REVISTA MEXICANA DE FislCA -Itl SUPLEMENTO 2, 79-S3 NOVIEMBRE 2000 Preparation and characterizacion of functional and non-functional nanocomposites U. Pal, J. García Serrano, A. Bautista Hernández, O. V;:ízquez Cuchillo, and E. AguiJa Almanza Instituto de Física, Unil'ersidad Autónoma de Puebla Apartado postal J.48, 72570 Puebla, Pue., Mexieo Natiollallllstitute N. Koshizaki and T. Sasaki of Materials ami Chemieal Researeh (NIMC) AlS7; MITl, 1./ Higashi, Tsukuba, Ibaraki 305, Japall. Recibido el 27 de ahril de 20(X); aceptado el 15 de junio de 2000 Funclional nanocomposites like Si/ZnO. Au/ZnO and non.functional nanocomposites like Cu/SiOz were preparcd cithcr by r.r. cosputtering or hy ion-implantation technique. The compositc Illms wcrc prcparcd with different composilions and thcrmally treated at different tClllpcratures lo study the varialion 01' thcir oplical propcrties wilh cOlllposition and annealing temperature. X.ray diffraction (XRD), transIllission clcctron mkroscopy (TEM). and transmission elcctron diffraction (TED) techniques were used for their structural characterization. rormatioll of colJoidal metal particles and Ihe semiconduclor c1uslcrs in the matrix have been confirmed by TEM. TED and spectrophotolllctric measurements. KeYlI"orlis: Nanoparticlcs: melal and semiconductors; optical propcrties NnnocompósiloS funcionales lales como Si / ZnO. Au / ZnO y no-fullcionales como eu / Si02 fueron preparados por las técnicas de cod. o por implantación iónica. Las películas compósitas fueron preparadas con diferentes composiciones y Iratadas a diferentes temperaturas para estudiar la variación de sus propiedades 6pticas con su composición y temperatura del tratamiento. Se han usado las técnicas tales como difracción de rayos X (XRD). microscopía electrónica de transmisión (TEM) y difracción de electrones por transmisión (TED) para su carncterización estructural. Se han conllrmado la formación de partículas coloidales metálicas y cúmulos semiconductores en la matriz por mediciones dc TEM, TED Y espectrofotométricas. .\pu/t'I"ing DescripTores: rAes: Nanopartículas; 6i.46.+w; 6i.82.Rx; metales y semiconductores; propiedades óplicas 78.66.Vs 1. Introductilln In recent ycars. the preparation and charactcrization 01' low dimensional semiconductor ami metal composiles have atIracled much interest due to their strong photolumincsccnce (PL) in Ihe visihle and ncar infrared (IR) regions [1-5]. ami non-linear optical properties [61 respectively. The semiconductor uispcrsed nanocomposites have modofied optical properiles ¡¡mi are highly prosperous material s ror the fahrication 01' optoelcctronic uevices and chemical sensors liT By incorporating semicnnductors in glass malrix in difTcrent ways. several optical functional composites have heen prepared and the mechanism 01' the origin nf optical functionalities in thell1 are heing studieu extensivcly al present. How. cver, the use 01' fllnctional malrix materials like ZnO. MgO rol' the preparation 01' nanocomposiles is very recent IS-HII. On the othcr hand, incorporation of low dimensional metal particles in glass matrix lIsing several tcchniqlles is heing stlldicd to invcsligale lhe mechanism 01' lheir formatinn anu elTecl nI' post growth treatments on them. thc prcscnt projcct. wc took the assignmcl1t lo )"'lIT. pare several fllnctional anJ non-functional nanocolllposites likc Si/2nO. AlI/ZnO, eu/SiO:.! etc. ami to stlldy lheir struc(mal and optkal properties lo invcstigate their applicahility in 111 optoelectronic devices and chemical sensors. Thollgh, apart frorn Ihe ahoye mcntioned thrce material s we are preparing other materials like Cu/ZnO, GaAs/SiO:.! etc. we will restrict ourselves 011 the discussion 01' only lhe previously mentioned three materials. 2. Experimental Si/2nO and Au/ZnOcornposite flIms wcrc preparcd on quartz glass suhstrates hy co-sputtcring 01' Si (5 x 5 x 0.3 rnrn3) wafers or 3 pieces 01' Au (01' diffcrent lengths like 1 mm, :3 mm ami 7 lllm) wires ami ZnO (lOO mm diamcter) targets with 100 \V r.f. power. ror Si/ZnO composites, lhe films were prepared al I () mTorr Al' pressure. Whcreas, lhe Au/ZnO compositcs \\'cre prep~lrcd al 4 mTorr Ar pressure. The conIcnt 01' Si and Au in the nJllIS were varicd hy changing the numher 01' Si cO-largels or hy changing the length of Au wircs on Ihe ZnO larget, kceping the time 01' spultering fixed (60 minulcs). Tilc as-dcposilcd Si/ZnO compositc films wcrc anncaled al di!'!'crcnl Icmpera!ures (400-800°C) !'or 5 hours in vacuutll (2 x 10-(; Ton) ami thc Au/ZnO compositc lilms werc annealed at ditTcrenl tcmperaturcs (320-iOO°C) in argon atmosphere. Thc COJltcnt nI' Si and Au in the composite IiIms wcrc dctcnnined hy a Perkin.Elmcr (PHI 5óOOci) XPS Sil u. syS1CIll. X-fay ditTractioll, TEM anJ TED lcchniqucs I'.\L I1 di \VeTe uscd rol' Ihe slructural charactcrizalion of lhe fIIms. Por TEM ami TED ohscrvations. Ihe compositc f1Ims of ahout 25 nm thickncss with diffcrcll( Si/Au conlcnts wcre dcpositcd on carholl-coalcd NaCI sUOslratcs. Thc lllms artcr transfcrring lo Ihe coppcr grids wcrc anncalcd al diffcrcnt tcmpcraturcs and hy "JEOL JEM2000-I'XII eleetron microscopc. A SHI~IADZU(UVJ 101 pe) doublc beam spcctrophotomctcr inspcctcd \Vas uscJ rol' lhe IllCaSUfCI1lCnt 01' oplica! lihns. A Nicolct Magna record Ihe IR ahsorptioll ahsorption in Ihe 750 FfIR spcClroll1CICr was lIscd to spcclra of Si/ZnO composilcs in dir. fuse modl'. Thc Cu/SiOl compositcs \VeTe prcparcJ hy implanling :2.0 ~lcV Cu+ ion s in rusco quartz g!ass subslralcs using a :~ f\kV Tandclll acccleralor. Kecping Ihe ion currenl flxcd lo 1.;-) 'IA, lhe salllples were prepared wilh difTerent nominal <.loses like 5 x 101"" (salllple a), !) x lO!!) (sample h), ami 1 x IOIló (sample c) ions/cm2, RlIlhcrford hackscattering (al F[(ilIRE l. Typical th) TE~I SODor: ~lI1ncaled Si/ZnO micrographs films prepared ser! of (h) shows ¡he TED pattcrn speclromelry (RBS). using: ,1.0 t\1cV Hc+ ion s has heen cmplOYl~dlo sludy lhc dcplh proliles 01' el! in lhe suhslralcs after illlplanlalion. For lhe :Inalysis of deplh prollles, Ihe prog:ram of (a) as-grown and (h) wilh samc Si contento taken on ti In. micro-cluster. 04 RU~11' (RlIthcrfonllllliversalmaipulation program) 1111. in comhinalion wilh Ihe results 01' RES measuremcnls have hecn lIscd. Optical ahsorplion measurcmenls were dome al 02 room tcmperature in Ihe il1lcrval 01' IDO to 700 nm lIsing an un-illlpl:mled suhstrale as referencc. 3. Reslllts and disCllssion Si/ZIIO lile SilZn alomic ratio was calculated from Ihe Si2!':!j:.! ano Zn2!':ij2 peak arcas in XPS spectra 01' the liIms. Contenl 01' Si inlhc lilms incrcased wilh Ihe incrcase of Si picccs ami could casily he conlrollcd hy changing Ihe numher 01" Si pieces on lhe ZnQ largel. Figure l sI1o\\'s Ihe Iypical micrographs 01' as-deposiled aIll180f)°C annealcd SilZnO films. For the as-deposilcd films we can ohserve the nanoparlicles 01' size ranging fmm :2 10 -l nm dispersed in lhe lllatrix. 011 :ulncaling al íOO°C or highcr lempcratures. the nanoparlic!cs aggregalcd 10 rmm higger c1usters (lllicro-c1usters thcre after). In rig. l h \vc can .'ice Ihe micro-c1usters of 10 lo 60 nm sizc (average size .q nlll) rOfmed afler annealing Ihe film at 800°C. The avcrage size 01' Ihe clUSlcrs did nOI depend Illuch on the Si conlenl in lhe films. lIo\Ve\'cr. lheir Ilulllher densily incrcasc of Si conlent in lhe films. increased witil lhe The positioll 01' Ihl' Si2/' cmission in Ihe XPS spectra \'ar¡ed from 101.6 lo I02.X eV which is in hetween Ihe peak POSiliolls (11' elemental Si (99.2 eV) and SiOl (103.9 eV). So, in Ihl' cluslers, Si rcmained appan:nlly in lhe SiOx ((J < _\"< :2) chcmical slale. IR ahsorplion sllL'ctra 01' the films revealeJ several peaks inlhe IOO-iOO cm-I spectral range. There appeared a hroad llon-sYlll111l'lric peak for alllhe samplcs, v:tricd sysll'malically with Ihe varialioll Ihe positioll nf which 01' Si c:ontcn( alll!the Rel'. )\f¡>\, F[(;lIRE 2. Evollltion oflR ahsorption alme ans its computcr-simulalcd prcparcd peak wilh annealing dCCOlllpositions, tempcr- for a SilZnO film with 1 ó Si ('o-largets. lemperature 01' annealing of Ihe lIIms. A compuler-simulalcd decolllposilion 01' these complex peaks showed two adjacenl hands in them, Ihe position 01"which \'ary wilh Ihe contenl 01' Si in Ihe films am! also with Ihe Icmperalurc 01' annealing. In rig. 2, the evolulion annealing Icmperalure, position are presellled. 01' Ihe peak with Ihe varialion 01' anJ lheir cOl11puler-sil11ulated decol11Both lhe componcnt hamJs moved 10- wan!s shorter \vavelcngth with Ihe incrcase 01' annealing (cmpcralurc, The longer wavclength side hanJ movcd from 485 lo ;j2;j cm~ l. whereas lhe shortcr wavelenglh hand moved frlllll ;) I 210 5;")0 CIll-1 . \Ve assign Ihese Iwo sets of hands to Ihe Si-Si slrclching FiJ . .t6 S2 (2000¡ 79-X3 aS)'ll1ll1elric (SA) and strelching symmel- I'I<EI'/\RATiON .J\NI) ClIARACTERIZACION ] o c: ro -eo ''''''' '000 - """- A" (220) o 0.2 ., 0.0 f :: 1...._S_'_'_0 __t._r9 ••_to==~. 0'9100 420 440 460 480 500 Wavenumber F[<;UR[ ZnO wilh '000 .c '" « ZnO with 3 pes. of 7.5 mm Au wire '000 - ~ Q) XI OF FUr-.;CrIf)NAL ANI> N();-"¡-FUNCTI()~:\L NANOC()~1P(}SnlS J. IR :lhsorrlinn diffcl"cllt Si contcnts. spcctra 520 540 560 580 for Si/ZnO ''''''' '000 """ cornpositc films \\'ílh ~ A" (331) ZnO wilh (422) 3 pes _of 1 mm Au wire ''''''' '000 o '000 ZnO '"O ''''''' '000 anncalcd al ,HlO°C. ~ (220) o '000 """ (cm"') 3 pes. of 3 mm Au wlre (002) '00 (103) ril: (SS) vihrations [11) in Si] clustcrs. rcspccti\'cly. A reverse ctlect is ohscrved 00 itH.:rcasing lhe Si cnntenl in lile I1ll11s.\Vith lhe incrcasc of Si contento lhe ahsorption peak shiftcd towards tonger wavclcnglh. \Vith (he ¡nercase of Si content, lhe intcnsity 01' Ihe peak increascd sharply ami its posilion shiftcd from 517 lo 480 cm-l. """ '00 ('02) o 40 Bragg angle '0 2(-) 60 (degrees) 60 F[(iURE 4. X.ray lJi!lr,Ktioll spcctra for Au/ZnO composites prcpared wilh di1'fercnt Al] COlllents. Thc ahsorption;1I about '¡S5 ami 508 cm-l corrcspond 10 lhe tripiel cxcilcd slales "13, (C~,,) and "A, (D:I/,) of Si", respeelively [12J. The JlL';¡ksappcarcd al ahout 525 ano 550 cm-I corrcspond 10 lhe ahsorption of single! graund slale 1 At(C:lv) of Si:l. So, as lhe lcmpcraturc 01' anncaling ¡ncrcaset!, lile conflguanion 01"Ihe Si <1101115 in Si:t clustcrs changcd fram lile tri piel lo lhe sin4 ~Ict ground slalc. Thc 507 <lm1532cm~l ahsorptions ([Oig . .3) corrcspond lo lhe mosl stahlc lr¡plel 3Al (C2,,) sIate of isosccles slruclUrc and lile sccond mosl stablc tri piel state ol" linear chain slructurc 01' Si;-¡. rcspcclivcly 113J. SO, as lhe Si contenl in Ihe films incrcascJ, (he Sh cluster in Ihe films acquircd lhe lesscr slahle gcoll1ctrical struclurc. ,\u/ZnO In Fig. 4, XRD spcctra 01' lhe as-dcpositcd fllms \••..ith Jifferclll Au contcnts are showll. Wilh lhe incrcasc nf Au conlen\. Ihe inlensity uf Ihe (220), (331) and (422) peaks of Au ¡n(,fcascd. Therc ~rpearcd a peak corrcspol1ding lo Ihe formatioll of AuO, inlcnsity of which also ¡ncfcased with th¡,; incrcasc of Al! content in Ihe films. In Fig. 5. (he TEM micrographs of lhe compositc fIIms with same Al! contcnl bUI anl1calcd at dirrcrcnl tcmpcraturcs are shown. Formation 01' Au nanoparticlcs in lhe fllms is clcar. \Vilh Ihe ¡nercase of <lllllcaling tcmpcraturc, (he average sile 01' lhe Al! particJcs incrcascd. Forlllation 01' nanomctric Au p:trticlcs in Ihe films is ;lls() cvidcnt frorn lhcir oplical ahsorption spcctr:l. In Fig. 6, optical ahsorption "pcctrn 01' a film prcparcd wilh 3 rieces nf 7 Illlll Icngth Al! wircs ami :mncalcd al diffcn:nt lcmpcralurcs are shown. Thc arrcarancc 01' a hump llc;¡r abollt 2.3 cV in Ihe srettra corrcsponds to plasman absorption in Ihe sm:111 (a) (h) (e) (d) FIGURE 5. TEi\l Illicr{l~rap!ls 01' (,,) as-grown, (e) ,500°C :lllU (ti) i"OO°C anncaletl 3 pieces 01' 7 mm Au cO-I:lrgcls. Rel'. Ml'x. Fú. 46 S2 (2000) 7<J-X3 AulZnO nlms (h) 320°C. prcpared with Xl 1J. I'AI. (" 8.01 1// ~--- o AulZnO prepared with 3 pes. 01 7mm Au wires a- 7AuZnO (r.l) 60 / / - - ~_---=::::::::-- ~----- n /// 00 40 E !2 a / 2°l/ 20 b /" / I I e / , 40 sample - e / b. 7AuZnO (3200C) c. 7AuZnO (5000C) d- 7AuZnO (7000C) ;:; o ,/~- sample • b e o d 20 ~ eal u e o 00 20 u " O 00 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 sample - a 32 Photon energy (eV) P[r.URE 6. Opti('al allncaled at dillcrcllIlcmperatures. ahsorption speclra 01" a AlI/ZnO 10 composilL' 1¡lm 00 Au p~lrticles. The plasmon ahsorptioll peak shiftcd lowanb lov.'cr cnergy as Ihe tcmperaturc of annealing increased; which is in agrcclIlcnl with Ihe ohservalions made from TE!\l study that lhe avcragc sizc of Au particles ¡ncreases wilh Ihe incrcasc of annealing lcmperaturc. 05 00 20 15 25 30 in "ilica glass fUf diffcrcnl irnplan- 1 O Depth (microns) Fl(;LIRI: 7. [)epth prntilcs ofCu [;lliont!O"es 20 en/SiOl .- . Figurc 7 shows Ihe dcplh profile 01'Cu in silka glass ror different doses 01' implantation. \Vilh lhc ¡ncrease implantation dose lhe principal dislrihution al' Cu hecornes sharpcr, more inlense and ilS posilioll shifts towards lowcr depths. On lhe inCrCi.L'ie 01'implantation dose, there appcared other pcaks at lowcr dcpths, and thc maio dislrihution transformed fmm the hilllodal lo a Gaussian onc. These hchaviors can he cxplain by cnnsidcring lhe intcraclion the Cu ions among thcmselves and wilh the malrix 114J. The oplical ahsorplion spectra for lhe samples a ami h are shown in Fig. R. There appeared two c1ear peaks in the ahsorplion speelra. The peak appeared al aboul 560 nm (band 1l. is the eharaeteristie ofthe formal ion of co1loidal el! nonopartic1es 1151. The olher peak elose lo 215 nm (hand 2). has heen reported hy several workers [15, lO] and assigned to ¡he E'uet'cct in silica glass crcated during implantalion. With Ihe increase of implantation dose, lhe bano ) became clearer. sharper. ami shiftcd slowly towards highcr wavelengths, indicaling lhc growth nf particles. The thcoretically calculalcd ahsorption speclra for lhe samplcs are prescntcd hy rhe data points with diffcrcnl SYIllhols in the same figure (Fig. 8). For the silllulation 01" oplical ahsorption srectra, we used thc Maxwcll-GarnCtllhcory with "mean frce palh" correctioll for the dicleclric functinn 01'the n<lnoparliclcs. The dClails oí' lhis models can he found in Re\'. M('x. Ft\' . .t(1 Sample a , , ' 16 ~ ~ E •O 12 4- • .. : ¡ U lE . 8 U ! • .I ••••••. ~ 8 .: .. r)iJ Sphere (R= 10 nm) Oblate spherold (R= 12 nm) Sample b Sphere (R= 14 rvn) Oblate spheroid (R: 14 nm) [J o ~ .o '" .; 4 ------,- O 150 250 350 450 Wavelenglh 550 650 750 850 (nm) FI(;URE X. Ahsol'Plioll spcclra 01' Cu/SiO~ Ihcir lhcorctir.:al lit:-.. samples (a anJ h) and ReL 17. The simulations are rcali/ed hy taking Iwo forms 01' lhe particlc. spheres ami ohlate spheroids. For Ihe salllpie a. prcparcd wilh lowcr implanlalion dosc. Ihe theorcti. cal lltling is hctlcr when Ihe sphcrical shapc 01' Ihe paniclcs S2 (2000) 79-XJ I'REI'ARATIO:"J ANO C1IARACTERIZACION OF FUNCT1():"JAL AND NON-FUNCTIONAL is cOllsidercd. On lhe olher hand. for lhe samples prepared wilh highcr implantation dase, lhe thcorctical spcClra fitted \\.'cll with the experimcntal speclra when an ohlale spheroidal shape ()f the particles is cOllsidercd. In the samples prcpared wilh lowcr implanlalion dose, as lhe average size of Ihe parfieles is small. a spherical shape for Ihem is expected. \Vith (he incfease 01" implantation dosc, lhe el! particles grow. and prohahly takc some irregular fmm devialing from their regular sphcrical shape. 4. Conclusions Si ami Al! clus{crs can be preparcd in ZnO malrix by rJ. cospultering lechnique. Thc Si cluslers, formcd in SilZnO COI11posilcs. cOllsis! 01' a eore of Sh ami a SiOx cap ¡ayer arollnd thclll. Al! nanoparticles formed in ZnO matrix remain mostly in i(s elemental state wilh an oxide layer at Ihe partiele-matrix 1. s. lIaya~hi. ti YY3) 274. r..1. Kalaoka, and K. Yammnoto. 1. AI'I'I. Phys .• '2 2. S, Yoshida. T. Banda. S. Tanahc. anJ N. Soga. l/m. 1. AI'I'I. I'h.r.\". -'5 (1996) 2694. :1. Y. r..1aeda ('t (/1.. AI'I'I. .1. Y. Kalllawa Phys. U'U. 59 (1991) i'/ (/1.. Solid S/ate COIfIIfIIlII. J 16X. 1U2 (J (97) 533. .). S. lIayashi. T. !\'agareda. Y. Kanzawa. anJ K. Yamamolo. 11m. ./. AI'/'/' Phys .. '1 (1993) 3840. G. R.II. lIaglllnd el (/1.. Nuc!. Imtr. amI Mi'lh. Phys. Res. B 91 (1994) 493. /. N. Koshil.aki. K. Yasumoto. and S. Tcrallchi. l/m.l. AI'I'/. Phn .. .14 (slIrpL 34-1)(1994) t19. 8. N. Koshi/.aki 9 ('1 al.. NallOSlntet. M(//t'Y, K (1997) 403. U. !'al, N. Koshizaki, S. Tcrauchi. and T. Sasnki. Afierose. Afi8 (1997) 403. emall(/1. MicnJs/rucl. NANOCOMPOSITES 83 inlerface. The size of Ihe nanopartic\es can be conlrolled by conlrolling cilhcr by the contenl 01" Au in Ihc films or by conIroIlillg the temperature 01" allllcaling. ()islrihulion 01' Cl! in silica tlepenos on the implanta(ion dose. With Ihe increase 01' implantation Jase, Cu segrcgale towards suMstrale surface. For the samples prepareJ with low implalltation Jase. the si/e of Ihe Cu particles is very small amI the nalural sphcrical shape retain in them. With the increase of implanlation dose. the size 01" the Cu parti. ele incrcase anJ their shape Jeviate from spherical lo oblalC sphcroidal. Ackl1llwled¡:ments Wc are thankfullO Dr. L. R.oJrigue/-Pernández and Dr. J.C. Chean- \Vong rOl" preparing Cu/Si01 samples and lheir RllS analysis. The work is supp0rled by CONACyT (Grant no. 283XO.E), Mexico. 10. G. Zhao, H. KOluka. and T. Yoko. Thirl So/id Films 227 (1996) 147. 11. S. Li, R.J. Van Zcc. W. Weltner Jr.. and K. Raghavachari. Chem. /'hy.,. /A'II. 24.1 (1995) 275. 12. c.~1. Rohlfing and K. Raghavachmi, 1. Chem. Phys. 96 (1992) 2114 . 13. R. Fournier. S.B. Sinnou, and A.E. DePrislo, l. Chem. Phys. 97 (\1)92) 4149. 14. A. Bautis(a-Hcrnández. U. Pal. L. Rodriguez-Fernández, J.c. Cheang- \Vong, Superficies y Vacio 9 (1999) 296. and 15. P. Mazzo1di, F. Cacea vale, P. Chakraborty, R.A. Zhur, and G . Whichard.l. Nrm.Cry.{. Sol. 129 (1991) 46. tG. tUl. MagruJer 1tI el al .. J. AI'/'1. /'''.1'5. 76 (1994) 708. 17. R. Ruppin. l. AI'I'/. Ph\'S.,59 (19R6) 1355. R('l'. M('.\'. Fú .. U. S2 (2000) 79-RJ