CHAPTER 7: INTEGRALS WE KNOW ∫ xn dx = 1 n + 1 xn+1 + C (n

Anuncio
CHAPTER 7: INTEGRALS WE KNOW
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
xn dx =
1
xn+1 + C
n+1
(n 6= −1)
1
dx = ln |x| + C
x
ex dx = ex + C
cos(x) dx = sin(x) + C
Z
Z
1
1
dx = ln |ax + b| + C
ax + b
a
1
eax dx = eax + C
a
Z
cos(ax) dx =
Z
1
sin(ax) dx = − cos(ax) + C
a
1
sin(ax) + C
a
sec2(x) dx = tan(x) + C
sec(x) tan(x) dx = sec(x) + C
sin(x) dx = − cos(x) + C
csc2(x) dx = − cot(x) + C
csc(x) cot(x) dx = − csc(x) + C
1
dx = tan−1(x) + C
2
1+x
√
1
dx = sin−1 (x) + C
1 − x2
tan(x) dx = ln | sec(x)| + C
cot(x) dx = ln | sin(x)| + C
Descargar