MÉTODOS DE ANÁLISIS DE CIRCUITOS Mg. Amancio R. Rojas Flores INTRODUCCION En base a la comprensión de las leyes fundamentales de la teoría de circuitos , se aplicara al desarrollo de dos eficaces técnicas para el analisis de circuitos: - El analisis nodal, el cual se basa en una aplicación de la ley de corrientes de Kirchhoff (LCK) - El analisis de lazo o mallas , el cual se basa en una aplicación de la ley de tensiones de Kirchhoff (LTK) CONVERSION DE FUENTES En el capítulo previo fue presentado la fuente ideal. Ésta es una fuente que no tiene resistencia interna incluida en parte del circuito. Se recordara que las fuentes de voltaje siempre tienen alguna resistencia de serie, aunque en algunos casos esta resistencia es tan pequeña comparado con la resistencia del circuito. De modo semejante, una fuente de corriente siempre tendrá una resistencia en paralelo . Si esta resistencia es muy grande comparado con la otra resistencia del circuito, entonces la resistencia interna de la fuente otra vez puede estar ignorada. ANALISIS NODAL En el analisis nodal interesa hallar las tensiones de nodo. Dado un circuito con n nodos sin fuentes de tensión, el analisis nodal del circuito implica los tres pasos siguiente . 1. Convierta cada fuente de voltaje a su equivalente fuente de corriente 2. Asigne un nodo de referencia dentro del circuito e indique este nodo como tierra; para los nodos restantes asigne voltajes (V1, V2. . . , Vn) 3. Asigne arbitrariamente una dirección de corriente a cada rama. Usando las direcciones de corriente asignadas , indique las polaridades correspondientes del voltaje sobre todos las resistencias. 4. A excepción del nodo referencia, aplique la LCK en cada uno de los nodos. 5. Reescriba cada una de las corrientes arbitrariamente asignadas en términos de la diferencia potencial a través de una resistencia conocida y solucione las ecuaciones resultantes para los voltajes (V1, V2. . . , Vn). E1. Dado el circuito de la figura, use el análisis nodal para resolver para el voltaje Vab Solución Ahora aplicamos la LCK a los nodos denominados como V1 y V2 Nodo V1 : Nodo V2 : ΣI Entran = ΣI Salen ΣI Entran = ΣI Salen Las corrientes son reescritas en términos de voltajes a través de los resistores como sigue Las ecuaciones nodales serán: Sustituyendo las expresiones de voltaje en las ecuaciones nodales originales, tenemos las ecuaciones lineales simultaneas siguientes: Simplificando. Usando determinantes para solucionar los voltajes nodales como: y Regresando al circuito original, vemos que V2 es el mismo que Va E2. Determine los voltajes nodales para el circuito mostrado en la figura Solución Solución Ahora aplicamos la LCK a los nodos correspondientes a V1 obtenidas las siguientes ecuaciones nodales Nodo V1 : Nodo V2 : y V2 son ΣI Entran = ΣI Salen ΣI Entran = ΣI Salen Las corrientes pueden ser nuevamente escritas en términos de voltajes a través de los resistores Las ecuaciones nodales serán Nodo V1 : Nodo V2 : Las ecuaciones pueden ser simplificadas como Nodo V1 : Nodo V2 : Las soluciones para V1 y V2 son encontrados usando determinantes ANALISIS NODAL (METODO FORMATO ) E3. Determine los voltajes nodales para el circuito mostrado en la figura Solución Nodo V1 : Nodo V2 : Estas ecuaciones pueden ser reescritas como : Nodo V1 : Nodo V2 : Usando determinantes para resolver estas ecuaciones tenemos E4. use el análisis nodal para determinar los voltajes nodales para el circuito mostrado . Use la respuesta para solucionar la corriente a través de R1 Solución Nodo V1 : Nodo V2 : Estas ecuaciones pueden ser reescritas como : Nodo V1 : Nodo V1 : La solución es como sigue Para determinar la corriente a través del resistor de 5kΩ restituimos el circuito original . El resistor puede ser aislado como se muestra, La corriente es fácilmente encontrada como: I= 10V − ( −0.746V ) = 2.10mA 5kΩ ANALISIS DE MALLAS Los pasos usados para solucionar un circuito usando análisis de la malla son como sigue: 1. Arbitrariamente asigne una corriente que gira en sentido del reloj a cada circuito cerrado interior en la red. 2. Usando las corrientes asignadas del lazo, indique las polaridades de voltaje a través de todos las resistencias en el circuito. 3. Aplicando la ley de voltaje de Kirchhoff, escriba las ecuaciones del lazo para cada lazo en la red. 4. Solucione las ecuaciones de primer grado simultáneas resultantes. 5. Las corrientes de la rama están resueltas algebraicamente combinando las corrientes del lazo que son comunes para la rama. E1.- Encontrar las corrientes para el circuito de la figura Solución Paso 1.- se asignan las corrientes de lazo. Estas corrientes son I1 y I2 Paso 2.- Las polaridades de voltaje son asignadas según las corrientes del lazo Paso 3.- Las ecuaciones del lazo están escritas aplicando la ley de de voltaje de Kirchhoff en cada uno de los lazos. Las ecuaciones son como sigue: Usando determinantes E2.-Determinar la corriente a través de la batería de 8V para el circuito mostrado Solución Convirtiendo la fuente de corriente a su equivalente de voltaje Reescribiendo las ecuaciones: Usando determinantes E3.- Determine la corriente a través de R1 para el circuito mostrado en figura Solución Por inspección, vemos que la corriente I1 = -5A Las ecuaciones para las otras dos mallas son como sigue : Las ecuaciones pueden ser simplificadas como: Las ecuaciones lineales pueden ser solucionadas como sigue: ANALISIS DE MALLAS (METODO FORMATO ) E4.- Resolver para las corrientes a través R2 y R3 en el circuito de la figura . Solución Redibujando el circuito . Transformando la fuente de corriente (fig. E4-3) Las ecuaciones de malla son Las ecuaciones son reescritas como: Usando determinantes solucionamos las corrientes I1 y I2 como sigue: La corriente a través de R2 será: La corriente a través de R3 no es fácil de determinar. Un error común es decir que la corriente en R3 es la misma como la corriente a través del resistor de 6 kΩ del circuito de la figura (fig. E4-3) Hallaremos el valor aplicando la ley de Ohm , para ello hallamos Vab E5.- Resolver para las corrientes a través R1 y R5 en el circuito de la figura . Solución I R1 = I1 − I 2 = 2.586 − 0.948 = 1.638 A I R5 = I 3 − I 2 = 1.034 − 0.948 = 0.086 A