El siguiente material se encuentra en etapa de corrección y no deberá ser considerado una versión final. Alejandro D. Zylberberg <alejandro@probabilidad.com.ar> Versión Actualizada al: 4 de mayo de 2004 Independencia Dos sucesos son independientes si el hecho de conocer que ocurrió uno de ellos no afecta la probabilidad de que ocurra el otro. Consideremos por ejemplo los siguientes sucesos: A: Argentina le gana hoy a Brasil en el partido de fútbol B: Esta noche hay luna llena C: Sube el precio de los autos nuevos D: Se reduce la cantidad de gente que compra autos nuevos Dijimos que dos sucesos son independientes si el hecho de conocer que ocurrió uno de ellos no afecta la probabilidad de que ocurra el otro. Hoy Argentina y Brasil jugarán un partido de fútbol, y con nuestro conocimiento futbolístico llegamos a la conclusión de que la probabilidad de que Argentina le gane hoy a Brasil es de 0,6. En ese momento miramos por la ventana y nos damos cuenta de que hoy hay luna llena. ¿Eso modificará nuestra creencia de que la probabilidad de que Argentina le gane a Brasil es 0,6? Es decir, la probabilidad de que gane Argentina en una noche que hay luna llena, ¿podríamos decir que es distinta de la probabilidad de que gane Argentina en una noche cualquiera? Probablemente no, a menos que seamos expertos en astrología y “sepamos” que los astros afectan el desempeño de los futbolistas de distintos países. Dicho de otra forma, P(A) = 0,6 y además P(A/B) = 0,6 (porque el hecho de saber que ocurrió B no afecta la probabilidad de que ocurra A). Vemos que P(A) = P(A/B) es una forma matemática de expresar lo que dijimos antes de que dos sucesos son independientes si el hecho de conocer que ocurrió uno de ellos no afecta la probabilidad de que ocurra el otro. Supongamos que la historia hubiera sido distinta: Sabemos que la cuarta parte de los días hay luna llena, y entonces P(B) = 0,25. Si alguien nos pregunta: “¿cuál es la probabilidad de que el 26 de abril de 1982 haya habido luna llena?”, responderemos: “0,25”. Luego la persona nos dice: “¿Estás seguro? Mirá que ese día Argentina le ganó a Brasil”. ¿Modificaremos entonces nuestra respuesta? Probablemente no, a menos que a la luna le guste ponerse llena cuando Argentina le gana a Brasil. Dicho de otra forma, P(B) = 0,25 y además P(B/A) = 0,25 (porque el hecho de saber que Argentina le ganó a Brasil no afecta la probabilidad de que haya habido luna llena). Observamos entonces que en este ejemplo también vale P(B) = P(B/A). Y si hacemos las correspondientes cuentas, también veremos que se verifica P(A ∩ B) = P(A) . P(B) Daremos a continuación la definición y luego demostraremos las equivalencias: Dos sucesos A, B son independientes <=> P(A/B) = P(A) <=> P(B/A) = P(B) <=> P(A ∩ B) = P(A) . P(B) Verificaremos las equivalencias: Si se cumple P(A/B) = P(A), aplicamos la definición de probabilidad condicional del lado izquierdo y nos queda: P(A ∩ B) / P(B) = P(A), luego P(A ∩ B) = P(A) . P(B) Si pensamos el P(A ∩ B) como P(B ∩ A) y aplicamos nuevamente la definición de probabilidad condicional del lado izquierdo, nos queda P(B/A) . P(A) = P(A) . P(B), luego P(B/A) = P(B), con lo cual verificamos la equivalencia de las 3 expresiones. Pasando a los sucesos C y D, aún sin saber mucho de economía nos imaginamos que debe haber una cierta relación entre los precios y la cantidad de compradores. No nos resultaría extraño que la probabilidad de que se reduzca la cantidad de compradores de autos nuevos en un país donde ha aumentado el costo de los autos nuevos sea mayor que en un país cualquiera en el cual no sabemos si aumentó o no aumentó el costo de los autos nuevos. Supongamos que del anuario de la sociedad internacional de automóviles sacamos los siguientes datos: En el año 1995, en el 25% de los países se redujo la cantidad compradores de autos nuevos. En el 30% de los países subió el costo de los autos nuevos. Y en el 80% de los países en los cuales subió el costo, bajó la cantidad de compradores. Es decir: P(D/C) = 0,8 P(D) = 0,25 P(C) = 0,3 Vemos que P(D/C) ≠ P(D) por lo tanto los sucesos C y D no son independientes, por lo tanto tampoco se cumplen las otras dos definiciones y entonces P(C/D) ≠ P(C) y también P(C ∩ D) ≠ P(C) . P(D) A continuación hagamos los diagramas de Venn de los dos ejemplos dados: Independientes (se cumplen las definiciones) No independientes (no se cumplen las definiciones) Casos especiales de dependencia • Sucesos disjuntos: Si los sucesos son disjuntos, el hecho de que ocurra uno implica que el otro no ocurre. Es decir, en el caso de que sean disjuntos, el hecho que un suceso ocurra no solamente afecta la probabilidad de que el otro ocurra, sino que además la hace directamente cero. Por lo tanto los sucesos son fuertemente dependientes. Si el suceso R es que una persona sea rubia y el suceso M es que sea morocha, R ∩ M = ∅, y por lo tanto si se sabe que una persona es rubia la probabilidad de que sea morocha es cero y también si se sabe que una persona es morocha, la probabilidad de que sea rubia es cero. Vemos que por tratarse de sucesos disjuntos, el hecho de que ocurra uno hace que la probabilidad no solamente sea afectada sino que además la hace valer cero. • Un suceso incluido en otro: Si un suceso está incluído en otro, al ocurrir el de “adentro” necesariamente ocurre también el de “afuera”. Es decir, el hecho de que haya ocurrido el de “adentro” modifica la probabilidad de que ocurra el de “afuera”, y de hecho la hace uno. Si el suceso N es haya nubes un determinado día haya nubes y el suceso L es que llueva, notamos que L ⊂ N. El hecho de saber que un día llovió hace que la probabilidad de que haya habido nubes sea 1, con lo cual el hecho de saber que ocurrió L afecta la probabilidad de N. Y también el hecho de saber que hubo nubes no necesariamente implicará que llueva, pero en general afectará la probabilidad de que llueva, porque recordemos que aceptar que “hay nubes” implica meterse en un espacio muestral en el cual “hay nubes”, y por lo tanto todas las probabilidades se modifican porque deben estar referidas al nuevo espacio muestral. Visualicemos estos ejemplos mediante diagramas de Venn: No independientes Los sucesos disjuntos no pueden ser independientes. No independientes Si un suceso está incluído en otro no pueden ser independientes Independencia de los complementos Dados dos sucesos A, B: A, B indep. <=> A, BC indep. <=> AC, B indep. <=> AC, BC indep. La justificación es simple, si el hecho de que ocurra A no afecta la probabilidad de B, entonces tampoco afecta la probabilidad de que no ocurra B. Por ejemplo si se sabe que los sucesos: A: Argentina le gana hoy a Brasil en el partido de fútbol B: Esta noche hay luna llena son independientes, y se tiene el suceso: X: Esta noche no hay luna llena ¿Son A y X independientes? Sí, porque X = BC, y si A y B son independientes, A y BC también lo son. Dicho de otro modo, si el hecho de que gane Argentina no afecta la probabilidad de que haya luna llena, tampoco afecta la probabilidad de que no haya luna llena. Y tampoco por ejemplo, si la probabilidad de que haya luna llena no afecta la probabilidad de que gane Argentina, tampoco afecta la probabilidad de que no gane Argentina. Problemas típicos 1) Indique qué puede afirmar acerca de la independencia de los siguientes pares de sucesos: a) Que al tirar una moneda y un dado salga cara en la moneda y 3 en el dado. b) Que la clase sea buena y que los alumnos entiendan. c) Que una lata de arvejas pese más de 200 g y que contenga más de 300 arvejas. d) Que llueva y que suene el teléfono en los próximos 5 minutos. e) Que llueva y que haya nubes f) Que un número sea par y que ese mismo número sea impar g) Que al tirar una moneda y un dado salga cara en la moneda y NO salga 3 en el dado. Haga las aclaraciones que considere necesarias. Resolución: a) Podemos suponer que son independientes, porque no parece que si ocurre una cosa se vea afectada la probabilidad de que ocurra la otra. b) Podemos suponer que no son independientes, porque la probabilidad de que los alumnos entiendan si la clase fue buena debe ser mayor que si no lo fue, y visto de otro modo, si los alumnos entendieron, la probabilidad de que la clase haya sido buena debe ser mayor que si los alumnos no entendieron. c) Podemos suponer que no son independientes, porque hay una relación entre el peso de la lata y la cantidad de arvejas que contiene, y como los sucesos "la lata pesa más de 200 g" y "la lata contiene más de 300 arvejas" son condiciones impuestas sobre esas cantidades relacionadas, no pueden ser independientes. d) Podemos suponer que son independientes. En principio no hay ninguna relación entre una cosa y la otra. Pero si tuviésemos más información (por ejemplo, que una tía siempre nos llama para recordarnos que cerremos las ventanas porque que se ha largado a llover) nuestra respuesta podría ser diferente, porque en ese caso el hecho de que ha comenzado a llover incrementa la probabilidad de que suene el teléfono en los próximos 5 minutos porque puede ser la tía avisándonos que está lloviendo. e) No son independientes, porque uno está incluído en otro. f) No son independientes, porque son disjuntos. g) Los suponemos independientes por las mismas razones que en a), o también porque el suceso del dado es el complemento de un suceso que era independiente del de la moneda, entonces también es independiente. 2) Determinar si los sucesos A y B son independientes, de acuerdo a los siguientes datos: a) P(A) = 0,3 ; P(B) = 0,2 ; P(A ∩ B) = 0,05 b) P(A ∩ BC) = 0,1 ; P(A ∩ B) = 0,2 ; P(A/B) = 0,3 Resolución: a) P(A) . P(B) = 0,3 . 0,2 = 0,06 ≠ 0,05 = P(A ∩ B), por lo tanto no son independientes b) P(A ∩ BC) + P(A ∩ B) = P(A) = 0,3 = P(A/B), por lo tanto son independientes 3) Si la probabilidad de que hoy llueva es 0.2 y la probabilidad de que hoy se me acabe la tinta de la lapicera es 0.6, calcule la probabilidad de que: a) llueva y se me acabe la tinta b) llueva y no se me acabe la tinta c) no llueva y no se me acabe la tinta Aclare qué suposiciones debe hacer. Resolución: Debemos suponer que el suceso de que hoy llueva y el de que se me acabe la tinta son independientes (si no, no se podría resolver). Nos dicen que la probabilidad de que llueva es 0.2, por lo cual la probabilidad de que no llueva es 0.8. Además la probabilidad de que se acabe la tinta es 0.6, por lo cual la probabilidad de que no se acabe la tinta es 0.4. Resolvemos: a) Sabemos que cuando dos sucesos son independientes, la probabilidad de que ocurran simultáneamente es el producto de las probabilidades de que ocurran individualmente. Es decir, los sucesos A y B son independientes <=> P(A ∩ B) = P(A) . P(B) Si tomamos A: "que llueva" y B: "que se me acabe la tinta" entonces: P(A ∩ B) = P(A) . P(B) = 0.2 . 0.6 = 0.12 b) Si A y B son independientes, entonces A y BC también lo son. Entonces vale: P(A ∩ BC) = P(A) . P(BC) = 0.2 . 0.4 = 0.8 c) Si A y B son independientes, entonces AC y BC también lo son. Entonces vale: P(AC ∩ BC) = P(AC) . P(BC) = 0.8 . 0.4 = 0.32 4) Se tiran 2 dados honestos. Calcule la probabilidad de que: a) No salga ningún 1 b) No salga ningún número impar. Resolución: a) Consideraremos a los dados independientes. Y entonces tomamos los sucesos: A: que no salga un 1 en el primer dado. B: que no salga un 1 en el segundo dado. Y queda: P(A ∩ B) = P(A) . P(B) = 5/6 . 5/6 = 0.694 También lo podríamos haber pensado de acuerdo a lo que vimos cuando estudiamos multiplicación de probabilidades. Tomando los mismos sucesos A y B, lo que estamos buscando es P(A ∩ B), lo cual según vimos se puede escribir como P(A) . P(B/A). En este caso particular, por considerarlos independientes, P(B/A) termina siendo P(B), y entonces llegamos al mismo resultado que con el otro planteo es decir P(A) . P(B) = 0.694 b) Nuevamente los consideramos independientes. Y tomamos los sucesos: A: que no salga ningún número impar en el primer dado. B: que no salga ningún número impar en el segundo dado. Y queda: P(A ∩ B) = P(A) . P(B) = 3/6 . 3/6 = 0.25 Aquí también podríamos hacer el mismo razonamiento que antes. 5) La probabilidad de acertarle a un blanco en cada disparo es de 0.6. ¿Cuál es la probabilidad de que, efectuando 5 disparos, se acierte el primero, se falle el segundo, se acierten el tercero y el cuarto, y se falle el quinto? Resolución: Si aplicamos el mismo enfoque que en los anteriores, asumiremos que los 5 intentos son independientes y haremos: A: acertar el primero B: fallar el segundo C: acertar el tercero D: acertar el cuarto F: fallar el quinto P(A ∩ B ∩ C ∩ D ∩ F) = P(A) . P(B) . P(C) . P(D) . P(F) = 0.6 . 0.4 . 0.6 . 0.6 . 0.4 = 0.03456 Lo cual es correcto. Podríamos haberlo pensado con multiplicación de probabilidades, con lo cual el resultado habría sido P(A) . P(B/A) . P(C/ B∩A) . .... y las condiciones habrían desaparecido porque los sucesos son independientes, y llegaríamos al mismo resultado que antes. También podríamos hacer: A: probabilidad de acertar un disparo P(A ∩ AC ∩ A ∩ A ∩ AC) = P(A) . P(AC) . P(A) . P(A) . P(AC) = 0.6 . 0.4 . 0.6 . 0.6 . 0.4 = 0.03456 Y obtenemos el mismo resultado. Esto se debe a que luego de cada intento, la probabilidad de acertar sigue siendo la misma (se mantiene constante) y cada sucesivo disparo se lleva a cabo en las mismas condiciones que el primero. 6) Se tiene una cierta moneda cargada, para la cual la probabilidad de sacar cara es 0.7. Si un experimento consiste en tirar dicha moneda 2 veces, calcule la probabilidad de: a) sacar primero cara y después ceca b) sacar primero ceca y después cara c) sacar una cara y una ceca Resolución: a) A: sacar cara al tirar la moneda P(A) = 0.7 Como vimos en el ejemplo anterior, consideramos los dos intentos independientes y hacemos: P(sacar cara en la primera y ceca en la segunda) = P(A ∩ AC) = 0.7 . 0.3 = 0.21 b) Bajo las mismas condiciones: P(sacar ceca en la primera y cara en la segunda) = P(AC ∩ A) = 0.3 . 0.7 = 0.21 Vemos que nuevamente no importa el orden. c) "Sacar una cara y una ceca" es equivalente a "Sacar cara y después seca, o sacar ceca y después cara". Entonces si el suceso A es "sacar cara", la probabilidad es: P(sacar una cara y una ceca) = P((sacar cara y después ceca) o (sacar ceca y después cara)) = P((A ∩ AC) ∪ (AC ∩ A)) Aplicamos la fórmula para la probabilidad de la unión y obtenemos: P((A ∩ AC) ∪ (AC ∩ A)) = P(A ∩ AC) + P(AC ∩ A) - P((A ∩ AC) ∩ (AC ∩ A)) P(A ∩ AC) y P(AC ∩ A) ya estaban calculadas antes P((A ∩ AC) ∩ (AC ∩ A)) = P(A ∩ AC ∩ AC ∩ A) = P(A ∩ AC) = P(∅) = 0 Lo cual es lógico porque no puede salir cara y no salir cara al mismo tiempo. Entonces queda: P((A ∩ AC) ∪(AC ∩ A)) = P(A ∩ AC) + P(AC ∩ A) = 0.21 + 0.21 = 0.42 Vemos que no importa el orden en el sentido de que todas las formas de ordenar tienen la misma probabilidad, pero si queremos tomar la probabilidad de que ocurra, y ocurra en cualquier orden, la probabilidad será, lógicamente, mayor, ya que será la unión de todos los órdenes posibles en los que puede ocurrir.