ENSEÑANZA DE LA MATEMATICA A TRAVES DE LA

Anuncio
ENSEÑANZA DE LA
MATEMATICA A
TRAVES DE LA
HORTICULTURA
COORDINADO POR:
Lic. en matemáticas AUGUSTO RENE FLOREZ RUÍZ (docente tutor)
Realizado por: la comunidad de aprendizaje de E.E.
INSTITUCIÓN EDUCATIVA NUESTRA SEÑORA DEL ROSARIO DE PALOTAL
Ayapel-Córdoba
2014
1. INTRODUCCIÓN
Es muy importante que la comunidad educativa entienda que las matemáticas
son accesibles y aun agradables, si su enseñanza se realiza mediante una
adecuada orientación que implique una permanente interacción entre el maestro
y sus alumnos y entre estos y sus compañeros, de modo que sean capaces, a
través de la exploración, abstracción, clasificación, medición y estimación, de
llegar a sus resultados que le permitan comunicarse, hacer interpretaciones y
representaciones. Es decir, descubrir que las matemáticas están íntimamente
relacionadas con la realidad y con situaciones que lo rodean, no solamente en su
institución educativa, sino también en la vida fuera de ella.
Partiendo de lo anteriormente planteado, se diseña la actual propuesta que busca
enseñar algunos conceptos del área de matemáticas, específicamente en la rama
de la estadística descriptiva, a los alumnos de la institución educativa nuestra
señora del rosario del municipio de Ayapel, a través de actividades de
horticultura.
2. PLANTEAMIENTO DEL PROBLEMA
2.1 DESCRIPCIÓN Y DIAGNOSTICO DEL PROBLEMA
Una tendencia en los actuales currículos de matemáticas es facilitar en los
alumnos de todos los grados, el desarrollo de los diferentes tipos de pensamiento,
entre ellos el pensamiento aleatorio y el manejo de los sistemas de datos, el cual
hace referencia a la parte de estadística que deben saber los alumnos, sin
embargo en muchas instituciones el área de estadística no se lleva a cabo en su
totalidad.
En la Institución Educativa nuestra señora del rosario, del Municipio de Ayapel
(Córdoba), específicamente en el grado quinto, los alumnos no tienen un
escenario que les posibilite el desarrollo del pensamiento aleatorio, ya el
desarrollo de la estadística en este grado solo se efectúa de forma teórica
generando que los estudiantes desconozcan el verdadero potencial de esta área
en escenarios reales; lo cual genera a la vez que los educandos no estén a la par
con la exigencias del Ministerio de Educación Nacional (MEN).
1
2.2 FORMULACIÓN DEL PROBLEMA
¿Cómo desarrollar el pensamiento aleatorio y el manejo de sistemas de datos en
los estudiantes del grado quinto de la Institución Educativa nuestra señora del
rosario, a través de actividades de horticultura?
3. OBJETIVOS
3.1 OBJETIVO GENERAL
Hacer que la educación de los alumnos de la institución sea más pertinente y de
mejor calidad gracias a la inclusión en los planes de estudio de importantes
conocimientos de preparación para la vida.
3.2 OBJETIVOS ESPECÍFICOS
3.2.1 .Enseñar a los alumnos a crear y mantener huertos familiares y promover
la producción y el consumo de frutas y verduras ricas en micronutrientes.
3.2.2 Impartir una enseñanza activa vinculando la horticultura a otras materias,
como las matemáticas, la biología, la lectura y la escritura.
3.2.3 Contribuir a aumentar el acceso a la educación atrayendo a los niños y a
sus familias a escuelas que traten de temas que afecten a sus vidas.
3.2.4 Mejorar la actitud de los niños respecto de la agricultura y la vida rural.
3.2.5 Instruir sobre temas ambientales, incluso sobre cómo cultivar alimentos
inocuos sin usar plaguicidas
3.2.6 Impartir enseñanzas prácticas sobre nutrición que permitan promover
regímenes alimentarios y estilos de vida saludables
3.2.7 Ofrecer a los alumnos un instrumento de supervivencia para épocas de
escasez de alimentos
·
2
4. JUSTIFICACIÓN
Desde hace mas tres décadas, la comunidad colombiana de educadores
matemáticos viene investigando, reflexionando y debatiendo sobre la formación
matemática de los niños y jóvenes y sobre la manera cómo ésta puede contribuir
más eficazmente a las grandes metas y propósitos de la educación actual.
En un afán por contribuir a esas grandes metas de la educación actual, se
presenta la siguiente propuesta, la cual busca desarrollar el pensamiento
aleatorio y el manejo de los sistemas de daos en los alumnos del grados quinto
de la Institución Educativa nuestra señora del rosario a través de la horticultura,
se considera que este proyecto es pertinente puesto que actualmente el
desarrollo de tipos de pensamientos es una exigencia de los lineamientos
curriculares y los estándares básicos de calidad.
5. MARCO TEÓRICO
5.1 MARCO LEGAL
Las normas, leyes y decretos que rigen el desarrollo y ejecución de este proyecto
son:
De la LEY 115 (Ley General de Educación) Capítulo 2. Currículo y Plan de
Estudios.
Artículo 77. Autonomía Escolar: Dentro de los límites fijados por la presente
ley y el proyecto educativo institucional, las instituciones de educación formal
gozan de autonomía para organizar las áreas fundamentales de conocimientos
definidas para cada nivel, introducir asignaturas optativas dentro de las áreas
establecidas en la ley, adaptar algunas áreas a las necesidades y características
regionales, adoptar métodos de enseñanza y organizar actividades formativas,
culturales y deportivas, dentro de los lineamientos que establezca el Ministerio de
Educación Nacional (MEN).
3
Estándares básicos de competencias en Matemáticas para grado 4º y 5º.
Pensamiento Aleatorio y Manejo de Sistemas de Datos:
Represento datos usando tablas y gráficas (diagramas de línea, de
barras y circulares) y comparo las diferentes formas de representar los
mismos datos.
Interpreto la información presentada en esas tablas y gráficas.
Hago conjeturas y pongo a prueba mis predicciones sobre lo que
puede pasar.
Calculo e interpreto promedios.
Resuelvo y formulo problemas teniendo en cuenta los datos que he
recogido de observaciones, consultas y experimentos.
5.2 MARCO CONCEPTUAL
Horticultura
1 INTRODUCCIÓN
Horticultura (del latín hortus, ‘jardín, huerto’; cultura, ‘cultivo’), ciencia y arte del
cultivo de frutos, hortalizas, flores, arbustos y árboles. El término se utilizaba en
la antigüedad para describir la práctica de la jardinería y, por extensión, se aplica
ahora al cultivo de las plantas antes empleadas en jardinería. En cambio, el
término agricultura describe formas más abiertas de cultivo, como la producción
de cereales a gran escala. Pero las diferencias entre ambos términos se han
difuminado, y muchos cultivos considerados antes agronómicos (u hortícolas) se
clasifican ahora en cualquiera de los dos apartados en función del uso del
producto cultivado. Así, una especie cultivada para el consumo particular puede
llamarse hortícola, pero agrícola si se cultiva como forrajera, por ejemplo.
La horticultura incluye el cultivo de frutos (en especial de árboles frutales),
práctica también llamada
pomología; el
de legumbres u
olericultura; la
producción de flores, llamada floricultura; y, aunque en este sentido apenas se
usa, el paisajismo, que engloba el proyecto y mantenimiento de jardines y
parques particulares y públicos, de jardines botánicos y de terrenos recreativos,
como campos de golf, fútbol y otros deportes.
4
2 ASPECTOS COMERCIALES
Además de las cuatro divisiones citadas, la horticultura se especializa en tres
áreas comerciales: viverismo, cultivo y producción de semillas. El viverismo se
ocupa de la producción de frutales para los agricultores que los cultivan y de
plantas ornamentales, en especial leñosas, para jardinería. El sector del cultivo
suministra plantas anuales, bianuales y perennes a los productores de hortalizas
y flores y a los jardineros. El sector semillero produce las semillas necesarias para
cultivar flores y hortalizas. Las producción de bulbos, muy importante en los
Países Bajos, suele asociarse con las especialidades de cultivo y obtención de
semillas.
La horticultura cobró importancia económica en el siglo XVII, una época en la que
el crecimiento de las grandes ciudades hizo inviable para los particulares el
cultivo de hortalizas para el consumo personal. Antes de esa fecha eran pocos los
productos hortícolas explotados a gran escala: uvas, aceitunas, dátiles, higos y
pocos más. Los países con un sector hortícola más avanzado son los Países Bajos,
Alemania, Francia, Bélgica y Gran Bretaña en Europa, Estados Unidos en América
del Norte, Argentina y Brasil en América del Sur, Sudáfrica y, en Australasia,
Australia, Tasmania y Nueva Zelanda. En años recientes, Japón, China y los
países integrados en la antigua Unión Soviética han aumentado su producción
hortícola. Incluso productos cultivados desde la antigüedad, como el café, el té, el
plátano o la vainilla, se explotan en la actualidad con técnicas hortícolas
modernas.
3 ASPECTOS CIENTÍFICOS
El interés primordial de la horticultura científica es maximizar el rendimiento y
obtener productos de superior calidad, y para ello se vale de otras disciplinas
científicas, como genética, fisiología, matemáticas, química, física y botánica. Los
horticulturistas especializados en genética son los autores de la mayor parte de
las mejoras de frutas y hortalizas y se encargan asimismo de obtener nuevas
variedades; también desarrollan cepas nuevas de plantas resistentes a las
enfermedades y el ataque de los insectos. Los fisiólogos han logrado mejorar la
calidad de frutas y hortalizas prolongando su duración en almacén, mejorando las
técnicas de multiplicación y controlando malas hierbas, deficiencias nutricionales
y magnitud del crecimiento. Los matemáticos evalúan la producción hortícola y,
con ayuda de ordenadores, realizan investigaciones de evaluación y compilan
registros permanentes de datos. Los químicos, en particular los bioquímicos, han
profundizado en el conocimiento de los fenómenos de crecimiento de las plantas,
y han ayudado a los horticultores a obtener variedades que aprovechan con
mayor eficacia el medio. Los bioquímicos, que estudian problemas como
rusticidad o resistencia al frío y resistencia a la sequía, contribuyen a desarrollar
formas capaces de soportar condiciones medioambientales desfavorables. Los físicos han
aportado la solución a ciertos problemas, como el ángulo de horcadura de los árboles, la
5
forma de arbustos, setos y cortavientos, técnicas de plantación y formas de modificar las
plantas para mejorar la resistencia a grandes cargas de nieve y hielo.
4 ORGANIZACIONES HORTÍCOLAS
Varias organizaciones proporcionan información sobre métodos de multiplicación
y cultivo y control de enfermedades y parásitos. Suelen estar formadas por
horticultores aficionados y profesionales y por distribuidores interesados, por
ejemplo, en el cultivo de una flor determinada.
Se han constituido varias organizaciones técnicas para proporcionar información
científica a horticultores de todo el mundo. En casi todos los países, el ministerio
de Agricultura cuenta con un departamento de extensión agraria que se encarga
de difundir esta información; asimismo, casi todas las estaciones experimentales
tienen un departamento de horticultura.
HACER UNA HUERTA ORGANICA PASO A PASO
1. Limpia el terreno de hierbas, piedras, palos y todo tipo de objetos
extraños.
2. Si las hierbas son bajas, puedes pasar el motocultor directamente e
incorporarla al terreno, pero si son altas deberás cortarlas con una
desbrozadora mecánica con disco, recoger los restos y usar todo ese material
para elaborar compost (o tirarlo).
Hierba alta que primero habrá que romper con la desbrozadora de disco que
vemos en la fotografía
3. Riega el día anterior a labrar para que la tierra esté ligeramente
húmeda. Si la tierra se pega a los zapatos, espera para trabajarla a que esté
más seco y coja lo que se llama tempero, ni muy húmeda ni muy seca.
4. Labra con el motocultor o motoazada o, si se trata de parcelas pequeñas,
labra con una simple azada. Si el laboreo lo puedes hacer 2 ó 3 meses antes de
sembrar para que se airee la tierra, mejor.
6
Motocultor
5. Para rabanitos, cebollas, ajos, zanahorias, remolachas, patatas,... el
labrar concienzudamente es muy importante.
6. Retira todas las raíces, estolones y bulbillos de las hierbas perennes
que vayan saliendo al remover la tierra.
Bulbillos de Castañuela Estolones de Grama
7. Haz todos estos trabajos por la mañana temprano o por la tarde. Si no tienes
costumbre
de
hacer
ejercicios
fuertes,
tómatelo
con
calma.
8. Una vez la tierra está labrada y limpia, extiende una capa de 5-8 cm de
abono orgánico (estiércol, compost, mantillo comprado en sacos de 80
litros,....) uniformemente por la superficie y entiérralo luego mediante cava o
pase de motocultor. Este aporte, repetido cada año, es muy beneficioso desde
todo punto de vista. Mantiene la estructura grumosa, el suelo fértil y aireado.
9. Si la tierra fuese muy arcillosa es bueno añadir, además de la materia
orgánica, arena de río.
10. El laboreo oxigena el suelo, mejora la actividad de los microorganismos
descomponedores de la materia orgánica y facilita el drenaje del agua.
Compost
Ya tenemos el terreno labrado y rastrillado, fino, sin piedras ni terrones. Quedan
pocos pasos más:
7
11. Traza las platabandas o haz surcos, según el método que elijas.
12. Tira las líneas de goteo para riego. Mucho mejor si es automático con
programador de riego.
Riego por goteo
13. Siembra las semillas o planta las plántulas producidas en semilleros.
14. A veces, antes de sembrar o plantar, se dispone un acolchado con plástico
negro en los surcos. Por ejemplo, en fresas. Esto evita que salgan malas
hierbas, que las fresas estén en contacto con la tierra y aumentar la temperatura
para obtener cosechas al principio de la estación. Un huerto orgánico tradicional
no usa el plástico, sino paja como acolchado.
Estadística
1. INTRODUCCIÓN
Estadística, rama de las matemáticas que se ocupa de reunir, organizar y analizar
datos numéricos y que ayuda a resolver problemas como el diseño de
experimentos y la toma de decisiones.
2 HISTORIA
Desde los comienzos de la civilización han existido formas sencillas de estadística,
pues ya se utilizaban representaciones gráficas y otros símbolos en pieles, rocas,
palos de madera y paredes de cuevas para contar el número de personas,
animales o cosas. Hacia el año 3000 a.C. los babilonios usaban pequeñas tablillas
de arcilla para recopilar datos sobre la producción agrícola y sobre los géneros
vendidos o cambiados mediante trueque. En el siglo XXXI a.C., mucho antes de
construir las pirámides, los egipcios analizaban los datos de la población y la
renta del país. Los libros bíblicos de Números y Crónicas incluyen, en algunas
partes, trabajos de estadística. El primero contiene dos censos de la población de
Israel y el segundo describe el bienestar material de las diversas tribus judías. En
China existían registros numéricos similares con anterioridad al año 2000 a.C. Los
griegos clásicos realizaban censos cuya información se utilizaba hacia el 594 a.C.
para cobrar impuestos.
8
El Imperio romano fue el primer gobierno que recopiló una gran cantidad de
datos sobre la población, superficie y renta de todos los territorios bajo su
control. Durante la edad media sólo se realizaron algunos censos exhaustivos en
Europa. Los reyes caloringios Pipino el Breve y Carlomagno ordenaron hacer
estudios minuciosos de las propiedades de la Iglesia en los años 758 y 762
respectivamente. Después de la conquista normanda de Inglaterra en 1066, el
rey Guillermo I de Inglaterra encargó la realización de un censo. La información
obtenida con este censo, llevado a cabo en 1086, se recoge en el Domesday
Book. El registro de nacimientos y defunciones comenzó en Inglaterra a principios
del siglo XVI, y en 1662 apareció el primer estudio estadístico notable de
población, titulado Observations on the London Bills of Mortality (Comentarios
sobre las partidas de defunción en Londres). Un estudio similar sobre la tasa de
mortalidad en la ciudad de Breslau, en Alemania, realizado en 1691, fue utilizado
por el astrónomo inglés Edmund Halley como base para la primera tabla de
mortalidad. En el siglo XIX, con la generalización del método científico para
estudiar
todos
los
fenómenos
de
las
ciencias
naturales
y
sociales,
los
investigadores aceptaron la necesidad de reducir la información a valores
numéricos para evitar la ambigüedad de las descripciones verbales.
En nuestros días, la estadística se ha convertido en un método efectivo para
describir con exactitud los valores de datos económicos, políticos, sociales,
psicológicos, biológicos o físicos, y sirve como herramienta para relacionar y
analizar dichos datos. El trabajo del experto estadístico no consiste ya sólo en
reunir y tabular los datos, sino sobre todo en el proceso de “interpretación” de
esa información. El desarrollo de la teoría de la probabilidad ha aumentado el
alcance de las aplicaciones de la estadística. Muchos conjuntos de datos se
pueden aproximar, con gran exactitud, utilizando determinadas distribuciones
probabilísticas; los resultados de éstas se pueden utilizar para analizar datos
estadísticos. La probabilidad es útil para comprobar la fiabilidad de las inferencias
estadísticas y para predecir el tipo y la cantidad de datos necesarios en un
determinado estudio estadístico.
3 MÉTODOS ESTADÍSTICOS
La materia prima de la estadística consiste en conjuntos de números obtenidos al
contar o medir elementos. Al recopilar datos estadísticos se ha de tener especial
cuidado para garantizar que la información sea completa y correcta.
El primer problema para los estadísticos reside en determinar qué información y
en qué cantidad se ha de reunir. En realidad, la dificultad al compilar un censo
está en obtener el número de habitantes de forma completa y exacta; de la
misma manera que un físico que quiere contar el número de colisiones por
segundo entre las moléculas de un gas debe empezar determinando con precisión
la naturaleza de los objetos a contar. Los estadísticos se enfrentan a un complejo
problema cuando, por ejemplo, toman una muestra para un sondeo de opinión o
9
una encuesta electoral. El seleccionar una muestra capaz de representar con
exactitud las preferencias del total de la población no es tarea fácil.
Para establecer una ley física, biológica o social, el estadístico debe comenzar con
un conjunto de datos y modificarlo basándose en la experiencia. Por ejemplo, en
los primeros estudios sobre crecimiento de la población, los cambios en el
número de habitantes se predecían calculando la diferencia entre el número de
nacimientos y el de fallecimientos en un determinado lapso. Los expertos en
estudios de población comprobaron que la tasa de crecimiento depende sólo del
número de nacimientos, sin que el número de defunciones tenga importancia. Por
tanto, el futuro crecimiento de la población se empezó a calcular basándose en el
número anual de nacimientos por cada 1.000 habitantes. Sin embargo, pronto se
dieron cuenta que las predicciones obtenidas utilizando este método no daban
resultados correctos. Los estadísticos comprobaron que hay otros factores que
limitan el crecimiento de la población. Dado que el número de posibles
nacimientos depende del número de mujeres, y no del total de la población, y
dado que las mujeres sólo tienen hijos durante parte de su vida, el dato más
importante que se ha de utilizar para predecir la población es el número de niños
nacidos vivos por cada 1.000 mujeres en edad de procrear. El valor obtenido
utilizando este dato mejora al combinarlo con el dato del porcentaje de mujeres
sin descendencia. Por tanto, la diferencia entre nacimientos y fallecimientos sólo
es útil para indicar el crecimiento de población en un determinado periodo de
tiempo del pasado, el número de nacimientos por cada 1.000 habitantes sólo
expresa la tasa de crecimiento en el mismo periodo, y sólo el número de
nacimientos por cada 1.000 mujeres en edad de procrear sirve para predecir el
número de habitantes en el futuro.
4 POBLACIÓN, INDIVIDUO, CARÁCTER
El primer campo de actuación de la estadística, como se ha visto, es la
demografía. De esta ciencia ha tomado la nomenclatura (población, individuo…).
Se llama población al
conjunto de todos los elementos cuyo conocimiento
interesa. Cada uno de esos elementos es un individuo. Si se está estudiando el
resultado de ciertos experimentos químicos, cada uno de esos experimentos será
un individuo estadístico y el conjunto de todos los posibles experimentos en esas
condiciones será la población.
Cada individuo puede ser descrito mediante uno o varios caracteres. Por ejemplo,
si los individuos son personas, el sexo, el estado civil, el número de hermanos o
su estatura son caracteres. Y si el individuo es una reacción química, el tiempo de
reacción, la cantidad de producto obtenido o si éste es ácido o básico serán
posibles caracteres que pueden analizarse.
Un carácter puede ser cuantitativo si es medible numéricamente o cualitativo si
no admite medición numérica. El número de hermanos y la estatura son
10
caracteres cuantitativos mientras que el sexo y el estado civil son caracteres
cualitativos.
Los distintos valores que puede tomar un carácter cuantitativo configuran una
variable estadística. La variable estatura, en cierta población estadística, toma
valores en el intervalo 147-205; y la variable número de hermanos toma los
valores 0, 1, 2, 3, 4, 5, 6, 7 y 8. Una variable estadística como esta última es
discreta, ya que sólo admite valores aislados. Una variable estadística es continua
si admite todos los valores de un intervalo, como ocurre con la estatura.
5 ESTADÍSTICA DESCRIPTIVA
La estadística descriptiva analiza, estudia y describe a la totalidad de individuos
de una población. Su finalidad es obtener información, analizarla, elaborarla y
simplificarla lo necesario para que pueda ser interpretada cómoda y rápidamente
y, por tanto, pueda utilizarse eficazmente para el fin que se desee. El proceso que
sigue la estadística descriptiva para el estudio de una cierta población consta de
los
•
siguientes
Selección
de
caracteres
pasos:
dignos
de
ser
estudiados.
• Mediante encuesta o medición, obtención del valor de cada individuo en los
caracteres
seleccionados.
• Elaboración de tablas de frecuencias, mediante la adecuada clasificación de los
individuos
dentro
de
cada
carácter.
• Representación gráfica de los resultados (elaboración de gráficas estadísticas).
• Obtención de parámetros estadísticos, números que sintetizan los aspectos más
relevantes de una distribución estadística.
6 ESTADÍSTICA INFERENCIAL
La estadística descriptiva trabaja con todos los individuos de la población. La
estadística
inferencial,
sin
embargo,
trabaja
con
muestras,
subconjuntos
formados por algunos individuos de la población. A partir del estudio de la
muestra se pretende inferir aspectos relevantes de toda la población. Cómo se
selecciona la muestra, cómo se realiza la inferencia, y qué grado de confianza se
puede tener en ella son aspectos fundamentales de la estadística inferencial, para
cuyo estudio se requiere un alto nivel de conocimientos de estadística,
probabilidad y matemáticas.
6. METODOLOGÍA
Este proyecto propone desarrollarse basado en un modelo pedagógico
constructivista, ya que se busca la construcción secuencial del conocimiento.
11
6.1 TIPO DE ESTUDIO
Descriptivo investigativo
6.2 POBLACIÓN
La población objeto de estudio son los alumnos de los grados 5 de la
Institución Educativa nuestra señora del rosario.
6.3 MUESTRA
Se tomarán todos los alumnos de los grados 5, sede santa Ana y principal de
la Institución nuestra señora del rosario.
6.4 ETAPAS DEL PROYECTO
6.4.1 ETAPA 1 (sembrado de hortalizas)
Esta primera etapa consiste en que los
alumnos de la muestra (6.3) junto con el
docente
a
construyan
previamente
cargo
una
y
padres
huerta
adquirido
en
(de
de
un
un
familia
terreno
área
considerable).Dicha huerta debe contener
la mayor variedad posible de hortalizas.
6.4.2. ETAPA 2 (Explicación de temas de estadística)
12
En esta etapa el docente del área de matemáticas a cargo le explicara al grupo de
alumnos respectivos, toda la temática referente a los temas de estadística que se
pondrán en práctica en
las etapas siguientes del proyecto, dichos temas son:
recolección, organización y representación grafica de datos.
6.4.3 ETAPA 3 (aplicación del método estadístico)
Una vez explicada toda la temática respectiva de estadística a los alumnos de la
muestra por parte del docente del área, se pretende que ellos pongan en práctica
todo lo aprendido, mediante la realización en primer lugar de un análisis de la
evolución de la huerta y luego una investigación de evaluación de la producción
13
de esta misma, todo esto mediante el método estadístico. Para esto los
estudiantes tendrán que copilar datos, relacionados con las hortalizas de la
huerta, en registros permanentes. Por cada conjunto de datos obtenido los
alumnos los organizaran en tablas de frecuencias, determinaran sus medidas de
tendencia central y los representaran gráficamente mediante diagramas de barras
y circulares.
6.4.4 ETAPA 4 (sistematización de la información)
Esta última etapa consiste en hacer uso de la tecnología para consolidar el
trabajo realizado, la idea sería que los alumnos utilizaran los computadores de la
sala de sistema de la institución educativa nuestra señora del rosario, y mediante
el
programa Microsoft Excel tabular
14
y representar gráficamente toda la
información copilada en la etapa 3, para luego finalmente realizarían un informe
escrito, basado en toda la información recopilada, sobre sus conclusiones acerca
de las actividades de horticultura realizadas para que estas sean utilizadas para el
mejoramiento
de
la
calidad
en
la
realización
de
huertas
futuras.
CRONOGRAMA
ETAPAS/SEMANAS
1
2
Sembrado de hortalizas
X
X
Explicación de temas
3
4
X
X
Aplicación del método
5
6
X
X
Sistematización de datos
PRESUPUESTO
DETALLE
VALOR APROX. EN $
RESPONSABLE
PAPELERIA
tutor y CDA
HUERTA
Rector, tutor y CDA
TOTAL
15
7
8
X
X
.
Fuentes de información
Bibliografía

Estándares básicos de competencias. Ministerio de Educación Nacional.
Revolución Educativa Colombia Aprende. Pág. 64 – 65; 80 – 89.

Legislación Educativa Colombiana. Leyes, Decretos, Resoluciones. Pág.
108.

Programa “Microsoft Student con Encarta Premium 2008 DVD”.

Proyecto “NOTA CONCEPTUAL SOBRE LOS HUERTOS ESCOLARES”.
Organización de las Naciones Unidas para la Agricultura y la Alimentación
(FAO) Roma, septiembre de 2004.

Proyecto
de
aula
“Trabajemos
en
armonía
las
matemáticas
y
la
tecnología”, Lic. en matemáticas Augusto René Flórez Ruíz, Montelíbano
2009.

Trabajo de grado “Integración temática de la aritmética y la estadística
en el grado séptimo”, Lic. en matemáticas Augusto René Flórez Ruíz,
Sincelejo 2004
Páginas Web
http//articulos.infojardin.com/huerto/crear-un-huerto-o-huerta.htm
.
16
Descargar