgar et al., 2011) with default options of the de novo algorithm. 4) We aligned the sequences using MAFFT v7 (Katoh and Standley, 2013) with LINSI options and manually eliminated tags and primers with Geneious v4.8 (Drummond et al., 2009). 5) Since the 454 reads included partial sequences of the 5.8S and 28S rRNA genes, summing up 123 nt, in addition to the ITS2 region, we used this partial coding region as an internal control for sequencing errors, as a means to avoid false positives in identifying genuine ITS2 haplotypes in the gDNA. For this purpose, we assumed that all 164 High variable and non-randomly expressed rDNA variation found in these 123 nt were sequencing errors, since natural selection does not allow much variation in them. The proportion of reads carrying any variation in respect to the majoritary coding sequence type was thus an estimate of the maximum error rate (ER) of the experiment. In order to select haplotypes in the different samples of an experiment, we calculated ER in the whole experiment and then applied it to every male in order to avoid discarding haplotypes very frequent in only one or few males. The reads were then classified into one or more ITS2 haplotypes surpassing the ER threshold. Whole-Genome Shotgun Sequencing-NGS To analyze the diversity of ITS2 in the genome without possible biases induced by the PCR amplification, we used a library generated in our laboratory of gDNA sequences obtained from an individual collected in Torrox with two B24 chromosomes in 1/8 of 454 GS FLX Plus. We mapped the reads showing at least 90% identity with the E. plorans ITS2 (accession number JN811827) using the Roche’s GS Mapper software and selected those with the complete ITS2 that were found more than two times. Secondary structure and genetic diversity analyses We predicted the ITS2 secondary structure of each haplotype and its stability measured by Gibbs’ free energy with MFold v2.3 (Zuker, 2003) with a folding temperature of 30ºC, and the folds were represented with VARNA (Darty et al., 2009). We performed the sequence diversity analysis with DNAsp v5 (Librado and Rozas, 2009). A minimum spanning tree (MST) was built with the different haplotypes based on pairwise differences, with Arlequin v3.5.1.3. (Excoffier and Lischer, 2010) and was edited with HapStar v0.7 (Teacher and Griffiths, 2011). An additional haplotype from Eyprepocnemis plorans meridionalis, a B-lacking subspecies located in South Africa, was included for anchoring the haplotype network. Statistical analyses Read counts failed to fit a normal distribution (tested by the Shapiro Wilk’s test) and thus we used non-parametric tests such as Kruskal-Wallis ANOVA, Wilcoxon matched pairs test and Friedman two-way ANOVA. All analyses were performed with STATISTICA Software v8 (StatSoft, Inc. 2007). Results Preliminary analysis of ITS2 variation We first performed ITS2 amplicon sequencing on gDNA from two individuals, one L. migratoria male, and a 1B E. plorans male. The L.migratoria experiment yielded 2,366 165 reads; 2318 (97.97% ) were identical for the 5.8-28S coding region thus suggesting ER= 2.03%. For the ITS2 region, there were 2,331 (98.52%) identical reads , and six other types showed frequencies being 0.25% or lower thus not surpassing the ER threshold. Therefore, we conclude that L.migratoria showed a single haplotype for the ITS2 region. The 1B E. plorans male yielded 10,672 reads matching the ITS2 sequence of this species (accession numbers: JN811827 to JN811902), but only 76.41% of them showed a conserved 5.8-28S coding region. This could be the result of either high rate of sequencing error or else to the presence of degenerate rDNA copies in the B chromosome. Since it was impossible to ascertain the true cause, we did not apply the ER threshold to this male. The analysis of the ITS2 sequence types observed in these reads showed only four types with frequencies higher than 5%: Hap1 (10.39%), Hap2 (30.15%), Hap3 (5.93%) and Hap4 (10.48%), the remaining types (about 600 nonsingleton reads, and more than 1700 including singletons) showing frequency 0.41% or lower. Out of them, Hap4 was the only one including the adenine insertion typical of the ITS2_B variant (Ruiz-Estévez et al., 2012; Teruel et al., submitted). As another test for ITS2 variation found, we performed Whole Genome Shotgun 454 sequencing on gDNA from a 2B E. plorans male from the same population and found 27 complete ITS2 sequences. Haplotype characterization showed five haplotypes including the four formerly found (Hap1-Hap4) and a new haplotype (Hap5, which had appeared in the 1B male analyzed by amplicon sequencing in 0.46% of non-singleton reads). On the basis of these results, we designed two amplicon NGS experiments to analyze the ITS2 variation (on gDNA) with coverage higher than 1x, as well as the expression degree of the different haplotypes (on cDNA), at both body part and population levels. Body part experiment The 454 amplicon sequencing experiment including both gDNA and cDNA extracted from six different body parts (head, hind leg, wing muscle, testis, accessory gland and gastric caecum) from a 0B male yielded 46,572 reads in the gDNA matching the ITS2 sequence. Bearing in mind that 0B males from the Torrox population carry about 15,000 rDNA units, we actually got 3x coverage for the ITS2 in the gDNA reads. 97.4% of these reads were identical for the 5.8-28S coding region thus indicating ER= 2.6%. Only three ITS2 sequence types surpass this ER threshold in frequency, the remaining 516 types showing very low frequency (1.08% or less). The three most frequent types corresponded to Hap1-Hap3 previously found, and they collectively represented 94.92% of total reads. After discarding this 5.08% of reads, about half of the remainder (50.79%) corresponded to Hap1, 26.98% to Hap2, and 22.24% to Hap3. Remarkably, the Hap4 haplotype, with the adenine insertion typical of the ITS2_B, was not found in this B-lacking male. In the cDNA, these three haplotypes appeared in 49,683 reads, 65.18% of which 166 High variable and non-randomly expressed rDNA corresponded to Hap1, 27.28% to Hap2, and 7.54% to Hap3. The proportion of reads found for a given ITS2 haplotype in the cDNA divided by the proportion of reads found in the gDNA (cDNA/gDNA ratio) is an indicator of its expression efficiency. Dividing the efficiencies of the three haplotypes in a body part by the highest of them, we calculated the relative expression efficiency (REE) for the different haplotypes, which showed different patterns among body parts (Fig. 1). 1 0.9 0.8 0.7 0.6 Hap1 0.5 Hap2 Hap3 0.4 0.3 0.2 0.1 0 Head Caecum Access.gland Wing muscle Hind leg Testis Fig. 1 Relative expression efficiency of the three ITS2 haplotypes in six body parts of a 0B male of the grasshopper E. plorans. Note that Hap1 showed the highest efficiency (defined as the cDNA/gDNA ratio of read counts) in four somatic body parts, whereas Hap3 showed the lowest efficiency in all body parts, although differences between body parts were lower in testis. In general, the different body parts analyzed showed different expression profiles for the three haplotypes. Remarkably, the patterns were almost identical in the two most important muscles of the grasshopper, i.e. the wing and hind leg muscles. Population experiment With these antecedents, we wanted to get an idea on ITS2 variation and expression at population level, for which purpose we designed an ITS2 amplicon sequencing experiment on 18 E.plorans males from the same population (Torrox). Six of these males lacked B chromosomes (0B) and the remaining 12 males carried different number of B chromosomes. The total sample obtained included 150,685 reads, of which, 130,742 matched the ITS2 sequence (66,617 gDNA and 64,125 cDNA reads). This implied about 4x coverage in the gDNA. The 5.8-28S coding region was identical in 97.72% of reads (ER= 2.28%), in high contrast with the ITS2 region where the most frequent haplotype included only 35.79% of total reads. After applying this ER threshold to each male gDNA sample separately, only six ITS2 haplotypes (Hap1-Hap6) appeared in more than 2.28% of reads from one or more males (see counts in Table 1). We therefore discarded the remaining hundreds of minority sequence types because many of then could be the 167 product of sequencing errors. Hap1-Hap5 had also been found in the preliminary experiments (see above) and Hap6 surpassed ER in four males. As a whole, the 62,322 reads for these six haplotypes comprised about 93.6% of all gDNA reads. They included 445-9,182 reads per male, with 3,462 reads on average (SE= 535). A total of 63,040 reads for these six haplotypes were obtained from the cDNA, with 3,502 per male on average (SE= 363). The number of total amplicons obtained from gDNA and cDNA in each male did not show significant differences (Wilcoxon test, T= 83, N=18, P= 0.91) suggesting that the experiment worked similarly for both kinds of DNA. Table 1. Read counts in the gDNA and cDNA from the 18 males analyzed. Id Bs Hap1 Hap2 51 0 1151 745 53 0 2224 1502 57 0 1088 1031 65 0 2354 2139 70 0 976 724 80 0 2290 1467 24 1 1013 965 44 1 2347 1502 46 1 300 420 48 1 1376 1060 49 1 181 86 54 1 455 338 66 1 928 849 69 1 1427 804 55 2 421 257 63 2 2617 1476 50 3 938 257 62 3 1584 702 Total 23670 16324 Hap3 337 1202 641 884 556 768 329 1018 215 313 136 136 283 375 238 648 191 675 8945 gDNA Hap4 0 0 0 0 0 0 801 524 104 406 17 143 387 348 418 4117 503 1437 9205 Hap5 Hap6 Total 4 44 2281 1626 175 6729 123 51 2934 245 111 5733 551 48 2855 0 165 4690 6 46 3160 0 183 5574 0 8 1047 0 61 3216 25 5 450 0 9 1081 0 66 2513 3 61 3018 0 17 1351 324 113 9295 0 26 1915 0 82 4480 2907 1271 62322 Hap1 2477 1560 1168 2425 778 2852 0 421 727 2254 238 3076 490 1413 2417 5242 2096 2426 32060 cDNA Hap2 Hap3 Hap4 Hap5 Hap6 Total 907 718 0 1 41 4144 1929 231 0 1569 0 5289 276 478 0 525 14 2461 1887 125 0 308 0 4745 904 199 0 785 0 2666 1812 183 0 2 0 4849 258 0 0 3 0 261 2618 229 0 0 8 3276 1733 146 0 0 10 2616 604 84 0 0 18 2960 1619 315 26 720 5 2923 1214 658 90 0 53 5091 429 163 0 195 0 1277 960 313 0 689 0 3375 868 351 0 1 15 3652 908 328 94 277 28 6877 302 275 63 0 12 2748 578 673 132 0 21 3830 19806 5469 405 5075 225 63040 Exploration of variation for haplotype counts in gDNA by means of Factor Analysis arranged the haplotypes into two main factors, one of them explaining 65.8% of variance and including Hap1, Hap2, Hap3 and Hap6, and the other explaining 18.4% of variance and including only Hap4 (Supplementary Table S4, Figure S1). This analysis suggests a remarkable difference between Hap4 and the other haplotypes. Given that most haplotype counts failed to fit a normal distribution, we used non parametric Kruskal-Wallis ANOVA with the number of B chromosomes (0, 1, 2, and 3) as independent variable and read counts for each haplotype in the gDNA as dependent variable. Only Hap4 showed significant association with the number of B chromosomes (H= 13.76, df= 3, P=0.0033). Bearing also in mind that we have not found this haplotype in any of the B-lacking males, these results suggest that Hap4 is specific to B chromosomes. 168 High variable and non-randomly expressed rDNA All six haplotypes showed a conserved secondary structure composed of three arms (helix I, helix II and helix III) differing in size (see fig. 2), in coincidence with that previously described for this species (Teruel et al., submitted). Thermal stability (dG= Kcal/mol) was also highly conserved, ranging from -93.15 for Hap1 to -87.17 for Hap2, with -92.57 on average (SE=1.47). Fig. 2 Secondary structure of Hap1 and the five other ITS2 haplotypes (Hap2-Hap6) found in E.plorans after analyzing 18 males from the Torrox population. Note that, in respect to Hap1, Hap6 carries a hemicompensatory change in position 97, which is also present in Hap3. But the latter also carries a hemicompensatory change in position 151 and a non compensatory change in position 153. These two latter changes are also present in Hap2, but it lacks the change in position 97. Hap4 carries an adenine insertion around positions 169-171, whereas Hap5 carries a CAA repetitive insertion of this triplet in positions 168-170. The minimum spanning tree showing the relationships among the six ITS2 haplotypes indicated that Hap1 is the haplotype most similar to the E. p. meridionalis outgroup (Fig. 3), thus suggesting that it can be the ancestral haplotype for the Torrox population, as is also suggested by its central position in the tree. The coexistence of six different haplotypes in a single population, with up to four mutational events between the most divergent ones, suggests that rDNA sequence homogenization shows low efficiency for the ITS2 region in this species, specifically much lower than that observed for the 5.8-28S coding region. 169 Fig. 3 Minimum spanning tree showing the relationships between the six ITS2 haplotypes found in 18 E. plorans males from Torrox, based on their DNA sequences. The nature of these mutational changes is indicated in Figure 2 and, in brief, they were substitutions, excepting an indel of one nucleotide in Hap4, another of three nucleotides in Hap5 and another of 15 nucleotides in the E. p. meridionalis haplotype. Differential expression among haplotypes The degree of expression for each haplotype can be assessed by comparing the proportions of reads found in gDNA and cDNA. For this analysis, we first calculated the proportion of read counts for each haplotype per male in order to give similar weight to each male. We then calculated an index of absolute expression efficiency (AEE) for each haplotype as the quotient between the cDNA and gDNA proportions in each male. Finally, we calculated the relative expression efficiency (REE) in each male by dividing each haplotype AEE by the highest of haplotype AEEs in the same male. We them compared REEs between haplotypes by means of Friedman two-way ANOVA, in different subsets of males since Hap4 was only present in the 12 B-carrying males and Hap5 was present only in 5 B-lacking and 4 B-carrying males. A first analysis excluding Hap4 and Hap5 showed significant differences between Hap1-Hap3 and Hap6 (χ2= 26.25, N= 18, df= 3, P<0.00001; Kendall coefficient of concordance: W= 0.49). When Hap4 was included in the analysis (B-carrying males only), the differences were also highly significant (χ2= 28.39, N= 12, df= 4, P<0.00001; Kendall coefficient of concordance: W= 0.59). When Hap5 was included, instead of Hap4, the differences were also significant (χ 2= 19.36, N= 9, df= 4, P<0.00067; Kendall coefficient of concordance: W= 0.54). Only four males carried the six haplotypes, but the Friedman analysis still yielded significant differences among haplotypes even in this small sample (χ2= 15, N= 4, df= 5, P<0.01036; Kendall coefficient of concordance: W= 0.75). These analyses, as a whole, showed that Hap5 had the highest efficiency; in fact, it was the most efficient haplotype in six out of the nine males carrying it. Hap1 and Hap2 were the second and third in REE, but did not differ between them. However, Hap3 and Hap6 showed significantly lower REE values, and Hap4 showed the lowest value suggesting strong repression (Figure 4). This result indicates that haplotypes are not randomly expressed but, on the contrary, some selection for expression is taking place, the most 170 High variable and non-randomly expressed rDNA apparent being the active repression of Hap4 and the overexpression of Hap5. An indirect manifestation of such selection is the fact that nucleotide diversity per male for the ITS2 region was significantly higher in gDNA than cDNA (Wilcoxon test: T= 3, N= 18, P= 0.0003), indicating that only a subset of haplotypes are expressed. 1.00 0.80 0.60 0.40 0.20 0.00 Hap1 Hap2 Hap3 Hap4 Hap5 Hap6 Fig. 4 Relative Expression Efficiency of the six ITS2 haplotypes (Hap1-Hap6) found in 18 E.plorans males from Torrox. Error bars indicate ±1.96*SE. Values shown for Hap1Hap3 and Hap6 are based on N=18, that for Hap4 on N= 12 (B-carrying males) and Hap5 on N= 9. In all 12 males carrying B chromosomes, we analyzed at least 20 diplotene cells submitted to silver impregnation that, in grasshoppers, reveals nucleoli attached to the chromosome regions containing the rDNA. In all five B-carrying males where we found 454 reads for Hap4 in the cDNA, we could visualize some diplotene cells showing a nucleolus attached to the B chromosome region containing the rDNA. A comparative analysis of sequence conservation for the 5.8-28S coding region, flanking the ITS2 reads, showed significantly higher conservation in the cDNA than in gDNA, the proportion of reads carrying a conserved coding sequence of 99.03% and 98.24%, respectively (Wilcoxon: T= 33, N= 18, P= 0.022). A comparison among the cDNA of the six haplotypes showed that this proportion was 100% only in Hap4, the remaining haplotypes showing lower averages: 99.53% for Hap5, 99.33% for Hap2, 99.20% for Hap3, 98.46% for Hap1 and 96.89% for Hap6. A similar analysis in the gDNA reads showed that Hap5 showed the highest conservation of adjacent coding sequences (in 99.28% of reads), followed by Hap6 (98.98%), Hap3 (98.64%), Hap1 (98.22%), Hap2 (98.07%) and Hap4 (98.01%). This suggests that the ITS2 haplotype being accompanied by the most conserved 5.8-28S regions in gDNA (Hap5) showed the highest REE, whereas that being accompanied by the least conserved coding regions (Hap4) showed the lowest REE, thus suggesting nonrandom expression of rRNA genes. 171 Discussion The huge amounts of DNA sequences provided by the 454 amplicon sequencing experiments performed here yielded about 3x and 4x coverages for the body part and population experiments, respectively. The resulting reads included many different sequence types, some of which could be the product of PCR or sequencing errors. Avoiding these errors is a repeated concern in the recent literature. Brodin et al. (2013) concluded that most sequencing errors are introduced by PCR prior to sequencing. To minimize this problem, we used the Phusion polymerase whose error rate is very low (4.4x10-7). The most frequent errors inherent to 454 pyrosequencing appear to be associated with the presence of homopolymers, and tend to occur at sequence ends (Gilles et al., 2011; Niklas et al., 2013). Although average error rate rarely surpasses 1%, it may reach 50% for indels in homopolymers. To cope with this problem, Gilles et al. (2011) recommended the use of internal controls to correct for errors. Our experiment provides an internal control for sequencing errors since the reads obtained included a 123 nt sample of the coding 5.8-28S rDNA at both ends of the ITS2 region, which also limits the incidence of errors in the latter by setting it centrally in the read. The most abundant haplotype for this coding region was identical in E. plorans and L. migratoria (and other acridid species, Ruiz-Ruano et al., in preparation), and was highly conserved in both species. The error rate estimations based on this internal control were about 2.03% in L. migratoria and 2.28-2.6% in E. plorans. This allowed accurate haplotype selection for the ITS2 region in the latter species, safely discarding false positives among the hundreds of different sequence types found. Additional evidence that Hap1-Hap5 were genuine haplotypes comes from their presence in our preliminary experiments and in PCR-cloning-Sanger experiments by Teruel et al. (submitted). Matyášek et al. (2012), in a similar experiment analyzing the coding and ITS1 regions of rDNA in several Nicotiana species, by means of 454 amplicon sequencing, considered only those haplotypes showing frequencies higher than 5%. In E. plorans, the application of this filter would have left only Hap1-Hap4, thus excluding Hap5 whose frequency was 4.5% in the population experiment and reaches 12% in a Moroccan population, and Hap6 which surpasses the 5.8-28S threshold in a Spanish population (Ruíz-Ruano et al., in preparation). Therefore, we suggest that using a partial coding 5.8-28S sequence as internal control is a good method for filtering against 454 sequencing errors. The existence of six different ITS2 haplotypes in E. plorans from a single population is a clear indication of a remarkable intragenomic variation for this rDNA region in this species, in clear contrast with the case of L. migratoria, where a single haplotype was found. One of the E. plorans haplotypes (Hap4) has shown to be specific to B chromosomes, since it was not found in any of the B-lacking individuals analyzed, and read counts for it were significantly associated with the number of B chromosomes. This haplotype was unique in showing the adenine insertion characteristic of the ITS2_B sequence on which previous molecular detection of B-specific transcripts was based (Ruiz-Estévez et al., 2012). We cannot rule out that some of the minority 172 High variable and non-randomly expressed rDNA sequence types found in B-carrying males, also carrying this adenine insertion, could be genuine variants located in the B chromosomes, but this needs additional research. The secondary structure of ITS2 plays an important role in defining the cleavage sites for release of rRNA during its maturation (Musters et al., 1990; van der Sande et al., 1992). The secondary structure of the six haplotypes found in E. plorans was much conserved, in consistency with previous findings by Teruel et al. (submitted), and Gibbs' free energy was very similar among the five haplotypes, suggesting that all of them have the capability for expression, and all of them were actually found in the cDNA. In respect to Hap1, the other haplotypes showed sequence changes including hemicompensatory changes in Hap2, Hap3 and Hap6, non-compensatory changes in Hap2 and Hap3, and indels in Hap4 (A) and Hap5 (CAA) (see Fig. 2). The most frequent haplotype (Hap1) was also the ancestral haplotype for this population, given its connection with the ITS2 sequence found in the subspecies E. p. meridionalis in the MST, and is also the most frequent haplotype in B-lacking individuals from other E.p.plorans populations in the Mediterranean area (Ruiz-Ruano et al., in preparation). The existence of up to 4 mutational events among the most divergent haplotypes suggests that homogenization is poorly efficient in this species. The simultaneous analysis of haplotype frequency in gDNA and cDNA of the same individuals allowed the analysis of haplotype efficiency in expression, demonstrating that it differs among body parts within a same individual, and also between individuals. To our knowledge, this is the first study performing this kind of combined analysis. Although a preliminary result, it was remarkable that the two main muscle tissues (wing muscle and hind leg), which provide the two most important movements of grasshopper activity (flight and jump) showed the same pattern (see Fig. 1). In addition, two other somatic body parts (head and male accessory gland) showed the same tendency of Hap1 overexpression and Hap3 underexpression, in consistency with observations at the population level. However, the fifth somatic body part (gastric caecum) was different in showing more expression for Hap2 than for Hap1, with Hap3 being almost completely repressed. The significance of these differences among somatic body parts is unknown, although it is clear that its evolutionary transcendence is irrelevant since only the testis is associated with the germ line. Although we did not analyze germ cells alone, the expression in testis suggests that the observed differences among haplotypes are less apparent since all three haplotypes showed about similar proportions in gDNA and cDNA (see Fig. 1). In the population experiment, we also observed significant underexpression of Hap3, in concordance with findings in the somatic body parts and consistent with the fact that the cDNA of the 18 males was obtained from testis-lacking hemibodies. It has been suggested that rDNA homogenization might have something to do with its activity (Lim et al., 2000; Dadejová et al. 2007). Since only the homogenization associated with the germ line is significant for concerted evolution, the simultaneous analysis of gDNA and cDNA in germ cells could serve to test this hypothesis. Even though our results are not conclusive to this respect, they suggest that the most abundant haplotypes (Hap1 and Hap2) tend to show high REE, whereas other less abundant haplotypes (e.g. Hap3 173 and Hap6) are less present in the cDNA (i.e. low REE). However, Hap5 is exceptional for showing the highest REE in six out the nine males where it was present, perhaps because it is a young haplotype as also evidenced by its highest homogeneity for the adjacent coding regions. The case of Hap4 was special since it is exclusive of the B chromosome, and it is extremely underexpressed with only five of the 12 B-carrying males showing cDNA reads, in much lower proportions than in gDNA. Remarkably, these five males showed the presence of nucleoli attached to B chromosomes in silver stained diplotene cells, indicating that the rDNA contained in the B chromosomes is able to yield its phenotype, i.e. the nucleolus. Our results also indicate that B chromosome rDNA is completely silenced in some males and is still highly silenced in those males carrying B chromosomes being able to yield a nucleolus. In fact, a survey in 11 natural populations harboring four different B chromosome variants showed B-NOR expression in 18 males from seven populations, representing 11.66% of all 156 males analyzed (Ruíz-Estévez et al., 2013). This frequency is much lower than the 48% observed in the Torrox population (Ruíz-Estévez et al., 2012). Our present results also indicate that the rRNA produced in the nucleoli yielded by the B chromosome is enriched in rDNA coding regions being linked to the B-specific ITS2 (Hap4). It would thus be interesting to know about the possible functionality of this rRNA since cells tightly regulate the total amount of nucleolar area (Teruel et al., 2007, 2009) and this implies that the rRNA copies produced by the B chromosome go in detriment of copies produced by the A chromosomes. As commented above, our analysis of secondary structure and Gibbs free energy appears to indicate that the ITS2 region produced by the B chromosome (Hap4) is as functional as that transcribed from other chromosomes, although this is important only in terms of ITS2 elimination from the transcript. However, the higher degree of sequence conservation for the 5.8-28S coding regions in the cDNA, compared to that in gDNA, suggests some selection for expression of rDNA units with higher sequence conservation for expression. This kind of non-random expression of rDNA units is consistent with the observation by Flavell et al. (1988) that unmethylated cytosines are not distributted at random in the rDNA but is related to the activity of the NOR in which they reside. Recently, Zhou et al. (2013) have proposed a model by which a genome containing copies of the R2 retrotransposon in the 28S rDNA selects transcription domains in the region containing the fewest R2 insertions, which is also consistent with non-random expression of rDNA units. The fact that Hap4 (the B-specific haplotype) was the only one associated with 100% of completely conserved flanking coding regions in the cDNA, suggests that this selection is more stringent when the rDNA is transcribed from the B chromosome. This suggests that B copies are fully functional. In the E. plorans genome, R2 retroelements are preferentially located in B chromosomes, but Bs actually constitute a sink for R2 since the rDNA of the B chromosomes is rarely active and, as shown here, its most representative ITS2 haplotype (Hap4) is highly repressed. The fact that the few Hap4 copies escaping silencing (thus observed in the cDNA) show the flanking coding regions completely conserved suggests that the genome is extremely careful about 174 High variable and non-randomly expressed rDNA which rDNA copies are active, especially in a genome with so much rDNA only needing to express a small proportion of it. How is haplotype differential expression possible bearing in mind that, at least in Arabidopsis thaliana, the units of rRNA regulation are NORs (i.e. the rDNA clusters located in every chromosome) rather than individual rRNA genes (Lewis et al., 2004)? In previous analysis by means of silver impregnation, we showed the interdependence of NOR expression among several chromosomes in E. plorans (Teruel et al., 2009). If the unit of regulation is the NOR, the differential expression among haplotypes is only possible if haplotypes are not distributed at random in the different chromosomes carrying rDNA. The analysis of the ITS2 sequences obtained by microdissection and PCR-cloning from individual chromosomes (Teruel et al., submitted) shows that 42 out of 72 sequences analyzed matched five of the six haplotypes analyzed here, with Hap1 being the most ubiquitous haplotype found in at least the chromosomes 8, 9, X and B, whereas Hap2 was found only in chromosome 11 and Hap4 was exclusive to the B chromosome. Although more ITS2 sequences need to be individually analyzed from each chromosome, this preliminary result suggests some structuring in ITS2 haplotype distribution among chromosomes. This is presumably a consequence of poor nonhomologous homogenization of the ITS2 region in E. plorans, although this fact does not apply to the 5.8-28s coding regions which are highly homogenized, presumably due to higher surveillance by natural selection (Eickbush and Eickbush, 2007; Ganley and Kobayashi, 2007). As commented above, this highly contrasts with the L. migratoria genome where both coding and ITS2 rDNA regions show high levels of homogenization. Genome size in E. plorans contains about 10 Gb, i.e. almost twice that in L. migratoria (Ruiz-Ruano et al., 2011). In addition, E. plorans in the Torrox population harbors rDNA clusters in seven A chromosome pairs (Cabrero et al., 2003) plus the B chromosome (Cabrero et al., 1999), with about 15,000 rDNA units in the A chromosomes and about 3,000 in the B24 chromosome (Montiel et al., in preparation). In L. migratoria, however, only three A chromosome pairs carry rDNA (Teruel et al., 2010). Although no estimation of rDNA copy number has been done in the latter species, the FISH signals obtained for rDNA in E. plorans are conspicuously larger than those in L. migratoria (compare Fig. 1a in Teruel et al., 2010 with Fig. 1c in Teruel et al., 2007). At first sight, it might appear that the fact that the E. plorans genome needs to homogenize much higher amounts of rDNA units than that in L. migratoria could make this task more difficult in the former thus justifying its poorer homogenization for the ITS2 region. Although the fact that another grasshopper species, Stauroderus scalaris, carries even more rDNA than E. plorans (López-León et al., 1999) in an even larger genome (15.98 Gb; Belda et al., 1991) but shows an ITS2 rDNA region even more homogenized than that in L. migratoria (Ruiz-Ruano et al., in preparation) suggests that there must be other causes than rDNA quantity for the ITS2 variation found in E. plorans. A possibility is the recent expansion of rDNA through different A chromosomes across the Mediterranean area (López-León et al., 2008). As these authors showed, E. plorans populations from the Caucasus (Dagestan) carry rDNA in only two 175 A chromosomes (9 and 11). However, a growing number of A chromosomes harboring rDNA was observed from east to west: 9, 10 and 11 (Armenia), 1, 9-11 and X (Turkey), 9-11 and X (Greece), 1, 4-11 and X (Spain), and 1-11 and X (Morocco). The analysis of microdissected A and B chromosomes (Teruel et al., submitted) suggests that, if the haplotype structuration already existed in rDNA arrays from chromosomes 9 and 11 before intragenomic spread, the rDNA in chromosome 9 appears to have been more expansive, since this chromosome (along with chromosomes 8, X and B) contained Hap1, which is the most frequent haplotype in B-lacking individuals from all E. plorans plorans populations across the Mediterranean region (Ruiz-Ruano et al., in preparation), whereas chromosome 11 was the only one carrying Hap2. In addition, there was an eastwest gradient for the proportion of rDNA in B chromosomes, with those from the east being almost exclusively made up of rDNA whereas those from western populations (Spain and Morocco) also containing high amount of a 180 bp satellite DNA (LópezLeón et al., 2008). The significant positive correlation found between genome size and the amount of rDNA in plants and animals (Prokopowich et al., 2003) might suggest some optimization for both genomic parameters. But a massive intragenomic spread of rDNA, such as that occurred in E. plorans, could break this relationship impeding efficient homogenization among non-homologous chromosomes, especially for a genome which, prior to such spread, only had to homogenize the rDNA units in two non-homologous chromosomes (9 and 11), a situation appearing to be ancestral in this species since it is similar in the South African subspecies E. plorans meridionalis (López-León et al., 2008). The possibility that homogenization between homologous chromosomes works well in this species is contradicted by the existence of six different haplotypes since, if chromosomes 9 and 11 would have been properly homologously homogenized, prior to intragenomic rDNA spread, we would expect a maximum of two different haplotypes, one coming from chromosome 9 and other from chromosome 11, assuming poor nonhomologous homogenization. Alternatively, this variety of haplotypes could be the result of population mixture prior to the recent expansion of this species through the Western Mediterranean area which led to the spread of a same type of B chromosome (B1), given that this B variant was the ancestor for all B chromosome types found in Spain, Morocco, Balearic Islands, Tunisia and Sicily (Cabrero et al., 2013). Perhaps a recent event like this has not provided the genome enough time for an efficient homogenization. In any case, bearing huge amounts of not completely homogenized rDNA is not a problem for a genome as long as it is able to select conserved coding regions for expression, irrespective of whether they are accompanied by ITS2 regions of one haplotype or another, or even if they are located in a B chromosome. Acknowledgements We thank Tatiana López for technical assistance and Karl Meunier for language revision. This study was supported by grants from the Spanish Ministerio de Ciencia y Tecnología (CGL200911917) and Plan Andaluz de Investigacion (CVI-6649), and was partially performed by FEDER 176 High variable and non-randomly expressed rDNA funds. M Ruíz-Estévez was supported by a FPU fellowship from the Spanish Ministerio de Ciencia e Innovación. References Alper I, Frenette M, Labrie S (2011) Ribosomal DNA polymorphisms in the yeast Geotrichum candidum. Fungal Biol 115(12):1259-1269 Belda JE, Cabrero J, Camacho JP, Rufas JS (1991) Role of C-heterochromatin in variation of nuclear DNA amount in the genus Chorthippus (Orthoptera, Acrididae). Cytobios 67:13–21 Bragg L, Stone G, Imelfort M, Hugenholtz P, Tyson GW (2012) Fast, accurate errorcorrection of amplicon pyrosequences using Acacia. Nature Methods 9:425–426 doi:10.1038/nmeth.1990 Britten RJ, Kohne DE (1968) Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science 161(3841):529-540 Brodin J, Mild M, Hedskog C, Sherwood E, Leitner T, Andersson B, Albert J (2013) PCR-Induced transitions are the major source of error in cleaned Ultra-Deep Pyrosequencing Data. PLoS ONE 8(7): e70388 doi:10.1371/journal.pone.0070388 Brown DD, Wensink PC, Jordan E (1972) A comparison of the ribosomal DNA’s of Xenopus laevis and Xenopus mulleri: the evolution of tandem genes. J Mol Biol 63:57-73 Cabrero J, López-León MD, Gómez R, Castro AJ, Martín-Alganza A, Camacho JPM (1997) Geographical distribution of B chromosomes in the grasshopper Eyprepocnemis plorans, along a river basin, is mainly shaped by non-selective historical events. Chromosome Res 5:194-198 Cabrero J, López-León MD, Bakkali M, Camacho JPM (1999). Common origin of B chromosome variants in the grasshopper Eyprepocnemis plorans. Heredity 83:435-439 Cabrero J, Perfectti F, Gómez R, Camacho JPM, López-León MD (2003a) Population variation in the A chromosome distribution of satellite DNA and ribosomal DNA in the grasshopper Eyprepocnemis plorans. Chromosome Res 11: 375-381 Dadejová M, Lim KY, Soucková-Skalická K, Matyásek R, Grandbastien MA, Leitch A, Kovarík A (2007) Transcription activity of rRNA genes correlates with a tendency towards intergenomic homogenization in Nicotiana allotetraploids. New Phytologist 174:658-668 Darty K, Denise A, Ponty Y (2009) VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 25:1974 Date A, Satta Y, Takahata N, Chigusa SI (1998) Evolutionary history and mechanism of the Drosophila cecropin gene family. Immunogenetics 47:417-429 Dover GA (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117 Druley TE, Vallania FL, Wegner DJ, Varley KE, Knowles OL, Bonds JA, Robison SW, Doniger SW, Hamvas A, Cole FS (2009) Quantification of rare allelic variants from pooled genomic DNA. Nature Methods 6:263-265 Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M (2009) Geneious v4. 8. Biomatters Ltd., Auckland, New Zealand Edgar RC, Haas BJ, Clemente JC, Quince C and Knight R.UCHIME improves 177 sensitivity and speed of chimera detection (2011) Bioinformatics 27(16): 2194– 2200. doi:10.1093/bioinformatics/btr381 Eickbush TH, Burke WD, Eickbush DG, Lathe WC (1997) Evolution of R1 and R2 in the rDNA units of the genus Drosophila. Genetica 100(1-3):49-61 Eickbush TH, Eickbush DG (2007) Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175(2):477-485 Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resources 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x. Faircloth BC, Glenn TC (2012) Not all sequence tags are created equal: designing and validating sequence identification tags robust to indels. PloS One 7:e42543. doi: 10.1371/journal.pone.0042543 Feliner GN, Larena BG, Aguilar JF (2004) Fine-scale geographical structure, intraindividual polymorphism and recombination in nuclear ribosomal internal transcribed spacers in Armefia (Plumbaginaceae). Ann Bot 93:189-200 Flavell RB, O’Dell M, Thompson WF (1988) Regulation of cytosine methylation in ribosomal DNA and nucleolus organizer expression in wheat. Journal of Molecular Biology 204:523-534 Ganley ARD, Kobayashi T (2007) Highly efficient concerted evolution in the ribosomal DNA repeats: total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Research 17:184-191 Gilles A, Meglécz E, Pech N, Ferreira S, Malausa T, Martin JF (2011) Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. Bmc Genomics 12:245 Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274(5287):546:563-7 Gu X, Nei M (1999) Locus specificity of polymorphic alleles and evolution by a birthand-death process in mammalian MHC genes. Mol Biol Evol 16:147-156 Hřibová E, Čížková J, Christelová P, Taudien S, de Langhe E, and Doležel J (2011) The ITS1-5.8S-ITS2 sequence region in the Musaceae: structure, diversity and use in molecular phylogeny. PLoS One 6(3):e17863. doi: 10.1371/journal.pone.0017863 James SA, O’Kelly MJT, Carter DM, Davey RP, Van Oudenaarden A, Roberts IN (2009) Repetitive sequence variation and dynamics in the ribosomal DNA array of Saccharomyces cerevisiae as revealed by whole genome resequencing. Genome Res 19:626-635 Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772-780 Kautz S, Rubin BE, Russell, JA, Moreau CS (2013) Surveying the microbiome of ants: Comparing 454 pyrosequencing with traditional methods to uncover bacterial diversity. Applied and Environmental Microbiology 79:525-534 Keller I, Chintauan-Marquier IC, Veltsos P, Nichols RA (2006) Ribosomal DNA in the grasshopper Podisma pedestris: escape from concerted evolution. Genetics 174:863-874 Keller I, Veltsos P, Nichols RA (2008) The frequency of rDNA variants within individuals provides evidence of population history and gene flow across a grasshopper hybrid zone. Evolution 62:833-844 178 High variable and non-randomly expressed rDNA Lewis MS, Cheverud JM, Pikaard CS (2004) Evidence for nucleolus organizer regions as the units of regulation in nucleolar dominance in Arabidopsis thaliana interecotype hybrids. Genetics 167:931-939 Li Y, Jiao L, Yao YJ (2013) Non-concerted ITS evolution in fungi, as revealed from the important medicinal fungus Ophiocordyceps sinensis. Mol Phylogenet Evol 68(2):373-379 Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451-1452 Lim KY, Kovarik A, Matýăsek R, Bezdĕk M, Lichtenstein CP, Leitch AR (2000) Gene conversion of ribosomal DNA in Nicotiana tabacum is associated with undermethylated, decondensed and probably active gene units. Chromosoma 109:161-172 Lidner DL, Carlesen T, Henrik Nilsson R, Davey M, Schumacher T, Kauserud H (2013) Employing 454 amplicon pyrosequencing to reveal intragenomic divergence in the internal transcribed spacer rDNA region in fungi. Ecol Evol 3(6):1751-1764 Long EO, David IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727764 López-León MD, Neves N, Schwarzacher T, Heslop-Harrison TS, Hewitt GM, Camacho JPM (1994). Possible origin of a B chromosome deduced from its DNA composition using double FISH technique. Chromosome Res 2:87 -92 López-León MD, Cabrero J, Camacho JPM (1995) Changes in DNA methylation during development in the B chromosome NOR of the grasshopper Eyprepocnemis plorans. Heredity 74:296-302 López-León MD, Cabrero J, Camacho JPM (1999) Unusually high amount of inactive ribosomal DNA in the grasshopper Stauroderus scalaris. Chromosome Res 7:83-88 López-León MD, Cabrero J, Dzyubenko VV., Bugrov AG, Karamysheva TV, Rubtsov NB, Camacho JPM (2008) Differences in ribosomal DNA distribution on A and B chromosomes between eastern and western populations of the grasshopper Eyprepocnemis plorans plorans. Cytogenet Genome Res 121:260-265 Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376-380 Matyášek R, Renny-Byfield S, Fulneček J, Macas J, Grandbastien MA, Nichols R, Leitch A, Kovařík A (2012) Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids. BMC genomics 13:722. doi: 10.1186/1471-2164-13-722 Mayol M, Rosselló JA (2001) Why nuclear ribosomal DNA spacers (ITS) tell different stories in Quercus. Mol Phylogenet Evol 19:167-176 Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, et al. (2008) The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386 Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113-1130 Musters W, Boon K, Van der Sande CA, Van Heerikhuizen H, Planta RJ (1990) Functional analysis of transcribed spacers of yeast ribosomal DNA. The EMBO journal 9:3989 Nei M, Hughes AL (1992) in 11th Histocompatibility Workshop and Conference, eds. Tsuji K, Aizawa M and Sasazuki T (Oxford Univ. Press, Oxford), Vol. 2, pp:27- 179 38 Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA 94(15):7799-780 Nei M, Rogozin IB, and Piontkivska H (2000) Purifying selection and birth-and-death evolution in the ubiquitin gene family. Proc Natl Acad Sci USA 97(20):1086610871 Niklas N, Pröll J, Danzer M, Stabentheiner S, Hofer K, Gabriel C (2013) Routine performance and errors of 454 HLA exon sequencing in diagnostics. BMC Bioinformatics 14:176 Ota T, Nei M (1994) Divergent evolution and evolution by the birth-and-death process in the immunoglobulin VH gene family.Mol Biol Evol 11(3):469-482 Pilotti M, Brunetti B, Tizzani L (2009) Platanus×acerifolia genotypes surviving to inoculation with Ceratocystis platani (the agent of canker stain): first screening and molecular characterization. Euphytica 169:1-7 Prokopowich CD, Gregory TR, Crease TJ (2000) The correlation between rDNA copy number and genome size in eukaryotes. Genome 46:48-50 Reeder RH (1999) Regulation of RNA polymerase I transcription in yeast and vertebrates. Prog Nucleic Acid Res Mol Biol 62:193-327 Rice P, Longden I, Bleasby A (2000). EMBOSS: the European molecular biology open software suite. Trends in Genetics 16:276-277 Rooney AP, Piontkivska H, Nei M (2002) Molecular evolution of the nontandemly repeated genes of the histone 3 multigene family. Mol Bio and Evo 19(1):68-75 Rooney AP, Ward TJ (2005) Evolution of a large ribosomal RNA multigene family in filamentous fungi: Birth and death of a concerted evolution paradigm. Proc Natl Acad Sci 102:5084-5089 Rufas JS, Iturra P, de Souza W, Esponda P (1982) Simple silver staining procedure for the localization of nucleolus and nucleolar organizer under light and electron microscopy. Arch Biol 93:267-274 Ruiz-Estévez M, López-León MD, Cabrero J, Camacho JPM (2012) B-Chromosome Ribosomal DNA is functional in the grasshopper Eyprepocnemis plorans. PLoS ONE 7(5): e36600. doi:10.1371/journal.pone.0036600 Ruiz-Estévez M, López-León MD, Cabrero J, Camacho JPM (2013) Ribosomal DNA is active in different B chromosome variants of the grasshopper Eyprepocnemis plorans. Genetica 141:337-345 Ruiz-Ruano FJ, Ruiz-Estévez M, Rodríguez-Pérez J, López-Pino JL, Cabrero J, Camacho JPM, (2011) DNA amount of X and B chromosomes in the grasshoppers Eyprepocnemis plorans and Locusta migratoria. Cytogenet genome Res 134:120-126 Simon UK, Weiss M (2008) Intragenomic variation of fungal ribosomal genes is higher than previously thought. Mol Biol Evol 25(11):2251-2254 Sitnikova T, Nei M (1998) Evolution of immunoglobulin kappa chain variable region genes in vertebrates. Mol Biol Evol 15(1):50-60 Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115-12120 Song HX, Gao SP, Jiang MY, Liu GL, Yu XF, Chen QB (2012) The evolution and utility of ribosomal ITS sequences in Bambusinae and related species: divergence, pseudogenes, and implications for phylogeny. J Genet 91:129-139 180 High variable and non-randomly expressed rDNA Stage DE, Eickbush TH (2007) Sequence variation within the rRNA gene loci of 12 Drosophila species. Genome Res 17(12):1888-1897 StatSoft, Inc. (2007) STATISTICA (data analysis software system), version 8.0. www.statsoft.com Stewart FJ, Cavanaugh CM (2007) Intragenomic variation and evolution of the internal transcribed spacer of the rRNA operon in bacteria. J Mol Evol 65(1):44-67 Teacher AGF, Griffiths DJ (2011) HapStar: Automated haplotype network layout and visualisation. Mol Ecol Res 11:151-153 Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Kõljalg U (2010) 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytologist 188:291-301 Teruel M, Cabrero J, Perfectti F, Camacho JPM (2007) Nucleolus size variation during meiosis and NOR activity of a B chromosome in the grasshopper Eyprepocnemis plorans. Chromosome Res 15:755–765 Teruel M, Cabrero J, Perfectti F, Camacho JPM (2009) Quantitative analysis of NOR expression in a B chromosome of the grasshopper Eyprepocnemis plorans. Chromosoma 118:291–301 Teruel M, Cabrero J, Perfectti F, Camacho JPM (2010) B chromosome ancestry revealed by histone genes in the migratory locust. Chromosoma 119: 217–225 Van der Sande CA, Kwa M, van Nues RW, van Heerikhuizen H, Raué HA, Planta RJ (1992) Functional analysis of internal transcribed spacer 2 of Saccharomyces cerevisiae ribosomal DNA. Journal of molecular biology 223:899-910 Van Tassell CP, Smith TP, Matukumalli LK, Taylor JF, Schnabel RD, Lawley CT, Haudenschild CD, Moore SS, Warren WC, Sonstegard TS (2008) SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nature Methods 5:247-252 Veltsos P, Keller I, Nichols RA (2009) Geographically localised bursts of ribosomal DNA mobility in the grasshopper Podisma pedestris. Heredity 103:54-61 Vydryakova GA, Van DT, Shoukouhi P, Psurtseva NV, Bissett J (2012) Intergenomic and intragenomic ITS sequence heterogeneity in Neonothopanus nambi (Agaricales) from Vietnam. Mycology 3:89-99 Wang T, Pradhan K, Ye K, Wong LJ, Rohan TE (2011) Estimating allele frequency from next-generation sequencing of pooled mitochondrial DNA samples. Front Genet 2:51 Wörheide G, Nichols SA, Goldberg J (2004) Intragenomic variation of the rDNA internal transcribed spacers in sponges (Phylum Porifera): implications for phylogenetic studies. Mol Phylogenet Evol 33(3):816-830 Zavodna M, Grueber CE, Gemmell NJ (2013) Parallel Tagged Next-Generation Sequencing on Pooled Samples–A New Approach for Population Genetics in Ecology and Conservation. PloS One 8:e61471. doi: 10.1371/journal.pone.0061471 Zimmer EA, Martin SL, Beverley SM, Kan YW, Wilson, AC (1980) Rapid duplication and loss of genes coding for the alpha chains of hemoglobin. Proc Natl Acad Sci USA 77: 2158-2162 Zhan J, Dyer KD, Rosenberg HF (2000) Evolution of the rodent eosinophil associated RNase gene family by rapid gene sorting and positive selection. Proc Natl Acad Sci USA 97:4701–4706 Zhou J, Eickbush MT, Eickbush TH (2013) A Population Genetic Model for the Maintenance of R2 Retrotransposons in rRNA Gene Loci. PLoS Genet 181 9(1):e1003179. doi:10.1371/journal.pgen.1003179 Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31:3406-3415 Supporting Information Table S1 Sequence and edit distances of the six tags of the ITS2 primers. Tag Sequence Distance 1 AACAGC 5 2 AGGCTA 5 3 CCATTG 5 4 CTCGAA 5 5 TGTACG 5 6 AGAATA 4 Table S2 Tag combinations of the primers used to amplify each sample in the comparison between individuals (F: forward; R: reverse). gDNA cDNA Male Nº B F R F R 51 0 6 5 2 3 53 0 1 6 2 4 57 0 2 6 2 5 65 0 6 3 2 1 70 0 3 6 4 3 80 0 6 4 2 2 49 1 5 5 1 4 54 1 5 3 1 2 24 1 3 4 5 1 44 1 4 6 3 1 46 1 5 6 3 2 48 1 6 6 3 3 66 1 4 2 3 5 69 1 4 4 4 5 55 2 5 4 1 3 63 2 6 2 4 1 62 3 6 1 1 5 50 3 5 2 1 1 182 High variable and non-randomly expressed rDNA Table S3 Tag combinations of the primers used to amplify each sample in the comparison between body parts (F: forward; R: reverse). 0B Source gDNA cDNA Body part Head Hind leg Wing muscle Testis Accessory gland Caecum Head Hind leg F 1 1 1 1 1 5 2 2 R 1 2 3 4 5 1 1 2 Wing muscle Testis 2 2 3 4 Accessory gland Caecum 2 5 5 2 Table S4 Factor Analysis performed with the read counts for the six ITS2 haplotypes found in the gDNA of E.plorans males. (Expl. Var= Explained variance; Prp. Totl= Proportion of total variance). gHap2 -0.048614 -0.911316 gHap3 0.193937 -0.950261 gHap4 -0.265602 -0.875889 gHap5 -0.578536 0.491940 gHap6 0.030487 -0.950417 Expl.Var 3.949.135 1.103.900 Prp.Totl 0.658189 0.183983 183 F a cto r L o a d in g s, F a cto r 1 vs. F a cto r 2 R o ta tio n : U n r o ta te d E xtr a ctio n : P r in cip a l co m p o n e n ts 0 ,6 gH ap5 0 ,4 0 ,2 gH ap3 gH ap6 Fa cto r 2 0 ,0 - 0 ,2 gH ap2 gH ap1 - 0 ,4 - 0 ,6 - 0 ,8 - 1 ,0 - 1 ,0 gH ap4 - 0 ,9 - 0 ,8 - 0 ,7 - 0 ,6 - 0 ,5 - 0 ,4 - 0 ,3 - 0 ,2 F a cto r 1 Fig. S1 The graph shows the position of the five ITS2 haplotypes found in the gDNA (gHap) of E.plorans, according to the two factors obtained after the Factor Analysis. 184 Capítulo 9. Discusión general 185 186 Discusión general Discusión general El objetivo de esta Tesis Doctoral es averiguar si la secuencia del ADN ribosómico (ADNr) que albergan los cromosomas B del saltamontes Eyprepocnemis plorans permite diferenciarlo del localizado en los cromosomas A y, en ese caso, averiguar si el ADNr del B es funcional, en qué grado y en qué partes del cuerpo se expresa, así como el significado biológico de los transcritos de ARNr que aportan los cromosomas B. Dado el importante papel de la expresión del ADNr (ARNr) en la síntesis de ribosomas y, por tanto, de proteínas (Sollner-Webb y Tower, 1986) y teniendo en cuenta los resultados previos obtenidos por Teruel y col. (2007, 2009) en los que ponían de manifiesto la activación de la NOR del cromosoma B 24, nos propusimos ampliar este estudio en machos del año 2008 de la misma población, y hacerlo no sólo al nivel citogenético sino también al molecular. En el análisis citogenético mediante impregnación argéntica encontramos que el porcentaje de machos portadores de B con su NOR activa no había cambiado desde 2004, siendo del 50%, y en ellos tampoco había variado desde 1999 el porcentaje de células con la NOR del B activa, (aproximadamente 20%) aunque existían diferencias entre machos. Esto sugiere que la activación del ADNr del B no es un hecho aleatorio, sino que debe estar regulado a nivel de individuo y de célula. A nivel molecular, la comparación de secuencias de ADNr procedentes de diferentes cromosomas microdiseccionados de Eyprepocnemis plorans de Torrox obtenidas por Teruel (2009) permitió detectar la inserción diferencial de un adenina en las secuencias ITS2 del cromosoma B. Tras diseñar los primers para detectar los transcritos ARNr que provenían específicamente del B, a los que hemos denominado ITS2_B, detectamos estos transcritos propios del B en 18 de los 19 machos en los que citogenéticamente habíamos observado la NOR del B activa. El hecho de que no los detectáramos en la totalidad de machos analizados puede deberse a que el nivel de expresión de la NOR es tan bajo que hace improbable la detección de los transcritos ITS2_B, o también al hecho de que el nucleolo se visualiza en diplotene/paquitene pero su activación tuvo lugar previamente en leptonene/citogene, con lo que los transcritos ARNr del B pueden haberse degradado aunque el macho muestre nucleolo. Por otra parte, en 13 de los 15 machos analizados con la NOR del B inactiva no detectamos transcritos del B, pudiéndose explicar estas dos excepciones por una disociación temprana del nucleolo en diplotene, o bien por la existecia de un umbral en la técnica de impregnación argéntica por debajo del cual no se tiñen los nucleolos, no siendo posible visualizalos aunque el ADNr del B estuviera activo en ambos casos. En cualquier caso, las excepciones encontradas también pueden deberse a que el estudio citogenético se hizo en testículo mientras que el análisis molecular se llevó a cabo en una muestra compuesta por una mezcla de tejidos del cuerpo entero, a excepción del testículo que se utilizó exclusivamente para los estudios citogenéticos. En general, existe una gran correspondencia entre la visualización del nucleolo del B y la expresión de su ADNr, por lo que este estudio nos permitió desarrollar una herramienta para detectar molecularmente la activación del ADNr del B. El uso de esta 187 aproximación molecular permite eliminar la duda de si el nucleolo que observamos en el B es propiamente suyo o por el contrario está reclutando material nucleolar de otras NORs. El desarrollo de esta estrategia es muy interesante ya que también nos ha permitido analizar la expresión del ADNr del B en hembras, un material donde es difícil encontrar en las gónadas células en división meiótica y más aún encontrar células en profase I donde sea posible visualizar nucleolos. Así, detectamos transcritos de ARNr del B en 10 de las 13 hembras analizadas, y dada la alta correspondencia citogenética/molecular observada en los machos, podemos inferir que el ADNr del B está activo en mayor proporción en las hembras. Los transcritos de ARNr del B podrían tener una función importante en la organización y/o regulación de los propios Bs (Carchilan y col. 2007; Han y col. 2007). En E. plorans los transcritos de ARNr del B son importantes, además, para garantizar la demanda de rRNA celular ya que se ha observado en la población de Torrox que el área nucleolar total de la célula no depende del nivel de actividad en la NOR del B24, de forma que si aumenta la actividad de la NOR del B, disminuye la de los As y viceversa (Teruel y col. 2007, 2009), lo que indicaba que los transcritos ARNr del B son funcionales como finalmente hemos demostrado en esta tesis. Ide y col. (2010) demostraron en sus estudios en levaduras que la baja sensibilidad al daño del ADN en las cepas con gran número de copias de ADNr depende de la baja tasa de transcripción de los genes de ARNr. Según esto, la regulación del área nucleolar total observada en E. plorans sería un mecanismo llevado a cabo por los As para proteger al genoma frente a agentes dañinos y así no ver disminuida su eficacia biológica. La reciente activación de la NOR del B24 recuerda al fenómeno de dominancia nucleolar (Pikaard, 2000a, 2000b) que se da sobre todo en híbridos, en el cual el ADNr de uno de los parentales permanece activo mientras el otro es inactivado. Este fenómeno es reversible, con lo que el ADNr inactivo puede reactivarse bajo ciertas circunstancias como alto requerimiento de síntesis proteica (Chen y Pikaard, 1997). Esta activación/inactivación se debe a patrones de metilación del ADN o acetilación de histonas, hechos que se han observado en los Bs de E. plorans, ya que Cabrero y col. (1987) y López-León y col. (1991) demostraron la actividad NOR e hipometilación de un B2 que estaba fusionado a un autosoma, y Cabrero y col. (2007) demostraron la hipoacetilación de las histonas H3 en Bs inactivos. En E. plorans se han descrito más de 50 variantes de cromosomas B (HenriquesGil y col. 1984; López-León y col. 1993; Bakkali y col. 1999; Abdelaziz y col. 2007; López-León y col. 2008) que derivan unas de otras debido al alto grado de mutaciones que muestran estos cromosomas, lo que les abre nuevos caminos evolutivos. HenriquesGil y col. (1984) y Henriques-Gil y Arana (1990) sugirieron que el B 1 era la variante ancestral en la Península Ibérica, ya que la encontraron en todas las poblaciones analizadas a excepción de las de Granada y las del oeste de Málaga, donde fue reemplazada por B2, y en Fuengirola, donde fue reemplazada por B 5. Tras analizar mediante FISH la composición en ADNr y ADNsatélite (ADNsat) de los cromosomas B de diferentes poblaciones del Mediterráneo occidental, tales como 188 Discusión general Sicilia, Túnez y 15 poblaciones españolas, encontramos 4 variantes: B1, B2, B5 y B24 formadas mayoritariamente por estos dos tipos de secuencias pero con distinta proporción de ellas, y distinto tamaño relativo respecto al cromosoma X. Esto sugiere que diferentes mutaciones cromosómicas han producido amplificaciónes y deleciones de estas secuencias creando variantes nuevas de B, como ha ocurrido con B5 y B24 . En las variantes B1 y B2, las diferencias en composición y tamaño se ponen de manifiesto incluso en la misma variante en dos poblaciones diferentes, un hecho lógico si tenemos en cuenta que son más antiguas que B 5 y B 24 con lo que han tenido más tiempo de acumular pequeños cambios. La determinación de qué variante tiene cada población, nos permitió hacer algunas inferencias respecto a cuál fue la variante B ancestral y cuándo apareció. El B1 está en toda la región mediterránea occidental (Sicilia, Túnez, Islas Baleares y Península Ibérica) y también se ha encontrado en Marruecos (Cabrero y col. 1999), por lo que es la variante de B más ampliamente distribuida en esta región. Se la considera la variante ancestral en la Península Ibérica porque es la más representada (Henriques-Gil y col. 1984; Henriques-Gil y Arana, 1990), pero tras encontrarla también en poblaciones distantes de Sicilia y Túnez se puede considerar además que B 1 es la variante ancestral de todo el oeste mediterráneo. Sin embargo, los Bs analizados en zonas del mediterráneo oriental, como Grecia y Turquía (Abdelaziz y col. 2007; López-León y col. 2008) tienen mayores proporciones de ADNr que B1, por lo que constituyen tipos de B diferentes a los analizados en el presente estudio. Los Bs del mediterráneo occidental y oriental son de reciente aparición (MuñozPajares y col. 2011) ya que: 1) muestran muy poca variación para la región de 1510 pb del SCAR (otro marcador molecular del B), 2) hay poblaciones del interior de la Península aisladas por barreras geográficas, como en la cabecera del Río Segura, que no tienen B (Cabrero y col. 1997; Manrique-Poyato y col. en preparación), 3) la población de Otívar que se localiza a 10 km de la costa ha sido colonizada por Bs en los últimos 35 años (Camacho y col. presentado). Si hemos podido observar en cortos periodos de tiempo cómo el B coloniza nuevas regiones, podría ser que su origen lo pudiéramos medir en términos de tiempo histórico reciente. Este dato viene apoyado por el hecho de que E .plorans se encuentra muy frecuente en los cultivos, pudiendo ser transportado fácil y rápidamente en las plantas que son llevadas por los seres humanos de unas regiones a otras por intereses comerciales (Cabrero y Camacho, observación personal). Si fuera cierto que el B se originó recientemente deberíamos esperar que todas las variantes expresaran su ADNr (y no sólo el B24, como hemos visto), ya que no habría habido suficiente tiempo para que ocurrieran mutaciones que inactivaran los Bs. El análisis citogenético y molecular de la expresión del ADNr de B1 , B2, B5 y B24 en 11 poblaciones españolas (Nerja, Torrox, Fuengirola, S’Esgleieta, Algarrobo, Salobreña, Cieza, San Juan, Mundo, S’Albufereta y Otívar) reveló que dicha actividad no estaba restringida a la variante B24 ni a la población de Torrox, ya que encontramos actividad también en el B1 y B2 y en diferentes poblaciones, pero no en la B5 presente sólo en Fuengirola. Esto sugiere que la actividad de la B-NOR debe ser una condición ancestral, puesto que es compartida por varias variantes. Además, el hecho de que la variante 189 considerada ancestral B1 exprese la NOR la reafirma en su condición de variante original de B. En este análisis encontramos, además, que existe un umbral del 10% de diplotenes con B-NOR activa para que puedan detectarse molecularmente transcritos del ADNr del B. Esta detección es independiente del tamaño del nucleolo del B que suele ser aproximadamente la mitad del área del cromosoma X. Sin embargo, la proporción de machos con la NOR del B activa era muy variable entre poblaciones (0-28’57%) y mucho menor que la anteriormente descrita para Torrox en 2008 (48%), lo que sugiere que la mayoría de los Bs tienen la NOR silenciada y sólo muestran actividad esporádicamente. De hecho, en la población de Nerja, localizada a tan sólo 8 km de Torrox, no hemos detectado actividad de la NOR de su B2, un hecho que evidencia que la misma variante puede estar activa en unas poblaciones (incluso mostrando diferentes grados de expresión) e inactiva en otras. Como comentamos anteriormente para el caso de Torrox, estas diferencias se deben principalmente a fenómenos de metilación del ADN y/o acetilación de histonas. Otra circunstancia que explicaría los diferentes estados de actividad de la NOR del B de sería el nivel de ocupación del ADNr del B por transposones con diana en esa secuencia como son el R1, R2 o Pokey (Eickbush 2002; Penton y col. 2002), que pueden llegar a inhibir o potenciar la transcripción del ADNr. Así, el cromosoma B24 tiene mayor cantidad de R2 en su ADNr que su antecesor, el B2 (Montiel y col. en preparación), y son los bloques de ADNr más largos y libres de R2 los que preferencialmente se expresan (Eickbush y col. 2008; Zhou y Eickbush, 2009). La mayor expresión detectada en B24 respecto a B2 podría ser debido a un mayor agrupamiento de R2 en B24, y esto deja más copias de ADNr libres de R2, que son más proclives a expresarse. Alternativamente, no se puede descartar que R2 tenga algo que ver con la mayor expresión de este cromosoma B (Montiel y col. en preparación). Las diferencias en expresión entre variantes de B también podrían deberse a cambios estructurales, como ocurrió con la fusión de B2 con el autosoma de mayor tamaño que condujo a la activación de la NOR del B (Cabrero y col. 1987). Finalmente, la mayor expresión de B24 también podría estar asociada a la disminución del número de copias con respecto a su antecesor B2, ya que, como sugirieron Ide y col. (2010), en levaduras las cepas con menos repeticiones de ADNr son los que muestran una mayor tasa de transcripción del mismo. Al igual que ocurría en el primer experimento de expresión, hay casos donde vemos actividad de la NOR del B pero no detectamos transcritos o viceversa, y podría deberse a que, como explicamos anteriormente, los experimentos citogenéticos y moleculares no fueron realizados en las mismas partes corporales. Esta observación requería que analizáramos la expresión del ADNr del B en diferentes partes del cuerpo, para lo cual tuvimos primero que averiguar si el B estaba presente en las diferentes partes del cuerpo. Lo que se sabía hasta ahora era que el B era mitóticamente estable en partes del cuerpo del mismo individuo donde se podían visualizar cromosomas como el testículo, la ovariola y el ciego gástrico (Camacho y col. 1980; Henriques-Gil y col. 1986), pero nada se sabía sobre qué ocurría en el resto de partes del cuerpo sin división celular activa. Tras detectar los marcadores específicos del B (SCAR e ITS2_B) en ocho 190 Discusión general partes del cuerpo con tejidos somáticos (antena, cabeza, ganglio cerebral, pata saltadora, músculo alar, ciego gástrico, túbulos de Malphigi y la glándula accesoria en machos), en la ovariola en hembras y en el testículo de machos portadores de B pudimos concluir que los Bs están presentes en todas las partes del cuerpo, al menos en los aquí analizados. Así mismo, no detectamos amplificación en partes corporales de individuos sin B. Esto sugiere que los cromosomas B en E. plorans no son eliminados de ningún tejido somático, comportándose de manera regular durante las mitosis que conducen al desarrollo de los individuos. Una vez que comprobamos que el cromosoma B estaba presente en las células de todas las partes del cuerpo analizadas en los individuos, pudimos estudiar molecularmente la expresión del ADNr del cromosoma B24 en las diferentes partes del cuerpo de varios machos en los que habíamos detectado citogenéticamente la B-NOR activa en las gónadas. La amplificación de qITS2_B (una versión más corta de la secuencia específica del B, ITS2_B) mediante qRT-PCR en cabeza, pata saltadora, músculo alar, testículo, glándula accesoria y ciego gástrico fue positiva en todos los casos, poniendo de manifiesto que la transcripción del ADNr del B no está restringida a la gónada. Además, dicha expresión era diferencial, siendo mayor en testículo, glándula accesoria y músculo alar, y podría deberse a cambios estructurales o a cambios epigenéticos. En el primer caso, la amplificación diferencial del ADNr conllevaría un aumento del número de copias y la expresión podría depender de su abundancia (Subrahmanyam y col. 1994; Ide y col. 2010), pero este hecho no ocurre en E. plorans (ver discusión más adelante). Sin embargo, los cambios epigenéticos sí podrían ser los responsables de las diferencias de expresión encontradas ya que en E. plorans se han detectado marcas epigenéticas en los B asociadas a la actividad de su ADNr (Cabrero y col. 1987; López-León y col. 1991), como hemos comentado anteriormente. Y está establecido que la metilación del ADN y la acetilación de histonas están implicadas en la expresión de genes específicos de tejidos y de ciertos factores de transcripción específicos de célula/tejido (Shen y Maniatis, 1980; Cho y col. 2001; Imamura y col. 2001; Hattori y col. 2004b, 2007; Nishino y col. 2004) de forma que cada tejido tiene su propio patrón de metilación asociado a su función (Ohgane y col. 1998; Shiota y col. 2002; Strichman-Almashanu y col. 2002), y las modificaciones de histonas influyen en la interacción entre factores de transcripción y cromatina (Ruthenburg y col. 2007). . La expresión diferencial del ADNr del B sugiere que existen diferencias en los requerimientos energéticos entre partes del cuerpo de E. plorans, al menos en el momento en que fueron congelados y que, frente a una fuerte demanda de síntesis proteica, los transcritos aportados por el B pueden ser utilizados. El significado biológico de estos transcritos, una vez que sabemos que son funcionales (ver discusión más adelante) dependerá de la proporción que representen en el total de transcritos de la célula, sin olvidar que en testículos, al menos, el área nucleolar total celular está regulada (Teruel y col. 2007, 2009), lo que sugiere que la demanda total de ARNr de la célula también lo está. Esta proporción no debe ser muy alta, porque lo analizado hasta ahora concluye que no más del 50% de los machos portan una B-NOR activa y, dentro 191 de ellos, la proporción de células con B-NOR activas no supera el 29% en ninguna de las 11 poblaciones analizadas (Teruel y col. 2007, 2009). Esta expresión diferencial del ADNr del B en E. plorans también puede ser discutida en términos de un sistema de hospedador-parásito. Como los transcritos del B son funcionales, podría parecer que su parasitismo ejercido sobre el individuo está disminuyendo, pero nada más lejos de la realidad si tenemos en cuenta que su ADNr se transcribe más activamente en partes del cuerpo relacionadas con la reproducción y la supervivencia. El B, como parásito vertical obligado, tiene su eficacia biológica asociada a la de su hospedador (Muñoz y col. 1998), por lo que si contribuye aportando transcritos de ARNr en partes del cuerpo importantes para la reproducción y la supervivencia estará, en última instancia, beneficiándose a sí mismo. La heterocromatina que constituye los cromosomas B es constitutiva, al igual que la de las regiones pericentroméricas de los cromosomas A y una proteína típicamente asociada a la heterocromatina es la HP1 (Heterochromatin Protein 1). Tras forzar la disminución de los niveles de transcripción del gen para la HP1α mediante ARNi (ARN interferencia) obtuvimos una gran variedad de efectos moleculares, fisiológicos y fenotípicos, dependientes del estado del ciclo celular en el que se encontrara la célula cuando fue afectada por dicha disminución. Esta variedad de efectos se debe a que la proteína HP1α está principalmente localizada en la heterocromatina centromérica, aunque también asociada a la eucromatina (Piacentini y col. 2009), lo que hace que sea un gen de amplia actuación en el genoma. El patrón de condensación anormal que encontramos debido a la disminución de HP1α, en el cual se afectaba tanto las heterocromatinas constitutiva y facultativa como la eucromatina, demuestra el importante papel que tiene esta proteína en el ensamblaje de la cromatina (Eissenberg y Elgin, 2000). Aún así, en los machos experimentales quedó una región pericentromérica condensada, seguramente debido a la protección que confieren las proteínas centroméricas. Estos efectos sobre la condensación cromatínica pueden ser debido a que los bajos niveles de HP1α interrumpieran la condensación en la profase meiótica I o a un fallo en el mantenimiento de dicha condensación. Otro de los efectos que encontramos en los machos donde hemos disminuido HP1α es la aparición de puentes cromosómicos, los cuales producen fallos en la segregación de cromosomas homólogos dando lugar al gran número de células poliploides (macroespermátidas) que observamos. Estos puentes pueden resultar de: 1) fusiones teloméricas debido al descenso de los niveles de HP1α (Fanti y col. 1998), 2) desregulación de genes relacionados con los telómeros como Bub1 (Basu y col. 1999), 3) pérdida de interacción entre HP1α y los telómeros, ya que HP1 forma parte de telómeros y centrómeros donde controla la elongación y el comportamiento del primero (Fanti y col. 1998; Savitsky y col. 2002; Sharma y col. 2003). En los machos de E. plorans donde hemos disminuido la transcripción de HP1α no observamos una pérdida de telómeros pero sí una disminución de la transcripción del gen Bub1 (De Lucia y col. 2005), por lo que las explicaciones 2) y 3) son las más probables para el efecto observado en nuestra especie. Sin embargo, nuestros resultados en E. plorans no evidencian cambios en la expresión de los genes de ARNr y Hsp70 tras disminuir HP1α, un hecho corroborado por la 192 Discusión general ausencia de cambios en la expresión de las NORs (incluida la del B, inactiva) y en el área nucleolar total. Esto se debe a que los efectos de HP1 pueden ser dependientes de especie (Serrano y col. 2009; Lee y col. 2013), ya que en ratones existe relación directa entre las disminuciones de HP1 y de los genes ARNr (Horáková y col. 2010), mientras que en Drosophila la relación es inversa (Larson y col. 2012). En E.. plorans podría estar aumentando la expresión del ARNr en los machos experimentales, pero no la detectamos porque, quizás, está siendo contrarrestada por el envejecimiento producido por la disminución de HP1 y otros cambios de expresión génica que también puedan interferir. Sin embargo, sí se detectaron en los machos experimentales varios efectos a nivel fisiológico tales como la disminución de movilidad y vitalidad, de masa muscular, de hemolinfa, de divisiones celulares y de la superviviencia, produciendo la muerte de los individuos. Estos cambios son atribuibles a la disminución de HP1, ya que ésta produce letalidad en Drosophila (Liu y col. 2005) y formación anormal del músculo en ratones (Sdek y col. 2013). Además, la heterocromatina es muy importante para conservar la integridad del músculo y así mantener la vida, ya que la pérdida de músculo (sarcopenia) es la principal causa de muerte en los individuos con más edad de Drosophila y Caenorhabditits elegans (Larson y col. 2012; Herndon y col. 2002). Continuando con el análisis de la estructura de los cromosomas B, nos propusimos analizar ésta a mayor profundidad cuantificando el número de copias de ADNr específico del B en un intento de desarrollar un método molecular para elucidar el número de cromosomas B que tenía un individuo. Este análisis puso de manifiesto la gran variación existente para el número de copias de B-ADNr entre individuos portadores de B, no sólo entre variantes de B, como era de esperar, sino también para una misma variante de B en los diferentes individuos de una misma población. Esto impidió utilizar esta metodología para el fin propuesto, ya que B24 mostró tener entre 208 y 3970 copias, en diferentes individuos, mientras que B2 mostró entre 4818 y 13658 copias. Las diferencias entre las dos variantes son lógicas si tenemos en cuenta que la primera surgió a partir de la segunda mediante mutaciones que implicaron ganancia de ADNsat y la pérdida de ADNr (Henriques-Gil and Arana 1990; Zurita et al 1998; Cabrero et al 1999). Además, detectamos algunas copias específicas del B en individuos sin B y podría ser debido a que están albergadas en el/los cromosoma(s) antecesores del B, aunque estas copias no se están transcribiendo pues no las hemos detectado en ningún experimento de expresión de los realizados con individuos 0B. La variabilidad que hemos detectado para el número de copias de ADNr del B, incluso dentro del mismo tipo, podría haberse originado por entrecruzamiento desigual o amplificación diferencial del ADNr. El primer caso sería el más probable en E.plorans, ya que se ha observado que los Bs forman quiasmas entre ellos cuando hay dos o más en la misma célula meiótica, preferentemente en dos posiciones, una intersticial en la que está implicado el ADNsat y otra distal que involucra al ADNr (Henriques-Gil y col. 1984; López-León y col. 1994, 1995). La variabilidad para el número de copias de ADNr del B fue además corroborada por FISH al poner de manifiesto diferencias en el tamaño de la banda de ADNr de los Bs pertenecientes incluso a la misma población. 193 Sin embargo, cuando comparamos el número de copias de ADNr de B 24 entre partes del cuerpo no detectamos diferencias significativas, contrariamente a las observaciones de Fox (1970) que sugerían una replicación diferencial del ADN nuclear entre diferentes tejidos de Schistocerca gregaria y Locusta migratoria, o a otros casos de plantas con número variable de copias de genes ribosómicos entre tejidos del mismo individuo (Rogers y Bendich, 1989). La variación encontrada entre individuos pero no entre partes del cuerpo sugiere que ésta debe estar relacionada con la meiosis y no con la mitosis, puesto que en partes del cuerpo con tejidos somáticos donde hay división mitótica no hay variación. A pesar de no existir variación para el número de copias de ADNr del B entre partes corporales, sí sabemos que esta secuencia se expresa diferencialmente en partes del cuerpo relacionadas con la reproducción y la supervivencia, como hemos comentado anteriormente. Al igual que la regulación de la activación de las NORs es muy estricta, manteniendo constante el área nucleolar total de la célula (Teruel y col. 2007, 2009), la expresión del ADNr del B también debe estar bien regulada en la célula, ya que ésta sólo transcribe habitualmente una parte de los genes para ARNr que tienen los genomas (Reeder, 1999). Hasta ahora, muchos de los resultados de la presente Tesis Doctoral se han obtenido a través del uso de una región diferencial del ITS2 del ADNr del B como marcador molecular de dicho cromosoma. Por ello, tras varios experimentos previos con Locusta migratoria y otros machos de E. plorans, realizamos dos experimentos para caracterizar, mediante “454 amplicon sequencing”, la variabilidad existente en la región ITS2 del ADNr, tanto en ADNg (ADN genómico) como en ADNc (ADN complementario) de diferentes partes corporales de un macho 0B, así como de 18 machos con diferente número de B (0-3) capturados en la población de Torrox. Esta nueva tecnología introduce errores en las secuencias que están siendo secuenciadas, tanto durante la PCR previa como en la secuenciación per se (Gilles y col. 2011; Brodin y col. 2013; Niklas y col. 2013), y es uno de los principales temas de controversia al analizar este tipo de datos, ya que aún no hay un método para eliminar errores con plena confianza. Por este motivo, nuestro experimento llevaba un control interno que nos permitió estimar la tasa de error: a ambos lados de la secuencia ITS2 había un total de 123 nucleótidos que formaban parte del gen 5,8S y del 28S. Dado que esta secuencia codificadora está muy conservada en los saltamontes acrídidos (Ruiz-Ruano y col. en preparación), podemos asumir que toda la variación que encontremos en esos 123 nucleótidos será debida a errores de secuenciación. Aunque es muy probable que esta estima sea por exceso, eso nos garantiza la eliminación de falsos positivos en la muestra de secuencias. Las tasas de error estimadas en los experimentos realizados en L. migratoria y E. plorans fueron del 2-3%, por lo que consideramos que toda variante de ITS2 que superase esta frecuencia en una muestra determinada era muy probablemente un haplotipo genuino. Esto indicó que en L. migratoria sólo había un haplotipo para la región ITS2, mientras que en E. plorans había 6 haplotipos (Hap1-Hap6). Los 6 haplotipos de E. plorans son reales, ya que Hap1-Hap5 han sido encontrados también por Teruel y col. (enviado) usando secuenciación Sanger, y el Hap6 ha sido detectado también en una población española por Ruiz-Ruano y col. (en preparación). La 194 Discusión general coexistencia de seis haplotipos indica que existe una gran variabilidad intragenómica en E. plorans que contrasta con la existencia de un solo tipo de secuencia codificadora (para los 123 nt analizados en el ADNr 5.8S y 28S) en más del 97% de las lecturas obtenidas de ADNg. Este resultado se ajusta a los modelos de evolución concertada (Eickbush y Eickbush, 2007; Ganley y Kobayashi, 2007), aunque denota una baja eficiencia de los mecanismos de homogenización de las regiones no codificadoras del ADNr en esta especie. Uno de los resultados más interesantes de este estudio fue encontrar que uno de los haplotipos (Hap4) está ausente en los machos sin B y es más abundante conforme aumenta el número de cromosomas B, por lo que podemos concluir que se trata de un haplotipo específico del cromosoma B. Este haplotipo es, además, el único de los seis que lleva la inserción de la adenina diferencial en base a la cual se diseñaron los primers para amplificar la secuencia ITS2_B, en la que se ha centrado la presente tesis, con lo que una vez más se corrobora que los datos de Sanger y secuenciación masiva son comparables. Esto indica además, que nuestros análisis anteriores con los primers qITS2_B estaban, en realidad, analizando el haplotipo Hap4. Este haplotipo es, de los 6 encontrados, el que tiene en el gDNA una región codificante adyacente menos conservada, acorde con el hecho de que la naturaleza heterocromática del B le permite acumular mutaciones, y que no todas las copias de ADNr tienen que ser funcionales para transcribirse, ya que solo el 50% de ellas están activas (Reeder y col. 1999). Hap4 sólo apareció en el cDNA de 5 de los 11 machos portadores de B, y en mucha menor proporción que en el gDNA, por lo que se expresa a niveles muy bajos y está muy silenciado en las poblaciones, en concordancia con nuestros resultados anteriores que habían demostrado que, tras analizar 7 poblaciones, sólo 18 machos de los 156 analizados mostraron actividad en la NOR del B. Los 5 machos con Hap4 tenían además un nucleolo asociado a la NOR del B, lo que vuelve a corroborar que es el ADNr del propio B el que está activo. Al analizar las regiones codificadoras, observamos que las lecturas obtenidas en el cDNA son más conservadas que las del gDNA, por lo que parece que hay preferencia en expresar las unidades más conservadas. Este tipo de selección de ciertos ADNr para ser expresados es consistente con un modelo propuesto por Zhou y col. (2013) en el que un genoma con retrotransposones R2 en su ADNr selecciona para la transcripción aquellas copias con menor densidad de R2. En el caso de E. plorans, el 100% de las lecturas de cDNA que llevaban Hap4 (específico del B) en el ITS2 estaban asociadas a ambos lados con regiones codificadoras conservadas. Esto indica que los transcritos de ARNr producidos a partir de las copias de ADNr del B son funcionales. Y además sugiere que la transcripción del B está sujeta a vigilancia genómica porque sólo se expresan en el B las copias más conservadas en la región codificadora. En experimentos anteriores donde cuantificábamos el número de copias del ADNr del B, habíamos detectado en individuos 0B algunas secuencias que llevaban la inserción de la adenina diferencial del B, pero no podemos decir si se trataba del Hap4 o no, ya que en dicho experimento se amplificaba una región menor del ITS2. Aún así, de las 62322 secuencias obtenidas aquí para el gDNA, 9205 corresponden al Hap4 y ninguna pertenece a los individuos 195 0B. Por tanto, la presencia de la inserción de adenina en el ITS2 de los individuos 0B en forma de un haplotipo diferente al Hap4, y que además esté en los Bs, es un aspecto a estudiar a más profundidad en un futuro. La estructura secundaria del ITS2 juega un papel importante en definir los sitios de rotura para su escisión durante la maduración del ADNr transcrito (Musters y col. 1990; van der Sande y col. 1992). Los 6 haplotipos ITS2 encontrados en nuestro análisis tienen una estructura secundaria y una energía libre de Gibb muy conservadas, por lo que todos tienen la misma posibilidad de ser expresados, incluido el Hap4. Esto sugiere que la región del ITS2 del ADNr del B es funcional. El árbol de mínima expansión corroboró por un lado, que la homogenización del ITS2 es muy pobre en este genoma, y reveló por otro, que Hap1 no sólo es el haplotipo más frecuente, sino también probablemente el ancestral. Este último dato concuerda con otros estudios en el que se ha visto que este haplotipo es el más frecuente en machos sin B de otras regiones mediterráneas (Ruiz-Ruano y col., en preparación). Las diferencias de expresión de los diferentes haplotipos ITS2 de E. plorans entre diferentes partes del cuerpo (Hap1-Hap3) e individuos (Hap1-Hap6) se repiten, en general estando el Hap1 sobreexpresado y el Hap3 subexpresado. Aún así, este patrón no es estricto, mostrando pequeñas diferencias entre partes del cuerpo. Remarcable es el caso de dos partes del cuerpo importantes para el movimiento del animal (músculo alar y pata saltadora) que muestran un patrón idéntico, y el del testículo, que es la única parte corporal en el que se expresan casi por igual los tres haplotipos. En el experimento poblacional observamos que Hap3, Hap4 y Hap6 están subexpresados. Por el contrario, Hap5 es el haplotipo que muestra la mayor eficiencia en la expresión, y también es el que tiene la mayor conservación de la región codificante adyacente. Las diferencias de expresión existentes, que a la vez son propias de cada haplotipo, sugieren una expresión no aleatoria de la copias de ADNr, la cual sería posible si los haplotipos no estuvieran distribuidos al azar entre los cromosomas con ADNr. Así, la búsqueda de los 6 haplotipos detectados en E. plorans en las secuencias de ITS2 analizadas por Teruel y col. (enviado) (procedentes de diferentes cromosomas microdiseccionados de la misma especie) ya apunta que hay cierta estructuración: Hap1 está en al menos los cromosomas 8, 9, X y B, Hap2 está en el cromosoma 11 y el Hap4 en el B. Esta ordenación y una pobre recombinación ectópica entre el ADNr de cromosomas no homólogos contribuirían a la variabilidad intragenómica observada. La menor homogenización de la región ITS2 en E. plorans en comparación con L. migratoria podría ser debida a varias causas. El genoma de E. plorans es alrededor del doble del de L. migratoria (Ruiz-Ruano y col. 2011), y es más difícil homogenizar mayores cantidades de ADNr. De hecho, E. plorans tiene ADNr en siete parejas autosomas además del cromosoma B (Cabrero y col. 1999, 2003a), fruto de su reciente dispersión intragenómica desde los cromosomas 9 y 11 (López-León y col. 2008), mientras que L. migratoria sólo lo lleva en tres (Teruel y col. 2010). Además, E. plorans tiene 15000 copias de ADNr en los As y 3000 en el B 24 (Montiel y col., en preparación). En L. migratoria no existen datos comparables, pero las señales de FISH 196 Discusión general obtenidas para el ADNr son de menor tamaño que las de E.plorans. Sin embargo, el hecho de que haya otras especies de saltamontes con genoma grande y una región ITS2 muy homogeneizada, tales como Stauroderus scalaris (Ruiz-Ruano y col. en preparación) nos hizo buscar otras razones para el caso de E. plorans. Una posibilidad es que antes de la expansión genómica del ADNr, éste estaba homogenizado al menos en cada cromosoma homólogo donde estaba localizado (9 y 11). En este momento podía haber dos haplotipos, uno por cromosoma. Posteriormente, y quizás coincidiendo con el origen del cromosoma B, se produjo una mezcla de poblaciones que incrementó el número de haplotipos. Algunos datos apuntan a una (o más) dispersiones recientes de esta especie por la región mediterránea. Por ejemplo, como hemos visto anteriormente, B1 es la variante ancestral compartida por diferentes poblaciones de toda la región mediterránea occidental. Además, el marcador SCAR, específico de los Bs muestra una secuencia de 1510 pb muy conservada en poblaciones tan distantes como España y Armenia, lo que sugiere el origen reciente de los Bs (Muñoz-Pajares y col. 2011) y su dispersión rápida a casi todas las poblaciones de la subespecie E. p. plorans. Esta mezcla, y la posible baja eficacia de la homogenización no homóloga en esta especie explicaría por qué no están homogeneizadas las secuencias de ITS2 en la población española analizada. En conclusión, lo que comenzó siendo una única diferencia en toda la secuencia del ADNr del B respecto a los demás cromosomas, es decir, una simple adenina diferencial en el ITS2 del B, se ha convertido en el inicio de un apasionante camino que nos ha revelado i) que los Bs realmente siguen su propio camino evolutivo al no compartir el Hap4 con los cromosomas A, ii) que, aunque está muy silenciados, no están del todo inactivos, y iii) que los pocos transcritos que producen son funcionales y su cantidad difiere entre las diferentes partes del cuerpo de E. plorans. Referencias Abdelaziz M, Teruel M, Chobanov D, Camacho JP, Cabrero J (2007) Physical mapping of rDNA and satDNA in A and B chromosomes of the grasshopper Eyprepocnemis plorans from a Greek population. Cytogenet Genome Res 119:143-6 Bakkali M, Cabrero J, López-León MD, Perfectti F, Camacho JPM (1999) The B chromosome polymorphism of the grasshopper Eyprepocnemis plorans in North Africa. I. B variants and frequency. Heredity 83:428-434 Basu J, Bousbaa H, Logarinho E et al (1999) Mutations in the essential splindle checkpoint gene Bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J Cell Biol 146(1):13-28 Brodin J, Mild M, Hedskog C, Sherwood E, Leitner T, Andersson B, Albert J (2013) PCR-Induced transitions are the major source of error in cleaned Ultra-Deep Pyrosequencing Data. PLoS ONE 8(7): e70388 doi:10.1371/journal.pone.0070388 197 Cabrero J, Alché JD, Camacho JPM (1987) Effects of B chromosomes of the grasshopper Eyprepocnemis plorans on nucleolar organiser regions activity. Activation of a latent NOR on a B chromosome fused to an autosome. Genome 29:116-121 Cabrero J, López-León MD, Gómez R, Castro AJ, Martín-Alganza A, Camacho JPM (1997) Geographical distribution of B chromosomes in the grasshopper Eyprepocnemis plorans, along a river basin, is mainly shaped by non-selective historical events. Chromosome Res 5:194-198 Cabrero J, López-León MD, Bakkali M, Camacho JPM (1999). Common origin of B chromosome variants in the grasshopper Eyprepocnemis plorans. Heredity 83:435-439 Cabrero J, Perfectti F, Gómez R, Camacho JPM, López-León MD (2003a) Population variation in the A chromosome distribution of satellite DNA and ribosomal DNA in the grasshopper Eyprepocnemis plorans. Chromosome Res 11: 375381 Cabrero J, Teruel M, Carmona FD, Jiménez R, Camacho JPM (2007) Histone H3 lysine 9 acetylation pattern suggests that X and B chromosomes are silenced during entire male meiosis in a grasshopper. Cytogenet Genome Res 119:135–142 Camacho JPM, Carballo AR and Cabrero J (1980) The B chromosome system of the grasshopper Eyprepocnemis plorans sub. Plorans (Charpentier). Chromosoma 80:163-166 Carchilan M, Delgado M, Ribeiro T, Costa-Nunes P, Caperta A et al (2007) Transcriptionally active heterochromatin in rye B chromosomes. Plant Cell 19:1738-1749 Chen ZJ, Pikaard CS (1997) Transcriptional analysis of nucleolar dominance in polyploidy plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc Nat Acad Sci USA 94:3442–3447 Cho J, Kimura H, Minami T, Ohgane J, Hattori N, Tanaka S, Shiota K (2001) DNA methylation regulates placental lactogen I gene expression. Endocrinology 142:3389–3396 De Lucia F, Ni JQ, Vaillant C, Sun FL (2005) HP1 modulates the transcription of cellcycle regulators in Drosophila melanogaster. Nucleic Acids Res 33(9):28522858 Eickbush TH (2002) R2 and related site-specific non-long terminal repeat retrotransposons. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. ASM Press, Washington, DC, pp 813–835 Eickbush TH, Eickbush DG (2007) Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175(2):477-485 Eickbush DG, Ye J, Zhang X, Burke WD, Eickbush TH (2008) Epigenetic regulation of retrotransposons within the nucleolus of Drosophila. Mol Cell Biol 28:6452– 6461 Eissenberg JC and Elgin SC (2000) The HP1 protein family: getting a grip on chromatin. Curr Opin Genet Dev 10:204-210 Fanti L, Giovinazzo G, Berloco M, Pimpinelli S (1998) The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol Cell 2(5):527-538 Fox DP (1970) A non-doubling DNA series in somatic tissues of the locusts Schistocerca gregaria (Forskål) and Locusta migratoria (Linn.). Chromosoma 29:446-61 198 Discusión general Ganley ARD, Kobayashi T (2007) Highly efficient concerted evolution in the ribosomal DNA repeats: total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Research 17:184-191 Gilles A, Meglécz E, Pech N, Ferreira S, Malausa T, Martin JF (2011) Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. Bmc Genomics 12:245 Han F, Lamb JC, Yu W, Gao Z, Birchler JA (2007) Centromere function and nondisjunction are independent components of the maize B chromosome accumulation mechanism. Plant Cell 19:524–533 Hattori N, Nishino K, Ko Y, Hattori N, Ohgane J, Tanaka S, Shiota K (2004b) Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J Biol Chem 279:17063–17069 Hattori N, Imao Y, Nishino K, Hattori N, Ohgane J, Yagi S, Tanaka S, Shiota K (2007) Epigenetic regulation of Nanog gene in embryonic stem and trophoblast stem cells. Genes Cells 12:387–396 Henriques-Gil N, Santos JL, Arana P (1984) Evolution of a complex polymorphism in the grasshopper Eyprepocnemis plorans. Chromosoma 89:290-293 Henriques-Gil N, Jones GH, Cano MI, Arana P, Santos JL (1986) Female meiosis during oocyte maturation in Eyprepocnemis plorans (Orthoptera: Acrididae). Can J Genet Cytol 28:84-87 Henriques-Gil N, Arana P (1990) Origin and substitution of B chromosomes in the grasshopper Eyprepocnemis plorans. Evolution 44:747-753 Herndon LA, Schmeissner PJ, Dudaronek JM et al (2002) Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419(6909):808-814 Horáková AH, Bártová E, Galiová G, Uhlírová R, Matula P, Kozubek S (2010) SUV39h-independent association of HP1 beta with fibrillarin-positive nucleolar regions. Chromosoma 119(3):227-241. doi:10.1007/s00412-009-0252-2 Ide S, Miyazaki T, Maki H, Kobayashi T (2010) Abundance of ribosomal RNA gene copies maintains genome integrity. Science 327:693-696 Imamura T, Ohgane J, Ito S, Ogawa T, Hattori N, Tanaka S, Shiota K (2001) CpG island of rat sphingosine kinase-1 gene: Tissue-dependent DNA methylation status and multiple alternative first exons. Genomics 76:117–125 Larson K, S J Yan, Tsurumi A et al (2012) Heterochromatin formation promotes longevity and repress ribosomal RNA synthesis. PLoS Genetics 8(1): e1002473. doi:10.1371/journal.pgen.1002473 Lee DH, Li Y, Shin DH et al (2013) DNA microarray profiling of genes differentially regulated by three heterochromatin protein 1 (HP1) homologs in Drosophila. Biochem Biophys Res Commun 434(4):820-828 Liu LP, Ni JQ, Shi YD, Oakeley EJ, Sun FL (2005) Sex-specific role of Drosophila melanogaster HP1 in regulating chromatin structure and gene transcription. Nature Genetics 37:1361-1366 López-León MD, Cabrero J, Camacho JPM (1991) A nucleolus organizer region in a B chromosome inactivated by DNA methylation. Chromosoma 100:134-138 López–León MD, Cabrero J, Pardo MC, Viseras E, Camacho JPM, Santos JL (1993) Generating high variability of B chromosomes in the grasshopper Eyprepocnemis plorans. Heredity 71:352-362 López-León MD, Neves N, Schwarzacher T, Heslop-Harrison TS, Hewitt GM, Camacho JPM (1994). Possible origin of a B chromosome deduced from its DNA composition using double FISH technique. Chromosome Res 2:87-92 199 López-León MD, Cabrero J, Camacho JPM (1995) Changes in DNA methylation during development in the B chromosome NOR of the grasshopper Eyprepocnemis plorans. Heredity 74:296-302 López-León MD, Cabrero J, Dzyubenko VV., Bugrov AG, Karamysheva TV, Rubtsov NB, Camacho JPM (2008) Differences in ribosomal DNA distribution on A and B chromosomes between eastern and western populations of the grasshopper Eyprepocnemis plorans plorans. Cytogenet genome Res 121:260-265 Muñoz E, Perfectti F, Martín-Alganza A, and Camacho JPM (1998) Parallel effect of a B chromosome and a mite decreasing female fitness in the grasshopper Eyprepocnemis plorans. Proc R Soc Lond Ser B. 265:1903-1909 Muñoz-Pajares AJ, Martínez-Rodríguez L, Teruel M, Cabrero J, Camacho JPM, Perfectti F (2011) A single, recent origin of the accessory B chromosome of the grasshopper Eyprepocnemis plorans. Genetics 187:853-863 Musters W, Boon K, Van der Sande CA, Van Heerikhuizen H, Planta RJ (1990) Functional analysis of transcribed spacers of yeast ribosomal DNA. The EMBO journal 9:3989 Niklas N, Pröll J, Danzer M, Stabentheiner S, Hofer K, Gabriel C (2013) Routine performance and errors of 454 HLA exon sequencing in diagnostics. BMC Bioinformatics 14:176 Nishino K, Hattori N, Tanaka S, Shiota K (2004) DNA methylation-mediated control of Sry gene expression in mouse gonadal development. J Bio Chem 279: 22306– 22313 Ohgane J, Aikawa J, Ogura A, Hattori N, Ogawa T, Shiota K (1998) Analysis of CpG islands of trophoblast giant cells by restriction landmark genomic scanning. Dev Genet 22:132–140 Sollner-Webb B, Tower J (1986) Transcription of cloned eukaryotic ribosomal RNA genes. Annu Rev Genet 55:801-830 Penton EH, Sullender BW, Crease TJ (2002) Pokey, a new DNA transposon in Daphnia (Cladocera: Crustacea). J Mol Evol 55(6):664–673 Piacentini L, Fanti L, Negri R et al (2009) Heterochromatic protein 1 (HP1a) positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila. PLoS Genetics 5(10):e1000670. doi:10.1371/journal.pgen.1000670 Pikaard CS (2000a) Nucleolar dominance: uniparental gene silencing on a multimegabase scale in genetic hybrids. Plant Mol Biol 43:163-177 Pikaard CS (2000b) The epigenetics of nucleolar dominance. Trends in Genetics 16:495-500 Reeder RH (1999) Regulation of RNA polymerase I transcription in yeast and vertebrates. Prog Nucleic Acid Res Mol Biol 62:193-327 Rogers SO and Bendich AJ (1987) Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Molcelular Biology 9:509-520 Ruiz-Ruano FJ, Ruiz-Estévez M, Rodríguez-Pérez J, López-Pino JL, Cabrero J, Camacho JPM, (2011) DNA amount of X and B chromosomes in the grasshoppers Eyprepocnemis plorans and Locusta migratoria. Cytogenet genome Res 134:120-126 Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nature Reviews Mol Cell Bio 8:983– 994 200 Discusión general Savitsky M, Kravchuk O, Melnikova L, Georgiev P (2002) Heterochromatin Protein 1 is involved in control telomere elongation in Drosophila melanogaster. Mol and Cel Biol 22:3204-3218 Sdek P, Oyama K, Angelis E, Chan SS, Schenke-Layland K, MacLellan WR (2013) Epigenetic regulation of myogenic gene expression by heterocromatic protein 1 alpha. PLoS ONE 8(3): e58319. doi:10.1371/journal.pone.0058319 Serrano A, Rodríguez-Corsino M, Losada A (2009) Heterochromatin Protein 1 (HP1) do not drive pericentromeric cohesin enrichment in human cells. PLoS One 4(4): e5118. doi:10.1371/journal.pone.0005118 Sharma GG, Hwang KK, Pandita et al (2003) Human heterochromatin protein 1 isoforms HP1Hs alpha and HP1Hs beta interfere with hTERT-telomere interactions and correlate with changes in cell growth and response to ionizing radiation. Mol and Cel Biol 23(22):8363-8376 Shen C, Maniatis T (1980) Tissue-specific DNA methylation in a cluster of rabbit betalike globin genes. Proc Natl Aca. Sci 77: 6634–6638 Shiota K, Kogo Y, Ohgane J, Imamura T, Urano A, Nishino K, Tanaka S, Hattori N (2002) Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. Genes Cells 7:961–969 Strichman-Almashanu LZ, Lee RS, Onyango PO, Perlman E, Flam F, Frieman MB, Feinberg AP (2002) A genome-wide screen for normally methylated human CpG islands that can identify novel imprinted genes. Genome Res. 12:543–554 Subrahmanyam NC, Bryngelsson T, Hagberg P, Hagberg A (1994) Differential amplification of rDNA repeats in barley translocation and duplication lines: role of a specific segment. Hereditas 121:157–170 Teruel M, Cabrero J, Perfectti F, Camacho JPM (2007) Nucleolus size variation during meiosis and NOR activity of a B chromosome in the grasshopper Eyprepocnemis plorans. Chromosome Res 15:755-765 Teruel M (2009) Origen, expresión y efectos fenotípicos de un parásito genómico. PhD. Universidad de Granada Teruel M, Cabrero J, Perfectti F, Camacho JPM (2009) Quantitative analysis of NOR expression in a B chromosome of the grasshopper Eyprepocnemis plorans. Chromosoma 118:291-301 Teruel M, Cabrero J, Perfectti F, Camacho JPM (2010) B chromosome ancestry revealed by histone genes in the migratory locust. Chromosoma 119: 217–225 Van der Sande CA, Kwa M, van Nues RW, van Heerikhuizen H, Raué HA, Planta RJ (1992) Functional analysis of internal transcribed spacer 2 of Saccharomyces cerevisiae ribosomal DNA. Journal of molecular biology 223:899-910 Zhou J, Eickbush TH (2009) The pattern of R2 retrotransposon activity in natural population of Drosophila simulans reflects the dynamic nature of rDNA locus. PLoS Genet 5:e1000386 Zhou J, Eickbush MT, Eickbush TH (2013) A Population Genetic Model for the Maintenance of R2 Retrotransposons in rRNA Gene Loci. PLoS Genet 9(1): e1003179. doi:10.1371/journal.pgen.1003179 Zurita S, Cabrero J, López-León MD, Camacho JPM (1998) Polymorphism regeneration for a neutralized selfish B chromosome. Evolution 52:274-277 201 202 Capítulo 10. Conclusiones 203 204 Conclusiones 1. Los cromosomas B de Eyprepocnemis plorans son funcionales, al menos en el ADNr que contienen. 2. El cromosoma B1 es el antecesor de todos los cromosomas B de esta especie encontrados en la región mediterránea occidental. 3. Los cromosomas B de E. plorans estaban presentes en todas las partes corporales analizadas, lo que sugiere que son mitóticamente estables. No hemos podido, sin embargo, averiguar si todas estas partes tienen el mismo número de Bs, ya que la herramienta molecular que intentamos diseñar estaba basada en el número de copias de ADNr en los Bs y éste resultó ser muy variable entre Bs de la misma población. 4. Cuando el ADNr del cromosoma B está activo en un individuo, lo está en todas las partes corporales analizadas, pero su grado de expresión en testículo, glándula accesoria y músculo alar es el triple que en cabeza, pata y ciego gástrico. 5. La proteína HP1 es necesaria para mantener el patrón de condensación cromosómica normal de todos los tipos de cromatina en E. plorans, y su función es vital en esta especie. La disminución de los niveles de expresión de HP1, forzada por el ARNi, estaba asociada a la disminución de la expresión del gen Bub1, el descenso del número de células en división, la pérdida de masa muscular y limitación del movimiento, la disminución de la cantidad de hemolinfa y en última instancia, la muerte. 6. El uso de la región codificadora 5.8-28S como control interno de la tasa de error de los experimentos de “454 amplicon sequencing” es, en el caso del ITS2, una herramienta muy útil para eliminar falsos positivos. 7. El ADNr de E. plorans está muy homogenizado en las regiones codificadoras 5.8S y 28S, pero no tanto en la región ITS2, donde hemos detectado 6 haplotipos en una misma población. Todos los haplotipos mostraban características conservadas en su estructura secundaria, y unos parámetros de energía libre de Gibbs compatibles con su capacidad de expresión. De hecho, todos fueron encontrados en el ADNc. 8. El haplotipo Hap4 resultó ser exclusivo de los cromosomas B, ya que el número de lecturas encontradas en ADNg aumentaba con el número de Bs, y no se encontró en los individuos sin B. 9. Los 6 haplotipos mostraron diferencias en el grado de expresión, siendo Hap5 el más eficiente en su expresión y el Hap4 (el del B) el menos eficiente, ya que se expresaba muy poco incluso en individuos que mostraban que sus Bs eran capaces de organizar un nucleolo. Igualmente, Hap3 y Hap6 eran haplotipos poco eficientes en su expresión, mientras que Hap1 y Hap2 se encontraban entre los más eficientes. 10. El Hap4 es el único cuyas regiones codificadoras estaban conservadas en el 100% de las lecturas en ADNc, a pesar de que, en ADNg, es el haplotipo menos conservado. Esto sugiere que la expresión del ADNr del B está sujeta a una fuerte vigilancia por 205 parte del genoma, es decir, normalmente está muy reprimido, pero cuando se expresa sólo lo hacen sus unidades de ADNr que están más conservadas en la región codificadora. 11. En general, las lecturas de ADNc mostraron menor diversidad nucleotídica para la región ITS2, y estaban más conservadas en las regiones codificadoras 5.8S y 28S, que las del ADNg, por lo que podemos concluir que las unidades de ADNr no se expresan al azar. 12. La total conservación de las regiones codificadoras en las lecturas de ADNc observadas para el Hap4 sugiere que el ARNr transcrito a partir del cromosoma B es totalmente funcional, como lo prueba además que en los 5 machos donde obtuvimos lecturas para este haplotipo en ADNc los Bs fueron observados formando nucleolo, que es el fenotipo de estos genes. 206 Capítulo 11. Perspectivas 207 208 Perspectivas Los estudios realizados en la presente Tesis Doctoral han permitido profundizar en el conocimiento de la estructura y la expresión del ADNr del cromosoma B de Eyprepocnemis plorans. Los resultados expuestos nos han dado mucha información sobre ello, pero a la vez han abierto otros frentes para futuras investigaciones. Hemos visto que tres de las cuatro variantes de cromosomas B presentes en las poblaciones españolas tienen el ADNr activo y que, además, se considera que las variantes de B del oeste mediterráneo son de un tipo diferente a las de la zona este. Una manera de continuar esclareciendo la conexión que hay entre ambos tipos de variantes y el momento de origen del B sería estudiar la expresión de los Bs de poblaciones no españolas. La activación de la NOR del B y la transcripción del ARNr procedente de dicho cromosoma parece estar asociado a cambios epigenéticos relacionados con la metilación del ADN y acetilación de histonas. Sería interesante profundizar en este estudio de marcas epigenéticas del B, incluso detectando el grado de variación si las hubiera, para así estar más cerca de elucidar a qué se debe que unos B estén activos y otros no, o incluso por qué una misma variable esté activa o no en diferentes poblaciones. La detección de la expresión diferencial del ADNr del B en tejidos relacionados con la reproducción y la supervivencia abre el camino de estudio de la contribución molecular de esos transcritos a la eficacia biológica. Sería interesante estudiar la transcendencia que estos transcritos tienen, ya que son funcionales y pueden estar produciendo algún efecto (beneficioso o no), sobre E. plorans. Tras disminuir los niveles de expresión de HP1, vimos que no había ningún efecto sobre los genes ribosómicos de E. plorans o, al menos, no fueron detectables. Podría ser que realmente esta proteína no regule la expresión del ARNr en esta especie, ya que hemos visto que los efectos pueden ser dependientes de especie. Por tanto, un análisis a realizar sería buscar proteínas que estén afectando a la expresión del ADNr en E. plorans, para así tratar de encontrar qué proteínas están produciendo el silenciamiento/la activación del ADNr del cromosoma B. Por otro lado, sería interesante analizar si el hecho de que los cromosomas B tengan alta variabilidad para el número de copias de ADNr es heredable, es decir, si padres con Bs portadores de muchas copias de ADNr tienen descendientes con Bs portadores de un número similar de copias, o bien se producen cambios en el número de copias de ADNr del B en el transcurso de una sola generación. La elevada variabilidad encontrada para las secuencias ITS2 entre diferentes partes corporales e individuos de E.plorans sugiere estudiarla en mayor profundidad al nivel intragenómico. Hemos discutido la posible localización no aleatoria de los diferentes haplotipos en diferentes cromosomas, pero habría que corroborarlo haciendo el mismo experimento sobre el ADN obtenido de los cromosomas microdiseccionados, por separado. Esto nos permitiría también intentar averiguar el origen cromosómico del 209 B, siguiendo el rastro del haplotipo específico del B. Además, sería interesante realizar un experimento como el realizado en la población de Torrox, mediante secuenciación 454, pero ampliando el número de poblaciones para averiguar la distribución de los diferentes haplotipos a lo largo de la distribución geográfica de esta especie. Esto proporcionaría información muy valiosa sobre la estructura genómica interpoblacional del ITS2 y, en última instancia, podría conducir a elucidar la población donde probablemente se originó el B. Finalmente, la metodología utilizada en el experimento de pirosecuenciación 454, utilizando ADNg y ADNc de los mismos individuos, puede abrir una vía para nuevos análisis, en esta y otras especies, que pueden ser muy valiosos para estudios de la expresión del ADNr al nivel genómico. Esto será muy provechoso, con toda seguridad, cuando los métodos de secuenciación masiva proporciones mayores tamaños de lectura con menores errores de secuenciación. 210