Why two constellations are better than one? (CMMI-DEV ML5 + CMM-SVC ML5) María Julia Orozco Mendoza Ultrasist, Chief Operations Officer Alejandro A. Ramírez Ramos Ultrasist, Governance, Architecture & QA Leader Organization Overview • Ultrasist is a Mexican Enterprise with more than 20 years of successful experience in IT Consulting and Software Development. • As a result, Ultrasist has been working and has been evaluated as a high maturity organization for more than ten years (CMMDEV ML4 since 2004, CMMI-DEV ML5 since 2009 & CMMSVC ML5 since 2015). • Ultrasist is a medium sized company, focused on the delivery of quality products, based on quality processes, with the flexibility, adaptability and scalability to tackle the biggest challenges within the software and IT industries. Business Challenge • We signed a multi-annual big contract for our software factory, based in our organizational performance baseline. (A program with several incremental projects in it) • Early in the projects, we identified process capability issues • Some of our most specialized phases (architecture, security development, transition) started to take longer than estimated • Our process performance models predicted that we were not going to meet our goals • We had a national security contract with not much space to negotiation, without clear visibility and control of the target environment. • We urgently needed to improve our process performance Business Challenge Capability issues … Capacidad de proceso de Desarrollo (desviación en esfuerzo) Valor individual Gráfica I Histograma de capacidad 2 LCS=2,085 1 _ X=0,865 0 Objetivo LES E specificaciones O bjetiv o 1,0 LE S 1,1 LCI=-0,355 1 5 9 13 17 21 25 29 33 37 0,0 Gráfica de rangos móviles Rango móvil 0,8 1,2 1,6 2,0 Gráfica de prob. Normal 1,6 A D : 0,353, P : 0,448 LCS=1,499 0,8 __ MR=0,459 0,0 LCI=0 1 5 9 13 17 21 25 29 33 37 -1 0 1 Dentro Desv.Est. 0,4066 Cp * Cpk 0,19 PPM 281863,59 1,5 1,0 0,5 Dentro de General Especificaciones 20 25 30 Observación 2 Gráfica de capacidad Últimas 25 observaciones Valores 0,4 35 40 General Desv.Est. 0,4914 Pp * Ppk 0,16 Cpm 0,07 PPM 316409,49 The Plan 1. Make a root cause analysis to identify the underlying cause 2. Identify and analyze alternative solutions 3. Execute the selected solution in the program / remove root causes 4. Evaluate the results 5. Implement the solution at organizational level 1.The Analysis (CAR) PROBLEM: We were not meeting our process performance objectives for some kind of projects 1 - Why? The specialized phases (architecture, security, non-functional testing, transition) were taking more time than estimated 2- Why? The agile development teams were not enough to tackle this challenge 3 - Why? We didn't have enough specialists assigned to the program 4 - Why? It was not cost-effective to hire too many specialists 5 - Why? We hadn’t identified the minimum, maximum and average use of the specialists The specialists were more expensive than regular developers and there were too much idle times 1.The Analysis (CAR) PROBLEM: We were not meeting our process performance objectives for some kind of projects Conclusion Those specialized phases (architecture, security, non-functional testing, transition) were actually behaving like a service 2.The Solution PROBLEM: We were not meeting our process performance objectives for some kind of projects We decided to use the CMMI for Services constellation 3.The Implementation SD, CAM, WP & WMC CMMI SVC We implemented a pilot with the following: Encapsulated the specialized phases as a service Analyzed the demand, resources, capacity and performance needed, for our services We established the SLA’ s Updated our service request system to include those services Updated our estimation techniques Extended our planning, monitoring and control capabilities from our dev projects to our services. 3.The Implementation Optimizing the resource usage, based on the value of the expected demand … 3.The Implementation SCON, SST, IWM, IRP SD, CAM, WP & WMC CMMI SVC We identified the essential functions and resources that support them We defined an strategy and a plan based on that analysis to ensure the continuity of the service We tailored our process to integrate the appropriate use of the services We planed, developed and deployed the transition of our systems We extended our incident management system to include the service’s incidents 3.The Implementation QWM, STSM SCON, SST, IWM, IRP SD, CAM, WP & WMC CMMI SVC We quantitatively evaluated the results of the services’ implementation Based in the execution results, we decided to include these services in our catalog of organizational standard services We formalized the attributes and SLA of each service 4.The Evaluation QWM, STSM SCON, SST, IWM SD, CAM, WP & WMC Through an statistical experiment we found out that the process performance mean had changed, showing a true benefit CMMI SVC 5. Deploy at Organizational Level QWM, STSM SCON, SST, IWM PP, PMC, IPM, QPM, RD, TS, PI, VER, VAL SD, CAM, WP & WMC CMMI DEV & CMMI SVC co-existence CMMI SVC CMMI DEV 5. Deploy at Organizational Level CMM-SVC PA’s CMMI-DEV PA’s CMMI DEV & CMMI SVC co-existence CMMI SVC CMMI DEV The Results Prueba de desviación estándar (esfuerzo) de 2 muestras para (DEV) vs (DEV + SVC) Informe de resumen Estadísticas Prueba de desviación estándar ¿Es Desv Horas A mayor que Desv Horas D? 0 0,05 0,1 > 0,5 Sí No Tamaño de la muestra Media Desviación estándar IC de 90% Desv Horas A Desv Horas D 37 0,86721 0,48767 (0,4215; 0,5905) 37 1,0002 0,025479 (0,0215; 0,0316) P = 0,000 La desviación estándar de Desv Horas A es significativamente mayor que Desv Horas D (p < 0,05). Gráfica de comparación de las desviaciones estándar Desv Horas A Comentarios Desv Horas D 0,00 0,15 0,30 0,45 Distribución de los datos Compare la dispersión de las muestras. Desv Horas Antes Desv Horas Después 0,0 0,4 0,8 1,2 1,6 0,60 -- Prueba: Usted puede concluir que la desviación estándar de Desv Horas A es mayor que Desv Horas D en el nivel de significancia de 0,05. -- Gráfica de comparación: Los intervalos en rojo indican que las desviaciones estándar difieren. Considere el tamaño de la diferencia para determinar si tiene implicaciones prácticas. -- Distribución de los datos: Compare la dispersión de las muestras. Busque datos poco comunes antes de interpretar los resultados de la prueba. The Results Capacidad de proceso Desarrollo con Servicios (desviación en esfuerzo) Gráfica I Histograma de capacidad Valor individual 1,1 LCS=1,0938 Objetivo E specificaciones LE I 0,9 O bjetiv o 1,0 LE S 1,1 LCI=0,9091 1 11 21 31 41 51 61 71 81 91 0,90 0,93 0,96 0,99 1,02 1,05 1,08 Rango móvil Gráfica de rangos móviles Gráfica de prob. Normal A D: 0,260, P : 0,704 LCS=0,1134 0,10 0,05 __ MR=0,0347 LCI=0 0,00 1 11 21 31 41 51 61 71 81 0,9 91 1,0 Dentro Desv.Est. 0,03078 Cp 1,08 Cpk 1,07 PPM 1172,04 1,05 1,00 0,95 80 85 90 Observación 1,1 Gráfica de capacidad Últimas 25 observaciones Valores LES _ X=1,0015 1,0 0,9 LEI 95 100 Dentro de G eneral E specificaciones General Desv.Est. 0,02894 Pp 1,15 Ppk 1,14 Cpm 1,15 PPM 558,78 The Results • We successfully integrated the CMMI-SVC constellation to our established process, solving our process capability issues • We improved the customer satisfaction for our national security projects • The process performance improvement leveraged the ROI Lessons Learned • The high maturity practices helped us to identify CMMIDEV was not enough for some kind of projects • The use of CMMI-SVC helped us to focus on the missing pieces • • • • Capacity and Availability Management Service Continuity Strategic view of our services Accuracy of project’s and service’s estimation • The CMMI-DEV maturity at Ultrasist provided a solid foundation for the SVC adoption • As an outsourced software factory, SVC provided a new strategic way to deliver our work, in benefit to our clients