Wilson, College Physics, 6th Edition Chapter 8 Numbered Equations

Anuncio
Wilson, College Physics, 6th Edition
http://www.humbertomosquera.com.co
Chapter 8
Numbered Equations
vCM  r
(rolling, no slippling)
(8.1)
s  r
aCM 
(8.1a)
vCM r

 r
t
t
(8.1b)
  r F  rF sin 
(8.2)


Fnet  Fi  0
(for translational equilibrium)


 net   i  0
(for rotational equilibrium)
(8.3)
Con formato
Fx :  T1 cos 1  T2 cos  2  0
(1)
Fy :  T1 sin 1  T2 sin  2  mg  0
(2)
 cos 1 
T2  T1 

 cos  2 
(3)
 net  r Fnet  rF  rma  mr 2
torque on a particle
1
(8.4)
 net   i   1   2   3     n
 m1r 12  m 22 r2  m3 r 32    mn r 2n
(8.5)
 (m1r 12  m2 r 22  m3 r 32    mn r 2n )
 net    mi r i2  
I  mi r i2
moment of inertia
(8.6)
 net  I
net torque on a rigid body
(8.7)
I  I CM  Md 2
a  R 
(8.8)
2T
M
(1)
mg  T  ma
or
T  mg  ma
a
2mg
(2m  M )
W  
P
(2)
W

 
t
t
(3)
(single force)
(8.9)

  

(8.10)
2
Wnet  12 I  2  12 I  2o  K  K o  K
(8.11)
K  12 I 2
(8.12)
2
K  12 I CM 2  12 MvCM
(rolling, no slipping)
(8.13)
L  r p  mr v  mr2
single-particle angular momentum
(8.14)
total rotational translational


KE
KE
KE
L  (mi r i2 )  I 
rigid-body angular momentum
(8.15)


L  I
L
t
(8.17)
vo2
2g
(1)
 net 
x
(8.16)
  


L  L  L o  I   I o o  0
or
I   I o o
(8.18)
3
Chapter Review
vCM  r
(8.1)
  r F  rF sin 
(8.2)




Fnet  Fi  0 and  net   i  0
(8.3)
I  mi r i2
(8.6)


 net  I
(8.7)
I  I CM  Md 2
(8.8)
W  
(8.9)
P  
(8.10)
Wnet  12 I  2  12 I  o2  K
(8.11)
K  12 I 2
(8.12)
2
K  12 I CM 2  12 MvCM
(8.13)
4
L  r p  mr v  mr2
(8.14)


L  I
(8.16)
 net 
L
t
L  Lo
or
(8.17)
I   I o o
(8.18)
5
Descargar