Problema - CC

Anuncio
Calcula la potencia e intensidad de
cortocircuito en los puntos A y B. Considera
los siguientes valores para cada elemento:
MVA ≔ 1000 kV ⋅ A
URED1 ≔ 20 kV
SccRED1 ≔ 500 MVA
URED2 ≔ 20 kV
SccRED2 ≔ 350 MVA
εccT1 ≔ 12%
Sn1 ≔ 500 MVA
εccT2 ≔ 11%
Sn2 ≔ 350 MVA
εccT3 ≔ 14%
Sn3 ≔ 425 MVA
U2T1 ≔ 400 kV
U2T2 ≔ 230 kV
Ω
zL1 ≔ 0.5 ――
km
L1 ≔ 60 km
Ω
zL2 ≔ 0.4 ――
km
L2 ≔ 50 km
En primer lugar seleccionamos los valores base:
Sb ≔ 3000 MVA
Ub1 ≔ URED1 = 20 kV
Ub2 ≔ U2T1 = 400 kV
Ub3 ≔ U2T2 = 230 kV
A continuación calculamos las impedancias equivalentes de cada elemento:
2
2
URED1
ZRED1 ≔ ―――
= 0.8 Ω
SccRED1
URED2
ZRED2 ≔ ―――
= 1.143 Ω
SccRED2
2
2
URED1
= 0.096 Ω
ZT1 ≔ εccT1 ⋅ ―――
Sn1
URED2
ZT2 ≔ εccT2 ⋅ ―――
= 0.126 Ω
Sn2
2
U2T1
ZT3 ≔ εccT3 ⋅ ――
= 52.706 Ω
Sn3
ZL1 ≔ zL1 ⋅ L1 = 30 Ω
ZL2 ≔ zL2 ⋅ L2 = 20 Ω
Hallamos los valores p.u. correspondientes:
Sb
Z'RED1 ≔ ZRED1 ⋅ ――= 6
2
Ub1
Sb
= 0.72
Z'T1 ≔ ZT1 ⋅ ――
2
Ub1
Sb
Z'RED2 ≔ ZRED2 ⋅ ――= 8.571
2
Ub1
Sb
Z'T2 ≔ ZT2 ⋅ ――
= 0.943
2
Ub1
Sb
Z'T3 ≔ ZT3 ⋅ ――= 0.988
2
Ub2
Sb
= 0.563
Z'L1 ≔ ZL1 ⋅ ――
2
Ub2
Sb
Z'L2 ≔ ZL2 ⋅ ――
= 1.134
2
Ub3
Cortocircuito en A
1
= 4.479
Z'eq ≔ ―――――――――――――――
1
1
――――――+ ――――――――
Z'RED1 + Z'T1 + Z'L1 Z'RED2 + Z'T2 + Z'L2 + Z'T3
Sb
Scc ≔ ――
= 669.751 MVA
Z'eq
Scc
Icc ≔ ――――
= 0.967 kA
‾‾
3 ⋅ U2T1
Cortocircuito en B
1
= 4.655
Z'eq ≔ ―――――――――――――――
1
1
――――――――+ ――――――
Z'RED1 + Z'T1 + Z'L1 + Z'T3 Z'RED2 + Z'T2 + Z'L2
Sb
Scc ≔ ――
= 644.454 MVA
Z'eq
Scc
Icc ≔ ――――
= 1.618 kA
‾‾
3 ⋅ U2T2
Descargar