Estática- Armaduras Tokyo Gate Bridge http://en.structurae.de/photos/index.cfm?id=212764 5a- Armaduras Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil http://www.youtube.com/watch?v=96WyTaqB GwU Estática- Armaduras Contenido 5. Análisis de Estructuras 5.1 Armaduras. Definición de armaduras. Armaduras planas. Armadura simple. Armaduras compuestas. 5.2 Análisis de armaduras por el método de los nodos. Ejercicios. Nodos bajo condiciones especiales de carga. 5.3 Análisis de armaduras por el método de las secciones. Ejercicios. 5.4 Armaduras en el espacio. Análisis por el método de los nodos. Análisis por el método de las secciones. Ejercicios. Estática- Armaduras Estructuras Estructura: es un conjunto o serie de piezas o elementos interconectadas entre sí por nodos o uniones que les permite actuar como un conjunto (sistema estructural) para resistir la acción de unas cargas. Ejemplos: •Puentes •Edificios •Torres •Tanques •Presas Estática- Armaduras Tipos de Sistemas Estructurales La combinación de elementos estructuras interconectados permite conformar un conjunto resistente. Se clasifican de acuerdo a su capacidad de resistir las acciones que sobre él se aplican: 1. 2. 3. 4. Armaduras o cerchas Pórticos o marcos Cables y arcos Estructuras superficiales Estática- Armaduras 1. 2. 3. 4. Armaduras o cerchas Pórticos o marcos Cables y arcos Estructuras superficiales http://sergioelguapo.org.mx/ESIME/ISISA/actividades_estatica/armamaquina.html Formados por la conexión de vigas y columnas. Las uniones generalmente son rígidas o articuladas. Su uso más común es como estructura resistente en edificios Estática- Armaduras 1. 2. 3. 4. Armaduras o cerchas Pórticos o marcos Cables y arcos Estructuras superficiales http://www.kalipedia.com/tecnologia/tema/graficos-puente-arcospiedra.html?x1=20070822klpingtcn_208.Ges&x=20070822klpingtcn_179.Kes Cubren grandes distancias http://co.kalipedia.com/historia-peru/tema/graficos-puente-colgante.html?x1=20070822klpingtcn_210.Ges&x=20070822klpingtcn_179.Kes • Los cables trabajan a tensión. Utilidad en cubiertas, cables para tirantes, etc. • Los arcos están sometidos a compresión. Usados con mayor frecuencia para puentes Estática- Armaduras 1. 2. 3. 4. Armaduras o cerchas Pórticos o marcos Cables y arcos Estructuras superficiales (cascarones) http://fresharquitectos.blogspot.com/2010/02/felix-candela-la-conquista-de-la.html Normalmente sometidas a tensión o compresión y muy poca flexión. Estática- Armaduras 5.1 Armaduras Solución económica para puentes y edificaciones (tejados, bodegas). Estática- Armaduras Estática- Armaduras http://en.structurae.de/structures/data/index.cfm?id=s0000480 Estática- Armaduras Hipótesis de Análisis en Armaduras 1. Pesos de elementos son despreciables (secciones son esbeltas) 2. Nudos están articulados (ejes centroidales intersecan en un punto) 3. Fuerzas aplicadas en los nodos (posibilidad de falla a flexión de miembros esbeltos) Estática- Armaduras Tipos de acciones internas D.C.L. Nodo D.C.L. Elemento D.C.L. Nodo D.C.L. Elemento Estática- Armaduras Se pueden analizar en 2D a pesar de ser estructuras 3D… Tomado de [Meriam & Kraige, 2002] Engineering Mechanics STATICS, fifht Edition, Jhon Wiley & Sons. Estática- Armaduras Estática- Armaduras Tipos de Armaduras Tomado de [Meriam & Kraige, 2002] Engineering Mechanics STATICS, fifht Edition, Jhon Wiley & Sons. Estática- Armaduras Armaduras Simples y Armaduras compuestas Armadura triangular es rígida (no colapsará) Armadura no es rígida (colapsará) Estática- Armaduras Armadura Simple 𝑚 = 2𝑛 − 3 Garantiza la estabilidad interna Y externa si está simplemente apoyada Estática- Armaduras ¿ 𝑚 = 2𝑛 − 3? Estática- Armaduras Armaduras Compuestas Armadura tipo Fink ¿es una armadura simple? 𝑚 = 2𝑛 − 3 (35) = 2(19) − 3 = 35 Estática- Armaduras ¿ 𝑚 = 2𝑛 − 3? Estática- Armaduras ¿ 𝑚 = 2𝑛 − 3? Estática- Armaduras ¿ 𝑚 = 2𝑛 − 3? Estática- Armaduras ¿ 𝑚 = 2𝑛 − 𝑟? Si m=2n-r se garantiza que la estructura sea estáticamente determinada, estable (rígida) y completamente restringida. Estática- Armaduras ¿ 𝑚 = 2𝑛 − 𝑟? Para evitar movimientos relativos de las armaduras (entre las dos armaduras simples) se unen por medio de conexiones capaces de transmitir por lo menos tres componentes de fuerzas (NO todas paralelas NI concurrentes) Estática- Armaduras Estática- Armaduras En resumen: Si la armadura está formada por n nodos, r reacciones externas y m barras, entonces: • Si m + r < 2n, la armadura es estáticamente inestable (faltan miembros o restricciones) o parcialmente restringida. • Si m + r > 2n, la armadura es estáticamente indeterminada. • Si m + r = 2n, igual #ecuaciones y #incógnitas. Para garantizar que la armadura sea completamente restringida, se debe tratar de encontrar las reacciones en los apoyos y las fuerzas internas. Si es posible, entonces la armadura es completamente restringida y estáticamente determinada. •La estabilidad interna de una armadura se inspecciona al separar la armadura de sus apoyos. En cambio, en la determinación de la estabilidad externa se tienen en cuenta las restricciones que imponen los apoyos. Estática- Armaduras 5.2 Análisis de armaduras por el método de los nodos.. 𝐺𝐼𝐸 = 2𝑛 − (𝑚 + 𝑟) En general, se obtienen las reacciones a partir del equilibrio estático del C.R. completo. Luego las fuerzas internas en los miembros a partir de equilibrio de nodos. Estática- Armaduras El procedimiento consiste en “despiezar” la armadura. Al observar que todas las barras son elementos de dos fuerzas, se determinan las fuerzas internas en las mismas a partir del equilibrio estático de los nodos. P Q Ecuaciones disponibles: 2*n = 6 Incógnitas: m + r = 6 GIE = 0 P Q Estática- Armaduras Nodos bajo condiciones especiales de carga Tomado de [Meriam & Kraige, 2002] Engineering Mechanics STATICS, fifht Edition, Jhon Wiley & Sons. Estática- Armaduras Estática- Armaduras Ejercicio 1 Determine los elementos de fuerza cero . Estática- Armaduras Ejercicio 1a Determine los elementos de fuerza cero . Estática- Armaduras Ejercicio 2 Estática- Armaduras Ejercicio 3 Estática- Armaduras Ejercicio 3a Estática- Armaduras 5.3 Análisis de Armaduras por el Método de Secciones El procedimiento consiste en “cortar” la armadura en dos cuerpos rígidos que estarán, también, en equilibrio estático (por lo tanto se disponen de 3 ecuaciones de equilibrio estático para cada cuerpo rígido). En general, se busca que el corte realizado solo involucre 3 incógnitas, aunque esto no siempre es posible. Las reacciones en los apoyos se pueden obtener a partir del D.C.L de la estructura completa. Estática- Armaduras 𝑜 𝑎 𝑀𝑜 = 0 𝑀𝑎 = 0 𝐹𝑥 = 0 𝐹𝑥 = 0 𝐹𝑦 = 0 𝐹𝑦 = 0 Estática- Armaduras Ejercicio 4 Determine the force in members HJ, HK, IK and IL of the truss shown. Estática- Armaduras Ejercicio 5 The diagonal members in the center panels of the power transmission line tower shown are very slender and can act only in tension; such members are known as counters. For the given loading, determine (a) which of the two counters listed below is acting, (b) the force in that counter. Counters IO and KN. Estática- Armaduras Ejercicio 5a Las diagonales de la armadura solo resisten tensión. Determine la fuerza en todos los elementos de la armadura. Solo resisten tensión Estática- Armaduras Ejercicio 5 Clasifique cada una de las armaduras como inestable, estáticamente determinada o estáticamente indeterminada (¿G.I.E.?). Diga además si son simples o compuestas. Estática- Armaduras Ejercicio 5b Clasifique cada una de las armaduras como inestable, estáticamente determinada o estáticamente indeterminada (¿G.I.E.?). Diga además si son simples o compuestas. Estática- Armaduras 5.4 Armaduras Espaciales El tetraedro es la unidad estructura simple (rígida) para el caso de armaduras espaciales Se unen tres barras adicionales para seguir formando una estructura simple y por lo tanto estable Los cuatro nodos no deben estar en un mismo plano 𝑚 = 3𝑛 − 6 Es estable internamente Estática- Armaduras Estabilidad Estática- Armaduras Método de los Nodos y Secciones 𝑁𝑜𝑑𝑜𝑠 → 𝐹=0 3 ecuaciones por nodo 𝑆𝑒𝑐𝑐𝑖𝑜𝑛𝑒𝑠 → 𝐹=0 𝑀=0 6 ecuaciones por corte Estática- Armaduras Tomado de [Meriam & Kraige, 2002] Engineering Mechanics STATICS, fifht Edition, Jhon Wiley & Sons. Estática- Armaduras Tomado de [Beer, Russell & Elliot, 2007] Mecánica Vectorial para Ingnenieros: Estática , 8va edición, Mc Graw Hill Estática- Armaduras Tomado de [Beer, Russell & Elliot, 2007] Mecánica Vectorial para Ingnenieros: Estática , 8va edición, Mc Graw Hill