1 Metodo de R sustitución dx Evaluar Sen2 Cos 2 (x) tenemos que Z Z Z dx Sen2 (x) + Cos2 (x)dx dx dx = = + = 2 2 2 2 2 Sen Cos (x) Sen Cos (x) Cos (x) Sen2 (x) Z Z 2 Sec (x)dx + Csc2 (x)dx = T an(x) − Cot(x) + k Z Evaluar Z R (x+1)dx √ x x−2 (x + 1)dx √ x x−2 | {z } x−2=t2 tenemos que (t2 + 2 + 1)2tdt =2 (t2 + 2)t Z = Z t2 + 2 dt + 2 t2 + 2 Z t2 1 dt = +2 dx=2tdt √ √ √ √ 1 t x−2 2 dt = 2t+ 2Arctan( √ )+k = 2 x − 2+ 2Arctan( √ )+k 2 1+t 2 2 R Cos(√x) √ Evalua dx tenbemos que x Z Z dt+ Z √ Z √ Cos( x) √ dx = 2 Cos(t)dt = 2Sen(t) + k = 2Sen( x) + k x | {z } √ x=t Evaluar Z R dx √ =dt 2 x Sen2 (x)Cos(x) dx 1+Sen2 (x) Sen2 (x)Cos(x) dx = 1 + Sen2 (x) | {z } Sen(x)=t Z tenemos que t2 dt = 1 + t2 Z t2 + 1 − 1dt = 1 + t2 Z 1− 1 dt = t−Arctan(t)+k 1 + t2 Cos(x)dx=dt = Sen(x) + Arctan(Sen(x)) + k Evaluar Z R 5 √ x dx a3 −x3 x5 √ dx a3 − x 3 | {z } a3 −x3 =t2 tenemos que Z = (a3 − t2 )(− 32 )tdt 2 =− t 3 Z 2 t3 (a3 −t2 )dt = − (a3 t− )+k = 3 3 −3x2 dx=2tdt 2 √ 1p 3 − ( 3 a3 − x 3 − (a − x3 )3 ) + k 3 3 2 Metodo por RPartes Evaluar ArcSen(x)dx tenemos que Z Z xdx √ ArcSen(x)dx = xArcSen(x)− {z } | 1 − x2 | {z } u=ArcSen(x) dv=dx du= √1dx 1−x2 v=x u=1−x2 1 = xArcSen(x)+ 2 Z du √ u du=−2xdx √ √ = xArcSen(x) + u + k = xArcSen(x) + 1 − x2 + k R Evaluar Arctan(x)dx tenemos que Z Z Z xdx 1 du Arctan(x)dx = xArctan(x)− = xArctan(x)− 2 {z } | 2 u {zx } |1 + u=arctan(x) dv=dx du= 1 1+x2 v=x u=1+x2 du=2xdx 1 1 = xArctan(x) − Ln(u) + k = xArctan(x) − Ln(1 + x2 ) + k 2 2 R dx Calcular In = (x2 +a2 )n n = 1, 2, 3... tenemos que Z Z dx x 2nx2 dx In = = + (x2 + a2 )n (x2 + a2 )n+1 (x2 + a2 )n+1 | {z } 1 dv=dx (x2 +a2 )n du=− 2 2nx v=x (x +a2 )n+1 u= Z Z 2 x x x2 dx x + a2 − a2 dx + 2n = + 2n = 2 (x + a2 )n+1 (x2 + a2 )n+1 (x2 + a2 )n+1 (x2 + a2 )n+1 Z Z x x dx dx = 2 +2n( −a2 )= 2 +2nIn −2a2 nIn+1 2 n+1 2 2 n 2 2 n+1 (x + a ) (x + a ) (x + a ) (x + a2 )n+1 Despejando In+1 obtenemos 1 x 2n − 1 In+1 = + In 2 2 2 n+1 2na (x + a ) 2na2 tenemos que Z dx 1 x I1 = = Arctan( ) + k 2 2 a +x a a usando la fórmula In+1 hallamos Z dx 1 x 1 x = I2 = I1+1 = 2 2 + 3 Arctan( ) + k 2 2 2 2 (x + a ) 2a x + a 2a a Z dx 1 x 3 1 x 1 x = I = I = + ( + Arctan( ))+k 3 2+1 (x2 + a2 )3 4a2 (x2 + a2 )2 4a2 2a2 a2 + x2 2a3 a