1 VIII Congreso Nacional de Topografía y Cartografía TOPCART 2004 Madrid, 19-22 Octubre 2004 La orientación relativa numérica automática por correlación y la utilización de los estimadores robustos en el programa Digi3D Manuel Quirós(1) y Ana Domingo(2) (1) Universidad Politécnica de Madrid, mquiros@nivel.euitto.upm.es (2) Universidad Politécnica de Madrid, an_dom@nivel.euitto.upm.es RESUMEN El fin de esta comunicación es mostrar la aplicación de la metodología de estimación robusta en el entorno de la Fotogrametría Digital. Para ello, en primer lugar se recordarán los antecedentes existentes en el ámbito de la Fotogrametría en los cuales han sido aplicadas estas técnicas estadísticas así como una revisión del fundamento matemático de éstas. Dentro del proceso fotogramétrico digital, se ha elegido la fase de la Orientación Relativa para aplicar uno de los métodos robustos, exponiendo la formulación matemática en la que se basa, el algoritmo de correlación utilizado, así como la aplicación del estimador robusto en el entorno del software Digi3D. Para terminar se mostrarán algunos ejemplos reales de orientaciones relativas automáticas utilizando estas metodologías. 1. LA ORIENTACIÓN RELATIVA EN APARATOS ANALÓGICOS En los restituidores analógicos los operadores de fotogrametría realizaban la orientación relativa sin ayuda de cálculo, de un modo empírico, denominado método de Gruber. Consistía en eliminar la paralaje “y” en cinco zonas del modelo bien distribuidas, justo debajo de cada centro de proyección y en las zonas próximas a las esquinas del modelo, realizando rotación de cada proyector. Este sistema se iba repitiendo varias veces hasta que poco a poco se eliminaba la paralaje “y” en todo el modelo y este quedaba orientado. El proceso de la orientación relativa analógica requería un tiempo no inferior a 20 minutos dependiendo de la experiencia del operador y del tipo de aparato. 2. LA ORIENTACIÓN RELATIVA EN APARATOS ANALITICOS En los restituidores analíticos la orientación relativa se realizaba de forma numérica, consiguiendo una mejora importante en el tiempo de la orientación y en la precisión de la misma. El método que seguía el operador de fotogrametría era recorrer las zonas de Gruber e identificar en cada una de ellas un punto. La forma de colimar cada punto consistía en posarse estereoscópicamente en el punto fijando una de las cámaras y moviendo la otra en “x,y”. A continuación se registraban las coordenadas “Xi Yi” “Xd Yd” medidas en el comparador. Estas coordenadas eran transformadas del sistema comparador al sistema fiducial mediante la transformación afín u otra que se hubiera obtenido en la orientación interna. El resultado del proceso de medida consistía en la obtención de un conjunto de pares de coordenadas “XFi YFi” en la foto izquierda y “XFd YFd” en la foto derecha de cada uno de los puntos medidos. Nº Punto XFi YFi XFd YFd 1 0.051 4.195 -88.329 10.185 2 87.901 -2.086 2.667 3.658 3 94.195 87.861 10.702 94.247 4 2.132 92.073 -84.368 98.656 5 4.231 -87.944 -92.405 -81.259 2 VIII Congreso Nacional de Topografía y Cartografía TOPCART 2004 Madrid, 19-22 Octubre 2004 Una vez medidos los puntos se pueden calcular los parámetros de orientación relativa por dos métodos, coplanaridad o colinealidad. Aquí expondremos el método de colinealidad. En la foto izquierda las ecuaciones que relacionan las coordenadas en el sistema fiducial y las coordenadas terreno son: X Fi = − f ⋅ YFi = − f ⋅ ( ⋅ (X ⋅ (X ⋅ (X ) ) + Ri ) + Ri ) + Ri ( ⋅ (Y ⋅ (Y ⋅ (Y ) − Y ) + Ri − Y ) + Ri − Y ) + Ri ( ⋅ (Z ⋅ (Z ⋅ (Z Ri1,1 ⋅ X m − X 0i + Ri2,1 ⋅ Ym − Y0i + Ri3,1 ⋅ Z m − Z 0i Ri1,3 Ri1,2 Ri1,3 m − X 0i m − X 0i m − X 0i 2,3 2,2 2,3 m m m 0i 3,3 0i 3,2 0i 3,3 m ) ) ) ) − Z 0i m − Z 0i m − Z 0i En la foto derecha: X Fd = − f ⋅ YFd = − f ⋅ ( ⋅ (X ⋅ (X ⋅ (X ) ) + Rd ) + Rd ) + Rd ( ⋅ (Y ⋅ (Y ⋅ (Y ) ) + Rd ) + Rd ) + Rd ( ⋅ (Z ⋅ (Z ⋅ (Z Rd1,1 ⋅ X m − X 0d + Rd2,1 ⋅ Ym − Y0d + Rd3,1 ⋅ Z m − Z 0d Rd1,3 Rd1,2 Rd1,3 m − X 0d m − X 0d m − X 0d 2,3 2,2 2,3 m − Y0d m − Y0d m − Y0d 3,3 3,2 3,3 m − Z 0d m − Z 0d m − Z 0d ) ) ) ) Explicación de las ecuaciones: XFi coordenada X en el sistema fiducial de la foto izquierda medida del punto. Es un dato YFi coordenada Y en el sistema fiducial de la foto izquierda medida del punto. Es un dato f focal de la cámara (pueden ser distintas en la izquierda y la derecha). Es un dato conocido en el certificado de calibración. RI Matriz de rotación de la cámara izquierda. Suponiendo nivelada esta cámara: Omega izquierda = 0 Fi izquierda = 0 Kappa izquierda = 0 Los 9 elementos de esta matriz son también conocidos. Xoi, Yoi, Zoi Son las coordenadas del centro de proyección izquierdo. Tomaremos los siguientes valores: Xoi = 0 Yoi = 0 Zoi = 0 Xm,Ym,Zm Son las coordenadas modelo del punto (intersección de las líneas que unen cada centro de proyección con el punto imagen) No son conocidas 3 incógnitas por cada punto medido 3 VIII Congreso Nacional de Topografía y Cartografía TOPCART 2004 Madrid, 19-22 Octubre 2004 XFd coordenada X en el sistema fiducial de la foto derecha medida del punto Es un dato YFd coordenada Y en el sistema fiducial de la foto derecha medida del punto Es un dato RD Matriz de rotación de la cámara derecha Son incógnitas los tres giros: Omega Fi Kappa Xod, Yod, Zod Son las coordenadas del centro de proyección derecho Tomaremos los siguientes valores: Dato, tomamos como valor: Xoi = XFi – XFd (las coordenadas X del primer punto medido = 89.366 ) Incógnita Yoi Incógnita Zoi Recuento de incógnitas: 3 giros de la cámara derecha 2 Yoi Zoi coordenadas del centro de proyección derecho 3 Xm,Ym,Zm por cada punto medido En nuestro caso tendremos: 3 + 2 + 3 * 5 = 20 incógnitas Recuento de ecuaciones: Para cada punto medido obtenemos 4 ecuaciones, en nuestro caso midiendo 5 puntos tendremos un total de 4x5=20 ecuaciones. Midiendo 5 puntos tendremos un sistema de ecuaciones determinado de 20 ecuaciones con 20 incógnitas. Resolviéndolo obtendremos los 5 parámetros de orientación relativa de la cámara derecha respecto de la izquierda. También tendremos las coordenadas modelo del los puntos medidos. ¿ QUÉ PASA SI MEDIMOS MAL UN PUNTO ? Si al medir alguno de los puntos no colimamos la misma imagen, obtendremos un conjunto de datos con los que obtendremos otra solución. Podremos resolver otro sistema de 20 ecuaciones con 20 incógnitas, pero el resultado no será la obtención de los 5 parámetros de orientación de la foto derecha respecto de la izquierda y el efecto será que no tendremos estereoscopia en el modelo. LA REDUNDANCIA DE DATOS Para detectar el problema anterior antes de visualizar el modelo, se miden más puntos de los necesarios, habitualmente 6, lo que supone un sistema de 4 x 6 = 24 ecuaciones y 3 + 2 + 3 * 6 = 23 incógnitas. Ahora tendremos un sistema sobredeterminado con una redundancia de 24 - 23 = 1 grados de libertad. Este sistema se ajustará por el método de los mínimos cuadrados, lo que requiere previamente conocer una solución aproximada y la linealización de las ecuaciones anteriores. Como se ve con 6 puntos tenemos alguna comprobación, pero la pregunta que se plantea es ¿dónde debo medir más puntos para comprobación? 4 VIII Congreso Nacional de Topografía y Cartografía TOPCART 2004 Madrid, 19-22 Octubre 2004 La respuesta a la pregunta anterior escapa del ámbito de este artículo y entra en los sistemas mal condicionados, pero podemos apuntar que existe un error bastante extendido en la distribución de los puntos en los sistemas analíticos. En casi todos ellos el operador puede seleccionar donde medirá los puntos en algún archivo de configuración o de cámara. En el caso de DIGI3D esto se hace en los ficheros de cámara. Un ejemplo de este archivo sería el siguiente: PRel1=0 0 PRel2=90 0 PRel3=90 90 PRel4=0 90 PRel5=0 -90 PRel6=90 -90 PRel7=45 0 PRel8=45 45 PRel9=45 -45 En este archivo se proponen la medida de 9 puntos de relativa, todas las coordenadas están dadas en el sistema fiducial de la cámara izquierda. Los 6 primeros están en las zonas de Gruber pero el 7 está en la mitad de la línea que une los dos centros de proyección y los puntos 8 y 9 en la mediatriz de la línea anterior y situados arriba y abajo. Esta distribución es errónea y las ecuaciones que se aportan de más no forman un sistema bien condicionado. Si se quieren añadir más puntos se aconseja que estos se midan en las esquinas. PRel1=0 0 PRel2=90 0 PRel3=90 90 PRel4=0 90 PRel5=0 -90 PRel6=90 -90 PRel7=85 85 PRel8=0 85 PRel9=0 -85 PRel10=85 -85 3. LA ORIENTACIÓN RELATIVA EN RESTITUIDORES DIGITALES. Desde el punto de vista fotogramétrico no hay diferencia en el cálculo de la orientación relativa analítica en un aparato analítico y en uno digital. Las ventajas que aportan los restituidores digitales es la capacidad de identificar imágenes homólogas por métodos estadísticos. Esto permite que puedan medir por si mismos. Las imágenes en los restituidores digitales se almacenan como matrices de valores. Cada unidad elemental de imagen de la que se conoce su valor se denomina píxel. Son muchas las formas de dar valores a cada píxel, desde los que emplean 1 byte para cada píxel, esto es un valor entre 0 y 255, pudiendo representar así una imagen en tonos de gris (256 tonos de grises son suficientes para que el ojo humano pueda distinguir con nitidez una imagen). También se puede emplear 1 byte para representar en color una imagen, en este caso se define primero una paleta de color con 256 colores distintos y el valor de cada píxel actúa como un índice en esa paleta (una imagen en color con sólo 256 colores distintos el ojo humano la ve como poco definida, por eso este sistema no se emplea nunca en fotogrametría. La manera más usual de representar el color es emplear 3 bytes por cada píxel y cada byte representará un valor de la intensidad de las componentes del color, rojo, verde y azul. A este método se le denomina color verdadero y puede representar 256 x 256 x 256 = 16 millones de colores. Para poder medir un punto en las dos imágenes el ordenador tendrá que comparar dos matrices de valores, una en la imagen izquierda y otra en la derecha y calcular cómo de iguales son. Si repitiéramos la misma imagen a la derecha y a la izquierda el proceso se reduciría a seleccionar una matriz de en determinado tamaño, por ejemplo de 4 x 4 píxeles y buscar en la otra imagen exactamente los mismos valores y en las mismas posiciones dentro de otra matriz de 4 x 4. Pero las dos imágenes no son la misma y además los objetos con altura no tienen imágenes iguales en una foto y en la otra debido al distinto punto de perspectiva de las tomas, por tanto el método de buscar la igualdad exacta no 5 VIII Congreso Nacional de Topografía y Cartografía TOPCART 2004 Madrid, 19-22 Octubre 2004 sirve. Actualmente existen muchos métodos de correlación de imágenes, estos nos dan un factor de cuánto se parecen dos matrices. Parece entonces que utilizando alguno de estos métodos no tendremos más que seleccionar una matriz en la foto izquierda y buscar el factor más alto en alguna matriz en la foto derecha, para medir un punto, pudiendo por tanto realizarse la orientación relativa analítica de forma automática sin intervención del operador. Si esto se consigue no sólo se podría hacer la orientación relativa sino muchos de los procesos del sistema fotogramétrico, la aerotriangulación automática, la extracción automática de miles de puntos para la obtención del modelo digital del terreno, etc. EL PROCESO DE CORRELACIÓN Como medida de similitud emplearemos el coeficiente de correlación cruzada: ∑g g r b r= n gr ⎛ ⎜ ⎝ ∑g 2 r − n ⋅ g r gb − n ⋅ g r2 ⎞⎟⎛⎜ ⎠⎝ ∑g 2 b − n ⋅ g b2 ⎞⎟ ⎠ número de píxeles de las matrices de referencia y de búsqueda. cada uno de los valores de la matriz de referencia. gb cada uno de los valores de la matriz de búsqueda. gr valor medio de los valores de la matriz de referencia. gb valor medio de los valores de la matriz de búsqueda. r valor de correlación. Su valor absoluto está comprendido entre 1 cuando las dos matrices son idénticas y 0 cuando son distintas Matriz de referencia 23 21 25 21 25 32 35 25 31 17 36 32 El objetivo de la correlación es localizar la posición de esta matriz en la matriz de búsqueda 17 14 21 21 Matriz de búsqueda 5 21 24 21 21 76 18 14 78 45 23 23 67 43 14 56 32 34 46 25 65 34 22 45 34 67 32 31 67 86 34 67 24 42 12 66 65 65 43 15 12 20 22 23 21 23 21 78 23 21 25 21 21 25 21 25 32 43 25 89 25 32 35 25 32 35 25 31 17 36 56 91 31 17 36 21 21 23 18 17 14 67 21 12 17 34 21 26 32 34 23 23 21 31 21 56 23 21 25 31 18 39 34 21 24 21 25 21 43 32 35 15 12 20 22 25 25 65 35 25 31 51 36 32 31 17 54 32 31 47 36 32 17 14 21 21 17 14 21 43 17 14 56 21 23 21 25 21 23 87 25 21 23 89 25 21 25 32 45 25 25 88 35 25 25 32 35 25 31 17 36 32 31 76 36 32 31 17 36 32 17 14 21 21 17 14 21 21 17 14 21 21 6 VIII Congreso Nacional de Topografía y Cartografía TOPCART 2004 Madrid, 19-22 Octubre 2004 Sobre la matriz de búsqueda iremos tomando matrices del mismo tamaño que la de referencia (4 x 4 en este ejemplo) y calculando para cada posición el valor de “r”. Obtendremos el valor máximo en la zona sombreada, que es la imagen homologa de la de referencia. Una vez seleccionado la posición del valor máximo de correlación, se realizará un ajuste por mínimos cuadrados con éste valor y los valores de las posiciones vecinas para conseguir una localización subpíxel. La localización de puntos homólogos en las imágenes plantea algunos problemas que pasamos a plantear: Primero el esfuerzo de cálculo, aunque los ordenadores son cada vez más rápidos, el número de operaciones que se realizan en la búsqueda de la correlación hace necesaria alguna estrategia para que los tiempos de cálculo sean razonables. La solución que se sigue es una vez seleccionada la matriz de referencia alrededor del punto que se desea buscar, por ejemplo en la imagen izquierda, hay que saber en que área se puede encontrar el punto homologo en la otra imagen, la derecha. Esta área se tratará como una matriz de búsqueda, dentro de la cual tendremos que encontrar el valor de máxima similitud. Para que la matriz de búsqueda no sea excesivamente grande, lo que supone un elevado número de operaciones de cálculo, el proceso de correlación no se realiza directamente sobre las imágenes originales sino sobre imágenes reducidas, las imágenes piramidales. DIGI3D cuando carga en memoria las imágenes desde la unidad de almacenamiento, además crea un conjunto de imágenes piramidales, la primera es la 1:2. Esto es guardar una nueva imagen quedándose con uno de cada dos píxeles, la segunda es la 1:4 que consiste en quedarse con uno de cada dos píxeles de la imagen 1:2, así se repite el proceso guardando las imágenes 1:8 1:16 1:32 … La diferencia entre DIGI3D y otros restituidores digitales es que éstos crean nuevos archivos con las imágenes piramidales y DIGI3D utiliza formatos estándar (tif, jpg, bmp…) realizando las imágenes piramidales en tiempo real al realizar la carga. El segundo problema con el que nos encontramos es que la medida de similitud no significa que encontrar un valor máximo suponga que se haya encontrado el punto homologo. Este problema se debe tratar de forma independiente en cada proceso fotogramétrico (orientación relativa, aerotriangulación, extracción de puntos para MDT, etc.) En el caso que nos interesa en este artículo, la orientación relativa, tomaremos esos puntos erróneos como observaciones con errores groseros. Es la detección y eliminación de esos errores donde los estimadores robustos juegan un papel fundamental. 4. LOS MÉTODOS DE ESTIMACIÓN ROBUSTA El problema que tratan de resolver los métodos de estimación robusta tiene un carácter muy general, puesto que se ha detectado en los métodos de ajuste de observaciones incluidos dentro del nombre genérico de los Métodos Mínimo Cuadráticos.Se ha observado en diferentes ámbitos de aplicación que cuando un determinado conjunto de observaciones se desvía del Modelo Normal propuesto por Gauss( que es el adecuado en condiciones favorables), a causa de la existencia de errores de tipo I (o graves), estos procedimientos clásicos son poco eficientes el momento de ajustar o compensar estos datos. Todos los desarrollos actuales en este campo apuntan a la resolución de este problema. Dentro del campo de la Fotogrametría, se conoce por la experiencia los efectos negativos de estos errores al realizar los distintos ajustes de observaciones que son necesarios en los procesos fotogramétricos. Una manera de abordar dichos errores ha sido rechazar las observaciones que no se ajustaran a la suposición de Normalidad utilizando diversos tests estadísticos. Pero todos ellos plantean el mismo problema. De esta forma, sólo se conocen estimaciones de los errores después de haber realizado un ajuste mínimo cuadrático, en el cual los errores son enmascarados, repartidos entre todos los residuos finales y, por tanto, difíciles de identificar. De hecho, los residuos de mayor magnitud no indican necesariamente la posición correcta de las observaciones erróneas. El método utilizado en todos los procesos que conlleven el ajuste de un conjunto de observaciones (de cualquier tipo) redundantes, es el denominado Estimación Mínimo Cuadrática y cuya aplicación se realiza a través de una serie de algoritmos matriciales de ajuste que están diseñados para los diferentes casos que se pueden presentar. Todos ellos son casos particulares de uno más general que se denomina Método General de Ajuste por Mínimos Cuadrados. 7 VIII Congreso Nacional de Topografía y Cartografía TOPCART 2004 Madrid, 19-22 Octubre 2004 Todo esto es cierto suponiendo que los errores presentes en las observaciones siguen una distribución de tipo Normal o de Gauss, es decir que exista sólo la componente aleatoria del error. Precisamente este hecho da lugar al principal problema planteado por dichas técnicas, dado que si existen errores graves o de tipo I en las observaciones iniciales, su modelo de distribución ya no será una Distribución Normal, sino una Normal Contaminada, y los resultados de este ajuste ya no serán fiables. A partir del análisis de los residuos finales es imposible detectar y eliminar dichos errores puesto que el ajuste “clásico” se caracteriza por ocultar los errores de mayor magnitud y distribuir sus efectos entre todas las observaciones, haciéndolos irreconocibles. Existe un conjunto de métodos de estimación estadística denominados de forma genérica Métodos de Estimación Robusta, que se basan en la utilización de una serie de estimadores llamados Estimadores Robustos.Aunque el desarrollo matemático de dichos métodos se comenzó a divulgar a finales de los años sesenta, su aplicación no está del todo desarrollada. A continuación, se resumirá brevemente cual puede ser la técnica de aplicación de un método robusto. Para comenzar, una posible descripción de un Método Robusto podría ser la siguiente: Un procedimiento estadístico se considera robusto si su comportamiento no se ve afectado por el hecho de que las variaciones que experimenten las observaciones las aleje de la suposición de Normalidad. El problema básico que se plantea es cómo elegir el procedimiento robusto más adecuado para un problema determinado, y, una vez elegido, cómo debe ser diseñado para su aplicación práctica. Una posible clasificación de los Métodos de Estimación Robusta ( no es la única), atendiendo al tipo de estimador es la siguiente: -Métodos de Jacknife -Estimadores de tipo M -Estimadores de tipo L -Estimadores de tipo MM Los métodos más adecuados para los problemas de ajuste de tipo fotogramétrico y topográfico, son los estimadores de tipo M, cuyo algoritmo de aplicación de forma resumida sería el siguiente. Estos estimadores tratan de reducir el efecto de los errores en las observaciones que distorsionan el conjunto total de la suposición de Normalidad.Para ello, reemplazan la función mínimo cuadrática propuesta por Gauss por otra función diferente de los residuos. Es decir, se trata de hacer mínima la expresión ∑ ρ (v ) i i donde ρ es la función de los residuos distinta de vi2 , llamada Función Objetivo. Para resolver el problema, se implementa un algoritmo matemático cuyo desarrollo no es motivo de esta ponencia, pero que resumiendo, se podría reducir a un proceso de ajuste reponderado, es decir, que, finalmente se construye una función de asignación de Pesos de las observaciones, a partir de la Función Objetivo anterior, que va a cambiar la matriz de pesos en cada iteración del proceso. Expresado matemáticamente, el proceso iterativo sería P (vi( k −1) ) donde P representa la función de pesos, el subíndice i el número del residuo y k el número de la iteración. El estimador de tipo M que hemos experimentado en las aplicaciones fotogramétricas elegidas es el Método Danés que propone la siguiente Función de Pesos: 8 VIII Congreso Nacional de Topografía y Cartografía TOPCART 2004 Madrid, 19-22 Octubre 2004 ⎧ 1 | v | ≤ 2σ p (v ) = ⎨ 2 ⎩exp(-cv ) | v | > 2σ Como se puede observar en la expresión de la Función de Pesos propuesta por el Método Danés, y éste es un hecho que se presenta casi siempre en la aplicación de los Estimadores Robustos, la fórmula tiene un carácter muy general, aparecen una serie de variables(c,σ) que el usuario debe modificar de tal forma que el estimador sea lo más eficiente posible. En nuestro caso, vamos a utilizar en el ajuste una técnica de estimación robusta, en lugar del ajuste clásico. Para la elección del estimador más adecuado, en este caso el Método Danés, nos hemos basado en las experiencias realizadas con estimadores en otros procesos de Fotogrametría Analítica, cuyos resultados fueron publicados en su momento en forma de artículos en la revista Topografía y Cartografía. En el método Danés, las incógnitas se estiman a partir del conjunto de las observaciones consistentes. Puede ser considerado como un método de estimación robusta con pesos dados por: p(v) = ⎧ 1 para⏐v |< 2σ ⎪ ⏐v | 2 ⎨ ⎪exp(- 2 ) para | v | > 2σ 2σ ⎩ Este método tiene unas propiedades favorables comparado con otros métodos robustos, en la detección de observaciones erróneas y en la velocidad de cálculo. Los posibles problemas de los métodos robustos son: -la precisión debe conocerse a priori y los pesos no deben sobrepasar un máximo predefinido, de otra forma el método excluirá cada vez más observaciones. -las funciones de pesos (al depender de constantes) deben ser modificadas y ajustadas para cada problema El primer problema que plantea este algoritmo es que no existe un Método “general” Danés, por llamarlo de alguna forma. Dicho método ha de ser estudiado y modificado a las propias necesidades. Partiendo de la fórmula básica para la función de influencia y la función de pesos, se hicieron una serie de pruebas y experimentos simulados, hasta llegar al algoritmo más interesante para este caso. Se ha programado el Método Danés Modificado[DOM-2000] Estimadores Robustos empleados en DIGI3D En Digi3D, los estimadores robustos se aplican en el cálculo de la Orientación Relativa. El cálculo de ésta normalmente se efectúa por Mínimos Cuadrados, método aplicado cuando se tiene un número superior observaciones que de incógnitas, esto es, cuando tenemos redundancias en el sistema de observación. Con el método de Mínimos Cuadrados se obtienen buenos resultados si las observaciones del cálculo se distribuyen en torno a la curva de distribución Normal de Gauss. Sin embargo, en el caso de que tengamos errores groseros o equivocaciones en las observaciones, los resultados obtenidos mediante los Mínimos Cuadrados se ven afectados por dichos errores groseros, y no hay forma de saber cuál o cuáles de las observaciones son equivocaciones. Debido a esto, se aplican los estimadores robustos, que permiten detectar los errores groseros en las observaciones. Una vez detectada la observación incorrecta se puede bien eliminar del cálculo o bien reobservar. La aplicación de los estimadores robustos en el cálculo se realiza mediante la introducción de una función de pesos en el método de los Mínimos Cuadrados. Los pesos que se asignan son: · Pequeños: en el caso de que se detecte que la observación es errónea, para que la ecuación correspondiente a esta observación pese poco en el sistema. · La unidad (1): en el caso de que no se trate de una observación grosera. 9 VIII Congreso Nacional de Topografía y Cartografía TOPCART 2004 Madrid, 19-22 Octubre 2004 El estimador robusto aplicado en el cálculo de la Orientación Relativa es el denominado método Danés modificado, el cual emplea la siguiente función de pesos: donde Sigma es la desviación típica calculada, y v es el residuo de la observación que se está evaluando. 5. CONFIGURACIÓN DE LOS PARÁMETROS DE LA ORIENTACIÓN RELATIVA AUTOMÁTICA POR CORRELACIÓN EN DIGI3D En el fichero de cámara definimos los puntos (o zonas) para la Orientación Relativa. Sólo debe haber 6 puntos en las zonas de Gruber Número de puntos por zona Número de puntos de los que se tomarán medidas de forma automática en cada zona de las indicadas en el archivo de cámara. Si tenemos 6 zonas marcadas en dicho archivo, y en este campo indicamos 9 puntos, se tomarán medidas de 54 puntos para realizar el cálculo de la Orientación Relativa. Tamaño de la zona de referencia Indica el tamaño (en píxeles) de la matriz de referencia. Este tamaño debe ser suficiente para que en el nivel piramidal más alto la imagen sea todavía representativa de esa zona y no encontrar en la otra imagen varias zonas que se corresponden equivocadamente. 10 VIII Congreso Nacional de Topografía y Cartografía TOPCART 2004 Madrid, 19-22 Octubre 2004 Mínimo valor de correlación aceptable Indica el valor mínimo de correlación aceptable para incluir un punto en el cálculo. Si en un punto se obtiene un valor de correlación menor, no se considera este punto y se seguirá buscando en la zona otro que alcance este valor. En el cálculo de la Orientación Relativa Automática se emplean los estimadores robustos, y en este cálculo se detectan errores groseros en las observaciones. Si el residuo correspondiente a un punto (una observación) es mayor a lo especificado en este parámetro, se considera que la observación es errónea y se excluye del cálculo. Esta forma de cálculo es importante debido a que un factor de correlación alto en la búsqueda automática de puntos homólogos no implica necesariamente que se trate de puntos homólogos, y es por ello que en el cálculo de la Orientación Relativa de forma automática se busquen las observaciones incorrectas mediante el método de los estimadores robustos. Rechazar puntos... El valor recomendado para este parámetro es 2.5. 6. EJEMPLO DEL RESULTADO OBTENIDO EN LA ORIENTACIÓN RELATIVA DE UN MODELO RESULTADOS DE LA ORIENTACIÓN RELATIVA 154.052 0.015 -0.004 0.000 0.000 0.000 1.000000000000000 0.000000000000000 0.000000000000000 1.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 1.000000000000000 89.366 -4.486 -0.333 0.999999003124133 0.000891315277999 -0.000901626793413 0.999954925546331 0.001086655357760 0.009452641572986 -0.001095129132274 -0.009451663597354 0.999954732349133 0.051 N 1 2 3 4 5 6 10 12 13 14 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33 34 35 36 37 39 40 43 -xFizq0.051 87.901 94.195 2.132 4.231 87.898 90.015 92.132 90.033 87.919 89.997 92.096 94.195 90.015 92.114 92.133 87.933 87.916 87.898 89.997 4.249 94.215 2.114 2.150 -2.102 4.196 4.231 2.150 -2.049 -4.220 2.114 0.033 -2.084 4.195 4.242 -yFizq4.195 -2.086 87.861 92.073 -87.944 -92.085 -0.004 2.078 2.095 0.014 -2.103 -2.121 -2.139 89.996 89.978 92.079 92.113 90.014 87.915 87.897 4.159 89.962 89.974 4.177 87.914 87.861 92.056 94.173 94.208 85.832 -90.022 -87.908 -89.986 -92.139 -155.786 -xFder-88.329 2.667 10.702 -84.368 -92.405 0.544 4.852 7.101 4.944 2.722 4.828 7.069 9.256 6.920 8.994 9.122 5.311 5.137 4.858 6.823 -84.434 11.064 -84.390 -86.692 -87.229 -83.152 -82.704 -84.792 -86.912 -89.123 -94.886 -97.354 -98.988 -92.961 -yFder10.185 3.658 94.247 98.656 -81.259 -85.963 5.738 7.827 7.839 5.759 3.633 3.605 3.583 96.402 96.338 98.507 98.521 96.399 94.281 94.266 10.160 96.334 96.533 10.224 94.350 94.438 98.654 100.819 100.702 92.273 -83.307 -81.181 -83.249 -85.398 -xMod0.051 91.972 100.419 2.212 3.897 89.832 94.255 96.611 94.352 92.029 94.232 96.584 98.882 96.452 98.654 98.797 94.770 94.577 94.267 96.346 4.282 100.846 2.193 2.164 -2.217 4.310 4.368 2.220 -2.168 -4.460 1.939 0.030 -1.913 3.842 -yMod4.242 -2.184 93.668 95.538 -80.988 -94.112 -0.007 2.181 2.193 0.012 -2.205 -2.228 -2.248 96.440 96.350 98.745 99.282 96.840 94.290 94.099 4.191 96.283 93.347 4.220 92.689 90.255 95.024 97.237 99.660 90.755 -82.580 -80.320 -82.605 -84.384 -zMod-155.786 -161.187 -164.231 -159.849 -141.868 -157.441 -161.308 -161.541 -161.443 -161.253 -161.301 -161.559 -161.718 -165.067 -164.991 -165.193 -166.028 -165.723 -165.215 -164.919 -155.245 -164.897 -159.824 -154.971 -162.437 -158.247 -159.026 -159.055 -162.993 -162.866 -141.311 -140.754 -141.425 -141.082 11 VIII Congreso Nacional de Topografía y Cartografía TOPCART 2004 Madrid, 19-22 Octubre 2004 44 47 48 49 50 51 52 53 54 4.213 92.132 90.033 87.934 87.916 -4.148 92.097 94.197 94.215 N -vXizq-0.0 0.1 -0.1 0.0 -0.0 0.0 0.1 -0.1 0.1 0.1 0.1 0.2 0.1 -0.4 0.8 -0.3 -0.4 -0.3 -0.2 -0.1 0.0 0.6 -0.1 -0.9 0.5 -0.1 0.2 -0.3 0.8 -0.6 0.2 0.0 -0.3 0.2 0.2 -0.1 -0.1 0.0 0.0 0.1 -0.2 0.0 -0.1 1 2 3 4 5 6 10 12 13 14 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33 34 35 36 37 39 40 43 44 47 48 49 50 51 52 53 54 -90.040 -87.922 -87.905 -87.887 -89.986 4.231 -92.122 -92.140 -90.041 -92.725 5.472 2.916 0.602 0.626 -92.405 5.284 7.754 7.796 -vVizq-0.1 1.8 -1.5 0.1 -0.3 0.1 2.3 -2.5 2.7 2.6 2.7 3.4 2.2 -8.0 15.8 -6.5 -6.7 -5.9 -4.2 -1.8 0.6 10.7 -1.4 -17.4 10.0 -2.0 3.9 -5.6 15.1 -11.6 4.5 0.4 -5.4 3.2 4.8 -1.6 -1.5 0.8 0.8 1.9 -4.6 0.1 -1.9 -vXder0.0 -0.1 0.1 -0.0 0.0 -0.0 -0.1 0.1 -0.1 -0.1 -0.1 -0.2 -0.1 0.4 -0.8 0.3 0.3 0.3 0.2 0.1 -0.0 -0.6 0.1 0.9 -0.5 0.1 -0.2 0.3 -0.8 0.6 -0.2 -0.0 0.3 -0.2 -0.2 0.1 0.1 -0.0 -0.0 -0.1 0.2 -0.0 0.1 -83.331 -81.872 -81.828 -81.801 -83.886 10.214 -86.024 -86.072 -83.988 -vYder-0.1 -1.8 1.5 -0.0 0.3 -0.1 -2.3 2.5 -2.7 -2.6 -2.7 -3.3 -2.2 7.9 -15.6 6.4 6.6 5.8 4.1 1.7 -0.6 -10.5 1.4 17.4 -9.8 2.0 -3.8 5.6 -14.9 11.5 -4.5 -0.4 5.5 -3.2 -4.8 1.6 1.5 -0.8 -0.8 -1.9 4.6 -0.1 2.0 3.867 94.924 92.267 89.888 89.914 -4.201 94.725 97.309 97.351 -141.414 -158.720 -157.874 -157.476 -157.554 -156.013 -158.447 -159.142 -159.180 -py- (micras) 0.0 -0.0 0.0 -0.0 0.0 -0.0 -0.0 0.0 -0.0 -0.0 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 0.0 -0.0 -0.0 0.0 0.0 -0.0 0.0 -0.0 0.0 -0.0 0.0 -0.0 -0.0 0.0 -0.0 -0.0 0.0 0.0 -0.0 -0.0 -0.0 0.0 -0.0 0.0 Puntos medidos: 54 Puntos rechazados: 11 Desviación típica: 9.0 micras Número de iteraciones: 2 Giros de la cámara izquierda: Omega: 0.0000 gon Phi: 0.0000 gon Kappa: Giros de la cámara derecha: Omega: -0.6018 gon Phi: 0.0692 gon Kappa: Nombre del modelo: 108-109 Fecha: 31/1/2003 13:31 -82.657 -90.585 -90.084 -89.841 -92.033 4.282 -94.746 -95.184 -93.036 0.0000 gon 0.0574 gon 12 VIII Congreso Nacional de Topografía y Cartografía TOPCART 2004 Madrid, 19-22 Octubre 2004 7. CONCLUSIONES En la orientación relativa numérica un error en la medida de un punto, no se traduce en que los residuos “xy” ni siquiera el valor de la paralaje “y” de ese punto sean los mayores, lo que hace muy difícil saber que punto debemos remedir o desechar. Es mediante el método de los estimadores robustos como podremos detectar que punto es el erróneo. Para que los estimadores robustos cumplan su papel es necesario tener una alta redundancia, con solo 6 puntos estos tampoco detectaran el error. Es en situaciones en las que la medida masiva de puntos no supone ningún esfuerzo, como sucede con la correlación, en los que deberán utilizarse los estimadores robustos, siendo éstos la herramienta fundamental para rechazar observaciones erróneas. 8. REFERENCIAS. [DOM-2000] Domingo Preciado, Ana: “Investigación sobre los Métodos de Estimación Robusta aplicados a la resolución de los problemas fundamentales de la Fotogrametría”. Tesis Doctoral.Universidad de Cantabria.Febrero 2000. [KRAUSS-97] “Photogrammetry “Kraus, Karl Editor: Ferd. Dummlers Verlag 1993-1997 [WOLF-84] Wolf, P.R. “Elements of Photogrammetry”. McGraw-Hill, New York .1983.3ª edición Manual del usuario del programa DIGI3D