Name AP Calculus AB Date

Anuncio
EMCF 37
Due 04/19 at 8:00 pm
Log into CourseWare at http://www.casa.uh.edu
and access the answer sheet by clicking on the EMCF tab.
NOTE: On all problems, choice F is “None of the above”.
Answers for EMCF 37 numbers 1 – 10 are all C.
Review of all the types (mostly indefinite) of integration done in 1431 and 1432.
Try and work out these problems.
Integration Review
5  ex

 4  5x  dx
2.

4.

3x
dx
x 5
5.

7.

8.

10.

11.
 2  9x
1.
13.
6
1  3x 2

2
dx
dx
x2  4x
 x  sin 2 x  dx
2
14.
e
2x
3.
dx


x  x 3 9x 2  3 dx

x   e  dx
dx
2
x2

x2  4x
dx
6.

dx

x 12 x
6e 4 x
 2e
4 x
dx
9.

x2  x 1
12.

1  ln x
dx
x
15.

1
cos 
x
x2
18.
e
21.
 arccos x dx
x2 1




dx
dx
1
16.
 xe
19.
x
22.
x
3
x
dx
4
e x dx
ln x
2
dx
3
x 2  x  2  2 dx
25.

28.
 sin
31.
 tan  sec
3
x dx
6
 d
ex
17.
x
20.
  ln x 
23.
 ln 1  x  dx
24.
x
26.
dy
 ln x
dx
27
 cos y  y '  2x
29.
 sec  3x  dx
30.
 cos
2
32.
  sin x  cos x 
33.
 sec
5
2
dx
2
dx
1
2
0
2
2
dx
x
3
sin x dx
cos 2x dx
x
dx
2
x tan x dx
34.
37.


x sin 2 x dx

4
tan 3 x dx
0
x2 1
40.
x
43.
 cos
46.
49.
52.
55.
58.

3
e2 x
t
1
2
 x  2x
2x  3
9  x2
 t

64.
x
x
2
x
2

73.
x
x
44.

47.
53.
56.
x 1
2
2
42.
x
ln x dx
45.

1 x
2
x
dx
1  ln x
dx
x
x
x2
2
 2x  15
3x 3  2
dx
 sin
dx
57.

tan 2  2x  dx
60.
x
63.
 2x
3 
 dx
x3 
66.
 tan
dx
69.
 cos  sin  sin   d
72.
  2x  1 e
75.


1  t 
2
 ln x
x
71.

3
3
2
dt
1
2
2

x
4
dx
25  x 2
 4
2
 4x  8
 2x
54.
t2
68.
74.
39.
sin 2 2  d 

dx
dx
 3x

48.
dx

4

8
36.
51.
  x
dx
dx
x3  5
dx
x
65.
dt
dx
2x  3 dx
9  3x 2
x

 4x  3
2x
dx
x
2
 2x
x
x
1
41.
a
a
cos 2
2
2
x 3
2
62.
2  ln x 
70.
dx
dx
x3
x

x 1
3
38.
59.
 9t  1
1
2e x
y '  sin 2
50.
dx
t2  3
3
 dx
dt
1  t4

dx
2  d

61.
67.
 3x  4
1  sin e 2 x


3
35.
9
x 1

3  2x  x 2
2t  1
t
2
9
dt

3
dx
x2  4
3
dx
x cos 2 x dx
2
dx
3  2x  x 2
x2
2
 3x  2
dx
2x  3 dx
4
x sec 2 x dx
x 2 x
  dx
ln e x
5
dx
76.
79.
82.
1



2  4x  x
3
2
4
1  x2
0
2
1

x 1  x 3






77.
80.
dx
1
2
3
dx
dx
83.



 x  1
x
2
0
3
2
78.
dx
x2  2
dx
x 1
81.
3e x  3e  x
e
x
e
x

2
dx
84.

x


4

3
4  x 2 dx
sin 3 x cos x dx
3x 4  3x 3  5x 2  x  1
x2  x  2
dx
Descargar