Tensor de Tensiones, tensiones principales y círculo de Mohr

Anuncio
Cátedra de Mecánica del Continuo – FI-UNER
Cursado: Primer cuatrimestre de 2008
Material de Estudio
Tema III: El tensor de tensiones. Parte I
Introducción
ρ
!
"
ρ
=
#
+
$
#
#
&
%
!
'
!
&
'
'
$!
+
%
()
)
!
*
'#
+
#
-
'
,
% '
(
,
+ '#
.
'
"
*
(
*
#
&
El vector de tensiones y el “principio de tensión” de Cauchy
%
'
$
&/ $
&
#
!
#
'
'
0
*#
'
!$
1
! #
+
&
+
#
#
3
+
!
!
#
&- #
+
+
%
&
#
&
#
. &
ρ
'
"
0
#
&
+
&-
! 4
ρ
=
+
+
#
5#
+
2
2
2
(
2
2
()
µ
.
-
+"
67& 8
#
)
'
[ρ
]=
#
*
ρ
&
+
+
'
#
'
2
+
2
2
2
2
'
!
$ &
(
! (
[ρ
/
&:
]=
!
!
2
ρ
+
+
+
→<
1
[
+
<=
( &
() &9
4 5!
%
<=
+
2
+
;
−
2
!
!
]
−
2
=
−
'
+
#
!
=−
/
#
$
&
>
−
4
!
5
' #
$
'
!#
1
"
!
*
!
#
#
3
#
&
#
$
! 1
#
'
+ 1
3
&
1
+
+
+
!
&
El Tensor de Tensiones
?
#
+"
!
+
#
0
(
&@
#
#
+
!
+
&
&
'
+
+"
. &
2!
&
[ρ
]=
ρ
+
+
−
−
2
2
+
+
−
A
"
2
!
.
2
"
& -
#
'
+
'
(
(
!
B
+
&
&C
A !
$!
ρ
/
= ρ
(
−
⋅
)
−
2
(
)
⋅
−
(
⋅
)
+
D
→<
1
$
"
+
&
;
(
<=−
(
=
#
⋅ )−
2
⋅ )+
2
(
(
⋅ )−
(
⋅ )+
(
→<
)+
⋅
E
)
⋅
&
(
=
[
⋅[
⋅ )+
(
+
+
= ⋅
=
3
]
0
⋅ )+
!
(
]
⋅
)
<
%
0
&
+
=
#
#"
#
#
&
#
#
#
&
& :
%
<
= ⋅
[
]= ⋅(
#
)= ⋅(
#
#
#
)
2
= ⋅
$
(
-
'
2
#
#
+" #
= ⋅(
=
"
#
#
#
)= (
⋅
)
#
;
#
&- #
'
#
+ ' #1
&
;
+"
1
+
&
$ " !
"
!
&
$
"
1
!
+1
=
#
&
"
'
+
&
#
0
$
#
$
3
&
+
&
'
. &
$
+
%
>
+
#
&
. &
$
=σ
#
+"
=τ #
%
'
!
0
!
≠ # &
.
Simetría del Tensor de Tensiones
@
'
% &
#
0+
. &
;&
>
×ρ
×ρ
=
+
×
=
"
(
F
"!
"
F
)
""
)
()
;
=
)
)
2
(
()
(
F
!!
!
F
!
F
"
!"
)
()
.
#
F
>
)
/
!
;
+ %
+
+ %
(
&-
,
[ ρ(
/
!
×
]=
)
@
×ρ
+
→<
1
>
+ %
<= %
&
×
→<
!
×
&
A
A&
A
<= ⋅ %
×
→<
= %
&
%
D
(
<= 1
→<
+ −
!"
2
+"
"&
G+
!"
−"
!
2
!
+ −
;
!
]
×
[
= %
→<
#
+
2
(
;
+
− "
"
2
−
"
2
2
2
=
]
D
3
(
(
!
+
+
−
""
2
− −"
"
−"
3!#
#
. &
2
[
#
& 8
"
⋅
→<
+
=
−
""
>
2
"
2
+
E
2
−
2
"
>
→<
1
"
! +
<=
2
−
"
"
2
+
2
−
"
2
2<
"
+
"
H
'
!"
&
2
#
2;
A
!"
=
"!
!
=
!
+
' #
22
2
2
#
#
=
'
2;
#
"
#
#
2
"
&
=
&
=
!
+
&
>
'
#
&
D
Tensiones principales y círculo de Mohr
Definiciones
!
+
⋅ (λ
#
λ
!
2=
!# ( λ !
# ( &&
2=+
&
#
!
"
!
&
!
"
!
( &
!
& G+
&
2=
#
( ⋅ ( ⋅ (λ
-
'
2>
+
&
$
+
1
)λ
#
(<
2A
+"
λ ) ' λ2 F '2 λ ) ' ( <
' '2 '
2D
'
' (
'2 ( B2
2E
##
)
#
#
<
' (
E
!
#
#
&
Tensiones normales máximas y mínimas
@
$
#
&
'
!
! 1
"
#
!
' #
λ ≥ λ2 ≥ λ &
⋅
(
⋅ ⋅
!
⋅λ
(
(λ
⋅
(
⋅ ⋅
⋅λ
(
(λ &
2
$
(α
Fβ
2
"
Fγ
α2 F β2 F γ2 (
# I I(
⋅ ( ⋅ ⋅ ( α
⋅ ( α
Fβ
Fβ
2
Fγ
2
Fγ
⋅ ⋅α
⋅ αλ
Fβ
F β λ2
2
2
Fγ
Fγλ
⋅ ( α2 λ F β2 λ2 F γ2 λ
+
⋅
( λ ( λ α2 F β2 F γ2 ≥ α2 λ F β2 λ2 F γ2 λ (
⋅
;
⋅
( λ ( λ α2 F β2 F γ2 ≤ α2 λ F β2 λ2 F γ2 λ (
⋅ &
=
#
#
'
1
!
!
#
&
Tensiones tangenciales máximas
#
'
'
!
+
1
&
#
2
!
&9
(
!
<
( ⋅ (
⋅
λ
(
F
2
λ2
2
λ
F
&
>
'
λ
⋅ (
(
F
2
2
(
,
λ2
λ F
⋅
2
2
λ2 F
2
F
2
2
F
λ&
A
'
'
2
2
2
(
λ 2F
+
2
2
I2 )
(I
λ2 2 F
2
λ
2
2
λ F
2
)
#
2
(∂
λ2 F
2
λ 2&
D
+ 1
#
!
B∂
2
2
2
'
2
2
9
λ
F
2
F∂
B∂
2
2
2
F∂
B∂
2
( <&
E
J
1
∂
2
#
B∂ ( <&
2
F
2
2
2
F
$ $
'
(
;<
&
&
+
E
F
&
2
( K∂
2
;
2
B∂
2
F
E
+
)η
L
F K∂
2
;
η
+
&
( <&
B∂
2
!
)η
2L
2
F K∂
2
B∂
)η
(η
&
L
(<
;2
2
∂
2
B∂
(η
∂
2
B∂
2
(η
2
! ∂
2
B∂
;
&
;
3
&
;<
!η&
2
!
+
(
< <)
(<
<)
(
(< < )
2 ±
2 <
) (
2 <±
2
) (<
)
2 ±
2 &
;;
+
1
&:
$ $
&
+
%
&
0
%
;;
&
D
+
2
( B; λ ) λ2
2
;=
2
( B; λ ) λ
2
;>
2
( B; λ2 ) λ
2
;A
+
&
;; &
+
+
#
'
%
!
' I I ( B2 Kλ( ) λ L
λ( ( ' λ ! λ ( 1 λ &
1
&
(
;D
λ( ! λ
'
!
#
!
&
&
;; #
;=
;A
'
'
+
! 1
&
Círculo de Mohr.
1
+3
&
9
#
+
' G
'
& /
# M
#
$
"
1
#
&9
'
#
3
!
0
& 9
σ ≥ σ2 ≥ σ
&C
$&
#
"
! !2 ! !
$
+
'
#
2
. &
=& /
&
'
#
=<
;E
σ2
2
2
)σ
σ
α
α
σ
!2
!
!
.
:
#
#
%
%
α!
+
2
F σ2
2
2
F
(<
=<
α
(
σ
9
! !2
+
σ
(
=
!
α F σ2
2
αF
(<
=
!
. &
! !!2
=&
&
=
σ
α)
α)
α(<
=2
σ2
α)
αF
α(<
=
+
&
=; !
σ )
)
α(<
=;
σ2 )
F
B α(<
==
==
σ ) σ2 )
α F B α ( 2B
αF B α (<
2α
2α σ ) σ2 B2
(
9
+
+
&
=; !
σ F σ2 ) 2
B α)
!
α(2
2α B
==
2α
%
&
α (<
=D
2α σ ) σ2 B2
=E
+
=A !
+
&
1
. &
!(
1
()
φ
><
)
()
φ
>
&
=A !
=E
'
'
&
πB; ;=
!
α
#
α ( < πB2 <
σ
!
%#
"
!)
$
#
=
=E
! (
>&
α ( πB;
=A !
#
)
%
=A
+
B α)
F
) σ F σ2 B2 (
1
=>
E<
σ2
#
%
'
( σ ) σ2 B2
( σ F σ2 B2&
;
σ −σ 2
2
2α
σ +σ 2
σ2
σ
2
.
>
3 !2
σ −σ
σ −σ 2
2
2
σ 2 −σ
2
σ
σ2
σ
3!
3!
.
'
'
&
!2
A
1
#
"
1
$
. &
A&
=
+ '
+
'
!
#
. &
.
1
A&
$
+
+
#
•
'
'
+
2 #
;=N
•
'
&
! 1
+
!
-$
&
#
1
$
+"
%
λ =σ
'
!
#
"
! λ2 = σ 2
!!
#
=σ!
!
=τ !
. &
1
σ !σ2
D&
+
!
'
.
. &
+
σ τ
!
#
$ #
#
E&
+3
1
3
&
!
#
σ =& +
=
σ2 =& −
'
!
!!
!
-
=σ
&
#
σ! τ!
3
'
=
σ ! +σ
2
σ ! +σ
2
σ ! −σ
+
2
+ τ !2
2
σ ! −σ
−
>2
2
2
)#
τ
=
+ τ !2
1
σ −σ2
2
=
σ! −σ
2
'
2
+ τ !2
>2
>
/
$
#
+
"
#
!
!!
=σ!
=σ
!
=τ ! &
σ
*!
*!
!
σ!
.
D
*!
σ
σ
&
σ2
σ!
.
E
A
Descargar