para DESCARGAR el documento.

Anuncio
☛ 6. Resuelva el ejemplo 6 si
A
0 1 1
1 2 1
2 3 1
A primera vista, parecería que este método de resolver un sistema de ecuaciones
es mucho menos conveniente que el método más simple de reducción de renglones
descrito en la sección 8-3. La ventaja de usar la matriz inversa se hace patente en
casos en que deben resolverse varios sistemas de ecuaciones con la misma matriz de
coeficientes. En problemas de ese tipo, las soluciones de todos los sistemas pueden
determinarse de inmediato una vez que se ha encontrado la inversa de la matriz de
coeficientes; no es necesario usar la reducción de renglones una y otra vez sobre cada sistema. (Véase la observación final de la sección siguiente).
EJEMPLO 6 Determine la solución del sistema AX B, en donde
A
1 1 3
2 0 1 ,
4 3 2
X
x
y ,
z
B
a
b
c
y a, b y c son números reales arbitrarios.
Solución Dejamos para usted, como ejercicio, calcular la inversa de la matriz. El
resultado es
1
A1 7
3 17 1
8 14 5
6 17 2
Entonces la solución del sistema AX B es
1
X A1B 7
1
7
Respuesta x 12(a
4b 3c),
3 17 1
8 14 5
6 17 2
3a 7b c
8a 14b 5c
6a 7b 2c
a
b
c
Por tanto,
y 12(a 2b c),
1
x (3a 7b c)
7
z 12 (a 2b c)
1
y (8a 14b 5c)
7
1
z (6a 7b 2c)
7
☛ 6
EJERCICIOS 9-1
(1-16) En los siguientes problemas, encuentre la inversa de la
matriz dada (si existe).
5
3 1 3
2 5
1.
2.
]
4 2 1
3 4
2
3.
1 2
3 4
4.
l
2
3
6
3 2
4
5.
6
7.
1 0 2
0 3 1
2 1 0
6.
10 20 8.
2
1
0
1
0
2
0
3
1
SECCIÓN 9-1 LA INVERSA DE UNA MATRIZ
361
9.
2
1
4
11.
2
3
4
13.
1 2 3
2 1 1
3 1 2
15.
3
2
5
4
0
6
1
2
3
1
0
1
1 1
2 3
1 1
3 0
1 2
0 3
1 1
1 2
10.
1
2
3
12.
3
4
6
14.
3
2
1
16.
2
1
4
4
3
8
2
1
3
25. (Purificación del mineral) Dos metales, X y Y, pueden extraerse de dos tipos de minerales, P y Q. Cien libras de mineral P producen 3 onzas de X y 5 onzas de Y; y 100 libras
de mineral Q producen 4 onzas de X y 2.5 onzas de Y.
¿Cuántas libras de minerales P y Q se requerirán para producir 72 onzas de X y 95 onzas de Y?
3
4
1
5
6
10
1
3
2
2 1 3
1 1 1
1 1 1
3 0 1
4
1
0
2
26. (Inversiones) Una persona invierte un total de $20,000 en
tres diferentes inversiones que producen 5, 6 y 8%, respectivamente. El ingreso de la inversión al 8% es equivalente
a dos veces el ingreso de la inversión al 5% y el ingreso total por año de las tres inversiones es $1296. Encuentre la
cantidad depositada en cada inversión.
27. Si A es una matriz no singular y AB AC, demuestre que
B C.
28. Si AB A y A es no singular, pruebe que B I.
29. Dadas
(17-24) Resuelva los siguientes sistemas de ecuaciones determinando la inversa de la matriz de coeficientes.
17. 2x 3y 1
18. 3x1 2x2 1
3x 4y 10
18. 2x1 x2 3
19. 4u 5v 14
20. 3y 2z 4
2v 3u 1
20. 5z 4y 13
21. 2x y 3z 3
22.
x 2y z 1
x y z 2
22.
2z 3x 2
3x 2y z 8
22.
3y 2z 5
24.
p 2q 3r 1
24.
q 2p r 3
23. 2u 3v 4w 10
w 2u 1
A
10
u 2v 11
24. 2r p 2 0
12 34 y
B
2 1
1
3
Verifique el resultado (AB)1 B1 A1
30. Con las matrices A y B del ejercicio 29 verifique que
(A1B)1 B1A
*31. Demuestre que (A1)1 A con A cualquier matriz invertible.
*32. Pruebe que si A y B son dos matrices n n invertibles, entonces
(AB)1 B1A1
*33. Demuestre que si tanto B como C son inversas de una matriz A, se sigue que B C. (Sugerencia: Considere BAC).
9-2 ANÁLISIS INSUMO-PRODUCTO
El modelo insumo-producto fue introducido por primera vez a finales de los años
cuarenta por Leontief, el ganador del premio Nobel en 1973, en un estudio de la
economía de Estados Unidos. La principal característica de este modelo es que incorpora las interacciones entre diferentes industrias o sectores que integran la economía. El objetivo del modelo es permitir a los economistas predecir los niveles de
producción futuros de cada industria, con el propósito de satisfacer demandas futuras para diversos productos. Tal predicción se complica por las interacciones entre
las diferentes industrias, a causa de las cuales un cambio en la demanda de un producto de una industria puede modificar los niveles de producción de otras industrias.
Por ejemplo, un incremento en la demanda de automóviles no sólo conducirá a un
aumento en los niveles de producción de los fabricantes de automóviles, sino también en los niveles de una variedad de otras industrias en la economía, tales como la
industria del acero, la industria de los neumáticos, etc. En el modelo original de
362
CAPÍTULO 9 INVERSAS Y DETERMINANTES
☛ 9. Una economía de dos sectores
se describe en la tabla siguiente:
Industria
primaria
Industria
secundaria
Demandas
finales
Producción
total
Primaria
Secundaria
10
50
75
60
15
40
100
150
Insumos primarios
40
15
Construya la matriz de insumoproducto y determine las producciones si las demandas finales se
cambian a 40 y 40, respectivamente.
Respuesta A X
0.1
0.5
0.5
0.4
c) En el caso de la industria I, deben producirse
240 unidades de insumos primarios para generar una producción total de 1200 unidades. Esto es, los insumos pri24
0
marios son 1200 0.2 de la producción total. Así, 0.2 de
la nueva producción, 1415, da los nuevos insumos primarios de la industria I. Los insumos primarios de la industria I son 0.2(1415) 283 unidades. En forma análoga,
los insumos primarios en el caso de la industria II son
30
0
1500 0.2 de la producción total, de modo que son iguales a 0.2(1.640) 328 unidades. En consecuencia, los
nuevos insumos primarios para las dos industrias serán de
283 y 328 unidades, respectivamente. ☛ 9
Las suposiciones básicas del modelo insumo-producto pueden advertirse en
estos ejemplos simples en que sólo interactúan dos sectores. En un modelo realista
de una economía, es necesario considerar un número mucho más grande de sectores. La extensión del modelo introduce grandes complicaciones en los cálculos, por
lo que es imprescindible utilizar una computadora que resuelva el sistema de ecuaciones. Sin embargo, los principios que intervienen en el modelo en esencia son los
mismos que se consideraron en nuestro ejemplo de dos sectores.
Podemos resumir estas suposiciones básicas de la siguiente manera:
1. Cada industria o sector de la economía produce un solo bien y no existen dos industrias que produzcan un mismo bien.
2. Para cada industria, el valor total de la producción es igual al valor total de todos
los insumos, y toda la producción es consumida por otros sectores productivos o
por las demandas finales.
3. La matriz insumo-producto permanece constante en el tiempo considerado. En
periodos más largos, los avances tecnológicos provocan cambios en la matriz insumo-producto y esto significa que las predicciones basadas en este modelo sólo serán relativamente confiables a corto plazo.
440
0
29
56
0
0
29
EJERCICIOS 9-2
1. (Modelo insumo-producto) La tabla 3 da la interacción entre dos sectores en una economía hipotética.
TABLA 3
Industria
I
II
Industria
I
II
20
50
56
8
Insumos
primarios
30
16
Demandas Producción
finales
total
24
22
100
80
a) Encuentre la matriz insumo-producto A.
b) Si en 5 años las demandas finales cambian a 74 en el
caso de la industria I y a 37 para la industria II, ¿cuánto deberá producir cada industria para satisfacer esta
demanda proyectada?
c) ¿Cuáles serán los nuevos requerimientos de insumos primarios en 5 años para las dos industrias?
2. (Modelo insumo-producto) La interacci6n entre los dos
sectores de una economía hipotética están dados en la tabla 4.
a) Encuentre la matriz insumo-producto A.
b) Suponga que en 3 años la demanda de productos agrícolas decrece a 63 unidades y se incrementa a 105 unida-
SECCIÓN 9-2 ANÁLISIS INSUMO-PRODUCTO
367
TABLA 4
Agri- Bienes manu- Demandas Producción
cultura facturados
finales
total
Agricultura
240
Bienes manufacturados 300
270
90
Mano de obra
90
90
60
600
450
b) Determine la matriz de producción si las demandas de
los consumidores cambian a 129 en el caso de P y a 213
por lo que respecta a Q.
c) ¿Cuáles serán los nuevos requerimientos de mano de
obra para las dos industrias?
des para bienes manufacturados. Determine el nuevo
vector de producción que satisfaga estas nuevas demandas.
*5. En la economía del ejercicio 3, se anticipa que la demanda
final para la producción de la industria Q se incrementará
el doble a corto plazo, comparada con la demanda final
de la industria P. Durante los próximos 5 años, la mano de
obra de que podrán disponer se incrementará de 105 a 150
unidades. ¿En cuánto deberán incrementarse las dos demandas finales durante este periodo si esta oferta de mano
de obra se emplea por completo?
c) ¿Cuáles serán los nuevos requerimientos de mano de
obra para cada sector?
6. (Modelo insumo-producto) La interacción entre tres industrias P, Q y R está dada por la tabla 7.
60
3. (Modelo insumo-producto) La tabla 5 da la interacción entre dos sectores de una economía hipotética.
TABLA 7
TABLA 5
Industria
P
Q
Industria
P
Q
60
80
75
30
Mano de obra 60
45
Demandas
finales
Producción
total
65
40
200
150
Industria
Q
R
P
Industria
P
Q
R
Insumos
primarios
20
40
0
0
40
80
40
100
40
40
80
20
Demandas Producción
finales
total
40
20
80
100
200
200
a) Determine la matriz insumo-producto A.
a) Construya la matriz de insumo-producto.
b) Encuentre la matriz de producción si las demandas finales cambian a 104 en el caso de P y a 172 para Q.
b) Determine las nuevas producciones de P, Q y R si las
demandas finales cambian en el futuro a 70, 50 y 120,
respectivamente.
c) ¿Cuáles son los nuevos requerimientos de mano de
obra?
4. (Modelo insumo-producto) La interacción entre dos industrias P y Q que integran una economía hipotética están dadas en la tabla 6.
a) Encuentre la matriz insumo-producto A.
Industria
P
Q
Insumos de
mano de obra
368
7. Repita el ejercicio 6 para los tres sectores de economía dados en la tabla 8, si las nuevas demandas finales son 68, 51
y 17 para P, Q y R, respectivamente.
TABLA 8
TABLA 6
Industria
P
Q
c) ¿Cuáles serán entonces los insumos primarios para las
tres industrias?
46
322
342
114
92
114
Demanda del Producción
consumidor
total
72
134
CAPÍTULO 9 INVERSAS Y DETERMINANTES
460
570
P
Industria
P
Q
R
Insumos
primarios
Industria
Q
R
22
88
66
80
40
60
76
38
57
44
20
19
Demandas Producción
finales
total
42
34
7
220
200
190
Descargar