TABLA DE INTEGRALES INMEDIATAS Mariano Real Pérez ∫ a ⋅ dx = ax + C x n+ 1 + C n+ 1 ∫ x n dx = ∫ 1 dx = L | x | + C x 1 dx = x + C 2 x ∫ (n ≠ − 1) ax a dx = + C La e x dx = e x + C ∫ ∫ ∫ senxdx = − cos x + C ∫ cos xdx = senx + C ∫ sec xdx = tgx + C [ u ( x)] n + 1 + C n [ u ( x ) ] ⋅ u ' ( x ) dx = ∫ n+ 1 ∫ ∫ u ' ( x) dx = L | u ( x ) | + C u ( x) u ' ( x) dx = u ( x ) + C 2 u ( x) a u( x) a ⋅ u ' ( x)dx = + C La e u ( x ) ⋅ u ' ( x )dx = e u ( x ) + C ∫ 1+ ∫ ∫ ∫ sen u ( x) ⋅ u ' ( x)dx = − cos u ( x) + C ∫ cos u( x) ⋅ u ' ( x)dx = sen u( x) + C ∫ sec u ( x) ⋅ u ' ( x)dx = tg u( x) + C u ' ( x) ∫ 1 + [ u ( x)] dx = arctg u( x) + C ∫ ∫ x 2 1 dx = arctgx + C x2 1 dx = arcsenx + C 1− x2 u ( x) 2 2 u ' ( x) 1 − [ u ( x )] 2 dx = arcsen u ( x) + C