1.6. Selección folicular. Se cree que en algún momento entorno al estadio terciario/antral, un folículo (en las especies monoovuladoras) y varios (en las especies poliovuladoras) dentro de la cohorte reclutada, es o son seleccionados para completar la foliculogénesis hasta la ovulación y luteogénesis. Los mecanismos bioquímicos y moleculares subyacentes al proceso de selección folicular continuan siendo un enigma, sobretodo en las especies poliovuladoras (McGee y Hsueh, 2000). Los grandes folículos antrales contienen más células de la granulosa y por tanto, mayor cantidad de FSHR y mayor capacidad para producir inhibina, que a su vez, bloquea la secreción de FSH y LH por parte de la hipófisis. Las teorías sugieren que el folículo seleccionado permanece sensible a FSH (Xu y cols., 1995) mientras que los folículos hermanos no seleccionados no son sensibles porque tienen menos FSHR disponibles (diZerega y Hodgen, 1981). Esta circunstancia, favorece la apoptosis de las células de la granulosa que conduce en último término a la atresia de los folículos no seleccionados. Los mecanismos básicos para la selección folicular en especies poliovuladoras son similares, la razón por la que son varios los folículos seleccionados se cree que es la menor secreción de inhibina (McGee y Hsueh, 2000). A medida que el folículo seleccionado crece, su antro se va llenando de líquido folicular y, tanto las células de la teca como las de la granulosa, proliferan. Llega un momento en el desarrollo antral avanzado, en el que la producción de estradiol por parte del folículo seleccionado es marcadamente elevado y éste en el suero ejerce una retroalimentación positiva en la secreción de gonadotropinas. El folículo seleccionado, además, secreta activina que a su vez estimula la secreción de FSH. El aumento en la FSH y la LH durante la fase folicular tardía no puede rescatar los folículos no seleccionados moribundos (atrésicos) pero permite lo siguiente: (1) Un mayor crecimiento y diferenciación de los folículos previamente reclutados (más jóvenes). (2) Un aumento significativo en las esteroidogénesis en el folículo seleccionado. (3) La luteinización inicial del folículo seleccionado. La dinámica de retroalimentación entre el folículo seleccionado y el eje hipotálamo-hipófisis continúa y culmina con el pico de gonadotropinas preovulatorio que estimula la ovulación. 1.7 Ovulación y fase lútea. La ovulación es un proceso dependiente del pico de gonadotropinas. Las gonadotropinas estimulan la diferenciación final de las células de gran parte del folículo preovulatorio donde éstas pasan de producir casi exclusivamente estradiol a producir tanto estradiol como progesterona (luteinización). Tras la ovulación, los remanentes de lo que era el folículo preovulatorio seleccionado (células de la granulosa y células de la teca) son estimulados por la LH para diferenciarse a cuerpo lúteo. Éste es esencial para permitir los estadios iniciales del embarazo. Se cree que el ovocito produce un factor antiluteinizante que previene la diferenciación terminal (luteinización) antes de tiempo (El-Fouly y cols., 1970; Nekola y Nalvandov, 1971). Esta idea viene avalada por el hecho de que los ovocitos suprimen la producción de progesterona antes del pico de LH. En ausencia del ovocito, la FSH estimula la producción de progesterona en las células del cúmulo procedentes de folículos antrales, no obstante, esta producción es suprimida por factores secretados por los propios por ovocitos (Vanderhyden y cols., 1993; Coskun y cols. 1995; Vanderhyden y Tonary, 1995; Li y cols., 2000). Además de la supresión de progesterona, los ovocitos de ratón promueven la producción de estrógenos. Estas dos acciones de los ovocitos en la esteroidogénesis parecen ser independientes y ocurren a raíz de la estimulación de la síntesis de AMPc por parte de la FSH (Vanderhyden y Tonary, 1995). El factor que suprime la producción de progesterona se produce en ovocitos en todos los estadios testados, desde los folículos preantrales a los ya ovulados. En cambio, la diferenciación inducida por gonadotropinas en las células del cúmulo, hace que estas células sean refractarias a los factores derivados del ovocito (Vanderhyden y Macdonald, 1998). Por tanto, aunque los factores ovocitarios pueden evitar la luteinización precoz, una vez iniciada, estos serían superfluos. La identidad de estos factores reguladores de la esteroidogénesis es desconocida, aunque se sabe que tienen bajo peso molecular y que son estables al calor (Vanderhyden, 1996) por lo que no se cree que sean el GDF9 ni el BMP15. Las gonadotropinas promueven la producción de ácido hialurónico por parte de las células del cúmulo, un glicosaminglicano no sulfatado que se une a ellas, y se expande por los espacios entre células, embebiéndolas en una matriz mucilaginosa. La inhibición de la síntesis de ácido hialurónico o la unión a las células del cúmulo in vivo, disminuye la tasa de ovulación (Chen y cols., 1993; Hess y cols., 1999). Cuando los ovocitos adquieren la competencia meiótica (estadio antral) secretan el factor que permite la expansión del cúmulo (CEEF), que posibilita la respuesta de las células de la granulosa a FSH para producir ácido hialurónico. La ovocitectomía en complejos ovocito-células del cúmulo de folículos antrales evita la expansión del cúmulo en ratón, en cambio, no lo evita en rata, cerdo y vaca (Prochazka y cols., 1991; Vanderhyden, 1993; Ralph y cols., 1995). Estas especies producen CEEF pero parece que es innecesario para promover la expansión. Presumiblemente, el CEEF de rata, cerdo y vaca se necesita para promover alguna otra función distinta de la producción de ácido hialurónico en las células de la granulosa. De hecho, los ovocitos de cerdo secretan un factor que promueve la unión del ácido hialurónico al complejo (Nagyova y cols., 2000). Es más, las células del cúmulo fabrican un factor con actividad similar a la del CEEF producido por el ovocito pero no se ha determinado si es el mismo que promueve la expansión en complejos ovocitectomizados estimulados por FSH (Prochazka et al., 1998). Por otra parte, se ha visto que el GDF9 recombinante estimula la expansión en complejos ovocitectomizados e induce la expresión de la sintasa 2 de hialuronano (Has2) en células de la granulosa no estimuladas por FSH (Elvin y cols., 1999a). Tanto el CEEF como el GDF9, podrían ser la misma molécula, aunque de ser así, no esta claro porque el GDF9 que se expresa desde estadios anteriores, no induce antes la expresión de Has2. En todo este proceso, puede que haya otros factores que medien la respuesta de GDF9 antes o después del pico de gonadotropinas.. Los ovocitos afectan a las funciones de las células de la granulosa de forma esencial para la ovulación, promoviendo la producción de prostaglandinas y la expansión del cúmulo. La producción de las prostaglandinas es necesaria para una ovulación normal, por lo que el ovocito favorece la expresión del gen de la sintasa de endoperóxidos de prostaglandina 2 (Ptgs2 o Cox2). El patrón de expresión de prostaglandinas en las células de la granulosa murales en folículos preovulatorios, parece multifásico tras el pico de gonadotropinas, primero aumentan, luego descienden y de nuevo aumentan (Joyce y cols., 2001). In vitro, el segundo aumento no se ha observado (Joyce y cols., 2001), por lo que parece que este patrón de expresión complejo en el período preovulatorio está orquestado por factores no ovocitarios, posiblemente derivados de la teca aunque las concentraciones son incrementadas por los ovocitos. El GDF9 recombinante estimula in vitro, tanto la expresión de Ptgs2 en células de la granulosa (Elvin y cols., 1999a) como también la de Ptgerep2, el receptor EP2 de PGE2 (Elvin y cols., 2000a), con lo que podemos decir que, GDF9 induce la expresión de Has2, Ptgs2 y Ptgerep2 en las células del cúmulo antes del pico de LH y además promueve la ovulación normal, es clave en la expresión del fenotipo de las células del cúmulo en el periodo periovulatorio. Entre los múltiples papeles que ejercen los ovocitos, esta tambien la participación en el desensamblaje de los complejos ovocito-células del cúmulo, al suprimir antes del pico de LH la activación del activador del plasminógeno de uroquinasa (uPA o Plau). Este enzima es una proteasa de serina que participa en el remodelado tisular (Canipari y cols., 1995). Tras la ovulación, este enzima participa en la degradación del la matriz del cúmulo ya que estas, se vuelven insensibles a la inhibición de la expresión del uPa (D’Alessandris y cols., 2001).