Seminario Universitario – Matemática EJERCICIOS – MÓDULO 6 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: a ) 245 b ) 170 c ) 304 d ) 75 e ) 160 f ) 250 g ) 340 h ) 487 i ) 608 j ) 700 k ) 1450 l ) 1000 m ) 2000 n ) 1800 2) Para los ángulos mayores que un giro dar un ángulo positivo que esté entre 0° y 360° congruente con el ángulo dado. 3) Calcular el valor de x en las siguientes expresiones: a) x sen cos cos cot g 4 4 6 6 cos 2 0 cos 2 3 3 b) x sen sen sen sen 6 2 6 2 cos 2 0 cos 2 6 sen cos 2 3 tg 6 d) x cosec 2 cot g 2 cos 2 0 3 cosec sec 6 6 3 3 2 2 2 e) x sen 4 cos sen 0 sen t g 3 3 3 6 3 1 f ) 2 x sen 2 cosec cot g cos 0 g) t g x cosec cos 3 6 6 4 6 3 cos 6 h) x sen 2 a 2 b 2 sen 2 a b a b 6 3 1 i) x sen cos cos sec sen cot g 3 4 3 3 2 4 6 sen 3 cosec 4 4 j) x 1 cos 2 4 1 k ) x t g cos t g sen cot g 2 cot g 2 2 4 3 3 6 4 3 c) x t g cot g 3 6 sec sen 2 2 cosec cos t g sen 6 3 3 6 cot g 2 2 cos 2 cot g 3 4 6 4) Calcular las demás funciones trigonométricas si: a) sen 4 5 c) sen , 2 3 2 , 3 2 2 b) sen d) cos 3 3 2 7 , , 2 3 2 21 Módulo 6 e) cos g) tg 3 2 4 3 , 7 , i ) sen 0,778, 2 3 2 3 2 f ) tg 2 22 2 3 h) cos 0, 850, 2 2 3 j ) tg 2, 08, 2 2 15 , 5) Expresar en metros la longitud de un arco de circunferencia de radio 1.600m, subtendido por un ángulo central de 3 4 . 6) ¿Cuántas horas, minutos y segundos tarda la Tierra en girar 20º 30’ sobre su eje? 7) Calcular la longitud del arco de meridiano terrestre comprendido entre el ecuador y la ciudad de Concepción del Uruguay, que está a una latitud de 32° 30’ sur. (Radio terrestre: 6370 km). 8) Las ruedas de una bicicleta tienen un diámetro de 108 cm. a) ¿Cuánto avanza la bicicleta si uno de los rayos de la rueda trasera gira 36°? b) ¿Cuántas vueltas completas deben dar las ruedas de la bicicleta para recorrer un kilómetro? 9) Calcular en radianes el ángulo que forman las agujas de un reloj, cuando éste marca exactamente las 5. 10) El minutero de un reloj mide 16 cm. ¿Qué distancia recorre la punta del mismo al cabo de 40 minutos? 11) ¿Cuál es la longitud del arco correspondiente a un ángulo central de 150°, si el diámetro de la circunferencia es de 9 cm? 12) Una curva de una carretera corresponde a un arco de un círculo de radio 450m, subtendido por un ángulo central de 28°. ¿Cuánto tiempo empleará un automóvil en recorrer la curva si su velocidad es de 72 km/h? 13) Los centros de dos engranajes están a 50cm de distancia. Si cuando el menor de ellos gira un ángulo de 6 radianes, el otro gira un ángulo de 4 radianes, calcular el radio de cada engranaje. 14) Verificar las identidades: a) t g cot g t g cot g sec 2 2 tg 1 c ) 2 sen 1 sen cos 2 4 e ) t g sen 2 2 4 sen sec 2 2 cosec2 15) Verificar las siguientes identidades: 22 b ) cot g 1 t g cosec 2 d ) sen 4 2 1 cos 2 cosec f ) 1 sen 2 2 2 1 t g sen sec cot g 2 Seminario Universitario – Matemática a) b) 90 sen2 180 1 = cot g 2 t g 180 cos 90 cos sec cosec 2 2 1 cos 180 1 sen 360 sen 2 16) Dos fuerzas perpendiculares entre sí de 50 N y 120 N actúan sobre un cuerpo. Hallar la intensidad de la resultante del sistema que constituyen y el ángulo que dicha resultante forma con la fuerza de mayor intensidad. 17) En un triángulo rectángulo uno de sus catetos es la tercera parte del otro. Obtener los ángulos agudos de dicho triángulo. 18) Calcular la superficie de un terreno rectangular, sabiendo que un alambrado que lo atraviesa diagonalmente mide 65 m y forma con uno de los lados del mismo un ángulo de 46° 23’. 19) Calcular el área y el perímetro de un triángulo isósceles, sabiendo que la altura correspondiente a la base mide 9,7 cm y uno de los ángulos adyacentes a ella es de 38°. 20) Desde el balcón del primer piso de un edificio se ve un objeto en el suelo ubicado a 7 m de la pared, bajo un ángulo de depresión de 35° 42’. Desde un balcón del tercer piso del mismo edificio, se ve el mismo objeto bajo un ángulo de depresión de 58° 21’ ¿Cuál es la diferencia de altura entre ambos balcones? 21) Desde un globo de observación situado a 360 m de altura sobre el nivel del mar se observan dos embarcaciones: una situada al oeste, bajo un ángulo de depresión de 34° y la otra, hacia el sur, bajo un ángulo de 31°. Calcular la distancia entre las dos embarcaciones. 22) Desde un avión que vuela a 2.000 metros de altura sobre el océano, se observa un punto p ubicado en la costa de una isla según un ángulo de depresión de 15º 12’. ¿Cuántos kilómetros deberá recorrer el avión para sobrevolar dicho punto? 23) Para construir un túnel rectilíneo en un montaña que una dos localidades A y B se desea calcular su longitud. Para ello se elige un punto C ubicado a 37 km de A y a 44 km de B, ˆ de 110°. Graficar la situación y hallar la longitud del túnel. siendo el ángulo ACB 24) ¿Cuál es la altura de una torre, si el ángulo de elevación disminuye de 50° a 18° cuando un observador que está situado a una determinada distancia del pie de la torre, se aleja 90 m sobre la misma recta? Nota: El gráfico es solamente para tu orientación, no está construido a escala. 25) A y B son dos puntos situados en las márgenes 18° 50° 90 m 23 Módulo 6 opuestas de un río. Desde A se traza una línea AC 275 m y se miden los ángulos ˆ 48 50 . Encontrar la distancia entre los puntos A y B. ˆ 125 48 y ACB CAB 26) Dos observadores separados por 1 km están en el mismo plano vertical que pasa por el centro de un globo y cada uno de ellos lo ve con un ángulo de elevación de 69° 15’ y de 39° 23’ respectivamente. Calcular la altura del globo en cada uno de los siguientes casos (graficar): a) si los observadores están en el mismo semiplano con respecto a la vertical b) si los observadores están en distintos semiplanos con respecto a la vertical. 27) Desde una altura de 7,2 km el piloto de un helicóptero ve la luz de un helipuerto bajo un ángulo de depresión de 24° 35’. ¿Qué distancia hay entre el helicóptero y la luz? 28) Calcular el perímetro y el área de un paralelogramo siendo una de sus diagonales de 5 cm y sabiendo que forma con los lados del paralelogramo ángulos de 65° y 28°. 29) ¿Cuál es el perímetro de un octógono regular inscripto en una circunferencia de 20 cm de radio? 30) Desde la terraza del más bajo de dos edificios, que distan entre sí 12,5 m y están situados en veredas opuestas, se observa la terraza del otro con un ángulo de elevación de 40°. Si la altura del primero es de 95 m, ¿cuál es la altura del otro? 31) Calcular el desnivel entre los puntos extremos de un camino rectilíneo de 1250 m que tiene una pendiente de 7° 45’. 32) Calcular el volumen de un cono sabiendo que la generatriz es de 25 cm y el ángulo que ésta forma con la base es de 50°. (V = 1/3 Ab . h) 33) Se unen los centros de tres circunferencias tangentes exteriores entre sí, determinando un triángulo; si los radios de las mismas son de 15 cm, 20 cm y 25 cm. ¿Cuánto miden los ángulos del triángulo? 34) Hallar la altura de una pared si un observador ubicado en un cierto punto ve la parte superior bajo un ángulo de elevación de 15° y al moverse, en forma perpendicular a la pared, 7 m el ángulo ha aumentado en 25°. 35) Dos rutas rectas que se cortan forman un ángulo de 63° 20’. En una de las rutas y a 1,5 km del cruce hay un parador; sus dueños quieren abrir un camino para que los que transitan por la otra ruta tengan acceso al mismo. Si construir 100 m de camino cuesta $ 450, ¿cuál es el costo mínimo de la obra? 36) ¿Cuál es el área de un pentágono regular de 60 cm de perímetro? 37) Es necesario conocer las distancias de un punto C a otros dos puntos A y B, la que no se puede medir directamente ya que se encuentra atravesada por un caudal de agua. Para ello se decide prolongar 175 m el segmento AC, hasta obtener el punto D y también el 24 Seminario Universitario – Matemática segmento BC, en 225 m hasta E. Luego se miden las distancias AB, DB y DE, obteniéndose 300 m, 326 m y 488 m. Con dichos datos ¿se pueden calcular las distancias que se requerían? En caso de ser la respuesta afirmativa, hallarlas; en caso de ser negativa, justificar. 38) Se dan dos segmentos de longitudes 16 cm y 18 cm y un ángulo de 60°. ¿Puede construirse un triángulo cuyos lados sean congruentes con los segmentos dados y el ángulo sea opuesto a uno de ellos? Estudiar y discutir las distintas posibilidades. 39) En un paralelogramo dos lados miden 30 cm y 46 cm, y el ángulo comprendido entre ellos es de 53° 20’. Calcular la medida de cada una de sus diagonales. 40) El perímetro de un cuadrado inscripto en una circunferencia vale 24 m. ¿Cuánto mide el perímetro del triángulo equilátero inscripto en la misma circunferencia? 41) Dos lados de un triángulo miden 23 cm y 56 cm, y forman un ángulo de 67° 23’ 55”. Calcular la superficie del triángulo. 42) Hallar el área de un triángulo cuyos lados miden 31 cm, 37 cm y 22 cm. 43) Probar que se verifican las identidades siguientes: a ) sen 30 cos 60 cos 44) Calcular x sabiendo que: 3x 2 1 a ) sen cosec 5 3x 4 b ) sen x 2 cos 1 x b) si x t g t g 1 t g t g tg 4 3 c ) t g 8 sen 2 x 25 Módulo 6 SOLUCIONES DE LOS EJERCICIOS PROPUESTOS 1) A cargo del alumno. 2) i ) 248º 3) a) x k) 10º 3 b) x = –2 4 f) x i)x=1 j)x=5 3 5 b) cos c) cos 6 3 5 3 d ) sen 3 5 7 e) sen 1 7 f ) cos tg tg tg 15 313 313 g ) cos 2 13 13 3 4 2 2 cot g 2 2 5 5 cot g 3 5 2 3 12 sen h) x = a2 – b2 1 2 5 3 sec 12 5 3 sec 5 2 cosec 6 2 sec 2 5 15 cot g cot g 4 3 d ) x 84 3 2 4 k) x cotg 5 1 g) x 4 4 3 tg tg c) x 3 e) x = 1 4) a) cos 26 n) 0º cosec 3 3 5 5 sec sec 7 3 12 5 4 cosec 7 2 3 2 cosec 7 5 15 cosec 7 2 6886 15 22 313 cot g sec cosec 313 44 15 sen 3 13 13 cot g 2 3 sec 13 2 cosec 13 3 6886 44 Seminario Universitario – Matemática h) tg 111 17 sen 111 20 cot g 17 111 111 sec 20 17 cosec 20 111 111 i ) tg = - 1,238 cos 0, 628 cotg 0.807 sec 1, 592 cosec 1, 285 j ) cos 0, 433 sen 0, 209 cotg 0, 481 sec 2, 309 cosec 1, 109 5) S = 3770 m 6) 1 hora 22 minutos 7) 3613,27 km 8) a) 34 cm 9) 5 6 11) 10) 15 cm 4 b) 295 vueltas 64 cm 3 12) 11 segundos 13) 20 cm y 30 cm 14) A cargo del alumno. 15) A cargo del alumno. 16) R = 130 N; = 22º 37’ 12” 17) = 18º 26’ 6”; = 71º 33’ 54” 2 2 18) 2110,04 m 19) A = 120,43 cm ; Per = 56,35 cm 20) 6,33 m 21) 802,39 m 22) 7,36122 km 23) 66,47 km 24) 40,2 m 25) 2213,42 m 26) a) 1191,5 m 27) 17,31 km 29) 122,46 cm 31) 168,56 m b) 626,17 m 28) Per = 13,78 cm; A = 10,65 cm2 30) 105,49 m 32) 5,18 dm3 33) Â = 48º 11’ 22”; B̂ ´= 58º 24’ 42”; Ĉ = 73º 23’ 54” 34) 2,76 m 35) $ 6032 36) 247,75 cm2 37) sí ; AC 145,43 m; BC 350,82 m 38) Si 39) d = 36.98 cm; D = 68,29 cm 40) 22,03 cm 41) 594,54 cm2 42) 340,47 cm2 43) A cargo del alumno. 3 44) a) S = 2 b) S = {1; 2} 2 3 c) S = 27