Cátedra de Mecánica del Continuo – FI

Anuncio
Cátedra de Mecánica del Continuo – FI-UNER
Cursado: Primer cuatrimestre de 2008
Material de Estudio
Tema VII: Balance macroscópico de energía
Introducción
+
=
+
+
!
#
$
%
&
"
!
"
Energía interna
Trabajo
Calor
+
Energía cinética
'
( ) *
Energía interna y calor
$
!
+
, -
. /
%
!
!
"
"
0
1
%
2
1
3
4
5
%
4
$
6
+ .
+
+ .
ρ
"
. 3
+.
+ .
3
+(& .
+ .
+
.
7
$
%
+ .
+ .
89
+(&7.
+9.
6
+ .
6
$
+
6
.
+ .
4
6
+ .
− ⋅
+(&:.
Balance macroscópico de la energía
3
)
ρ
+ .
7
<7 ρ
8
7
7
+
=
⋅ ⋅
+ .
+
+ .
ρ ⋅
−
+ .
7
⋅
+(&;.
+(&;.
6
#
=
;>+
%
+(&;.
1
7
4 6 6
+ .
8
'
;&7.
%
+
.
2
$
?
⋅ ⋅
+
+ .
+ .
ρ ⋅
?
−
⋅
+ .
+
+:&@..
7
ρ
=
7
+ .
=
=
=
+
7
∂
+
ρ
∂
7
+ .
+
7
∂
+
ρ
∂
7
+ .
+
7
ρ
7
+ .
ρ
+ .
5
7
+
7
ρ
+
(
+
7
+ .
(&>
−
+
7
∂
+
ρ
∂
7
+ .
+
7
+(&;.
)⋅
=
ρ
+ .
ρ
+ .
(
+
ρ
+ .
−
⋅ ⋅
7
7
7
7
7
+
(
⋅
)
+
(
⋅
)
+
(
⋅
)
)⋅
+
+ .
7
+ .
ρ ⋅
−
+ .
⋅
+(&>.
2
$
%
6
#
6
$
89
!
φ8
ρ
+ .
7
+ +
.
8 9∇ φ $
":
!
7
"
+
ρ
+
+ .
7
7
+ +
+(&>.
(
−
)⋅
=
⋅ ⋅
+ .
−
+ .
⋅
+(&A.
*
&
1
8
1
8B
)
⋅ ⋅
=
+ .
=
−
−
⋅ ⋅
+
⋅ ⋅
−
+ .
+ .
⋅ ⋅
+ .
+ .
−
⋅
+
+(&(.
⋅ ⋅
+ .
6
&
6
&
+(&(.
⋅ ⋅
+ .
=−
−
⋅
+ .
+
⋅ ⋅
+(&C.
+ .
*
)
=−
+(&@.
⋅
+(& B.
+ .
=−
+
⋅ ⋅
+ .
(&@.
0
%
+
+ 8B
ρ
+ .
D
(&
+(&(.
+(& B..
.
7
7
+(&A.
+ +
ρ
+
−
7
7
+ +
+
ρ
(
⋅
)
+
+(& .
&
.
6
&
%
:
=−
6
+
1
&
/
#
,
6
+(& .
$
8±
+
7
8
.
+(& .
ρ
:
+
7
4
+
+
ρ
−
ρ
:
7
+
+
+
=−
ρ
+
+(& 7.
EF
$
%
!
−
+
ρ
=
:
7
:
=
7
+
+
+
+
+
+
ρ
:
7
:
−
ρ
ρ
−
7
+
+
+
+
+
+
+(& 7.
ρ
ρ
+(& :.
:
=
+
7
+
+
ρ
:
−
+
7
+
+
ρ
=ρ
6
?
%
−
+
7
≈
7
+(& :.
7
+
+
)
7
+
+
+
−
ρ
7
2
7
2
+
ρ
−
+
+
2
7
7
+
+
+
+
+
ρ
=−
+(& ;.
ρ
=
+
=
.
7
7
+
+
+
7
−
ρ
+
7
3
+
+
=−
ρ
+
+(& >.
+(& >.
%
6
!
"
%
6
2
+(& >.
"
)ω=
3
)
•
6
"+ ω =
!
•
> B.
6
+ω =
!
"
< B.
/
%
=
)
%
+
(&
(&:.
5
%
−
= +
+(& A.
+
.
5
(& A
!
+(& >.
7
7
D
+
+
ρ
(& (
−
)
7
7
+
+
ρ
= −ω −
+
+
(& >.
"
+(& (.
.
+
(& A.
;
2
%
(&;
ω=
'
,
=B
(& (
)
7
7
+
+
=
ρ
7
+
7
+
+(& C.
ρ
)
.
$
2
2
.
.
&
.
5
.
5
%
.
D
%
%
3.1 Pérdida de carga y potencia en el eje
%
6
4
+(& (.
)
=
!
!
;
+
4 6 6
.
+(& @.
G
!
G
"
!
"
2
+(& @.
G
4
%
4
%
+
6
.
%
+
%
. /
ω=
ω!
+(&7B.
!
6
6
%
Apéndice
(&>
φ8
∇ ⋅ ( ρϕ
) = ∇(ρϕ ) ⋅
= ρ∇(ϕ ) ⋅
+ ρϕ (∇ ⋅
) = ρ∇(ϕ ) ⋅
+ ϕ∇ ⋅ ( ρ )
(&A 4
8 9∇φ
+ ϕ∇( ρ ) ⋅ + ρϕ (∇ ⋅
) = ρ∇(ϕ ) ⋅
+ ϕ [∇( ρ ) ⋅ + ρ (∇ ⋅
(>
ρ
+ .
ρ
+ .
ρ
+ .
ρ
+ .
=
⋅ ⋅
+ .
7
7
7
7
7
7
7
7
+
ρ
+
+ .
+
ρ
+
+ .
+
ρ
+
+ .
+
ρ
+
+ .
−
1
+ .
7
7
7
7
7
7
7
7
+
(
−
)⋅
−
+
(
−
)⋅
+
+
(
−
)⋅
+
+
(
−
)⋅
+
+ .
+ .
+ .
+ .
ρ ⋅
ρ∇ϕ ⋅
−
ρϕ ( ⋅
)
+
'
2
2
(&A
−
⋅
+ .
=
)
6
6 6
⋅ ⋅
+ .
∇ ⋅ ( ρϕ
⋅
2
=
+ .
ϕ∇ ⋅ ( ρ
∂ (ϕρ )
∂
+ .
)
=
=
)]
Descargar