Matemáticas Financieras Avanzadas

Anuncio
Matemáticas Financieras
Avanzadas
MATEMÁTICAS FINANCIERAS AVANZADAS
Sesión No. 3
Nombre: Interés compuesto. Tasas de interés
Objetivo
Al término de la sesión el estudiante aplicará los conceptos de tasas de interés
nominal, efectiva y equivalente, con el cálculo y conversión de tasas de interés,
en la resolución de las actividades de aprendizaje de ejercicios prácticos.
Contextualización
En esta sesión se plantearán y resolverán ejemplos de cálculos de tasas de
interés nominal, efectiva y equivalentes. Así como la conversión de tasas y el
cálculo de tasas de interés.
Fuente: http://www.dinero.com/upload/images/2010/1/18/90166_125920_1.jpg
1
MATEMÁTICAS FINANCIERAS AVANZADAS
Introducción al Tema
¿Qué es una tasa de interés?
¿Qué tipo de tasa de interés usan las tarjetas de crédito?
¿Qué tipo de interés se aplica a créditos bancarios?
Se ha hecho referencia que la tasa que rige una transacción generalmente se
refiere a un período de un año, aun cuando la operación sea menor.
2
MATEMÁTICAS FINANCIERAS AVANZADAS
Explicación
Cuando se realiza una operación financiera, se pacta una tasa de interés anual
que rige durante el lapso que dure la operación, a esta tasa se le llama tasa
nominal.
Sin embargo, si el interés se capitaliza en forma semestral, trimestral o mensual,
la cantidad efectivamente pagada o ganada es mayor que si se compone en
forma anual. Cuando esto sucede, se puede determinar una tasa efectiva anual.
Dos tasas de interés anuales con diferentes períodos de capitalización serán
equivalentes si al cabo de un año producen el mismo interés compuesto.
Ejemplo 1: ¿Cuál es la tasa efectiva de interés que se recibe de un depósito
bancario
de
$1000
pactado
a
18%
de
interés
anual
convertible
mensualmente?
Solución: 𝑀 = 1000 �1 +
M = 1195.62
I=M–C
0.18 12
12
�
tasa de interes anual
Recuerde que 𝑖 = frecuencia de conversion =
0.18
1 año
0.18
= 12 meses =
0.18
12
Interés = Monto - Capital
I = 1195.62 – 1000 = 195.62
𝑖=
𝐼
𝐶
=
195.62
1000
= 0.1956
La tasa efectiva es de 19.56%
La tasa equivalente a una tasa anual del 18% convertible mensualmente es de
19.56% convertible anualmente.
La relación entre ambas tasas es: Sea i la tasa anual efectiva de interés, j la tasa
de interés anual nominal y m el número de períodos de capitalización al año.
Como se estableció que ambas tasas son equivalentes, por lo tanto:
3
MATEMÁTICAS FINANCIERAS AVANZADAS
𝑗 𝑚
𝐶(1 + 𝑖) = 𝐶 �1 + � , dividiendo ambos lados de la ecuación entre C
𝑚
𝑗 𝑚
𝑗 𝑚
(1 + 𝑖) = �1 + �
Despejando i nos queda: 𝑖 = �1 + � − 1
𝑚
Retomando el problema anterior:
𝑚
0.18 12
𝑖 = �1 +
� − 1 = 19.56%
12
Ejemplo 2: ¿Cuál es la tasa efectiva que se paga por un préstamo bancario
de $250 000 que se pactó a 16% de interés anual convertible
trimestralmente?
Solución: Aplicando directamente la fórmula:
𝑗 𝑚
𝑖 = �1 + � − 1
𝑚
𝑖 = �1 +
0.16 4
4
𝑖 = 16.98%.
� −1
Recuerde que un año tiene 4 trimestres, m = 4
Ejemplo 3: ¿A qué tasa nominal convertible trimestralmente un capital de
$30 000 crecerá hasta $100,000 en 5 años?
Solución: M = C (1+i)n
100,000 = 30,000(1+i)5
100,000
30,000
= (1 + 𝑖)𝑛
𝑗 𝑚𝑛
Pero (1 + 𝑖)𝑛 = �1 + �
𝑗 20
Así, �1 + �
4
𝑚
=
donde n = 5 años y m = 4 (4 trimestres tiene un año)
100,000
30,000
Se saca raíz 20 va a los dos lados de la igualdad, teniendo:
4
MATEMÁTICAS FINANCIERAS AVANZADAS
1
𝑗
�1 + � = (3.3333)20
4
1
Por lo tanto, despejando j nos queda: 𝑗 = 4 �(3.3333)20 − 1� = 0.24819
Se requiere una tasa nominal de 24.82% convertible trimestralmente para que un
capital de $30,000 se convierta en un monto de $100,000 en un plazo de 5 años.
Calculo de Tasa de interés
Para determinar la tasa de interés conociendo las otras variables, se despeja de
la fórmula M = C (1+i)n
Ejemplo 4: ¿A qué tasa de interés se deben depositar $15,000 para disponer
de $50,000 en un plazo de 5 años? Considere que los intereses se capitalizan:
a) Semestralmente
b) Trimestralmente
𝑛
𝑀
Solución: Despejando i de la formula nos queda: 𝑖 = � − 1
𝐶
a) n = 5 años x 2 (2 semestres tiene un año) = 10 semestres, entonces
10
50,000
−1
15,000
𝑖= �
Por lo tanto i = 0.1279, i = 12.79% semestral, 25.58% anual nominal
(12.79 x 2 semestres).
b) Si el interés se capitaliza trimestralmente, se tiene n = 5 años x 4 (4
trimestres tiene un año) = 20 trimestres.
5
MATEMÁTICAS FINANCIERAS AVANZADAS
20
50,000
−1
15,000
𝑖= �
Por lo tanto i = 0.06204, i = 6.20% esto significa que si la frecuencia de
conversión se incrementa, la tasa anual nominal requerida disminuye a
24.8% (0.06204 x 4 trimestres = 0.24818).
6
MATEMÁTICAS FINANCIERAS AVANZADAS
Conclusión
En esta sesión se practicó con las tasas de interés nominal, efectiva y
equivalente, su conversión y el cálculo de tasa de interés.
Las tasas de interés se expresan comúnmente en forma anual que indica,
cuando es necesario, sus periodos de capitalización.
En la siguiente sesión seguiremos trabajando con el interés compuesto aplicado
al concepto del Cálculo del Monto y Valor actual.
Fuente: http://inversionario.com/wp-content/uploads/2011/04/Money-Bag-icon4.png
7
MATEMÁTICAS FINANCIERAS AVANZADAS
Para aprender más
En este apartado encontrarás más información acerca del tema para enriquecer
tu aprendizaje.
Puedes ampliar tu conocimiento visitando los siguientes sitios de Internet.
•
Ramírez, M. (2012). Tasas nominales, efectivas y equivalentes
EJERCICIOS parte 1. Consultado el 3 de junio de
2013: http://www.youtube.com/watch?v=Ye8uEqNWMNI
•
Ramírez, M. (2012). Tasas nominales, efectivas y equivalentes
EJERCICIOS parte 2. Consultado el 3 de junio de
2013: http://www.youtube.com/watch?v=LVMy3bATZxM
•
Ramírez, M. (2012). Interés compuesto: cálculo de la tasa de interés.
Consultado el 3 de junio de
2013: http://www.youtube.com/watch?v=RlP6dyUHpig
Es de gran utilidad visitar el apoyo correspondiente al tema, pues te permitirá
desarrollar los ejercicios con más éxito.
8
MATEMÁTICAS FINANCIERAS AVANZADAS
Actividad de Aprendizaje
Con lo aprendido en esta sesión sobre los conceptors de las tasas de interés
nominal, efectiva y equivalente, su conversión y sobre el cálculo de tasa de
interés, aplica dichos conceptos para solucionar los siguientes problemas:
1) Determine la tasa de interés efectiva que se recibe de un depósito
bancario si la tasa nominal es de 6% y se convierte:
a) Anualmente
b) Semestralmente
c) Trimestralmente
d) Mensualmente
e) Diariamente
2) Un capital de $155,000.00 se invierte durante tres años a la tasa del 36%
anual capitalizable trimestralmente. Calcular:
a) La tasa efectiva trimestral.
b) La tasa efectiva anual equivalente.
3) ¿Qué tasa de interés anual resulta equivalente a una tasa de 4%
trimestral?
4) ¿Qué tasa de interés nominal ha ganado un capital de $20,000 que se ha
incrementado a $50,000 en 3 años?, si dicho interés se capitaliza:
a) ¿Mensualmente?
b) ¿Trimestralmente?
c) ¿Semestralmente?
d) ¿Actualmente?
Entregar esta actividad en formato de Práctica de Ejercicios y súbelo a la
plataforma.
9
MATEMÁTICAS FINANCIERAS AVANZADAS
Bibliografía
1. Cantú, Jesús. (2005). Matemáticas financieras. México: Banca y
Comercio.
2. Díaz, A. y Aguilera, V. (2007). Matemáticas financieras. México: McGraw
Hill.
3. Villalobos, José L. (2007). Matemáticas financieras. México: Pearson
Educación.
10
Descargar