1 151 WebCalc Fall 2002-copyright Joe Kahlig In Class Questions MATH 151-Fall 02 October 9 1. Use the table of information to compute the following. If it is not possible explain why. x f (x) f 0 (x) 2 3 6 3 4 7 4 5 8 5 2 9 x g(x) g0 (x) J(x) = f (g(x)), 2 1 −5 3 2 −6 4 5 −7 5 8 −9 H(x) = g(x + f (x)) (a) J 0 (x) = f 0 (g(x)) ∗ g0 (x) so J 0 (4) = f 0 (g(4)) ∗ g0 (4) = f 0 (5) ∗ −7 = 9 ∗ −7 = −63 (b) H 0 (x) = g0 (x+f (x))∗(1+f 0 (x)) so H 0 (2) = g0 (2+f (2))∗(1+f 0 (2)) = g0 (2+3)∗(1+6) = −9 ∗ 7 = −63 2. Compute these trig limits. (a) lim x→0 lim x→0 1 − cos(5x) 1 − cos(5x) 1 + cos(5x) 1 − cos2 (5x) sin2 (5x) = lim ∗ = lim = lim = x→0 6x2 6x2 1 + cos(5x) x→0 6x2 (1 + cos(5x)) x→0 6x2 (1 + cos(5x)) 5 ∗ sin(5x) 5 ∗ sin(5x) 1 1 25 ∗ ∗ =5∗5∗ = 5x 5x 6(1 + cos(5x)) 12 12 (b) lim sin(5x) sin(5x) cos(3x) 5 ∗ sin(5x) 3x 1 5 = lim = lim ∗ ∗ cos(3x) = 5 ∗ ∗ 1 = x→0 tan(3x) x→0 sin(3x) 5x 3 ∗ sin(3x) 3 3 (c) lim tan(4x) = lim 3 tan(7x) x→0 x→0 x→0 sin(4x) cos(4x) 3 sin(7x) cos(7x) = lim x→0 sin(4x) cos(7x) = 3 sin(7x) cos(4x) 4 ∗ sin(4x) 7x cos(7x) 1 1 4 ∗ ∗ =4∗ ∗ = x→0 4x 7 ∗ sin(7x) 3 cos(4x) 7 3 21 tan(x) 1 (d) limπ = x→ 4 4x π lim (e) lim x→1 sin(x − 1) sin(x − 1) sin(x − 1) 1 1 1 = lim = lim ∗ =1∗ = x2 + x − 2 x→1 (x − 1)(x + 2) x→1 (x − 1) (x + 2) 3 3 3. Take the derivatives of these functions. cos(x) (a) y = sin x2 + 1 " cos(x) −(x2 + 1) sin(x) − cos(x) ∗ 2x y = cos ∗ x2 + 1 (x2 + 1)2 0 # (b) y = sec2 (x4 + 1) = (sec(x4 + 1))2 y 0 = 2(sec(x4 + 1)) ∗ sec(x4 + 1) tan(x4 + 1) ∗ 4x3 (c) y = tan(5x) cos(x2 + 5) y 0 = 5 sec2 (5x) ∗ cos(x2 + 5) + tan(5x) ∗ (− sin(x2 + 5) ∗ 2x) (d) y = sin2 (cos(4x)) = (sin(cos(4x)))2 y 0 = 2(sin(cos(4x))) ∗ cos(cos(4x)) ∗ (− sin(4x)) ∗ 4