enlace - Agrega

Anuncio
TABLA DE INTEGRALES INMEDIATAS
Mariano Real Pérez
∫ a ⋅ dx =
ax + C
x n+ 1
+ C
n+ 1
∫
x n dx =
∫
1
dx = L | x | + C
x
1
dx = x + C
2 x
∫
(n ≠
− 1)
ax
a dx =
+ C
La
e x dx = e x + C
∫
∫
∫ senxdx = − cos x + C
∫ cos xdx = senx + C
∫ sec xdx = tgx + C
[ u ( x)] n + 1 + C
n
[
u
(
x
)
]
⋅
u
'
(
x
)
dx
=
∫
n+ 1
∫
∫
u ' ( x)
dx = L | u ( x ) | + C
u ( x)
u ' ( x)
dx = u ( x ) + C
2 u ( x)
a u( x)
a ⋅ u ' ( x)dx =
+ C
La
e u ( x ) ⋅ u ' ( x )dx = e u ( x ) + C
∫ 1+
∫
∫
∫ sen u ( x) ⋅ u ' ( x)dx = − cos u ( x) + C
∫ cos u( x) ⋅ u ' ( x)dx = sen u( x) + C
∫ sec u ( x) ⋅ u ' ( x)dx = tg u( x) + C
u ' ( x)
∫ 1 + [ u ( x)] dx = arctg u( x) + C
∫
∫
x
2
1
dx = arctgx + C
x2
1
dx = arcsenx + C
1− x2
u ( x)
2
2
u ' ( x)
1 − [ u ( x )]
2
dx = arcsen u ( x) + C
Descargar