2006 d d d d d d dd1. d : 2 sin x(cos x − 1) arctan(tan(arctan(2x) − 2 arctan x)) dd = lim x→0 2 2x · (− x2 ) = lim 2x 2x− 1−x 2 x→0 ¡ arctan( 1+2x· √ 2x 1−x2 −x3 1 = 3 −2x x→0 arctan 2 1+3x2 = lim ) ¢ ¡√ √1 ¢ ln x √x lim = e x→+∞ x = e2 ln x = e2 ln 1 = 1 1 − x 1 1 x2 4. d : y 0 = arctan + x · = arctan − x x 1 + x2 1 + x12 − x12 −2x −2 1 y 00 = 1 − 1 + x2 − x · (1 + x2 )2 = (1 + x2 )2 1 + x2 y 0 (t) 2t + 2t2 d2 y 4(1 + t)2 dy 4(1 + t) 2 5. d : = 0 = = 2(1 + t) , = = . 1 1 dx x (t) dx2 t 1 − 1+t 1 − 1+t Z 1 x2 + C, 6. d : dddd(f (ex ))0 = f 0 (ex ) · ex = e2x , df (ex ) = e2x dx = e2x + C, f (x) = 2 2 2 x df (0) = 1, dC = 1, f (x) = + 1. 2 ¯ 2 ¯ ¯ ¯ ¯ 2x + x ¯ ¯ ¯ 3 3 x+2 ¯< ddd dd . ∀ε > 0, dN = + 1, dx > N d, ¯¯ 2 − 2¯¯ = ¯¯ < ε. 2ε x −1 (x + 1)(x − 1) ¯ 2(x − 1) 1 1 −1 1 1 ddd d: dx > 0ddf 0 (x) = 2x sin + x2 cos · 2 = 2x sin − cos ; x x x x x dx < 0ddf 0 (x) = 2x − sin x − x cos x; x2 sin x1 x(x − sin x) dx = 0ddf 0 (0 + 0) = lim = 0, f 0 (0 − 0) = lim = 0, df 0 (0) = 0. x→0+0 x→0−0 x x ddddf 0 (x)dx = 0dddd: µ ¶ 1 1 1 lim f 0 (x) = lim 2x sin − cos = lim − cos dddddf 0 (x)dx = 0dddd x→0+0 x→0+0 x→0+0 x x x dd lim f 0 (x) = 0 − 0 − 0 = 0 = f 0 (0), df 0 (x)dx = 0ddddd x→0−0 Z Z 1 dd1. d : cos3 x dx = (1 − sin2 x) d sin x = sin x − sin3 x + C. 3 Z Z Z 2. d : ex x x x x x x e arctan e dx = arctan e de = e arctan e − ex dx 1 + e2x Z 1 1 1 = ex arctan ex − de2x = ex arctan ex − ln(1 + e2x ) + C. 2 1 + e2x 2 3. d : dd = e limx→+∞ ln x+ln 1+ √ x 1+x2 x 2007 d d d d d d ¯ ¯ ¯ 2x − 5 ¯ 7 7 7 dd1. d d . ∀ε > 0, dN = , dx > N d, ¯¯ − 2¯¯ = < < ε. ε x + 1 x + 1 x ³ ε´ 2. d d . ∀ε > 0, dδ = min 1, , d0 < |x − 1| < δd, 0 < x < 2 6 ¯ 2 ¯ ¯x + 3x − 4¯ = |x − 1| |x + 4| < 6 |x − 1| < ε. ddd d: limπ (sin x)tan 2 x→ 2 ¡ ¢ π y = −x 2 x ¡ ¢ 1 · sin x−1 = limπ 1 + sin x − 1 sin x−1 cot2 x x→ 2 =e limy→0 cos y−1 tan2 y =e limy→0 y −2 sin2 2 y2 1 = e− 2 . 2 2 ln(1 + t) ddd dd . ddddddd + ddddd 1 + t ¶ Z xµ Z x 1+t 2 2 ln(1 + t) 2 2 ln(1 + t) + dt < 2 dt, ddt > 0d + < 2, dddln(1+t) < 1 + t 1 + t 1 + t 1+t 0 0 Z t Z t t. dt > 0dt = 1 ds < es ds = et − 1ddd 0 0 ddd d: 1) dx > 0ddf 0 (x) = 2x + 2x . 1 + x2 dx < 0ddf 0 (x) = 2 sin x + 2x cos x. x2 + ln(1 + x2 ) − 0 2x sin x dx = 0ddf 0 (0 + 0) = lim = 0, f 0 (0 − 0) = lim = 0, df 0 (0) = x→0+0 x→0−0 x x 0. µ ¶ 2x 0 d lim f (x) = lim 2x + = 0, lim f 0 (x) = lim (2 sin x + 2x cos x) = 0, df 0 (x)d0d x→0+0 x→0+0 x→0−0 x→0−0 1 + x2 ddd 2x 2x + 1+x f 0 (x) − f 0 (0) f 0 (x) − f 0 (0) 2 sin x + 2x cos x 2 2) lim = lim = 4, lim = lim = 4. x→0+0 x→0+0 x→0−0 x→0−0 x x x x 00 df (0) = 4. 2006 d d d d d d ¡ k ¢2 Z 1 n X 1 x2 ln(1 + x3 ) ¯¯1 ln 2 n dd2. d : dd = · dx = . ¯ = ¡ k ¢3 = 3 n 1+ 3 3 0 0 1+x k=1 n Z Z Z dd1. d : d sin x 1 −d cos x I1 = + = (1) + (2) + (3). dx + 2 − cos2 x 1 + 12 (1 − cos 2x) 1 + sin2 x Z Z √ √ 2 1 dt dt 1 √ √ (tan x = t) (1) = arctan 2t + C = arctan( 2 tan x) + C = = 2 1 + t2 1 + 2t2 2 2 3 − 1−t 1+t2 √ 1 2 − cos x (2) = √ ln √ + C, (3) = arctan sin x + C. 2 2 2 + cos x √ √ 1 1 2 − cos x dI1 = √ arctan( 2 tan x) + √ ln √ + arctan sin x + C. 2 2 + cos x Z2 π2 2 − sin t √ 2. d : dx = π + t, I2 = dt = 0, dddddddddd. 1 − cos 2t −π 2 ¡ ¢0 1 ln x ddd d: f (ln x) = f 0 (ln x) · = ,d x (1 + ln x)2 Z Z Z ln x −1 1 f (ln x) = dx = dx + dx (1 + ln x)2 (1 + ln x)2 1 + ln x Z Z x · x1 x −1 = dx + + dx 2 (1 + ln x) 1 + ln x (1 + ln x)2 x = + C, 1 + ln x df (0) = 1, df (ln 1) = 1 + C = 1, dC = 0, f (1) = f (ln e) = e e = . 1 + ln e 2 2007 d d d d d d ¯ ¯ Z ¯x − 1¯ 1 ln x ln x 1 1 ¯ ¯ + C. ddd d: 1. dd = ln x d = − dx = + ln ¯ 1−x 1−x 1−xx 1−x x ¯ 1 tan x − sin x tan x(1 − cos x) √ = . 2. dd = lim 3 √ = 3 x→0 x ( 1 + tan x + 2x 4 1 + sin x) ¶ Z 2 Z 2µ 1 1 t ¯¯2 2t dt 4 3. dx = t2 , dd = = 2 − dt = 2 ln ¯ = 2 ln . 2 (1 + t) t t 1 + t 1 + t 3 1 1 1 µ ¶(10) µ ¶ µ ¶(8) µ ¶(n) (9) 1 1 1 1 n! 4. y (10) = x2 + 10 2x + 10 × 9 . d = dd 1−x 1−x 1−x 1−x (1 − x)n+1 ¢ 10! ¡ 2 10! y (10) = x + 2x(1 − x) + (1 − x)2 = (1 − x)11 (1 − x)11 Z x Z x 3 x − 1 2 , d1 < x ≤ 2d, F (x) = 1 dt = x − 1. 8. d0 ≤ x ≤ 1ddF (x) = t dt = 3 1 1 Z p √ √ ddd d: xn+1 = 4 − (xn − 2)2 , d0 ≤ xn+1 ≤ 2 (n ≥ 1d).pdn > 1ddxn+1 > xn · 2 > xn · xn = xn , dn > 1dxn ddddddddddddddddddA, dA = A(4 − A)dA = 2. ddd d: dddddg(f (x))f 0 (x) = ex (x2 + 2x) = xf 0 (x)d Z f 0 (x) = ex (x + 2), f (x) = (x + 2)ex dx = (x + 2)ex − ex + C, df (0) = 0, df (x) = (x + 1)ex − 1. Z 1 n X 1 1 dx π ddd d: dd = lim = = . ¡ ¢ 2 2 k n→∞ n1+ 4 0 1+x k=1 n ¶ Z 2µ y2 ddd d: ddddddddd(2, 2), (8, −4)ddS = dy = 18. 4−y− 2 Z x Z −4 x ddd dd . dx ∈ [0, 1]. dxf (x) = (tf (t))0 dt = (tf 0 (t) + f (t)) dt d 0 0 Z x x |f (x)| ≤ x Z 0 Z 1 d(1 − x)f (x) = − x |f (t)| dt. 0 Z ((1 − t)f (t))0 dt = − x |f 0 (t)| dt + 1 ((1 − t)f 0 (t) − f (t)) dt d x Z 1 (1 − x) |f (x)| ≤ (1 − x) Z |f 0 (t)| dt + x Z dddddddd|f (x)| ≤ x 1 |f (t)| dt. x Z 1 |f 0 (t)| dt + (1 − x) 0 1 Z 1 |f 0 (t)| dt + 0 |f (t)| dt = dddddd 0 2008 d d d d d d Z Z 1 2 ln x 1 1 + ln x =− +2 dx = −2 + C. 2 x x x x ex ln(1+x) − 1 x ln(1 + x) 1 2. dd = lim x = lim = . x→0 (e − 1) ln(1 + 2x) x→0 x · 2x 2 µ ¶ Z 1 n X 1 k−1 3. dd = lim sin a + b = sin(a + bx) dx. db = 0ddd = sin a; db 6= 0, n→∞ n n 0 k=1 ¯1 ¢ 1 1¡ cos a − cos(a + b) . ddd = − cos(a + bx)¯0 = b b ¯ ³ 7π ´¯¯ ¯ 3 4. f (10) (0) = C10 (sin x)(7) · (x3 )(3) ¯ = 10 × 9 × 8 sin x + = −720. ¯ 2 x=0 x=0 Z 1 ¯1 x 8. ddddddd = 2 dx = ln(1 + x2 )¯0 = ln 2. 2 0 1 +Zx 1 ¯1 √ x π 2t2 dt = 2 − 2 arctan t¯0 = 2 − . 10. d e − 1 = tdddd = 2 1 + t 2 0 1 1 ddd d: 1. dddd(x0 , y0 ). dddddddddd2ax0 = ddx0 = √ . dy0 = ax20 = ln x0 , x0 2a √ 1 1 dda = , x0 = e, y0 = . 2e Z 1 2 √ √ ³ p ¢ 2 ¡ 2 e 2 2e 3 ´¯¯ 12 y y 2. S = e − 2ey dy = e − y2 ¯ = − 1. 3 3 0 0 Z Z Z 0 a 0 f (−t) f (t)et f (x) dx = − dt = dt. ddd dd . x −t t a 1+e 0 1+e −a 1 + e Z a Z 0 Z a Z a f (x) f (x) f (x) dx = dx + dx = f (x) dx. dd. d x x x 0 1+e −a 1 + e 0 −a 1 + e ddd d: 1. dd = −2 ln x d 3