Table of Integrals 1. Z 2. Z 3. Z eu(x) u0 (x) dx = eu(x) + C 4. Z sin [u(x)] u0 (x) dx = − cos u(x) + C 5. Z cos [u(x)] u0 (x) dx = sin u(x) + C 6. Z tan [u(x)] u0 (x) dx = ln | sec u(x)| + C 7. Z cot [u(x)] u0 (x) dx = ln | sin u(x)| + C 8. Z sec [u(x)] u0 (x) dx = ln | sec u(x) + tan u(x)| + C 9. Z csc [u(x)] u0 (x) dx = ln | csc u(x) − cot u(x)| + C ur+1 (x) + C, r 6= −1 [u(x)] u (x) dx = r+1 r 0 u0 (x) dx = ln |u(x)| + C u(x) 10. Z sec2 [u(x)] u0 (x) dx = tan u(x) + C 11. Z csc2 [u(x)] u0 (x) dx = − cot u(x) + C 1 12. Z sec [u(x)] tan [u(x)] u0 (x) dx = sec u(x) + C 13. Z csc [u(x)] cot [u(x)] u0 (x) dx = − csc u(x) + C 14. Z 15. Z 1 u(x) u0 (x) dx = tan−1 +C 2 2 a + u (x) a a 16. Z u(x) 1 u0 (x) p +C dx = sec−1 2 2 a a u(x) u (x) − a 17. Z sinh [u(x)] u0 (x) dx = cosh u(x) + C 18. Z cosh [u(x)] u0 (x) dx = sinh u(x) + C 19. Z sin−1 [u(x)] u0 (x) dx = u(x) sin−1 u(x) + 20. Z tan−1 [u(x)] u0 (x) dx = u(x) tan−1 u(x) − 21. Z u0 (x) −1 p dx = sin a2 − u2 (x) −1 u(x) +C a 0 −1 sec [u(x)] u (x) dx = u(x) sec 2 p 1 − u2 (x) + C 1 ln [1 + u2 (x)] + C 2 p u(x) − ln |u(x) + u2 (x) − 1 + C