Calcula la potencia e intensidad de cortocircuito en los puntos A y B. Considera los siguientes valores para cada elemento: MVA ≔ 1000 kV ⋅ A URED1 ≔ 20 kV SccRED1 ≔ 500 MVA URED2 ≔ 20 kV SccRED2 ≔ 350 MVA εccT1 ≔ 12% Sn1 ≔ 500 MVA εccT2 ≔ 11% Sn2 ≔ 350 MVA εccT3 ≔ 14% Sn3 ≔ 425 MVA U2T1 ≔ 400 kV U2T2 ≔ 230 kV Ω zL1 ≔ 0.5 ―― km L1 ≔ 60 km Ω zL2 ≔ 0.4 ―― km L2 ≔ 50 km En primer lugar seleccionamos los valores base: Sb ≔ 3000 MVA Ub1 ≔ URED1 = 20 kV Ub2 ≔ U2T1 = 400 kV Ub3 ≔ U2T2 = 230 kV A continuación calculamos las impedancias equivalentes de cada elemento: 2 2 URED1 ZRED1 ≔ ――― = 0.8 Ω SccRED1 URED2 ZRED2 ≔ ――― = 1.143 Ω SccRED2 2 2 URED1 = 0.096 Ω ZT1 ≔ εccT1 ⋅ ――― Sn1 URED2 ZT2 ≔ εccT2 ⋅ ――― = 0.126 Ω Sn2 2 U2T1 ZT3 ≔ εccT3 ⋅ ―― = 52.706 Ω Sn3 ZL1 ≔ zL1 ⋅ L1 = 30 Ω ZL2 ≔ zL2 ⋅ L2 = 20 Ω Hallamos los valores p.u. correspondientes: Sb Z'RED1 ≔ ZRED1 ⋅ ――= 6 2 Ub1 Sb = 0.72 Z'T1 ≔ ZT1 ⋅ ―― 2 Ub1 Sb Z'RED2 ≔ ZRED2 ⋅ ――= 8.571 2 Ub1 Sb Z'T2 ≔ ZT2 ⋅ ―― = 0.943 2 Ub1 Sb Z'T3 ≔ ZT3 ⋅ ――= 0.988 2 Ub2 Sb = 0.563 Z'L1 ≔ ZL1 ⋅ ―― 2 Ub2 Sb Z'L2 ≔ ZL2 ⋅ ―― = 1.134 2 Ub3 Cortocircuito en A 1 = 4.479 Z'eq ≔ ――――――――――――――― 1 1 ――――――+ ―――――――― Z'RED1 + Z'T1 + Z'L1 Z'RED2 + Z'T2 + Z'L2 + Z'T3 Sb Scc ≔ ―― = 669.751 MVA Z'eq Scc Icc ≔ ―――― = 0.967 kA ‾‾ 3 ⋅ U2T1 Cortocircuito en B 1 = 4.655 Z'eq ≔ ――――――――――――――― 1 1 ――――――――+ ―――――― Z'RED1 + Z'T1 + Z'L1 + Z'T3 Z'RED2 + Z'T2 + Z'L2 Sb Scc ≔ ―― = 644.454 MVA Z'eq Scc Icc ≔ ―――― = 1.618 kA ‾‾ 3 ⋅ U2T2