TABLA DE TRANSFORMADAS DE FOURIER (TIEMPO SERIES DE FOURIER (SEÑALES CONTINUAS ) F{1} = δ(f) x(t ) = ∞ ∑ Cne jnω t F{ δ(t)} = 1 0 −∞ Cn = F{ δ(t-t0)} = e-jωt0 1 − jnω 0t x(t )e dt T∫ ⎧∞ ⎫ ∞ F⎨∑ C n e jnω0t ⎬ =∑ C n δ(f − nf 0 ) ⎩ −∞ ⎭ −∞ T TRANSFORMADA DE FOURIER (SEÑALES CONTINUAS ) F{ A∏ (t/τ) } = Aτ Sinc fτ ∞ V(f) = ∫ v(t)e-jωt dt -∞ F{ u(t)} = 1/jω + δ( f ) /2 ∞ v(t) = ∫ V(f)ejωt df F{ sgn(t)} = 2/ jω -∞ F { Cos ( ω0t + θ) } = 0.5 δ(f-f0) ejθ+0.5 δ(f+f0) e-jθ PROPIEDADES: F{ v(t)} = V(f) F{ Sinc2Wt} = (1/2W) ∏ (f/2W) F{ w(t} =W(f) F {e−at u(t )} = F{ av(t) + bw(t)} = aV(f) + bW(f) F{ v(t-t0)} = V(f)e-jωt0 F {te ⎛ ⎞⎟ 1 u( t)} = ⎜ ⎝ (a + j2 πf ) ⎠ − at F{ v(t)ejω0t} = V(f-f0) ⎧ dnv(t ) ⎫ F⎨ = ( jω)n V(f ) n ⎬ ⎩ dt ⎭ ⎫ ⎧ 1 F ⎨ ∫∫∫ v( τ)dτ ⎬ = n V(f ) ( jω) ⎭ ⎩ ...n F {e si V(0 ) = 0 ⎧ dnV(f ) ⎫ F t nv(t ) = ( − j 2 π )−n ⎨ n ⎬ ⎩ df ⎭ { } 1 (a + j2 πf) −a t }= 2 2a 2 2 (a + (2 πf ) ) F {e−at Senω 0tu(t )} = F {e−at Cosω 0tu(t )} = ω0 ((a + j2 πf)2 + ω 0 2 ) a + jω ((a + j2 πf)2 + ω 0 2 ) F{ v(at)} =(|a|)-1V(f/a) Si F{ v(t)} =V(f) entonces F{ V(t)} =v(-f) F {e −at 2 ω2 }= π − 4a e a CONVOLUCION ∞ y(t ) = ∫ x( τ) h( t − τ)dτ = x(t)*h(t) −∞ v(t) * w(t) = w(t)*v(t) F{ F{ F{ v(t) *w(t)} =V(f). W(f) F{ F-1{ V(f) *W(f)} =v(t) . w(t) dv (t) dw( t) d * w (t ) = v(t ) * [v( t) * w( t) ] = dt dt dt F{ tn −1 1 − at e u(t )} = (n − 1)! ( jω + a )n 1 2 2 a +t }= π −a ω e a Cosbt π −a ω−b −a ω+b }= (e +e ) 2 2 a +t 2a Senbt 2 2 a +t }= π − a ω−b −a ω+b (e −e ) 2 ja