Construcción de Inductores de radiofrecuencia (2004) (Ultima actualización, 2010-04-13) Por Miguel R. Ghezzi (LU 6ETJ) www.solred.com.ar/lu6etj SOLVEGJ Comunicaciones www.solred.com.ar/solvegj (Para visualizar los caracteres especiales precisa tener instalada en su sistema la fuente Symbol, de lo contrario las abreviaturas de microhenrys se convertirán en milihenrys) Los inductores siempre han estado situados en una zona "problemática" en la radioafición. Recuerdo, en mis comienzos, haber ido a comprar a la vieja casa Recia de la calle Suipacha, un Toroide de 5 H y transportarlo a mi casa como si se tratara de un tesoro. Cinco seguros y confiables microhenrys que eran una segura ancla para mi gareteo electrónico y radial... Pero en realidad, el cálculo y la construcción de un inductor es bastante simple, cualquiera puede hacerlo y otorga mucha libertad a la hora de realizar un diseño o adaptar circuitos publicados. Toroides versus solenoides... La necesidad de utilizar toroides suele estar algo exagerada entre los radioaficionados, ellos no son inductores con propiedades mágicas. Tienen las suyas pero casi cualquier circuito de radio en el cual intervenga un toroide funcionará igual (y a veces mejor) con uno tipo solenoide. En general suelo recomendar solenoides porque es más fácil precisar su inductancia con un simple cálculo en contraste con un toroide del cual, a menudo, se carece de datos acerca de las propiedades magnéticas del material del núicleo lo cual en altas frecuencias puede malograr nuestras expectativas. Su principal virtud es la de proveer un circuito magnético cerrado que tiende a confinar a su interior lo cual facilita su blindaje. Los inductores solenoide monocapa, son prácticos en frecuencias comprendidas entre los 2 y 200 MHz. Hasta hace algún tiempo el solenoide ajustable con núcleo ofrecía una ventaja: obtención fácil y económica de formas para bobina ajustables, en contraste con la relativa dificultad para adquirir trimmers a bajo costo. Hoy la situación parece revertirse: encontramos fácilmente trimmers y cuesta más encontrar formas para bobinas con núcleo de allí que el toroide (con o sin núcleo) se convierta en un elemento atractivo para los nuevos diseños. Averiguando la inductancia de una bobina solenoide monocapa En realidad este ítem debería presentarse más tarde, luego de realizar otras consideraciones, pero, comprendiendo la ansiedad de muchos por ver "resultados concretos" prefiero mostrar al principio las cuestiones "candentes". Para calcular un inductor del tipo solenoide emplearemos la fórmula de Harold A. Wheeler. Esta fórmula tiene tan buena precisión que podemos emplearla para construir patrones de referencia útiles en el taller de aficionado. Conviene llevarla a una hoja de cálculo tipo Excel y es: 0,001 n2 D2 L[H] = ---------------l + 0,45 D n = número de espiras, D = diámetro de la bobina en mm, l = longitud del bobinado en mm. La precisión alcanza el 1% para bobinas cuya relación l/D sea mayor que 0,4. El diámetro de la bobina se mide entre centros del alambre y supone que el diámetro del alambre es mucho menor que el diámetro de la bobina. ¡Con esta simple fórmula ya estamos en condiciones de encarar la construcción del inductor...! Inclusive puede aplicarse a bobinas con núcleo porque con el núcleo retirado de la forma, la inductancia será la que resulta de la fórmula y con el núcleo introducido totalmente (suponiendo que el mismo tenga una longitud y un diámetro similar a las del bobinado), por lo común la inductancia será de 3 a 5 veces mayor que sin él para casi cualquier núcleo cuya permeabilidad sea de 10 o más... Ejemplo: El handbook de la ARRL indica para una bobina de carga destinada a una antena móvil de 40 m, una inductancia L = 20 H. Sugiere que esta inductancia puede obtenerse mediante 22 espiras de alambre Nº 12 bobinadas sobre una forma de 2 1/2 pulgadas de diámetro con una longitud de 2 3/4 pulgadas. Convertimos las dimensiones a mm: 1. Diámetro 2 1/2" = 63,5 mm 2. Longitud 2 3/4" = 69,85 mm Escribimos la fórmula: 0,001 x 222 x 63,52 L[uH] = ---------------------- = 19,83 H 69,85 + 0,45 x 63,5 Vemos que el resultado es muy aproximado al dado por el manual Calculando el número de espiras del solenoide monocapa Para calcular el número de espiras, conociendo el diámetro y la longitud del bobinado podemos emplear: con las mismas unidades del ejemplo anterior (Esta identidad se ha escrito de este modo para facilitar el uso de la calculadora electrónica). Ejemplo: Para verificar empleamos los datos del ejemplo anterior, calculando entonces el número de espiras para obtener una inductancia de 20 H forma de 2 1/2" de diámetro con una longitud de 2 3/4". Convertimos todas las dimensiones a mm: 1. Diámetro 2 1/2" = 63,5 mm 2. Longitud 2 3/4" = 69,85 mm Escribimos la fórmula: Vemos que se verifica dentro del error esperado por los redondeos... Factor de mérito, factor de calidad (quality) o "Q" de un solenoide monocapa Un inductor ideal en corriente alterna proveería de una reactancia puramente inductiva pero los inductores reales presentan capacidades y resistencias asociadas a la inductancia deseada. EL "Q" es un número que indica cuánto se aproxima el inductor real al ideal, cuanto mayor sea el Q, más perfecto será el inductor. Tanto la resistencia y la capacidad parásita intervienen en el Q. El Q se obtiene efectuando el cociente entre la reactancia y la resistencia del inductor, suponiendo que ambas se presentan en serie (la resistencia es distinta a la de corriente continua por el llamado "efecto pelicular", por lo que no servirá medirla con un multímetro común). Nótese de paso que puesto que la reactancia depende de la frecuencia, el Q también depende de ella y en general (hasta cierto punto, como veremos) aumenta linealmente con la misma y en bajas frecuencias tiende a ser muy bajo. XLS Qs = ----Rs (los subíndices "s" significan "serie") Vemos que cuanto más baja sea la resistencia de la bobina en relación a la reactancia, más alto será el Qs y más "ideal" será nuestro inductor. Ahora bien, para una dada frecuencia, ¿de qué depende el Q de una bobina solenoide sin núcleo?. Pues bien, depende fundamentalmente de su geometría. (esto es porque los parámetros físicos quedan "escondidos" detrás de los geométricos y para nosotros esto es una ventaja). En el legendario Vademécum de radio y electricidad del Ing. Emilio Packman de Editorial Arbó y en los apuntes de la materia "Tecnología de los materiales" de la Universidad Tecnológica Nacional, se encuentra un gráfico que permite conocer el Q de un solenoide monocapa aplicando la siguiente fórmula de R. G. Medhurst: Donde: D = diámetro de la bobina en mm, f = frecuencia en MHz, = coeficiente extraído del gráfico que se muestra a continuación. (Atención, el original emplea cm en lugar de mm y la constante difiere). Nótese que el Q del inductor depende de la frecuencia. El Q es directamente proporcional al diámetro de la bobina. Esto está muy claro en la fórmula. El Q de una bobina es mayor a medida que se eleva la frecuencia. El Q es mayor a medida que el coeficiente aumenta. A su vez el coeficiente es Mayor cuando la relación longitud a diámetro (l/D) del bobinado aumenta (bobina "larga"). Máximo para una relación diámetro del alambre versus separación entre centros de las espiras (d/s) = aproximadamente 0,55 (separación entre espiras igual al diámetro del alambre aproximadamente). Con estos elementos no solamente estamos en condiciones de averiguar el Q de una bobina, sino también de estimar cuáles medidas lo favorecerán...! Puede verse que coincide con la noción que tenemos intuitivamente, por ejemplo que una bobina de generoso diámetro con alambre "gordo" tendrá buen Q... Ejemplo: Prosigamos empleando el ejemplo de nuestra bobina de carga para 40 m. Calculamos la relación l/D = 69,85/63,5 = 1,1 Ahora precisamos obtener la relación d/s, es decir entre el diámetro del alambre y la separación entre espiras. Este dato no lo tenemos, pero lo podemos averiguar mediante unos simples cálculos, sabiendo que el alambre Nº 12 tiene un diámetro de 2,05 mm. La longitud ocupada por el alambre será naturalmente: 22 x 2,05 = 45,1 mm Siendo la longitud total del bobinado 69,85 mm el espacio total no ocupado por el alambre será en consecuencia: 69,85 mm - 45,1 mm = 24,75 mm espacio que se repartirá entre n-1 espiras, (22 -1 = 21), por lo tanto el espacio libre entre espiras será 24,75/21= 1,178 mm. La distancia s para entrar al gráfico será entonces 1,178 mm, más el diámetro del alambre, entonces: s = 2,05 + 1,178 = 3,228. La relación d/s deseada será 2,05/3,228 = 0,63 Ya podemos ingresar al gráfico con aproximadamente 0,6 en el eje horizontal inferior, subir hasta intersectar la curva que corresponde a l/D de aproximadamente 1 y obtener en el eje vertical de la izquierda el factor que será aproximadamente 0,65. Ahora aplicamos la fórmula: Realmente un buen Q...!. De paso aprovechamos para ver cuál es la resistencia asociada a esta bobina que mediante este método si podemos conocer. Recordando que Q = XL/R => R = XL/Q. XL es a 7 MHz XL = 2 f L = 879,6 Ohms por lo tanto R = XL/Q = 879,6/819 = 1,074 Ohms. La resistencia de radiación esperada para una antena móvil en esta frecuencia es aproximadamente 3 Ohms, de manera que vemos que las pérdidas en la bobina serían menores que la energía irradiada. Esto no significa que la energía irradiada sea la del trasmisor puesto que hay que considerar la resistencia de pérdidas en tierra que fácilmente se sitúa en el orden de los 10 o 12 Ohms, pero esto ya es harina de otro costal... En lugar del gráfico pueden emplearse un par de fórmulas de Callender (1) que se aproximan con poco error a las de Medhurst con f en MHz, D (diámetro de la bobina) y l (longitud) en mm. (1) CALLENDER, M. V. Q of Solenoid Coils, Wireless Engineering, número de Junio de 1947, pag 185. La capacidad distribuida de un solenoide monocapa La capacidad distribuida de una bobina (con un extremo conectado a tierra) puede estimarse fácilmente con los datos que del Vademecum tomados del trabajo de Medhurst (2) que también dependen fundamentalmente de consideraciones puramente geométricas Cd [pF] = K D, donde D se expresa en mm y K depende de la relación longitud a diámetro (l/D) de la bobina de acuerdo a la tabla siguiente: l/d K 0,1 0,3 0,096 0,06 0,5 0,05 0,8 1 2 4 6 8 10 15 20 0,05 0,046 0,05 0,072 0,092 0,112 0,132 0,186 0,236 30 0,34 Nótese que K es mínimo para una relación l/D = 2, de manera que si el objetivo es minimizar la capacidad distribuida de nuestras bobinas será conveniente que su longitud sea aproximadamente el doble que su diámetro. Ejemplo: Calcular la capacidad distribuida de la bobina de carga de los ejemplos anteriores. Calculamos l/D = 69,85/63,5 = 1,1 con ella entramos a la tabla y vemos que: K =0,046 y empleando la fórmula indicada... Cd = K D = 0,046 x 63,5 mm = 2,92 pF (2) MEDHURST, R G., HF Resistance and Self Capacitance of Single-Layer Solenoids, Wireless Engineering, número de Marzo de 1947, pag 80. La inductancia efectiva de un inductor cualquiera Aquí encontramos un concepto no tan difundido: ¿sabía Ud. que la inductancia depende de la frecuencia? Si, si, leyó bien: LA INDUCTANCIA (la reactancia ya sabíamos...) Efectivamente, la inductancia depende de la frecuencia. Es mayor a medida que aumenta la misma. Esto se debe justamente a la existencia de la capacidad distribuida... Por ello la llamamos: "Inductancia efectiva" No demostraré aquí la razón por la que esto sucede porque excede el marco del artículo y, además, se encuentra en cualquier texto de radiotécnica. Ud. puede aplicar la siguiente identidad para calcular la "verdadera" inductancia de una bobina a una frecuencia dada. L L* = -----------------------------1 - [ 0.000001 (2 f)2 L Cd ] donde: L = inductancia calculada en H, Cd = Capacidad distribuida de la bobina en pF, f en MHz (los corchetes se agregaron para darle más claridad a la fórmula). No se sorprenda si al aplicar esta fórmula por encima de cierta frecuencia obtiene resultados negativos. Eso quiere decir que su inductor ha dejado de ser un inductor para convertirse en un capacitor...! Tampoco se extrañe si al subir la frecuencia encuentra que la inductancia efectiva aumenta muy rápidamente hasta alcanzar valores muy altos (inclusive infinito). Esto se produce porque nos estamos aproximando a la frecuencia llamada "de autorresonancia" de la bobina. La frecuencia de autorresonancia es aquella en que el inductor entra en resonancia con su propia capacidad distribuida (de allí que por encima de la frecuencia de autorresonancia se comporte como un capacitor...) Ejemplo: Calcular la inductancia efectiva a 7 MHz de la bobina de carga de los ejemplos anteriores. Aplicando la fórmula: 20 H L* = ------------------------------------------------------ = 22,54 H 1 - [0,000001 x (2 x 3,14 x 7 MHz)2 x 20 H x 2,92 pF] Vemos que el efecto de la capacidad distribuida ha aumentado la inductancia de la bobina en aproximadamente 2,5 H. Eso quiere decir que debemos reducir algo el número de espiras calculadas para obtener los 20 H originalmente deseados. Los toroides, los toroides... Los toroides son unos sujetos muy simpáticos en el mundo de la radio; siendo que los radioaficionados en general son varones, algún sicoanalista podrá explicar mejor porqué nos atraen más los toroides que los solenoides; yo opino que Don Sigmund ya le habría encontrado una buena y libidinosa justificación... Una propiedad particular del toroide es que se lo considera "autoblindado". Esto es porque las líneas de inducción magnética tienden a estar constreñidas en su interior y no se dispersan en su vecindad como sucede en un solenoide común, más aún si esta armado en un núcleo ferromagnético. Más allá de eso, poco más es lo que el sujeto nos puede proporcionar como inductor y un solenoide con su blindaje puede llegar a ser, inclusive, mejor. El inductor toroidal no requiere de un núcleo ferromagnético y puede construírselo perfectamente con núcleo de aire como cualquier solenoide. En las frecuencias más altas este método será particularmente fácil de emplear por el menor número de espiras que normalmente requieren. En caso de que se lo construya con núcleo de aire es importante que la primer espira esté inmediatamente al lado de la última porque lo que tiene que ser toroidal es el bobinado, no el soporte del mismo... de otro modo el circuito magnético sería "abierto". Eso es necesario para que sea válida la fórmula y para conservar las características autoblindantes (cuando se emplean núcleos de alta permeabilidad se sugiere no acercar tanto el principio y el fin del bobinado para disminuir algo la capacidad distribuida, en este caso el circuito magnético sigue cerrándose por el núcleo debido a la alta permeabilidad del material aunque el bobinado no recubra totalmente al núcleo Las cualidades autoblindantes del toroide con núcleo de aire (que serán menores que con un núcleo magnético) pueden aprovecharse, puesto que este tipo de inductor también puede calcularse fácilmente con la misma fórmula. En un toroide, calcular la inductancia con un material magnético de núcleo es una operación simple y directa, (si poseemos datos acerca del núcleo) mientras, como veremos luego, en el solenoide no es tan sencillo. Averiguando la inductancia de un toroide La fórmula general para cualquier devanado toroidal de sección rectangular o cuadrada (como normalmente se los encuentra en RF) es: L [H] = 0,0002 r n2 h ln (dext/dint) (ln es el "logaritmo natural", todas las calculadoras científicas pueden resolverlo). Si su calculadora no resuelve logaritmos naturales y únicamente los calcula en base 10, puede emplear la siguiente fórmula que es absolutamente equivalente: L [H] = 0,00046062 r n2 h log10 (dext/dint) Cualquiera sea la fórmula que empleemos, h es la altura del toroide expresada en mm. dext el diámetro exterior y dint el diámetro interior (del orificio), sin importar las unidades, siempre y cuando ambas sean iguales. r es la permeabilidad relativa (Amidon la llama "permeabilidad inicial") del material del núcleo (1 para aire, plástico, madera etc). En algunos manuales (por ejemplo en las tablas del handbook de la ARRL o en los materiales de la firma Amidon) la r está expresada como , pero en los textos de física encontrará que designa a la permeabilidad absoluta, que es un número mucho más pequeño. La r oscila entre valores de 1 a 5000 mientras que la puede variar entre unos 12 x 10-7 a 6 x 10-3 para esos mismos materiales así que no debemos confundirnos al profundizar en la materia. Ejemplo: Calcular la inductancia de un inductor bobinado sobre un toroide con núcleo de plástico cuyas dimensiones son: dext = 12,7 mm dint = 7,69 mm h = 4,85 mm n = 10 espiras L =? Aplicamos la fórmula teniendo en cuenta que la r es 1: L [H] = 0,00046062 x 1 x 10 esp2 x 4,85 mm x log10 (12,7 mm / 7,69 mm) = 0,048 H Si devanamos la misma cantidad de espiras obre un toroide de idénticas dimensiones con una permeabilidad relativa de 10 tenemos: L [H] = 0,00046062 x 10 x 10 esp2 x 4,85 mm x log10 (12,7 mm / 7,69 mm) = 0,48 H Las dimensiones y permeabilidad de este toroide no son casuales, corresponden al material T 50-2 de la firma Amidon que aprovecharemos en un próximo ejemplo Calculando el número de espiras del toroide Al igual que con un solenoide, podemos obtener el número de espiras "n" despejando la ecuación original. Las unidades son las mismas, ya sea que empleemos logaritmos naturales o decimales... o Si bien la fórmula puede parecer complicada para operar con ella, una vez que la instalamos en una hoja de cálculo de computadora nunca más tendremos que preocuparnos por ella. Ejemplo: Verificar los resultados del ejemplo anterior siendo L = 0,048 H dext = 12,7 mm dint = 7,69 mm h = 4,85 mm n =? Aplicamos la fórmula: Que es casi exactamente 10 espiras, lo que nos muestra, de paso, como los redondeos modifican levemente los resultados El factor de inductancia "AL" (también "índice" de inductancia) En general los fabricantes del material magnético toroidal proveen un dato que simplifica los cálculos. Es el número "AL" llamado "Factor de inductancia". No tiene nada de especial y surge de la ecuación general de la inductancia para un toroide, acomodada para que los cálculos sean más sencillos de realizar manualmente. El número AL acompaña a las hojas de datos y, en general representa: mH cada 1000 espiras o H cada 100 espiras o nH por espira De esta manera es muy fácil averiguar la inductancia o calcular el número de espiras. Para calcular la inductancia: Cuando AL viene dado en H/100 esp Para calcular el número de espiras: Cuando AL viene dado en H/100 esp Atención: Si AL está dado en mH/1000 espiras reemplace el número 100 por 1.000 en las fórmulas, en esa situación, el resultado estará en mH. Si AL está dado en nH por espira, reemplace el 100 por 1 y el resultado estará dado en nH Amidon® da AL en mH/1000 esp para los materiales de Ferrite (alta permeabilidad): 33, 43, 61, 64, 67, 68, 73, 77, 83, F, J, K, W y H y en H/100 esp para los de hierro pulverizado (baja permeabilidad) : 26, 3, 15, 1, 2, 7, 6, 10, 12, 17 y 0. Ferroxcube®, Micrometals® y Fair-Rite® en nH/espira2 Ejemplo: Dado un toroide marca Amidon tipo T 50-2 con 10 espiras, averiguar su inductancia. El A L especificado por el fabricante es 50 Aplicando la fórmula: Valor muy próximo al obtenido en el cálculo sin A L (con la fórmula general) y que difiere levemente debido a los redondeos efectuados al convertir las medidas originales del toroide de pulgadas a milímetros. Consejos Si por el inductor circula corriente continua, en general convendrá que su conductor tenga baja resistencia a la CC para no producir una caída significativa de tensión. Eso requiere alambres mayor diámetro de alambre, menor longitud, o ambas cosas a la vez; es más fácil conseguir este objetivo utilizando núcleos de ferrite en vez de hierro pulverizado en el inductor (por la mayor permeabilidad típica de los primeros). Cuando se emplean núcleos con corriente continua circulante tener en cuenta que ella no sature al núcleo, pues en esas condiciones el mismo no tiene efectividad. El diámetro del alambre y la superficie total del inductor deben ser adecuados para que no se produzca sobrecalentamiento. Utilice núcleos de ferrite en transformadores que requieren gran acoplamiento pero recuerde que estos núcleos calentarán más que los de hierro pulverizado a igual tamaño (pues normalmente precisarán menos espiras dando lugar a mayor inducción en el núcleo). Evítese que la temperatura de trabajo alcance el punto en que el núcleo pierde las propiedades magnéticas (se denomina "Temperatura Curie"), algunos ferrites no recuperan su permeabilidad luego de sobrecalentarse. En la práctica trate de evitar temperaturas de trabajo superiores a los 60 o 70 grados, recuerde que la temperatura probablemente suele aumentar con la frecuencia. En circuitos sintonizados la frecuencia de autorresonancia del inductor debe ser mayor que la frecuencia de trabajo, por encima de la misma no se comportará como inductor sino como capacitor. En los chokes, sin embargo, es admisible que operen por encima de la frecuencia de autorresonancia siempre y cuando la reactancia capacitiva sea alta y el efecto capacitivo no provoque comportamientos no previstos en las etapas asociadas. Para aumentar el Q Utilice mayor diámetro de alambre. Utilice mayor diámetro de bobina No devane el inductor a "espiras juntas", trate de que entre espira y espira haya una separación cercana al diámetro del alambre. Preferiblemente no utilice alambre forrado para dar separación entre espiras, el aire tiene menor constante dieléctrica y dará menor capacidad distribuida, mejorando el Q. Trate de emplear bobinas autosoportadas porque el soporte aumenta las pérdidas por efecto de proximidad. Si es posible utilice un buen núcleo; si el núcleo está bien elegido normalmente el Q del inductor será bastante mayor (en las siguiente secciones veremos algunos ejemplos). Algo sobre toroides nacionales (Argentina)... Muchos de ustedes tendrán en sus shack toroides nacionales (Argentina) fabricados por la firma "Artic ®". Yo nunca he obtenido de ella datos precisos acerca de los materiales (aunque es posible que actualmente los ofrezcan), tal vez debido a una notable dispersión de sus características que muchos han podido observar. Algunos materiales los he empleado sin mayores inconvenientes y por ello les presento a continuación algunos valores tentativos y aproximados que pueden serles de utilidad a la hora de "revolver el cajón". Estos valores no son oficiales, por supuesto y les sugiero dirigirse a esa empresa para obtener más información. No me hago responsable de absolutamente nada, pero a mi me han servido bastante bien... r Material Amarillo verde "Carbonyl", sin color 27 ~ 32 ~110 ~6 Inductores con núcleo y materiales magnéticos Cuando se introducen en un inductor materiales ferromagnéticos adecuados (hierro, ferrites, hierro pulverizado, etc.) su inductancia, por lo general, aumenta. Si bien los materiales ferromagnéticos son los más empleados en los núcleos de todo tipo de inductores, no por ello son los únicos utilizados. La permeabilidad Al introducir el material ferromagnético en el inductor, modifica la naturaleza del espacio que ocupa produciendo un aumento del flujo magnético y por lo tanto de la inductancia (también de otros parámetros). Un análisis detallado de este asunto podrá encontrarse en cualquier libro de física del nivel secundario. Para nuestros propósitos alcanza con decir que la propiedad del espacio que se modifica se denomina "permeabilidad absoluta" o simplemente "permeabilidad", y para designarla se emplea la letra griega (mu). Cada material tiene un valor de permeabilidad asociado, inclusive el vacío y el aire (la permeabilidad del vacío es un número muy pequeño: 0,0000126 Henry/m, y se expresa más frecuentemente como 4 10-7 Henrys/m) o también como 1.26H/m . Esta modificación de la inductancia que produce la introducción de materiales magnéticos en los inductores es el tema que nos ocupará; estaremos interesados, sobre todo, en el efecto de los materiales ferromagnéticos. En electrónica empleamos mas a menudo un valor que surge de realizar el cociente entre la permeabilidad del material y la permeabilidad del vacío, a este cociente se lo denomina "permeabilidad relativa" (la permeabilidad relativa del aire es prácticamente 1, casi la misma que la del vacío). Es importante insistir en que la permeabilidad relativa no es una permeabilidad sino un cociente entre permeabilidades y por ello no tiene unidades, es una medida de comparación; como decir que un edificio es "tres veces más alto que otro", el número tres no es una altura sino una relación entre las alturas. El símbolo habitual para la permeabilidad relativa será r. En los libros de física se la designa como m, evitando confusiones (la permeabilidad relativa es la análoga en el magnetismo a la "constante dieléctrica" en la electricidad). Hoy en día los valores de permeabilidad relativa usuales en núcleos para radiofrecuencia para la gama de 3 a 300 MHz va desde valores tan bajos como 3 o 4 hasta 1000 o más con lo cual se pueden obtener resultados muy interesantes. Atención: Alguna literatura de aficionados tal como el Handbook de la ARRL y algunas firmas comerciales tales como Amidon, designan a la permeabilidad relativa con la letra , (sin subíndice). Diferencia entre un toroide y un solenoide con núcleo Al comienzo del artículo vimos fórmulas y métodos para obtener la inductancia de toroides con núcleo; también vimos que multiplicando la inductancia del toro sin núcleo por la permeabilidad relativa del material, se obtiene la inductancia con núcleo. Esto puede verse claramente en la fórmula, que reproducimos aquí por comodidad, por la presencia de la constante r que, si el núcleo fuera de aire, sería igual a 1. L [H] = 0,00046062 r n2 h log10 (dext/dint) Esta es así porque un bobinado toroidal tiende a confinar el campo en el interior del bobinado y cuando hay núcleo prácticamente todo el flujo magnético es conducido a través del material del núcleo, dando lugar a un circuito magnético cerrado. En estas condiciones, el núcleo modifica a la inductancia original del bobinado toroidal de una manera directa y fácil de evaluar. Si con una sierra ancha efectuáramos un corte transversal en el núcleo toroidal (como para abrirlo), una porción del mismo sería reemplazada por aire y tendríamos entonces un circuito magnético abierto; en estas condiciones la inductancia del bobinado ya no puede calcularse tan fácilmente porque dejará de depender únicamente del r del núcleo, como antes, debido a la presencia del espacio de aire; ello modificará el resultado de una manera algo más compleja de calcular. Una bobina solenoidal representa un circuito magnético muchísimo más "abierto" que el del toroide porque las líneas de fuerza atraviesan una gran cantidad de aire para cerrarse entre los polos magnéticos, esto hace que su inductancia, al agregarle un núcleo, no dependa directa y sencillamente de la permeabilidad del mismo como en el caso del toroide, sino que ahora pasará a depender de ciertas relaciones geométricas del bobinado en si y de ellas con respecto al núcleo. Por esta razón, el diseño de inductores solenoidales con núcleo requiere un tratamiento especial, aunque veremos que no es demasiado complicado. El solenoide con núcleo El núcleo en un solenoide suele prestar distintas utilidades, por ejemplo: Para aumentar la inductancia (y en general también el Q) y/o disminuir el tamaño, en inductores de valor fijo. Para proveer un medio simple de ajustar con exactitud el valor de una inductancia, frecuentemente para sintonizar algún circuito resonante, empleando núcleos roscados que se introducen o sacan del solenoide para lograr su ajuste. En esta aplicación normalmente no se desea que produzcan una gran variación en la inductancia más allá del necesario para lograr el ajuste, normalmente alcanza con una variación del orden del 50%. Para lograr un ajuste importante en la inductancia, por ejemplo en los receptores de broadcasting con sintonía "a permeabilidad" en los que el núcleo reemplaza al capacitar variable tradicional. En estos usos se necesitan variaciones de inductancia que pueden ser del orden de 10 a 1. Estas posibilidades dependerán sustancialmente de la geometría del inductor y de la permeabilidad relativa del núcleo. La "permeabilidad efectiva" Vimos que era útil caracterizar el material de un núcleo por su "permeabilidad relativa" y que este valor provisto por los fabricantes era muy fácil de usar para calcular la inductancia de toroides, pero cuando ese mismo material queremos emplearlo en un inductor solenoidal, la inductancia ya no se modifica de una manera tan sencilla al colocarle el núcleo; dependerá mucho de su forma y la de la bobina con que está asociado. Para simplificar los cálculos los ingenieros inventaron una nueva "permeabilidad" que tuviera en cuenta los efectos de la geometría del bobinado y la llamaron "permeabilidad efectiva" que intenta representar el efecto real del núcleo sobre el inductor. Se la define como: Inductancia con núcleo ef = ------------------------ Inductancia sin núcleo en un solenoide tal, que el núcleo ocupe totalmente su interior, sin sobresalir del mismo, y suponiendo que el alambre es tan fino que podemos considerar al diámetro de la bobina igual el diámetro del núcleo. En la práctica se acostumbra a emplear el concepto de permeabilidad efectiva de un modo más amplio como: Inductancia máxima con el núcleo introducido ´ef = --------------------------------------------Inductancia sin núcleo sin las restricciones impuestas por la definición anterior. De esta manera vemos que la permeabilidad efectiva del núcleo será una característica del núcleo colocado en una bobina en particular. Con la primera definición estamos más cerca de una propiedad del núcleo, mientras que la segunda es más cómoda en la práctica, veremos entonces como podemos relacionar la segunda forma con la primera para aprovecharnos de ambas a la vez: A) Caso en que el núcleo tiene el mismo diámetro que la bobina pero distinta longitud (por ejemplo una antena de ferrite de un receptor), en este caso tenemos: B) Caso en que el diámetro del núcleo es menor que el diámetro que la bobina. Este caso es el habitual cuando el núcleo se emplea con una forma para bobina provista de rosca y hay una diferencia notable entre el diámetro de la forma y la del núcleo: C) Caso combinado en que se dan ambas condiciones El valor de permeabilidad efectiva es importante porque suelen darlo algunos fabricante de materiales magnéticos lo cual permite calcular los inductores prácticos más fácilmente. Influencia del núcleo en el Q de los inductores Si se emplean materiales magnéticos de calidad adecuada, cuando se introduce el núcleo no solamente aumenta la inductancia de la bobina, sino que, en general, puede esperarse un aumento en el Q de la misma. Para ello será necesario que el aumento de la reactancia inductiva producida por el núcleo sea mayor que el aumento de las pérdidas adicionales que su incorporación produce. No todas las pérdidas adicionales que aparecen cuando se instala el núcleo resultan de pérdidas propias de él; el aumento del campo de inducción, producido en el interior de la bobina por la presencia del núcleo, produce en pérdidas adicionales en el bobinado, denominadas "pérdidas de inserción", las que se producirían igualmente aunque el material del núcleo fuera ideal. Desde ya que las pérdidas totales dependerán de las pérdidas propias del núcleo, por eso hay que tratar de elegir núcleos adecuados, pero las pérdidas de inserción serán bastante menores si la calidad de la bobina sin núcleo es alta, por eso es muy importante lograr una bobina que tenga un buen Q sin núcleo, es importante porque las pérdidas en general dependen más de la calidad de la bobina que de la calidad del núcleo, o lo que es lo mismo, el aumento del Q obtenido por la introducción del núcleo está principalmente determinado por la calidad de la bobina. En frecuencias medias, pueden lograse fácilmente factores Q del orden de 100 (aunque no con las pequeñas bobinas empleadas en los circuitos miniaturizados); mediante la introducción de núcleos adecuados pueden alcanzarse fácilmente valores de Q del orden de 200 o 300. Generalidades sobre materiales magnéticos comunes en RF Ferrites: Son materiales cerámicos que pueden alcanzar un alto grado de magnetización. Son óxidos de hierro combinados con aglutinantes tales como Niquel, Manganeso, Zinc o Magnesio. Las dos categorías principales son Manganeso - Zinc (Mn-Zn) y Níquel - Zinc (NiZn). Se producen con valores de r de más de 15.000 con bajas corrientes parásitas, pero son inestables a altas temperaturas y se saturan fácilmente, son típicos materiales para filtros de línea, transformadores de banda ancha, fuentes conmutadas, etc. Hierro pulverizado (iron powder): Hay dos tipos principales: Carbonilo (Carbonyl) y Hierro reducido en Hidrógeno. Los de Carbonilo poseen gran estabilidad sobre un amplio rango de temperaturas y niveles de flujo. Su rango de permeabilidad relativa inicial oscila entre 3 y 35. Tienen un excelente Q a frecuencias que van de 50 kHz a 200 MHz. Son útiles en inductores para circuitos sintonizados y filtros de alto Q, osciladores, transformadores de banda ancha en alta frecuencia, etc. Operar muy bien con potencia. Los de hierro reducido en Hidrógeno tienen un rango de permeabilidad algo mayor (35 a 90) y ligeramente más bajo Q. Se emplean en filtros de interferencias en RF, chokes de baja frecuencia y fuentes conmutadas. Hasta aquí hemos abordado los inductores más comunes profundizando un poco en el cálculo de sus características. Desde ya hay mucho más que decir. Quedará para más adelante estudiar los solenoides multicapa, solenoides con núcleo, cuándo el Q mejora por la presencia del núcleo, reducción de la inductancia por efecto de blindaje, inductancia de espiras circulares y alambres rectos, efecto de la inducción (B) en los núcleos, etc, etc. que, en la medida que mi tiempo lo permita iré agregando al presente. Confío en que les sea de utilidad... Nota de última actualización: He agregado al artículo original la sección dedicada a bobinas monocapa con núcleo y algo sobre materiales magnéticos. Faltan aún más ampliaciones sobre materiales magnéticos, cálculo de bobinas multicapa y con formatos especiales. Espero poder agregar esta información en breve. 73's y DX... Bibliografía consultada: PACKMAN, Emilio N., Vademécum de radio y electricidad, Editorial Arbó, 1967. Apuntes de la Universidad Tecnológica Nacional. Facultad Regional Buenos Aires, correspondientes a la materia "Tecnología de los materiales" 1975. Radiotron Designers Handbook 4th Edition, Wireless Press, 1953 Hojas de datos de la firma Amidon® Associates Hojas de datos de la firma Fair-Rite® Products Hojas de datos de la firma Micrometals Inc.® Ferrites, Data Book. Siemens® 1986/87 Agradecimiento especial: A mi querido profesor de la UTN, el Ingeniero Alarcón, quien me enseñara casi todo lo que sobre esto sé, durante el año 1972... Volver a la página principal