Math 220 February 26 I. Find y 0 . 1. y = 1/x3 + 5x4 + ex3 + x−π + eln(2) 2. y = sin(x) + cos(x) + tan(x) + csc(x) + sec(x) + cot(x) + ex + 3x 3. y = ln(x) + log2 (x) + log3 (3x + 3) 4. y 2 = x + 3 5. y = sin−1 (x) 6. y = cos−1 (x) 7. y = tan−1 (x) 8. y = sec−1 (x) 9. y = csc−1 (x) 10. y = cot−1 (x) 11. y = arctan(sin(x) + π) 12. cos(xy) = x + sin(y) 13. x2 + y 2 = √ x + ln(3xy) 14. x = ey cos(x) 15. y = xx+1 16. (y + x)4 = xy 3 + x3 y 1 17. y = ln 18. log3 (y) = sin(x) cos 19. tan(xy) = x2 + 3 √ x + ex x y x x3 +y 4 +xy √ 20. y = (x + 2) x + 1 sin(x) cos(x) arctan(x)(x + 3)−2 e−5x 21. etan(ax+by) = sin(cx) + cos(dy) 22. y x = cos(2arcsin(x) ) √ 23. 3y cos(y sin(x)) = tan−1 ( x + y + ex ) 24. y = xy II. Find an equation for the tangent line to the curve at the given point. 1. y 2 + x2 = 2xy, (1, 1) 2. y 3 = x + sin(x + π2 ), (0, 1) 3. y = ln(cos(x)), (0, 0) x 4. y = x(x ) , (2, 16) 2 1 Solutions I. Find y 0 . 1. y = 1/x3 + 5x4 + ex3 + x−π + eln(2) Answer: y 0 = −3x−4 + 20x3 + 3ex2 − πx−π−1 2. y = sin(x) + cos(x) + tan(x) + csc(x) + sec(x) + cot(x) + ex + 3x Answer: y 0 = cos(x)−sin(x)+sec2 (x)−csc(x) cot(x)+sec(x) tan(x)−csc2 (x)+ex +ln(3)3x 3. y = ln(x) + log2 (x) + log3 (3x + 3) y0 = 1 3 1 + + x ln(2)x ln(3)(3x + 3) 4. y 2 = x + 3 Answer: (y 2 )0 = (x + 3)0 2yy 0 = 1 1 y0 = 2y 5. y = sin−1 (x) Answer: 3 (sin(y))0 = (x)0 cos(y)y 0 = 1 1 y0 = cos(y) 1 y0 = p 1 − sin2 (x) 1 y0 = √ 1 − x2 6. y = cos−1 (x) Answer: (cos(y))0 = (x)0 − sin(y)y 0 = 1 1 − sin(y) −1 y0 = p 1 − cos2 (x) −1 y0 = √ 1 − x2 y0 = 7. y = tan−1 (x) Answer: 4 (tan(y))0 = (x)0 sec2 (y)y 0 = 1 1 y0 = sec2 (x) 1 y0 = 1 + tan2 (x) 1 y0 = 1 + x2 8. y = sec−1 (x) Answer: (sec(y))0 = (x)0 sec(y) tan(y)y 0 = 1 1 sec(y) tan(y) 1 y0 = x tan(y) 1 y0 = p 2 x sec (y) − 1 1 y0 = √ x x2 − 1 y0 = 9. y = csc−1 (x) Answer: 5 (csc(y))0 = (x)0 − csc(y) cot(y)y 0 = 1 −1 csc(y) cot(y) −1 y0 = x cot(y) −1 y0 = p x csc2 (y) − 1 −1 y0 = √ x x2 − 1 y0 = 10. y = cot−1 (x) Answer: (cot(y))0 = (x)0 − csc2 (y)y 0 = 1 −1 y0 = csc2 (y) −1 y0 = 1 + cot2 (x) −1 y0 = 1 + x2 11. y = arctan(sin(x) + π) Answer: 1 (sin(x) + π)0 1 + (sin(x) + π)2 cos(x) = 1 + (sin(x) + π)2 y0 = 6 12. cos(xy) = x + sin(y) Answer: (cos(xy))0 = (x + sin(y))0 − sin(xy)(y + xy 0 ) = 1 + cos(y)y 0 − sin(xy)y − sin(xy)xy 0 = 1 + cos(y)y 0 − sin(xy)xy 0 − cos(y)y 0 = 1 + sin(xy)y y 0 (− sin(xy)x − cos(y)) = 1 + sin(xy)y 1 + sin(xy)y y0 = − sin(xy)x − cos(y) 13. x2 + y 2 = Answer: √ x + ln(3xy) √ (x2 + y 2 )0 = ( x + ln(3xy))0 1 3y + 3xy 0 2x + 2yy 0 = √ + 3xy 2 x 1 1 y0 2x + 2yy 0 = √ + + y 2 x x 0 y 1 1 2yy 0 − = √ + − 2x y 2 x x 1 1 1 y 0 (2y + ) = √ + − 2x y 2 x x 1 √ + x1 − 2x 2 x y0 = 2y + y1 14. x = ey cos(x) Answer: 7 (x)0 = (ey cos(x) )0 1 = ey cos(x) (y 0 cos(x) − y sin(y)) 1 = y 0 cos(x)ey cos(x) − y sin(y)ey cos(x) y 0 cos(x)ey cos(x) = 1 + y sin(y)ey cos(x) 1 + y sin(y)ey cos(x) cos(x)ey cos(x) 1 + xy sin(y) y0 = x cos(x) y0 = 15. y = xx+1 Answer: ln(y) = ln(xx+1 ) ln(y) = (x + 1) ln(x) (ln(y))0 = ((x + 1) ln(x))0 x+1 y0 = ln(x) + y x 1 y 0 = (ln(x) + 1 + )y x 1 xx+1 y 0 = ln(x) + 1 + x 16. (y + x)4 = xy 3 + x3 y Answer: 8 ((y + x)4 )0 = (xy 3 + x3 y)0 4(y + x)3 (y 0 + x) = y 3 + x3y 2 y 0 + 3x2 y + x3 y 0 4(y + x)3 y 0 + 4x(y + x)3 = y 3 + 3xy 3 y 0 + 3x2 y + x3 y 0 4(y + x)3 y 0 − 3xy 3 y 0 − x3 y 0 = y 3 + 3x2 y − 4x(y + x)3 y 0 (4(y + x)3 − 3xy 3 − x3 ) = y 3 + 3x2 y − 4x(y + x)3 y 3 + 3x2 y − 4x(y + x)3 y0 = 4(y + x)3 − 3xy 3 − x3 17. y = ln x2 + 3 √ x + ex Answer: y = ln(x2 + 3) − y0 = 18. log3 (y) = sin(x) cos Answer: 1 ln(x + ex ) 2 2x 1 + ex − x2 + 3 2(x + ex ) x y 9 x 0 ) (log3 (y)) = (sin(x) cos y y0 x x 1 x 0 = cos(x) cos − sin(x) sin( ) − y ln(3)y y y y y2 y0 x 0 x x − 2 y sin(x) sin( ) = cos(x) cos − sin(x) sin(x/y) y −1 ln(3)y y y y 1 x x x y0 − 2 sin(x) sin( ) = cos(x) cos − sin(x) sin(x/y) y −1 ln(3)y y y y cos(x) cos xy − sin(x) sin(x/y) (y −1 ) 0 y = 1 − xy −2 sin(x) sin(x/y) ln(3)y 0 19. tan(xy) = Answer: x x3 +y 4 +xy x )0 + y 4 + xy (x3 + y 4 + xy) − x(3x2 + 4y 3 y 0 + y + xy 0 ) (x3 + y 4 + xy)2 (x3 + y 4 + xy − 3x3 − xy) − (4xy 3 y 0 + x2 y 0 ) (x3 + y 4 + xy)2 (x3 + y 4 + xy − 3x3 − xy) (4xy 3 y 0 + x2 y 0 ) − 3 (x3 + y 4 + xy)2 (x + y 4 + xy)2 (x3 + y 4 + xy − 3x3 − xy) − sec2 (xy)y (x3 + y 4 + xy)2 (x3 + y 4 + xy − 3x3 − xy) − sec2 (xy)y (x3 + y 4 + xy)2 (tan(xy))0 = ( sec2 (xy)(y + xy 0 ) = sec2 (xy)y + sec2 (xy)xy 0 = sec2 (xy)y + sec2 (xy)xy 0 = (4xy 3 y 0 + x2 y 0 ) sec2 (xy)xy 0 + 3 = (x + y 4 + xy)2 (4xy 3 + x2 ) 0 2 y sec (xy)x + 3 = (x + y 4 + xy)2 0 y = 10 x3 (x3 +y 4 +xy−3x3 −xy) (x3 +y 4 +xy)2 sec2 (xy)x + − sec2 (xy)y (4xy 3 +x2 ) (x3 +y 4 +xy)2 √ 20. y = (x + 2) x + 1 sin(x) cos(x) arctan(x)(x + 3)−2 e−5x Answer: 1 ln(x + 1) + ln(sin(x)) + ln(cos(x)) + ln(tan−1 (x)) − 2 ln(x + 3) − 5x 2 1 = (ln(x + 2) + ln(x + 1) + ln(sin(x)) + ln(cos(x)) + ln(tan−1 (x)) − 2 ln(x + 3) − 5x 2 1 1 cos(x) sin(x) 1 2 = + + − + − −5 2 x + 2 2(x + 1) sin(x) cos(x) arctan(x)(x + 1) x + 3 1 1 cos(x) sin(x) 1 2 = + + − + − −5 y x + 2 2(x + 1) sin(x) cos(x) arctan(x)(x2 + 1) x + 3 1 1 cos(x) sin(x) 1 2 = + + − + − −5 · x + 2 2(x + 1) sin(x) cos(x) arctan(x)(x2 + 1) x + 3 √ (x + 2) x + 1 sin(x) cos(x) arctan(x)(x + 3)−2 e−5x ln(y) = ln(x + 2) + (ln(y))0 y0 y y0 y0 21. etan(ax+by) = sin(cx) + cos(dy) Answer: etan(ax+by) (etan(ax+by) )0 = (sin(cx) + cos(dy))0 sec2 (ax + by)(a + by 0 ) = c cos(cx) − d sin(dy)y 0 y 0 b sec2 (ax + by)etan(ax+by) + d sin(dy)y 0 = c cos(cx) − a sec2 (ax + by)etan(ax+by) y 0 (b sec2 (ax + by)etan(ax+by) + d sin(dy)) = c cos(cx) − a sec2 (ax + by)etan(ax+by) y0 = 22. y x = cos(2arcsin(x) ) Answer: 11 c cos(cx) − a sec2 (ax + by)etan(ax+by) (b sec2 (ax + by)etan(ax+by) + d sin(dy)) ln(y x ) = ln(cos(2arcsin(x) )) (x ln(y))0 = (ln(cos(2arcsin(x) )))0 − sin(2arctan(x) ) ln(2)2arctan(x) y0 ln(y) + x = y cos(2arcsin(x) )) − sin(2arctan(x) ) ln(2)2arctan(x) y0 x = y cos(2arcsin(x) )) y0 = y x 1 1+x2 1 1+x2 − sin(2arctan(x) ) ln(2)2arctan(x) cos(2arcsin(x) )) − ln(y) 1 1+x2 ! − ln(y) √ 23. 3y cos(y sin(x)) = tan−1 ( x + y + ex ) Answer: √ (3y cos(y sin(x)) )0 = (tan−1 ( x + y + ex ))0 ln(3)3y cos(y sin(x)) (y 0 cos(y sin(x)) + y(− sin(y sin(x))(y 0 sin(x) + y cos(x))) = 1 + y 0 + ex 1 √ √ = 1 + ( x + y + ex )2 2 x + y + ex ln(3)3y cos(y sin(x)) (y 0 cos(y sin(x)) − y sin(y sin(x))y 0 sin(x) 1 1 + y 0 + ex √ √ −y 2 sin(y sin(x)) cos(x) = 1 + ( x + y + ex )2 2 x + y + ex y0 1 √ ln(3)3y cos(y sin(x)) (y 0 cos(y sin(x)) − y sin(y sin(x))y 0 sin(x) − 1 + x + y + ex 2 x + y + ex 1 1 + +ex √ = y 2 sin(y sin(x)) cos(x) 1 + x + y + ex 2 x + y + ex 1 √ y 0 (ln(3)3y cos(y sin(x)) cos(y sin(x)) − y sin(y sin(x)) sin(x) − ) x (1 + x + y + e )(2 x + y + ex ) 1 1 + +ex √ = y 2 sin(y sin(x)) cos(x) 1 + x + y + ex 2 x + y + ex x y0 = 1 √1++e y 2 sin(y sin(x)) cos(x) 1+x+y+e x 2 x+y+ex ln(3)3y cos(y sin(x)) cos(y sin(x)) − y sin(y sin(x)) sin(x) − 12 1 √ (1+x+y+ex )(2 x+y+ex ) 24. y = xy Answer: ln(y) = ln(xy ) ln(y) = y ln(x) (ln(y))0 = (y ln(x))0 y0 y = y 0 ln(x) + y x 0 y y − y 0 ln(x) = y x 1 y y0 − ln(x) = y x y/x y 0 = −1 y − ln(x) y2 y0 = x − xy ln(x) II. Find an equation for the tangent line to the curve at the given point. 1. y 2 + x2 = 2xy, (1, 1) Answer: (y 2 + x2 )0 = (2xy)0 2yy 0 + 2x = 2y + 2xy 0 2yy 0 − 2xy 0 = 2y − 2x y 0 (2y − 2x) = 2y − 2x 2y − 2x y0 = 2y − 2x 0 y =1 The tangent line is: (y − 1) = (x − 1) =⇒ y = x 13 2. y 3 = x + sin(x + π2 ), (0, 1) Answer: π (y 3 )0 = (x + sin(x + ))0 2 π 2 0 3y y = 1 + cos(x + ) 2 π ) 1 + cos(x + 0 2 y = 3y 2 y 0 (0, 1) = 1 + cos( π2 ) 3(12 ) 1 = 3 The tangent line is: 1 (y − 1) = (x − 0) 3 3. y = ln(cos(x)), (0, 0) Answer: y0 = y 0 (0, 1) = − sin(x) cos(x) − sin(0) cos(0) =0 The tangent line is: y=0 x 4. y = x(x ) , (2, 16) Answer: 14 x ln(y) = ln(x(x ) ) ln(y) = (xx ) ln(x) ln(ln(y)) = ln(xx ln(x)) ln(ln(y)) = ln(xx ) + ln(ln(x)) ln(ln(y)) = x ln(x) + ln(ln(x)) (ln(ln(y)))0 = (x ln(x) + ln(ln(x)))0 y0 1 = ln(x) + 1 + ln(y)y ln(x)x 1 0 y = ln(x) + 1 + y ln(y) ln(x)x 1 y = ln(2) + 1 + 16 ln(16) ln(2)2 1 = ln(2) + 1 + 64 ln(2) ln(2)2 = 64(ln(2))2 + 64 ln(2) + 32 0 The tangent line is: (y − 16) = 64(ln(2))2 + 64 ln(2) + 32 (x − 2) 15