Movimiento circular y ley de gravitación universal

Anuncio
http://www.humbertomosquera.com.co
Wilson, College Physics, 6th Edition
Chapter 7 Movimiento circular y ley de gravedad
Numbered Equations
x  r cos 
(7.1a)
y  r sin 
(7.1b)
     o
(7.2)
s  r
(7.3)

    o

t
t  to


t
average angular speed
or    t
v  r
(7.4)
instantaneous angular speed
(7.5)
tangential speed relation to angular speed for circular motion
(7.6)
f 
1
T
frequency and period
(7.7)

2
 2 f
T
angular speed in terms of period and frequency
(7.8)
ac 
v2
r
magnitude of cenripetal acceleration in terms of tangential speed
(7.9)
ac 
v 2 (r ) 2

 r 2
r
r
Fc  mac 
mv 2
r
magnitude of cenripetal acceleration in terms of angular speed
magnitude of centripetal force
(7.10)
(7.11)
1

  o
t
or
  o   t
(constant angular acceleration)
(constant angular acceleration only)
v  (r ) r 


 r
t
t
t
at 
so
at  r
magnitude of tangential acceleration
x  vt
  t
v
(7.12)
v  vo
2
(1)
  o
2
(2)
  o   t
(3)

v  vo  at
(7.13)
x  xo  vo t  12 at 2
v 2  vo2  2a ( x  xo )
   o   o t  12  t 2
(4)
 2   o2  2 (   o )
(5)
Fg 
Gm1m2
r2
(7.14)
ag 
GM
r2
(7.15)
agE  g 
ag 
GM E
RE2
(7.16)
GM E
( RE  h) 2
(7.17)
Gm1m2
r
(7.18)
U 
2
U 
Gm1m2 GmM E

r
RE  h
E  K  U  12 m1v 2 
(7.19)
Gm1m2
r
(7.20)
U  U12  U13  U 23

Gm1m2 Gm1m3 Gm2 m3


r12
r13
r23
(7.21)
 4 2  3
T2  
r
 GM s 
or
T 2  Kr 3
(7.22)
2GM E
RE
vesc 
(7.23)
vesc  2 gRE
v
(7.24)
GM E
r
(7.25)
E  K  U  12 mv 2 
E
K
GmM E
2r
GmM E
r
(7.26)
total energy of an Earth-orbiting satellite
(7.27)
GmM E
 E
2r
(7.28)
3
Chapter Review
s  r
(7.3)
  t

(general, not limited to constant acceleration)
  o
2
  o   t
(7.5)
constant acceleration only
(2, Table 7.2)
constant acceleration only
(7.12)
Con formato
   o   o t  12  t 2
constant acceleration only
(4, Table 7.2)
Con formato
   o2  2 (   o )
constant acceleration only
(5, Table 7.2)
v  r
(7.6)
f 
1
T
(7.7)

2
 2 f
T
(7.8)
ac 
v2
 r 2
r
(7.10)
Fc  mac 
mv 2
r
(7.11)
at  r
Fg 
(7.13)
Gm1m2
r2
2
(G  6.67  10 11 N  m 2 kg )
(7.14)
4
ag 
GM E
( RE  h) 2
(7.17)
Gm1m2
r
(7.18)
U 
T 2  Kr 3
2GM E
 2 gRE
RE
vesc 
E
(7.22)
(7.23, 7.24)
GmM E
2r
(7.27)
K E
(7.28)
5
Descargar