Segundo Examen Parcial de Quimica Analitica I (1406) Tema: Reacciones acido-base. Profesor: Gustavo Gomez Sosa. Grupo 11. Semestre 2009-2 Resolucion 1. Una disolucion 0.20M de acido hipocloroso (HClO) tiene un pH de 4.08. Con estos datos, calcule Ka para este acido. Resolucion: Como primer paso se plantea la reaccion y las condiciones de equilibrio H+ ClO- 0.2 0 0 Reacciona ξ ξ ξ Equilibrio 0.2-ξ ξ ξ Especie HClO Inicio <------> Se sabe que pH = 4.08, por lo que [H+]= ξ = 10-4.08 = 8.3 x 10-5 M [ClO-] = ξ = 8.3 x 10-5 M [HClO] = 0.2 M - 8.3 x 10-5 M = 0.199917 M Sustituyendo en la expresion de Ka: 8.3x10− 5 ) ( [ H + ][ClO − ] ξ2 Ka = = = = 3.45 x10− 8 [ HClO] 0.2 − ξ 0.199917 2 Tambien se puede determinar utilizando la ecuacion de Henderson-Hasselbalch, sustituyendo las concentraciones al equilibrio de las especies involucradas de la siguiente forma: pH = pKa + log [ Base conjugada] [ Acido] pH = pKa + log [ClO − ] [ HClO ] pKa = pH − log [ClO − ] [8.3x10− 5 ] = 4.08 − log = 7.4617 [ HClO] [0.199917] Ka = 10− 7.4617 = 3.45 x10− 8 2. Una muestra de 0.0010 mol de NaOH se agrega a 1.0 L de una disolucion 0.10M de NH3 y 0.050M de NH4Cl. Calcule el pH de la disolucion inicial y el cambio en el pH despues de esta adicion. Suponga ahora que en lugar de la base, se agregara a la disolucion original 0.0010 mol de HCl. Calcule el cambio en el pH por esta adicion. Resolucion: pH de la disolucion original: Como primera forma de resolverlo, se define el equilibrio en disolucion acuosa de la mezcla NH3 /NH4+, en el que el NH3 es la base conjugada del NH4+, acido que resulta de la disociacion de la sal NH4Cl. Sabemos que pKa (NH3 /NH4+) = 9.2, por lo que podemos considerar que la reaccion se da en un medio ligeramente basico, donde predominara la reaccion con iones hidroxido en lugar de protones: Especie NH4+ OH- <------> Inicio 0.05 0 0.1 Reacciona ξ ξ ξ Equilibrio 0.05-ξ ξ 0.1+ξ NH3 H2O Al definir la constante de la reaccion en funcion de la constante de acidez y del avance de reaccion, obtenemos la concentracion de protones y el pH como se describe a continuacion: KR = [ NH 3 ] [ NH 3 ][ H + ] Ka = = − 14 = 104.8 + − − 14 + [ NH 4 ][OH ] 10 [ NH 4 ] 10 KR = 0.1 + ξ = 104.8 ξ (0.05 − ξ ) ξ = [OH − ] = 3.17 × 10− 5 10− 14 = 3.15 × 10− 10 [OH − ] pH = 9.5 [H + ] = Otra forma de obtener el resultado, es al considerar que mezcla inicial representa una disolucion amortiguadora, por lo que el pH se puede calcular con la ecuacion de Henderson-Hasselbalch: pH = pKa + log [ NH 3 ] 0.1 = 9.2 + log = 9.5 + [ NH 4 ] 0.05 Cambio en el pH al agregar NaOH: Si ahora se toma en cuenta que se agrega una base fuerte, originara un aumento de la concentracion de iones OH- y se puede establecer el siguiente equilibrio: Especie NH4+ OH- <------> Inicio 0.05 0.01 0.1 Reacciona ξ ξ ξ Equilibrio 0.05-ξ 0.01-ξ 0.1+ξ NH3 H2O La constante de equilibrio tiene exactamente el mismo valor (10 4.8), solamente se modificara la expresion en funcion del avance de reaccion. KR = 0.1 + ξ = 104.8 (0.01 − ξ )(0.05 − ξ ) ξ = [OH − ] = 3.65 × 10− 5 10− 14 [H ] = = 2.74 × 10− 10 − [OH ] pH = 9.56 + Cambio en el pH al agregar HCl Si ahora se toma en cuenta que se agrega un acido fuerte, el equilibrio se planteara de otra manera, con exceso de protones al inicio: Especie NH4+ Inicio <------> NH3 H+ 0.05 0.1 0.01 Reacciona ξ ξ ξ Equilibrio 0.05-ξ 0.1+ξ 0.01-ξ Aqui se empleara la expresion de la constante de acidez, por lo que: Ka = [ NH 3 ][ H + ] (0.1 + ξ )(0.01 − ξ ) = = 10− 9.2 [ NH 4 + ] (0.05 − ξ ) ξ = 9.99999962 × 10− 3 pH = 0.01 − ξ = − log[3.801893963 × 10− 10 ] = 9.42 3. La grafica que se ilustra en la figura 1 representa el cambio en el pH de una disolucion de NH3 de concentracion desconocida al valorarse con HCl 0.1 M. Con los datos de esta grafica, calcule la concentracion de la disolucion de amoniaco. Diga la razon por la cual el punto de equivalencia no se encuentra a un pH de 7.0 Resolucion: Supongamos que tenemos 100 mL de disolucion de NH 3. El punto de equivalencia se encuentra en 50 mL de HCl agregado para la valoracion, de esta manera: VaMa = VbMb (50 mL)(0.10 M) = (100 mL) Mb Resolviendo:Mb = 0.05 M El punto de equivalencia no se encuentra a un pH=7.0, ya que la sal formada en la reaccion no es neutra: (NH4Cl) es la sal que resulta de la reaccion de un acido fuerte (HCl) y de una base debil (NH3), y se disocia e hidroliza para formar un acido debil (NH4+), lo que le da un caracter ligeramente acido. 4. Determine el pH que resulta de mezclar acido aminobencensulfonico SO3H(C6H4)NH2 0.2 M, etano-1,2-ditiol HS-(C2H4)-SH 0.5 M y acido fosforico H3PO4 0.1 M. Resolucion: Como primer paso se plantea una escala de pKa de las distintas especies presentes en la disolucion,y se encierran en un recuadro. HSO3 H2PO4- H3PO4 2.2 H2PO4SO3- SH NH2 HS SH S HPO4 2pKa 3.23 7.2 8.85 10.43 HPO4 2- SH S 12.3 PO4 3- NH2 S S Se encuentran en la disolucion originalmente H3PO4, HS-(C2H4)-SH y SO3H(C6H4)NH2 . Todos son acidos, que no reaccionan entre ellos, por lo que el pH estara determinado por el acido mas fuerte, en este caso el H3PO4. Por lo tanto, determinando Ka/C0 = 10-2.2/0.1 = 0.063, se trara de un acido debil, por lo que pH=1/2(pKa-logC0 )= 1/2[2.2-log(0.1)]= 1.6. 5. En el aparato digestivo encontramos una variedad de pH que va desde 1.2 a 3.0 en el estomago, hasta cerca de 8 en el intestino delgado. Los siguientes farmacos se absorben de diferente manera en el tracto digestivo y se ilustran en la figura 2: (a) aspirina (acido acetil salicilico), (b) m-aminofenol y (c) paracetamol (p-hidroxiacetanilida). De acuerdo a las propiedades acidobase de estos medicamentos, prediga cual se absorbera mas eficientemente en el estomago, cual en el intestino delgado y si alguno de ellos se absorbe con igual eficiencia en ambos organos. Escriba las reacciones acido-base conjugada en cada caso. R: Con los datos proporcionados, se puede escribir una escala de pKa con las medicamentos y su respectiva base conjugada; uno de los farmacos es un anfolito y se delimita el pH del estomago y el del intestino delgado en la misma escala. Analizando cada organo, tanto la aspirina como el paracetamol en su forma neutra (sin ionizarse) predominan en un pH menor a sus respectivos pKa (4.5 y 9.5 respectivamente), por lo que la ambos se absorben eficientemente en el estomago, que tiene un pH<3. Por otra parte el m-aminofenol, una base debil, en medio acido predomina en forma protonada (ionizada) y no puede metabolizarse por la parte lipida de la mucosa y por tanto no se absorbe eficientemente en el estomago. Pasando al intestino delgado, el paracetamol se absorbe eficientemente tambien en este organo, porque solo podria ionizarse a partir de pH= 9.5 y no se dan las condiciones fisiologicas para que esto ocurra, ya que pH =8.0 y asi continua prevaleciendo en forma neutra. La aspirina, por otra parte, se encontraria ionizada a pH>4.5 y no podria absorberse por la mucosa lipida del intestino. En el caso del m-aminofenol, como la especie neutra solo prevalece en el intervalo de 4.37<pH<9.82 , se puede absorber eficientemente en el intestino delgado, ya que pH=8.0. OH OH O m-aminofenol (acido) 1.2-3.0 O Intestino O O NH paracet m-aminofenol (base) pKa 4.5 NH2 O aspirina 4.37 HO NH2 HO NH3+ HO Estomago 8.0 O O 9.82 9.5 -O NH2 O O O NH 6. La nicotina es un liquido con sabor amargo, soluble en agua, tuvo usos como insecticida hace algunas decadas, es uno de los alcaloides toxicos del tabaco y es el responsable de la adiccion en el tabaquismo. Consta de un grupo piridina y otro metilpirrolidona unidos para formar una base heteroaromatica N (Figura 3-3). Puede protonarse en medio acuoso y existir como dication N2+ (Figura 3-1) o como monocation N+ (Figura 3-2). Dos profesores publicaron reportes de las propiedades acido-base de la nicotina como ejemplos para ilustrar en el salon de clase de sus cursos de licenciatura de los primeros semestres de las carreras de quimica [J. H. Summerfield, J. Chem. Ed. (1999) 76, 1397; A. Ault, J. Chem. Ed. (2001) 78, 500]. En estos reportes se deducen expresiones para determinar la fraccion mol de las tres especies de nicotina como funcion de la concentracion de protones en medio acuoso (ecuaciones 6 a 17 del reporte de A. Ault). Utilizando estas ecuaciones, trace en una misma grafica la variacion de la fraccion mol de estas tres especies de nicotina como funcion del pH y compare sus resultados con los que se reportan en la tabla 1 del articulo de Summerfield. Diga tambien porque solamente se utilizan dos constantes de acidez para la deduccion de estas ecuaciones. Para facilidad, en la seccion “Datos” al final del examen, se citan los valores de pKa de cada especie. Resolucion: Las formulas de cada especie de nicotina y las ecuaciones de la fraccion mol se citan a continuacion. Como se puede observar, la fraccion mol solo depende de [H+] y de dos Ka porque solo hay dos equilibrios que involucran a tres especies. Utilizando las formulas se puede trazar la grafica. pH 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 αN 9.99E-12 9.90E-10 9.09E-08 5.00E-06 9.09E-05 9.89E-04 9.89E-03 9.09E-02 5.00E-01 9.09E-01 9.90E-01 9.99E-01 1.00E+00 1.00E+00 1.00E+00 [H+ ] 1.00E+00 1.00E-01 1.00E-02 1.00E-03 1.00E-04 1.00E-05 1.00E-06 1.00E-07 1.00E-08 1.00E-09 1.00E-10 1.00E-11 1.00E-12 1.00E-13 1.00E-14 αN+ 9.99E-04 9.90E-03 9.09E-02 5.00E-01 9.09E-01 9.89E-01 9.89E-01 9.09E-01 5.00E-01 9.09E-02 9.90E-03 9.99E-04 1.00E-04 1.00E-05 1.00E-06 αN2+ 9.99E-01 9.90E-01 9.09E-01 5.00E-01 9.09E-02 9.89E-03 9.89E-04 9.09E-05 5.00E-06 9.09E-08 9.90E-10 9.99E-12 1.00E-13 1.00E-15 1.00E-17 1.0 0.9 α (Fraccion mol) 0.8 0.7 N + N 2+ N 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 pH 8 9 10 11 12 13 14 In the Classroom The Acid–Base Chemistry of Nicotine: Extensions, Analogies, and a Generalization Addison Ault Department of Chemistry, Cornell College, Mount Vernon, IA 52314; aault@cornell-iowa.edu The acid–base chemistry of nicotine provides a nice example of equilibria in aqueous solution where the major form in which the solute is actually present depends upon the pH of the solution. As Summerfield points out (1), nicotine can exist in aqueous solution either as the dication, N2+, the monocation N1+, or the neutral molecule, N. N+ H N+ N N+ CH3 H N CH 3 CH3 N H dication of nicotine monocation of nicotine nicotine N 2+ pKa = pK1 = 3 N 1+ pKa = pK2 = 8 N N1+ H+ N2+ (1) and then eq 2, the equilibrium expression for the ionization of N1+, to form the free base, N, and hydronium ion. K2 = N H+ N1+ (2) Equation 1 can be rewritten as eq 3 to express the ratio of the concentrations of N2+ and N1+, N2+ N1+ 500 H+ = K1 + N1+ H = N K2 (4) You can then see that the ratio of N2+ to N, the product of the left sides of eqs 3 and 4, equals the product of the right sides of eqs 3 and 4, as shown in eq 5. N2+ N1+ × + H+ N1+ N2+ H = = × N N K2 K1 (5) The Fractional Concentration of N The question is: Which is the predominant form in an aqueous solution at a particular pH? The intuitive answer is that the dication, N2+, should predominate in strongly acidic solutions, the neutral molecule, N, should predominate in strongly basic solutions, and the monocation N1+ could predominate in solutions of intermediate pH. More precisely, as we will show next, N2+ will predominate in solutions more acidic than a pH of 3, the monocation N1+ will predominate in solutions whose pH lies between 3 and 8, and the free base, N, will predominate in solutions that are more basic than a pH of 8. Furthermore, at a pH of 3 forms N2+ and N1+ will be present in equal concentrations, and at a pH of 8 forms N1+ and N will be present in equal concentrations. Following Summerfield’s lead we will write an expression for the fractional concentration of the free base, N, as a function of acid ionization constants and hydrogen ion concentrations, and then extend this treatment to the fractional concentrations of N1+ and N2+. We start by writing eq 1, the equilibrium expression for the ionization of the dication, N2+, to form N1+ and hydronium ion, K1 = and eq 2 can be rewritten as eq 4 to express the ratio of the concentrations of N1+ and N. We now write in eq 6 the expression for the fractional concentration of the free base, N, as the concentration of N over the sum of the concentrations of N2+, N1+, and N, where α N is read “fractional concentration of N”. αN = (6) Dividing top and bottom by N gives eq 7. 1 αN = (7) 2+ N N1+ + +1 N N Substituting from eqs 4 and 5 then gives the fractional concentration of the free base, N, as eq 8. 1 αN = (8) + + H H+ H × + +1 K2 K1 K2 Equation 8, written in this form, provides the insight for understanding the variation of the fractional concentration of the free base, N, as a function of the acidity of the solution. For N to be the major form in solution, its fractional concentration must approach unity. The only way in which this can happen is for the first two of the three terms of the denominator of eq 8 to approach 0, so that the denominator approaches 0 + 0 + 1 = 1 and the value of the fraction approaches 1. This can happen only when [H+] is small; that is, this will be true only when the solution is somewhat basic. We will see next that the solution must be more basic than pH 8 for the free base to be the predominant form of nicotine. Substituting the values for K1 and K2 for the dication of nicotine into eq 8 gives eq 9, αN = (3) N N + N1+ + N 2+ H+ 108 × 1 H+ 103 + Journal of Chemical Education • Vol. 78 No. 4 April 2001 • JChemEd.chem.wisc.edu H+ 108 (9) +1 In the Classroom and from eq 9 we can see that when [H+] is exactly 108 the fractional concentration of N will be 1/(0.00001 + 1 + 1) or 1/2, and that as [H+] becomes substantially less than 108 the fractional concentration of N will approach 1. Equation 16 indicates that the dicationic form of nicotine, N2+, can be the major species when [H+] is larger than both K1 and K2; that is, when the solution is strongly acidic. Substituting the values for K1 and K2 for the dication of nicotine into eq 16 gives eq 17, The Fractional Concentration of N1+ N1+ α N1+ = N2+ + N1+ + N Dividing top and bottom by N1+ gives eq 11. 1 α N1+ = 2+ N +1+ N 1+ N N1+ (10) (11) Substituting from eqs 3 and 4 then gives the fractional concentration of N1+ as eq 12. 1 α N 1+ = (12) + K H + 1 + 2+ K1 H You can see from eq 12 that the only conditions under which the fractional concentration of N1+ can approach unity (the denominator of eq 12 approaches 1) is for [H+] to be smaller than K1 and larger than K2. Substituting the values for K1 and K2 for the dication of nicotine into eq 12 gives eq 13, 1 α N 1+ = + (13) H 108 +1+ + H 103 and from eq 13 we seen that for N1+ to be the major species in solution [H+] must be between 103 and 108, or the pH must be between 3 and 8. The Fractional Concentration of N2+ Approaching the fractional concentration of N2+ in the same way we first write its fractional concentration as in eq 14. N2+ α N2+ = N2+ + N1+ + N Dividing top and bottom by N 2+ gives eq 15, 1 α N 2+ = 1+ N1+ N2+ (14) (15) + N N2+ α N 2+ = 1+ K1 H+ + H+ × K2 H+ (16) (17) 3 1+ 10 103 108 + + × + + H H H and from eq 17 we seen that for N 2+ to be the major species in solution [H+] must be greater than 103; the pH of the solution must be on the acidic side of 3. At a pH of exactly 3, N2+ and N1+ will be present in equal concentrations. The Other Conjugate Acid of Nicotine The monocation N1+ is the predominant conjugate acid of nicotine; the alternative monocation, N1+′ is also present, but in lower concentration. The reason for this is that the pyridine nitrogen, being sp2 hybridized, is more electronegative and therefore less basic than the pyrrolidine nitrogen, which is sp3 hybridized and therefore less electronegative and more basic than the pyridine nitrogen (2): N N+ H N CH 3 N+ CH3 H N 1+ pKa = 8 N 1+' pKa = 3 Since the pKa values of N1+ and N1+′ differ by 5 powers of ten, their concentrations will always differ by 5 powers of ten, and the concentration of N1+ ′ will always be 1 × 105 times that of N1+. In solutions whose pH is between 3 and 8, when N1+ is the major form in which nicotine is present, the concentration of N1+ ′ will be 1 × 105. In solutions more acidic than a pH of 3 or more basic than a pH of 8, the concentration of N1+′ will be 1 × 105 times that of the lower fractional concentration of N1+. It is for these reasons that the concentration of N1+′ could be ignored in the preceding calculations. Summary and Generalization When a solute can exist in more than one form, say A, B, C, …, the fractional concentration of any one form, say A, can be expressed by an equation of the form of eq 18: fractional concentration of A = and substituting from eqs 3 and 5 then gives the fractional concentration of N2+ as eq 16. 1 K1 1 α N 2+ = We can think about the fractional concentration of N1+ in the same way. First, we write the fractional concentration of N1+, α N 1+ , as in eq 10. 1 B C 1+ + +… A A (18) When a single equilibrium separates A from another form, say B, the relative concentrations of A and B will be determined by the ratio of the equilibrium constant that relates A and B, and the concentration of another species that determines the relative amounts of A and B. This “other JChemEd.chem.wisc.edu • Vol. 78 No. 4 April 2001 • Journal of Chemical Education 501 In the Classroom species” is typically hydronium ion but could be something else, such as the substrate or the inhibitor of an enzymatic reaction, or anything else that enters into a rapidly reversible equilibrium with A. When two equilibria separate A from another form, say C, the relative concentrations of A and C will be determined by the product of two ratios of equilibrium constant and concentration. Both of these possibilities were illustrated in the nicotine example. You can determine the sense of the ratio, whether it is equilibrium constant over concentration or concentration over equilibrium constant, either analytically, as in the nicotine example, or through your chemical intuition and experience. Application to Amino Acids H O C C H N + O H H H O R C C H N H − O H + H O R C C H N +/- A A pKa = pK2 = 10 A pKa = pK1 = 2 − O H H + - Following the example of nicotine, we expect that A+ will be the predominant form of the amino acid present in solutions more acidic than pH 2, the neutral zwitterionic form A+/ will be the major form present in solutions whose pH lies between 2 and 10, and the basic form, A, will be the major form in solutions that are more basic than a pH of 10. The major neutral form will be the zwitterionic form A+/ because the carboxyl proton of A+, having a pKa of 2, is more acidic than the ammonium proton, with its pKa of 10. The alternative neutral uncharged form, A0, will never be present at a high concentration. H O R C C H N H + − O O O H H O O O + NH A H O R C C H N H O H H A+/- A O O − O− O + NH OH pKa = 10 aspartic acid; A+; major form at pH = 1 502 3 +/- O − O O− O 3 NH2 A2 - In solutions more acidic than pH 2, A+ is the predominant form; in solutions whose pH is between 2 and 4, A+/ is the predominant form (the isoelectric pH is 3); in solutions whose pH is between 4 and 10, A1 is the predominant form; and in solutions more basic than pH 10, A2 is the predominant form. Application to Enzyme Kinetics We can express the rate of a simple enzyme-catalyzed reaction by eq 19, in which kp is the rate constant for conversion of the enzyme–substrate complex, ES, to product, and E0 is the total enzyme concentration. rate = kp [E0](fraction of E0 present as ES) (19) The maximum rate is realized when the fractional concentration of ES approaches 1, and it is therefore essential to understand what factors determine the fractional concentration of ES. In general we can imagine that the enzyme is present as free enzyme, E, as the enzyme–substrate complex, ES, as an enzyme–inhibitor complex, IE, and as a complex of the enzyme with both substrate and inhibitor, IES. We can therefore express in a general way the fractional concentration of ES as shown in eq 20. α ES = ES ES + E + IE + IES α ES = 1 IE IES E + + 1+ ES ES ES (20) pKa = 2 (21) Proceeding now as in ref 3, we can reexpress this fraction in terms of concentrations and equilibrium constants as eq 22 O + NH 3 + NH Dividing top and bottom by [ES] gives eq 21. HO O O− O 3 + A0 Since the two pKa values of A+ differ by 8 powers of ten, 0 A will always be 108 of the concentration of A+/. You can easily extend this line of reasoning to amino acids that contain either acidic or basic groups in the side chain. For aspartic acid, for example, pKa = 4 O H A 1- The acid–base chemistry of amino acids follows the same pattern. A typical “neutral” amino acid can exist in three forms in aqueous solution: the cationic or “acidic” form A+, the neutral zwitterionic form A+/, and the anionic or “basic” form A. R the significant forms present in aqueous solutions are A+, A+/, A1, and A2: 1 α ES = 1+ KM S + KM S × I I + K2 K3 (22) where KM, the Michaelis constant, is the substrate concentration at which the rate is half maximal in the absence of inhibitor; K2 is the dissociation constant for the dissociation Journal of Chemical Education • Vol. 78 No. 4 April 2001 • JChemEd.chem.wisc.edu In the Classroom of I from IE; and K3 is the dissociation constant for the loss of I from IES. In the absence of inhibitor, I, the IE and IES terms in eq 21 are zero. When this is so, high substrate concentration can drive the E term to zero and the rate will be maximal. If the inhibitor binds only to free enzyme (the IES term is zero), the rate can still be driven to the original maximum by a high substrate concentration, since the E and IE terms in the denominator of eq 21 can both be driven to zero. This is one of the characteristics of competitive inhibition. If, however, I binds only to ES to give IES (IE does not form), high substrate concentration cannot raise the rate to the maximum that can be achieved in the absence of inhibitor because the IES term in the denominator of eq 21 cannot be driven to zero by high [I]; the fractional concentration of ES never becomes equal to 1. This is one of the characteristics of uncompetitive inhibition. Formation of both IE and IES accounts for the kinetic behavior called noncompetitive inhibition. Reference 3 presents a more detailed analysis of these modes of inhibition. Literature Cited 1. Summerfield, J. H. J. Chem. Educ. 1999, 76, 1397. 2. Loudon, G. M. Organic Chemistry, 3rd ed.; Benjamin/ Cummings: Redwood City, CA, 1995; pp 664, 1182. 3. Ault, A. J. Chem. Educ. 1974, 51, 381. JChemEd.chem.wisc.edu • Vol. 78 No. 4 April 2001 • Journal of Chemical Education 503 In the Classroom edited by Applications and Analogies Ron DeLorenzo Middle Georgia College Cochran, GA 31014 An Acid–Base Chemistry Example: Conversion of Nicotine John H. Summerfield Department of Chemistry, Missouri Southern State College, Joplin, MO 64801; summerfield-j@mail.mssc.edu Much of the traditional general chemistry class focuses on the nuts and bolts of chemical calculations. As a result it is often difficult to infuse the class with timely chemistry topics. This Journal has provided some excellent applications over the years (1–8). The current government interest in nicotine conversion by cigarette companies (9) provides an example of acid–base chemistry that can be explained to students in the second college semester of general chemistry. The discussion of acid–base chemistry tends to coincide with the students’ preregistration for the next semester’s organic chemistry class. Organic chemistry has a notorious reputation. Thus students tend to be anxious about this future class. One result of this anxiety is that although the explanation for nicotine conversion relies on organic acid–base chemistry, the students are particularly interested because organic chemistry is already on their minds. This example is also suitable for an AP high school chemistry class, but is probably too advanced for an introductory high school course. The weak base ammonia is often added to cigarette tobacco (10). The U.S. Food and Drug Administration (FDA) has argued that this added ammonia enhances the delivery of nicotine into the smoker’s bloodstream. In contrast, tobacco companies argue that it is important to know as much as possible about nicotine chemistry in order to provide smoker satisfaction, and this knowledge is the underlying reason for their interest in ammonia as an additive (11). The Structure of Nicotine H+ + N H CH3 (2) CH3 Methylpyrrolidine When pyridine and methylpyrrolidine are bonded together the new molecule is called nicotine. Nicotine occurs in a +2 form (1) when the nitrogens in both rings are protonated. If only the methylpyrrolidine takes on a proton, a +1 form (2) results. If both nitrogens are free to act as a base, the freebase form occurs (3). H H H + + N H CH3 H + N H N N CH3 CH3 N N 1 2 3 Why the proton bonds to the methylpyrrolidine rather than the pyridine in the +1 form is open to interpretation (12). Rather than go off on this tangent, we simply accept that the two nitrogens differ in acidity as indicated by their pKa values. When protonated, the pyridine ring with a pK1 = 3.1 at 20 °C is much more acidic than the methylpyrrolidine ring with pK2 = 8.0 at 20 °C. The Nicotine–Ammonia Reaction Nicotine is composed of two ring structures. One is a benzene-like structure in which one carbon is replaced by a nitrogen. This structure is called pyridine, and, in acidic solution a proton adds to the nitrogen: + H+ + N H N + N (1) We begin with the +2 form of nicotine. As ammonia is added, the pH increases. With reduced hydrogen ion concentration, in accordance with LeChâtelier’s principle, the pyridine ring loses its proton, changing the +2 ion to +1. As the pH approaches eight, the proton on the methylpyrrolidine ring is lost, changing the nicotine to the neutral free-base form. The fraction of the nicotine that is in free-base form is shown by Freiser (13) to be Pyridine The other portion of nicotine is a five-membered carbon ring with one carbon replaced by a nitrogen. The nitrogen has a methyl (– CH3) group attached to it. This molecule is called methylpyrrolidine. In acidic solution, as with pyridine, a proton adds to the nitrogen. α= K 1K 2 + + 2 (3) K1K2 + K1 H + H where K1 is the equilibrium constant for the loss of the first proton (from the pyridine ring), K2 is the equilibrium constant for the loss of the second proton (from the methylpyrrolidine ring), and [H+] is the hydrogen ion concentration. For our discussion the variables of interest are pH and pKa. To bring out these quantities the numerator and denominator JChemEd.chem.wisc.edu • Vol. 76 No. 10 October 1999 • Journal of Chemical Education 1397 In the Classroom of eq 3 are divided by K1K2 and then four substitutions are made: Nicotine Variable [H+] = 10{pH + 2 Table 1. Free-Base Nicotine as a Function of pH {2pH [H ] = 10 (4) K2 = 10{pK2 pH 6 7 8 α 0.0099 0.091 0.50 Free base/+1 form 0.010 0.10 1.0 9 0.91 10 K1K2 = 10{(pK1+pK2) Equation 3 is now { pH { 2pH α = 1 + 10{ pK + 10 10 2 10 { pK 1 +pK 2 {1 (5) In Table 1 values for eq 5 are shown for different pH values. Also, the ratio of free-base form to +1 form is calculated. From Table 1 we can see that the free-base form becomes increasingly important as the pH increases. At pH = 8, a typical pH after ammonia has been added, free-base nicotine accounts for half of the total nicotine content. The nicotine–ammonia reaction is shown in eq 6. H H + + NH3 N H N N CH3 + NH4+ CH3 N (6) Nicotine The free-base form is uncharged. As a result, it is able to pass through cell membranes more easily than the +1 form (14 ). Since the free-base form is more easily absorbed into the cell than the +1 form, the conversion to the free-base form using ammonia improves the delivery of nicotine to the smoker. 1398 The FDA’s view of the part played by ammonia in tobacco smoke is analogous to what takes place when cocaine is “freebased”. The hydrochloride salt of cocaine is mixed with aqueous ammonia. The product is the free-base form of cocaine, which is then smoked (15). Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. Holme, T. A. J. Chem. Educ. 1994, 71, 919. Dhawale, S. W. J. Chem. Educ. 1993, 70, 395. Hecht, C. E. J. Chem. Educ. 1992, 69, 645. McCullough, T. J. Chem. Educ. 1992, 69, 543. Lisenky, G. J. Chem. Educ. 1990, 67, 562. Fulkrod, J. E. J. Chem. Educ. 1985, 62, 529. Mattice, J. J. Chem. Educ. 1983, 60, 1042. Glanville, J.; Rau, E. J. Chem. Educ. 1973, 50, 65. Raloff, J. Some Cigarette Makers Manipulate Nicotine. Science News, July 2, 1994, p 7. Kluger, R. Ashes to Ashes; Knopf: New York, 1996; pp 744–745. Food and Drug Administration. Fed. Regist. 1995, 21(Aug 11), 801–804. March, J. Advanced Organic Chemistry; Wiley Interscience: New York, 1985; pp 234–235. Katritzky, A. R. Handbook of Heterocyclic Chemistry; Pergamon: New York, 1985; p 145. Freiser, H. Concepts & Calculations in Analytical Chemistry: A Spreadsheet Approach; CRC: Boca Raton, FL, 1992; pp 60–62. Stryer, L. Biochemistry; Freeman: New York, 1988; p 284. Inciardi, J. A. In The Epidemiology of Cocaine Use and Abuse; Res. Monogr. 110; Schober S.; Schade, C., Eds.; U.S. Department of Health and Human Services: Washington, DC, 1991; p 265. Journal of Chemical Education • Vol. 76 No. 10 October 1999 • JChemEd.chem.wisc.edu