Inhibidores de la cristalización y urolitiasis

Anuncio
UROL. INTEGR. INVEST.
Volumen 2, pp. 463-476
Inhibidores de la cristalización y urolitiasis
F. GRASES FREIXEDAS*, A. COSTA BAUZÁ*, A. CaNTE VISÚS** y P. PIZÁ REUS**
* Departamento
** Servicio
de Química. Universitat de les Il/es Balears. Palma de Mallorca.
de Urología. Hospital Son Dureta. ¡nsalud. Palma de Mallorca.
RESUMEN:Objetivo: se discute el papel de los inhibidores de la cristalización en la etiología de la litiasis renal y se plantea su utilidad en el tratamiento médico de esta patología.
Material y métodos: para ello se efectúa, en primer lugar, una breve revisión histórica de la evolución de la teoría y praxis del concepto de inhibidor
de la cristalización.
Resultados: se describen los mecanismos de acción de estas sustancias para evitar el desarrollo de
urolitos a la luz de los conocimientos actuales. Se
discute el papel de las principales macromoléculas
urinarias, glicosaminoglicanos y glicoproteínas en
la prevención de la urolitiasis.
Conclusiones: la acción de moléculas de bajo
peso molecular, tales como el ácido cítrico y el ácido fítico, han demostrado un importante papel en
la litiasis renal tanto bajo un punto de vista etiológico como de posibilidad de tratamiento terapéutico de la enfermedad.
PALABRASCLAVE:Inhibidores de la cristalización.
Urolitiasis. Glicosaminoglicanos.
Glicoproteínas.
Citrato. Fitato.
CRYSTALLIZATION
INHIBITORS
ANDUROLITHIASIS
ABSTRACT:Objective: the crystallization inhibitors role in the urolithiasis etiology is discussed,
and their usefulness in the medical treatment of
this pathology is proposed.
Material and methods: for this reason a short
historical review about the evolution of the theory
and praxis of the crystallization inhibitor concept
is firstly performed.
Results: the mechanisms of action of these substances to avoid the development of uroliths, taking
Correspondencia:
Dr. F. GRASES FREIXEDAS.
Departament de Química.
Universitat de les Illes Balears.
Ctra. de Valldemossa, km 7,5.
07071 Palma de Mallorca (Balears).
into account the actual knowledge, are described.
The role of the main urinary macromolecules, glycosaminoglycans and glycoproteins, in the prevention of urolithiasis, is discussed.
Conclusions: the action of low molecular weight
molecules which have shown an important role in
the renal lithiasis, as citric acid and phytic acid, is
indicated, both from the etiological point of view
and for the possible therapeutical treatment of the
disease.
KEY WORDS:Crystallization inhibitors. Urolithiasiso Glycosaminoglycans.
Glycoproteins. Citrate.
Phytate.
Urollntegr
lnvest 1997;2:463-476.
Introducción
Aunque curiosamente ya a finales del siglo pasado se
empezó a intuir la existencia en la orina de sustancias
que podían actuar sobre la cristalización del oxalato
cálcico, carbonato cálcico y ácido úrico, y que en consecuencia podrían relacionarse con la formación de los
respectivos cálculos, como lo demuestra el libro publicado por Ord en 1879 con el título «On the influence of
colloids upon crystalline form and cohesion», no fue
hasta la década de los años sesenta que se comenzó a
conocer, valorar y entender el comportamiento de aquellas sustancias que eran capaces de impedir o dificultar
la cristalización de compuestos insolubles y que actualmente conocemos como inhibidores de la cristalización.
Así, los trabajos de Bliznakow pusieron de manifiesto
en 1965 que determinadas moléculas eran capaces de
disminuir la velocidad de crecimiento cristalino de ciertas sustancias como consecuencia
de su adsorción
(unión) sobre las superficies de crecimiento y la correspondiente alteración que ello provocaba!. Durante la
misma época, Vermeulen et alz, Fleisch et a13,4 y Howard et a15.6 demostraron que una serie de sustancias
contenidas en la orina, entre ellas el pirofosfato, eran
capaces de impedir los procesos de calcificación.
Estos hallazgos supusieron el inicio del estudio de
los llamados inhibidores de la cristalizaci6n, así como
464
F. Grases Freixedas et al
de su posible interés y aplicación en medicina, y más
concretamente en el campo de la litiasis renal. Así, durante la década siguiente se efectuaron una gran cantidad de estudios en los que se describieron muchas sustancias con pretendidas propiedades inhibidoras7, la
mayoría de ellas contenidas de forma natural en la orina (pirofosfato, magnesia, glicosaminoglicanos,
glicoproteína
Tamm-Horsfall,
citrato, aminoácidos,
RNA ... ), aunque otras eran de origen sintético (azul de
metileno, glicanos sintéticos, fosfocitrato ... ). Sin embargo, a pesar del importante esfuerzo investigador realizado no se estableció ninguna aplicación práctica con
resultados alentadores basados en estos estudios.
De hecho, no fue hasta la década de los ochenta
cuando se inició el uso de inhibidores de la cristalización en el tratamiento médico de la urolitiasiss.13• Esta
aplicación quedó restringida, sin embargo, al caso del
citrato y además no fue acogida con demasiado entusiasmo. Estos hechos hay que atribuirlos a la coincidencia de diferentes circunstancias. En primer lugar,
la aparición de tecnologías quirúrgicas muy avanzadas
para la extracción de los cálculos renales que evitan la
cirugía abierta, tales como las técnicas endourológicas
y la litotricia extracorpórea por ondas de choque, relegó a un segundo plano la problemática del tratamiento
médico. Evidentemente no se tenía en cuenta que estas técnicas facilitan de forma importante la extracción del cálculo, pero no corrigen ninguna de las causas que los originan, por lo que el cálculo en muchas
ocasiones se forma nuevamente. Además todavía no
había transcurrido el tiempo suficiente para evidenciar
toda una serie de problemas relacionados con el uso
de dichas técnicas. La aparición de estas metodologías
no fue, sin embargo, la única responsable del escaso
interés en el desarrollo de nuevas estrategias para el
tratamiento médico de la litiasis renal. Existían además otras razones. Así, por otra parte, durante dicha
década puede observarse un importante estancamiento
en la labor de los principales grupos de investigación
que se dedicaban a la urolitiasis. En concreto, para el
estudio de la cristalización del oxalato cálcico, fosfatos, etc., se seguían utilizando modelos que en poco o
en nada reproducían las condiciones que se dan en el
interior de las cavidades renales, y además no se avanzaba en el conocimiento íntimo del mecanismo de la
formación de los cálculos. Por ejemplo, se seguía considerando que la unión entre cristales previamente formados era un paso fundamental en la formación de los
cálculos de oxalato cálcico, lo que ha resultado ser
Como consecuencia de todo
claramente incorrecto'4.'6.
ello seguía sin establecerse con certeza cuál era la función real de muchos posibles inhibidores de la cristali-
Urol. Integr. Invest.
zación en la calculogénesis. Así, en el caso de importantes macromoléculas
contenidas en la orina, como
son los glicosaminoglicanos
y la glicoproteína
de
Tamm-Horsfall, mientras algunos autores las calificaban de potentes inhibidores de la calculogénesis, otros
les atribuían propiedades promotoras. Además, incluso admitiéndose un papel efectivo como inhibidores,
se presentaba un importante problema al no poder incrementar los niveles excretados mediante ingesta oral
de sus preparados, ya que los esfuerzos en este sentido
resultaron negativos. Otro interesante inhibidor como
el pirofosfato (uno de los primeros descubiertos) tampoco permitía albergar grandes esperanzas terapéuticas. De esta manera no existían, según muchos autores, pruebas claras de su deficiencia en los enfermos
litiásicos, y el procedimiento utilizado para aumentar
su excreción urinaria, mediante el conocido «jarabe
de fosfatos», suministrado por farmacias como fórmulas magistrales, aun cuando curiosamente
incrementaba el nivel de pirofosfatos en individuos sanos,
no lo conseguía en litásicosl7. Otras sustancias como
el azul de metileno o algunos aminoácidos presentaban efectos inhibidores demasiado débiles para que
pudieran tener interés terapéutico, y de hecho su uso
no reportó ningún resultado de interés. Cationes con
posible capacidad inhibidora,
tales como Zn(II) o
Mg(I1), sólo se encuentran en orina en concentraciones demasiado bajas para que su efecto inhibidor fuera realmente importante. Finalmente, si bien algunas
sustancias de origen sintético, como algunos difosfonatos, podían presentar cierta capacidad inhibidora,
su uso podía generar importantes efectos secundarios,
tales como descalcificación
ósea, etc. No resulta, por
tanto, extraño que debido a todas estas circunstancias
el uso de inhibidores de la cristalización en el tratamiento médico de la urolitiasis estuviera realmente
estancado.
El avance en la última década del conocimiento sobre los mecanismos y causas de la urolitiasis, consecuencia de la incorporación de nuevos grupos de investigación con nuevos planteamientos e ideas, ha posibilitado
el esclarecimiento
de muchos aspectos
relativos a la acción de los inhibidores que se comentarán a continuación, abriendo nuevos y esperanzadores horizontes al uso de los mismos en la terapéutica
de la urolitiasis. Debe tenerse en cuenta, además, que
la urolitiasis, al incluir la cristalización como uno de
sus aspectos más importantes, se aleja considerablemente del ámbito en el que ha avanzado la bioquímica
y biología molecular en su sentido clásico y, por tanto,
prácticamente no ha participado de los adelantos de
esta área del saber.
Volumen 2
Diciembre 1997
Inhibidores
•
• 6 •••••
'\1
6
6
crecimiento cristalino
fA
(estable)
'\16'\16'\1
'\16.\l
\l6.\l
~
~¡~
)
y urolitiasis
465
6'\16'\16
•
B
Figura 1. Nucleación homogénea. A: Formación del núcleo homogéneo; es necesario que se alcance cierto tamaño crítico para que
la partícula formada sea estable y pueda seguir creciendo. Las partículas de tamaño inferior al crítico no pueden crecer y se desintegran. B: Acción de un inhibidor en la nucleación homogénea: la unión del inhibidor con las micropartículas de tamaño inferior al crítico impide que alcancen el tamaño crítico.
Mecanismo de acción de los inhibidores
Los inhibidores de la cristalización pueden definirse
como todas aquellas sustancias que impiden o dificultan la formación de un determinado material cristalino
al intervenir en una o en varias de sus etapas de formación. Por tanto, para considerar con detalle su mecanismo de acción deben tenerse en cuenta las diferentes etapas fundamentales
proceso de cristalización.
implicadas
en cualquier
Nuc/eación
La primera y crucial etapa en la génesis de una masa cristalina consiste en la formación de los llamados
núcleos cristalinos. La nucleación implica la formación de una partícula cristalina mínima capaz de seguir creciendo. Debe tenerse en cuenta que las partículas de tamaño inferior a cierto valor crítico son inestables y una vez formados se desintegran (Fig. 1 A).
La nucleación puede ser básicamente de 2 tipos: homogénea y heterogénea. En la homogénea, la formación de la partícula mínima se produce por unión de
las especies que van a constituir los futuros cristales
(la composición del núcleo es idéntica a la composi-
ción del futuro cristal). Al exigir choques simultáneos
y sucesivos de varias especies en el seno de la disolución es un proceso difícil y poco probable (exige elevados grados de sobresaturación).
Los inhibidores de
la nucleación homogénea serán aquellas sustancias capaces de unirse a las micropartÍculas de tamaño inferior al crítico (núcleo homogéneo), impidiendo que alcancen el tamaño crítico e inicien la formación de un
cristal (Fig. lB).
La nucleación heterogénea es mucho más sencilla,
puesto que exige únicamente la presencia de partículas sólidas preexistentes que sean capaces de atraer y
retener en su superficie a las especies que van a constituir el futuro cristal (Fig. 2 A) mediante su posterior
crecimiento cristalino (en este caso, el núcleo presenta
una composición diferente de la del resto del cristal).
Los inhibidores de la nucleación heterogénea serán
aquellas sustancias que evitan que los posibles núcleos
heterogéneos actúen como tales, ya sea porque impiden su formación o bien porque dificultan la unión
con las especies que constituirían el futuro nuevo cristal (Fig. 2 B).
Una vez constituido el núcleo, sea homogéneo o heterogéneo, el posterior desarrollo de cualquier masa
cristalina implica la combinación de la llamada etapa
466
F. Grases Freixedas et al
Urol. Integr. Invest.
Nucleante heterogéneo
B
Figura 2. Nucleación heterogénea. A: Para
que una partícula sólida pueda actuar como
núcleo heterogéneo debe ser capaz de atraer
y retener en su superficie la especies que
constituyen el nuevo cristal. B: La acción de
los inhibidores de la nucleación heterogénea
se debe a su unión en la superficie del núcleo
heterogéneo, lo que impide o dificulta la
posterior unión de las especies que deben
constituir el futuro cristal.
de crecimiento cristalino con los procesos de agregación (primaria y/o secundaria).
mente favorecidos (Fig. 3 A). En presencia de disoluciones sobresaturadas este proceso es muy favorable y
se da con facilidad. Los inhibidores del crecimiento
Crecimiento cristalino
cristalino son sustancias que se adsorben sobre las superficies del cristal ya formado, impidiendo o dificultando la incorporación de nuevas unidades cristalinas
al mismo y en consecuencia impidiendo o dificultando
el proceso de crecimiento (Fig. 3 B).
El crecimiento cristalino supone la incorporación
gradual de las unidades que van a constituir el futuro
cristal sobre las caras del mismo en lugares especial-
Figura 3. Crecimiento cristalino. A: Durante el crecimiento cristalino las unidades que constituyen el futuro cristal se incorporan gradualmente sobre sus caras. y especialmente en los lugares más favorecidos (escalones, que permiten el establecimiento de un mayor
número de enlaces). B: La presencia de inhibidores capaces de unirse a las caras del cristal dificulta este proceso.
Volumen 2
Diciembre 1997
Inhibidores
y urolitiasis
467
B
Figura 4. Agregado primario de oxalato cálcico dihidrato. Puede observarse que los nuevos cristales (cristales hijos) se forman
sobre las caras de los ya existentes (cristales padres).
Inhihidor de
la agregaciÓn
seclIlldaria
Agregación
La agregación primaria implica la formación de
nuevos cristales (cristales hijos) impulsada por los ya
existentes (cristales padres) que actúan favoreciendo
su crecimiento sobre sus propias caras (Fig. 4). Este
tipo de agregación no se da con la misma facilidad para cualquier tipo de cristal, de manera que dicha facilidad depende de la naturaleza del mismo, siendo, por
ejemplo, muy favorable en el caso de los cristales de
oxalato cálcicoI4-16• Existen muy pocos datos sobre los
inhibidores de la agregación primaria; sin embargo,
puesto que este proceso consiste fundamentalmente
en
un tipo particular de crecimiento cristalino, presumiblemente los inhibidores del crecimiento cristalino
Figura 5. Agregación secundaria. A: Varios cristales ya constituidos se unen entre sí debido a enlaces débiles que se establecen entre ellos. Para ello es preciso que haya una elevada cantidad de cristales. Este proceso se ve favorecido por la presencia
de sustancias que actúan como aglutinantes. B: Los inhibidores
de ]a agregación secundaria son sustancias que se adsorben sobre la superficie de los cristales, dotántolos de carga eléctrica de
idéntico signo, lo que genera repulsiones entre ellos y dificulta o
impide su acercamiento.
también actuarán como inhibidores de la agregación
pnmana.
La agregación secundaria es aquel proceso en el
que una serie de cristales ya constituidos se unen unos
con otros como consecuencia de enlaces débiles que
se establecen entre ellos y que en ocasiones están favorecidos por la presencia de sustancias que actúan
como puente de unión entre cristal y cristal (Fig. 5 A).
Para que los efectos de este proceso puedan llegar a
ser importantes es imprescindible que en el medio haya una importante cantidad de cristales. Así, en la litiasis oxalocálcica, donde la cristaluria es escasa o incluso inexistente, la contribución de la agregación secundaria en la formación del cálculo es despreciable;
sin embargo, en la litiasis infecciosa o de fosfatos cálcicos, donde suele darse una importante concentración
de cristales (orinas turbias), los procesos de agregación secundaria son realmente importantes. Los inhibidores de la agregación secundaria son sustancias
que se adsorben sobre las superficies de los cristales,
dotándolas de carga eléctrica de idéntico signo, lo que
genera repulsiones entre ellos, impidiendo o dificultando su posterior acercamiento para formar el agregado secundario (Fig. 5 B).
En cuanto al papel particular de los inhibidores de
la cristalización en la litiasis renal, es preciso considerar, de acuerdo con los estudios recientes, que a pesar
de que su papel en cualquier tipo de litiasis siempre
puede ser importante, su presencia puede ser realmente decisiva en la etapa de nucleación y en aquellos casos en los que no se alcanzan sobresaturaciones demasiado elevadas, es decir, en la litiasis renal oxalocálcica
no hipercalciúrica, en la litiasis úrica no hiperuricosúrica y con pH urinario cercano a 5,5, y en la litiasis
fosfática a pH urinario próximo a 6. Por otra parte, estudios muy recientes han demostrado que la capacidad
para impedir el desarrollo de concreciones sólidas de
o
468
F. Grases Freixedas et al
Urol. Integr. Invest.
\Li~:¡;'d
D
•
intercelular del tejido conectivo o bien de las membranas celulares y aparecen en la orina como consecuencia de los procesos de renovación del urotelio, ataques
bacterianos, necrosis o como consecuencia de heridas
provocadas por la presencia de un cálculo. La síntesis
de las glicoproteínas tiene lugar en el interior de la célula, desde donde se incorporan a la membrana celular
o se excretan a la matriz extracelular.
~;{ /'.-Jf\
. A;",,,,,,,
caclena
N-acctil glucosamina
ll1onosadrido
PROTEOGLUCANO
B
(sllbnllnidad)
'11
111
/i
,11
111
ácido
hialurÓnico
o oligosacÚrido
~
sUlfa¡o,de
(]ueralan
~~
..A-G._~
- - -a..-er-
'-7
sulfato d,e
condroitll1a
Figura 6. A: G]icoproteína constituida por cadenas de oligosacáridos unidas covalentemente por enlaces glicosídicos a una
proteína. B: Subunidad de roteoglicano formada por g]icosaminog]icanos unidos covalentemente a una proteína; los glicosaminog]icanos son cadenas constituidas por disacáridos que se van
repitiendo. Estas subunidades de proteog]icano se unen no covalentemente a otro glicosaminog]icano.
e] ácido hia]urónico.
constituyendo así los proteog]icanos.
un inhibidor de la cristalización se ve enormemente reducida en las zonas con escasa eficacia urodinámica1x•
Estas zonas, que ya son de por sí especialmente favorables para el desarrollo de cálculos debido a su capacidad para retener partículas sólidas, poseen además
otro importante factor de riesgo debido a la reducción
de la capacidad de los inhibidores de la cristalización.
Papel de los glicosaminoglicanos
en la urolitiasis
y glicoproteínas
Las glicoproteínas son proteínas que llevan unidos
por enlaces glicosídicos
carbohidratos
(sacáridos)
(Fig. 6 A). Debemos considerar 2 fuentes fundamentales de glicoproteínas urinarias. La fuente principal son
las células de los túbulos renales, que producen y excretan la mayor parte de glicoproteínas urinarias, siendo la más importante y conocida de ellas la glicoproteína de Tamm-Horsfall. El urotelio es la otra fuente
de glicoproteínas
urinarias que provienen del material
Los glicosaminoglicanos
(GAGs) son cadenas de
polisacáridos constituidas por la repetición de unidades idénticas de disacáridos. Todos ellos están unidos
covalentemente a cadenas proteicas constituyendo los
llamados proteoglicanos, excepto el ácido hialurónico
que lo hace de forma no covalente (Fig. 6 B). Los proteoglicanos poseen una arquitectura molecular semejante a una escobilla para limpiar tubos de ensayo o
botellas, cuyas cerdas, que son las subunidades
de
proteoglicano, están unidas de forma no covalente a
un «esqueleto» de filamentos de ácido hialurónico.
Las subunidades de proteoglicano están constituidas
por un núcleo de proteína al que se hallan unidos covalentemente
los GAGs, preferentemente
sulfato de
queratán y sulfato de condroitina. De hecho, los proteoglicanos son un tipo particular de glicoproteínas y antiguamente todas estas sustancias se conocían con el
nombre genérico de mucoproteínas.
Los proteoglicanos son los constituyentes principales del tejido conectivo. En un cuerpo sano, la biosíntesis y la degradación de los proteoglicanos permanecen en equilibrio dinámico. Los GAGs pueden encontrarse en la orina en forma libre o bien combinada
formando los proteoglicanos.
Se considera que los
GAGs urinarios libres son productos metabólicos de
los proteoglicanos de diferentes tejidos. La degradación incluye la proteólisis de los péptidos de los proteoglicanos del tejido conectivo. A continuación
esos
fragmentos experimentan una depolimerización
enzimática incompleta y procesos de desulfatación en los
lisosomas del hígado. Finalmente, la excreción renal
tiene lugar por filtración glomerular ya que no se tiene
evidencias de que se produzca excreción o reabsorción tubular. Los GAG s urinarios libres también pueden proceder de las propias paredes internas del riñón
debido a la destrucción de proteoglicanos que provienen de material intercelular del tejido conectivo. Estos
GAGs no han sufrido depolimerización enzimática ni
desulfatación y consecuentemente
su peso molecular
es mayor.
El papel de los GAG s libres y de las glicoproteínas
en la urolitiasis ha sido ampliamente debatido hasta el
presente, con opiniones a veces muy contradictorias,
lo que ha contribuido a crear una importante confu-
Volumen 2
Diciembre 1997
sión sobre este tema. El estado actual de la investigación científica aporta, sin embargo, datos coherentes y
clarificadores.
El interés acerca del papel que los glicosaminoglicanos ejercen en la urolitiasis ha aumentado notablemente desde que se demostró su influencia sobre el crecimiento cristalino y agregación del oxalato cálcicoI9,20.
En este sentido se ha publicado una ingente cantidad
de trabajos en los que generalmente se demuestra cierta capacidad inhibidora del crecimiento de los cristales de oxalato cálcic07,21-25.Estudios recientes demuestran, sin embargo, que en ningún caso esta acción es
relevante con respecto a la calculogénesis oxalocálcica26,27.En cuanto a sus efectos sobre la agregación del
oxalato cálcico, la situación no es tan clara, y de la
misma manera que se han descrito efectos inhibidores,
también se han postulado efectos promotores7. Debe
considerarse que la mencionada acción de los GAGs
sobre la agregación se refiere exclusivamente al efecto
que estas macromoléculas ejercen sobre la agregación
secundaria. Como ya se ha indicado, recientemente se
ha demostrado que los procesos de agregación secundaria son irrelevantes en la calculogénesis oxalocálcica28-30y que los agregados cristalinos observados en
los cálculos de oxalato cálcico se forman, fundamentalmente, a través del llamado mecanismo de agregación primaria. La repetición de este proceso de intercrecimiento cristalino y de los procesos de nucleación
heterogénea de varios cristales sobre una misma superficie mucoproteica, acabará generando los agregados cristalinos observados en dichos cálculos31. Desgraciadamente
poco se conoce de la acción de los
GAGs en los procesos de agregación primaria; sin embargo, los estudios actuales parecen indicar que estas
macromoléculas no ejercen un efecto significativo sobre dicho proces031.32. En la actualidad es un hecho
ampliamente aceptado que la nucleación de los cristales de oxalato cálcico en orina humana, incluso en
presencia de hipercalciuria o hiperoxaluria, transcurre
a través de procesos de nucleación heterogénea33, siendo ésta una etapa crucial en la formación del cálcul034.
A pesar de la importancia de este proceso hay muy
pocos trabajos en los que se estudie la acción que los
GAG s ejercen sobre el mism032,35,36.De estos estudios parece deducirse que en este caso la acción de los
GAG s podría ser realmente importante, estabilizando
las disoluciones metaestables de oxalato cálcico y evitando así su nucleación heterogénea. También se ha
demostrado que los GAGs estabilizan las disoluciones
de ácido úrico, impidiendo su nucleación homogénea37. Si consideramos que el ácido úrico es un activo
nucleante heterogéneo del oxalato cálcico37.38 al evitar
Inhibidores
y
urolitiasis
469
la formación de sus cristales, se impide a su vez que
éstos actúen como nucleantes heterogéneos del oxalato cálcico y, por tanto, también se evitaría el inicio de
la calculogénesis oxalocálcica.
Considerando la composición de la orina, las condiciones hidrodinámicas
del riñón y el estado estático
del tracto urinario superior, cabría esperar el desarrollo de incrustaciones sobre el urotelio que acabarían
cubriendo la casi totalidad de la superficie interna expuesta a la orina3942. Sin embargo, la realidad demuestra que cuando aparecen formaciones cristalinas, éstas
se desarrollan sólo en un número limitado de zonas
aisladas. Por tanto debe asumirse que una capa protectora cubre las paredes renales internas y que previene
eficientemente la nucleación de cristales, de tal manera que los cristales sólo podrán formarse en puntos en
los que la capa protectora ha sido destruida, dañada o
tal vez ligeramente reducida. Las observaciones experimentales apoyan tanto la existencia de una capa protectora de GAGs continuamente
renovada como la
formación de cristales únicamente en zonas con la capa dañada311.3944.Los GAGs de la capa protectora podrían tener un doble origen, pudiendo ser excretados,
generalmente en forma de proteoglicanos, por las propias células que tapizan los epitelios renales internos,
siendo entonces retenidos por las glicoproteína~ de las
membranas celulares con las que pueden interaccionar
debido a su naturaleza análoga o ser fragmentos metabolizados de proteoglicanos tisulares que al ser excretados se unirían a las glicoproteínas de las membranas
celulares. La existencia de esta capa antiadherente
junto con la renovación continua del uroepitelio constituyen sin duda uno de los factores de mayor importancia que dificulta cualquier proceso de calculogénesis (Fig. 7). Resulta interesante comentar los resultados acerca de las determinaciones de GAG s urinarios
que podemos encontrar en la bibliografía. Así, mientras unos autores no encuentran diferencias entre grupos de enfermos con urolitiasis oxalocálcica e individuos sanos45-48, otros detectan excreciones inferiores
en el grupo de enfermos49-51 y otros encuentran incluso
cantidades superiores en dicho grup052. La interpretación de estos resultados, aparentemente discordantes,
debe efectuarse considerando diversos factores. Por
una parte se sabe que la excreción de GAG s depende
de la edad (disminuye al envejecer), sexo (es superior
en el sexo masculino), dieta (es superior en dietas ricas en proteína animal) y estación del añ052-57.Por otra
parte, también la metodología analítica utilizada para
la determinación puede afectar a los resultados obtenidos51. Por tanto, todas estas circunstancias pueden explicar la diversidad de resultados que aparecen en la
470
F. Grases Freixedas et al
A
B
e
E
Figura 7. A: Tejido epitelial sano. B: Tejido epitelial dañado o
mal protegido (factor de riesgo litiásico). C: En las zonas con tejido epitelial dañado o mal protegido pueden generarse microcristales de fosfatos cálcicos (pH urinario superior a 6), ácido
úrico (pH urinario inferior a 5,5), etc., que favorecen la formación sobre ellos de cristales de oxalato cálcico monohidrato (nucleación heterogénea). Sin la presencia de estos microcristales,
el oxalato cálcico monohidrato jamás se formaría. O: El oxalato
cálcico crece sobre el núcleo heterogéneo, iniciando la formación
del cálculo. E: En ausencia de una inhibición adecuada se acaba
generando el cálculo de oxalato cálcico monohidrato. La alteración que los cálculos producen en el tejido predispondrá al inicio
de la formación de nuevos cálculos. Nota: El esquema presentado
en el dibujo se ha realizado sin considerar las relaciones reales de
tamaño célula/cálculo/capa de GAGs con el fin de poder ofrecer
una buena resolución gráfica de cada una de las partes citadas.
Urol. Integr. Invest.
bibliografía, ya que, evidentemente, todos estos estudios no se han efectuado en las mismas condiciones y
utilizando el mismo método analítico. Ahora bien,
considerando que la biosíntesis y degradación de proteoglicanos permanecen en equilibrio dinámico en un
cuerpo sano, la evaluación global de los GAGs urinarios puede relacionarse
con la producción total de
GAG s por el organismo. De esta manera, un bajo contenido de GAGs urinarios implicaría una síntesis total
de proteoglicanos
pobre y esto, a su vez, probablemente podría relacionarse con un uroepitelio no saludable o mal protegido que manifestaría una protección
menor frente a la adhesión de micropartículas que podrían actuar como nucleantes heterogéneos del oxalato
cálcico y favorecer el desarrollo de cálculos. Es obvio
que la síntesis de proteoglicanos no es el único factor
que influye en el buen estado de conservación y renovación del uroepitelio y, por tanto, todas aquellas medidas que favorezcan dicha conservación aumentarán
la protección frente al desarrollo de urolitos. Así, el
ataque bacteriano al urotelio evidentemente favorece
el desarrollo de incrustaciones que pueden derivar en
cálculos. Precisamente diversos estudios asignan a los
GAG s (y glicoproteínas en general) capacidad antiinfecciosa como consecuencia de su capacidad de unión
con las bacterias, facilitando su eliminación por la orina y evitando su anclaje58. En este sentido se les podría asignar también otra importante función antilitiásica, aunque este último aspecto aún no parece definitivamente confirmado.
Las glicoproteínas urinarias tienen 2 orígenes fundamentales. La fuente principal son las células tubulares que producen y excretan el 60-70% del total, siendo la más importante y mejor caracterizada la glicoproteína de Tam-Horsfall, que presenta una subunidad
de aproximadamente
78.000 Daltons, pero que tiende
a formar agregados de varios millones de Daltons
(Mr: 7 x 107 D)7.59'61.La nefrocalcina (Mr: 14.000 D)
es otra glicoproteína que se genera en las células tubulares62.63. Recientemente
se han descubierto nuevas
glicoproteínas
que pretendidamente
son excretadas
por las células tubulares64. El urotelio constituye la
otra fuente de glicoproteínas urinarias, aunque en un
porcentaje mucho menor (5-10%). Éstas pueden proceder del material intercelular que constituye el tejido
conectivo y de las que una importante fracción son
proteoglicanos,
o bien de las membranas celulares.
Este segundo conjunto de glicoproteínas aparece como consecuencia de los procesos de renovación del
urotelio (como productos de degradación celular), lesiones producidas por bacterias, necrosis o incluso la
propia presencia de un cálculo.
Volumen 2
Diciembre 1997
La función fisiológica de las glicoproteínas producidas y excretadas por los túbulos renales (Tam-Horsfall, Nefrocalcina) se ha estudiado ampliamente; sin
embargo, todavía no se ha clarificado totalmente. Al
igual que en el caso de los GAGs, diversos estudios
demuestran cierta capacidad inhibidora de la cristalización del oxalato cálcico, que en ningún caso parece
decisiva7,65-67.
Por otra palte, macroagregados de estas
proteínas (como de hecho cualquier macroagregado de
glicoproteína) pueden actuar también como nucleantes
heterogéneo s del oxalato cálcico, facilitando la formación de agregados cristalinos al posibilitar que se originen al mismo tiempo varios cristales sobre la misma
superficie31,68 y, por tanto, en este aspecto manifestarían una acción promotora de la calculogénesis. Estudios recientes, sin embargo, parecen demostrar que
además de cierta capacidad inhibidora o promotora de
los procesos de cristalización del oxalato cálcico, la
actividad fundamental de las glicoproteínas urinarias
debe relacionarse con los 3 siguientes aspectos: su acción antiadherente en los túbulos renales, evitando la
formación y desarrollo de depósitos sólidos en ellos58
que acabarían transformándose
en cálculos; el transporte de iones en la región ascendente del asa de Henle6I, y el mecanismo de defensa natural frente a las infecciones del tracto urinario69. El porcentaje de estas
proteínas que se puede encontrar en la matriz orgánica
de los cálculos es bajo (5-10%), Y ello se puede explicar considerando que normalmente se excretan en la
orina dispersas de forma muy homogénea, sin constituir macroagregados que podrían adherirse fácilmente
al cálculo. Probablemente el porcentaje que contiene
un cálculo de estas glicoproteínas depende de la situación física del mismo con respecto a la papila renal y
a su zona cribosa, lo que condicionará una captación
más o menos fácil de las mismas.
El papel de las glicoproteínas
que provienen del
propio urotelio se limita a su acción como nucleantes
heterogéneos del oxalato cálcico, ya que al ser productos de degradación celular se encuentran generalmente en forma de macroagregados, que exhiben una
gran superficie con una importante capacidad nucleante de sales cálcicas. Precisamente debido a ello, y a
que la presencia de un cálculo constituye un posible
foco continuo de lesión del tejido epitelial y, por tanto,
de constante aporte de productos de degradación celular de naturaleza glicoproteica, este material constituye una parte importante de la materia orgánica encontrada en los cálculos renales (70-80%). Evidentemente, la proporción de estas sustancias encontradas en el
cálculo dependerá de su ubicación en las cavidades renales, ya que la posición del cálculo determinará en
Inhibidores
y urolitiasis
471
gran medida la extensión de las posibles lesiones que
pueda causar.
Como ya se ha comentado, la existencia de un urotelio convenientemente
renovado y bien protegido es
una condición fundamental para evitar el desarrollo de
microincrustaciones
que pueden acabar convirtiéndose
en cálculos. Por tanto, todos aquellos factores que favorezcan la producción de proteoglicanos y glicoproteínas a un nivel adecuado tendrán una acción preventiva del desarrollo de cálculos, De hecho, tanto la síntesis de proteoglicanos como de glicoproteínas están
reguladas por el mismo mecanismo70• Así, todos aquellos factores que afecten a dicha síntesis indirectamente podrán influir de forma importante sobre la calculogénesis. Son numerosos los estudios que parecen evidenciar
un importante
papel potenciador
de la
vitamina A en la síntesis y excreción de glicoproteínas
y GAGs71,n y hay que considerar que desde hace tiempo es conocido el efecto beneficioso de la vitamina A
sobre la conservación de los epitelios en general, evitando los procesos de queratinización 70. En este sentido se ha relacionado el déficit de vitamina A en animales de experimentación con la aparición de depósitos calculosos en el riñón 73-77. También hay autores
que postulan no haber encontrado relación alguna entre calculogénesis y déficit de vitamina A7X• Esta aparente contradicción
puede explicarse considerando
que la calculogénesis es un proceso claramente multifactorial y pueden darse situaciones en las que una desafortunada combinación
de factores desencadene el
proceso litógeno. El ion Zn(lI) también parece estar
implicado en la síntesis de proteoglicanos y glicoproteínas, junto con la vitamina A. Resulta difícil esclarecer el papel del zinc en la regeneración de los tejidos
epiteliales, aunque todo parece indicar que su conexión se produce a través del complejo vitamínico A,
en cuya biosíntesis participan metaloenzimas de zinc
como la alcohol deshidrogenasa que cataliza la transformación de retinol a retina!. Por otro lado, se ha postulado una interrelación sinérgica entre la vitamina A
y las metaloenzimas de zinc, como la estromalisina en
la regeneración de las membranas celulares79-82. Cabe
mencionar que en algunas ocasiones se han detectado
niveles urinarios y plasmáticos de Zn(II) inferiores en
enfermos con litiasis renal oxalocálcica cuando se han
comparado
los resultados
con grupos de individuos
sanos83.
De los diferentes aspectos comentados se deduce
que los GAG s pueden jugar un importante papel en la
calculogénesis como inhibidores de la nucleación heterogénea del oxalato cálcico, por una parte, y como
protectores del uroepitelio, por otra, siendo ambos as-
472
F. Grases Freixedas et al
Urol. Integr. Invest.
pectos todavía poco estudiados y conocidos y debiendo ser, por tanto, el objetivo de futuras investigaciones. Igualmente, las glicoproteínas excretadas por el
riñón desempeñarían un importante papel como protectoras del desarrollo de incrustaciones,
pudiendo
también tener otras funciones como transportadoras de
iones en la nefrona o como defensa natural frente a las
infecciones del tracto urinario. La escasa información
que existe sobre los aspectos citados obliga también a
la realización de más estudios relativos a dichas mate-
año en el que la Food and Drug Administration
de
USA aprueba el tratamiento con citrato potásico de
pacientes con nefrolitiasis recidivantel2.
El efecto del citrato sobre la calculogénesis hay que
atribuirlo a la combinación de 3 aspectos diferentes.
Por una parte, el metabolismo celular del citrato conduce a la formación de ion bicarbonato que como consecuencia de sus características
básicas provoca un
consumo de protones (H+) a nivel plasmático, lo que
conduce a una disminución en la excreción de los mis-
rias. Finalmente, la importancia que proteoglicanos
(GAGs) y glicoproteínas ejercen en la prevención de
la urolitiasis aconseja el estudio de todos aquellos factores, tales como la vitamina A, que favorecen su formación y en su caso excreción.
mos y por tanto a una elevación del pH urinario. Como es bien sabido, el ácido úrico se insolubiliza para
valores de pH urinario inferiores a 5,5. De esta manera la elevación del pH urinario provocada por el ácido
cítrico puede evitar la formación o redisolver los cálculos de ácido úrico y también evitar la formación de
cristales de ácido úrico que podrían actuar como nucleantes heterogéneo s muy efectivos del oxalato cálcico, induciendo a la formación de este tipo de cálculos.
Esta elevación del pH urinario debe, sin embargo, controlarse cuidadosamente porque puede conducir a valores
próximos a 7, donde pueden insolubilizarse diferentes
fostatos cálcicos (brushita, hidroxiapatita) que o bien
pueden formar cálculos por sí mismos o actuar también
como nucleantes heterogéneos del oxalato cálcico.
Un segundo efecto protector del citrato sobre la calculogénesis
hay que atribuirlo
a su capacidad
para
formar complejos solubles con el ion Ca2+. La formación de estos complejos en la orina implica una disminución de la cantidad de ion calcio que se encuentra
libre en este medio (del orden del 20%) Y como consecuencia disminuye la sobresaturación (fuerza impulsora de la cristalización) de cualquier compuesto insoluble de dicho ion en orina, sea oxalato o fosfato. Evidentemente esta reducción es tanto más importante
cuanto mayor es la concentración de citrato y menor
la de calcio, de manera que para relaciones citrato/calcio elevadas puede llegar a ser importante.
Finalmente, el tercer efecto del citrato sobre la calculogénesis hay que atribuirlo a su efecto inhibidor de
la cristalización de los oxalatos y fosfatos cálcicos. De
hecho, la capacidad inhibidora del citrato sobre las sales cálcicas mencionadas
no es muy enérgica, pero
considerando que puede excretarse en concentraciones
elevadas, esta acción inhibidora puede llegar a ser importante, sobre todo al actuar como inhibidor de la nucleación homogénea de los fosfatos y de la nucleación
heterogénea del oxalato cálcico, ya que estas etapas
son cruciales en la formación de los correspondientes
cálculos.
El ácido cítrico y el ácido fítico
como inhibidores de la cristalización
en el tratamiento de la litiasis renal
Los únicos inhibidores de la cristalización que actualmente se comercializan para el tratamiento médico
de la urolitiasis son el ácido cítrico y el ácido fítico,
motivo por el cual se discutirá a continuación con detalle el papel que desempeñan ambas sustancias en la
prevención de la urolitogénesis.
Ácido cítrico
El citrato (Fig. 8) es uno de los inhibidores de la
cristalización más estudiados7•
Es también un hecho
aceptado por muchos autores que los formadores de
cálculos eliminan diariamente menor cantidad de citrato que los individuos sanos84-91. Aunque el desarrollo de la terapéutica con citrato es relativamente reciente, sus orígenes se remontan al siglo pasado; así,
Sir Astley Cooper ya prescribía en 1826 un preparado
a base de citrato potásico para el tratamiento de cálculos renales que probablemente eran de ácido úrico. El
empleo reglado del citrato potásico en la profilaxis de
la litiasis renal no se inicia, sin embargo, hasta 1985,
CH2
-
COOH
I
HO-C-COOH
I
CH2
Figura 8. Estructura
molecuJar
-
COOH
del ácido cítrico.
Las dosis terapéuticas recomendadas
varían entre
20 y 100 mEq/día y han demostrado una importante
Volumen 2
Diciembre 1997
eficacia en el tratamiento
Inhibidores
de la litiasis renal asociada a
acidosis tubular renal, en la litiasis cálcica hiperuricosúrica y pH urinario inferior a 5,5 y en la hipocitraturia-hipercalciuria. Como ya se ha señalado, durante el
tratamiento con citrato es muy importante un control
riguroso del pH urinario para evitar valores demasiado
elevados que induzcan la precipitación de fosfatos cálCICOS.
Ácido lítico
El fitato actúa como inhibidor muy efectivo
nucleación heterogénea del oxalato cálcico32.92,
nucleación homogénea de los fosfatos cálcicosls
crecimiento cristalino del oxalato cálcico93• Los
de la
de la
y del
efec-
tos que el fitato ejerce sobre las primeras etapas de la
formación de cálculos de oxalato cálcico se han estudiado in vitro utilizando un sistema que simula las
condiciones de formación de los cálculos en el interior
del riñón IS.32.94. En estos estudios se demuestra claramente que el fitato actúa de forma muy efectiva impidiendo la formación de partículas de fosfato cálcico
que podrían impulsar la formación de los cristales de
oxalato cálcico mediante nucleación heterogénea. Debe tenerse en cuenta que debido a las condiciones de
sobresaturación
urinaria respecto al oxalato cálcico,
incluso en individuos hipercalciúricos o hiperoxalúricos, la formación de cristales de oxalato cálcico a través de un mecanismo de nucleación homogénea resulta prácticamente imposible33•
Al considerar la estructura del fitato (Fig. 9) puede
explicarse su potente actividad inhibidora como consecuencia de la afinidad de los grupos fosfato por el ion
calcio. La fuerte absorción de moléculas de ácido fítico
en la superficie de núcleos o/y cristales de oxalato cálcico impedirá su posterior desarrollo o/y crecimiento.
H
H
H
Figura 9. Estructura molecular del ácido fítico o ácido inositol
hexafosfórico.
y urolitiasis
473
Esta acción inhibidora se potencia por la presencia
del ion Zn(I1) debido a que este ion forma un complejo con el ácido fítico que facilita su adsorción sobre el
oxalato.
Farmacológicamente
puede utilizarse cualquier fitato, es decir, las sales del ácido fítico con sodio, calcio, magnesio y calcio-magnesio. Así las sales sódicas
han sido utilizadas, como hipocalcémicas
a dosis de
2-4 g/día y las cálcico-magnésicas
como reconstituyentes cerebrales a dosis de 500 mg/día, sin que se haya demostrado ninguna acción tóxica, teratógena o
carcinógena95.98.
La ingesta de pequeñas dosis de ácido fítico o fitatos (50-100 mg) conduce a una excreción urinaria situada entre un l y un 10% de la dosis, porcentaje suficiente para causar una efectiva inhibición de la nucleación heterogénea del oxalato cálcico, así como de su
crecimiento cristalino, impidiendo por tanto la formación de este tipo de cálculos y presentando como ventaja más importante frente al citrato la de no provocar
cambios en el pH urinario.
Los posibles efectos terapéuticos en el tratamiento
de la litiasis renal oxalocálcica idiopática quedan evidenciados si se considera que la capacidad inhibidora
del fitato en la cristalización del oxalato cálcico es mil
veces superior a la que presenta el citrato y que la ingesta de dosis de fitato de 80 mg puede incrementar
entre un 50-100 % la capacidad inhibidora de la orina
emitida en las horas siguientes a la ingestión99. Por
tanto, resulta evidente que estos primeros resultados
sobre la posible utilidad del fitato en el tratamiento de
la litiasis renal cálcica son alentadores, aunque debe
tenerse en cuenta que hasta que no haya transcurrido
el tiempo necesario para disponer de estudios clínicos
suficientemente amplios no podrá evaluarse el auténtico alcance de su eficacia. Por otra parte, se ha observado muy recientemente que el fitato se excreta también de forma natural en la orina humana y en concentraciones
en las que puede ejercer una acción
inhibidora muy efectiva. Este último hallazgo introduce una interesante cuestión a la etiología de la litiasis
cálcica, ya que el déficit en la excreción natural de este inhibidor podría constituir un importante factor de
riesgo litógeno. Por otra parte, el déficit en la excreción de este inhibidor también podría relacionarse con
el déficit de pirofosfato urinario, ya que ambos inhibidores son hidrolizados por el mismo tipo de enzimas,
las fosfatasas alcalinas, y, por tanto, una actividad
anormalmente elevada en estas enzimas producirá una
elevada hidrólisis de fitato y pirofosfato que se traducirá en una excreción urinaria deficitaria. La vitamina A
actúa como inhibidor enzimático de las fosfatasas alca-
474
F. Grases Freixedas et al
Urol. Integr. Invest.
linas 100.10), por tanto es evidente
bajos en esta vitamina conducirán
lisis de fitato y pirofosfato y en
menor excreción. En este sentido
que niveles renales
a una mayor hidróconsecuencia a una
resulta muy intere-
sante observar el papel de la vitamina A en la urolitogénesis como inhibidor enzimático, además de actuar
impulsando la síntesis de glicosaminoglicas
y glucoproteínas como ya se ha comentado anteriormente.
Bibliografía
1.
Bliznakov G. Sur le méeanisme de I'action des additifs adsorbants
París: Centre National de la Recherche Seientifique;
2.
3.
4.
6.
7.
calcification. Johns Hopkins Med J 1967; 120: 119-36.
Robertson WG, Peacock M. Pathogenesis of urolithiasis.
8.
9.
10.
11.
En: Adsorption
et croissance cristalline.
Vermculen CW. Lyon ES, Miller GH. Calcium phosphate solubility in urine as measured by a precipitation test: experimental
J Urol 1958;79:596-606.
Fleisch H, Bisaz S. Isolation from urine of pyrophosphate, a calcification inhibitor. Am J Physiol 1962;203:671-5.
Fleisch H, Bisaz S.
1964;20:276-80.
Howard JE, Thomas
Clin Climatol Assoc
Howard JE, Thomas
5.
dans la eroissance cristalline.
1965:291-301.
The inhibitory effect of pyrophosphate
on calcium oxalate precipitation
urolithiasis XIII.
and its relation to urolithiasis.
Experientia
Wc. Some observations on rachitic rat cartilage of probably significance in the etiology of renal calculi. Trans Am
1958;70:94-102.
WC, Barker LM, Smith LH, Wadkins CL. The recognition and isolation from urine and serum of a peptide inhibitor to
En: Schneider HJ, Peacock M, Robertson WG, Vahlensieck W, eds. Urolithiasis:
etiology. Diagnosis. New York: Springer- Verlag; 1985: 185-334.
Pak CYC, Fuller C, Sakhaee K, Preminger GM, Britton F. Long-term
1985;134:11-5.
treatment of ealcium nephrolithiasis
with potassium eitrate. J Urol
Preminger GM, Sakhaee K, Skurla C, Pak CYC. Prevention of recurrent calcium stone formation with potassium citrate therapy in patients
with distal renal tubular acidosis. J Urol 1985; 134:20-4.
Nicar MJ, Hsu MC, Fetner C. Urinary response to oral potassium citrate therapy for urolithiasis
1986;8:219-22.
Pak CYC, Adams BY. Potassium citrate therapy of nephrolithiasis.
En: Renal stone disease.
1987:201-24.
in a private practice setting. Clin Ther
Boston:
Martinus
Hijhoft
Publishing;
12.
Pak CYC. Citrate and renal calculi. New insights and future directions. Amer J Kidney Dis 1991; 17:420-5.
13.
Barceló p. Wuhl O, Servitge E, Rousaud A. Litiasis oxalato cálcica hipocitraturica. Tratamiento con citrato potásico. En: Rousaud A, Barceló P, eds. Urolitiasis, metodología diagnóstica y terapéutica. Barcelona: Pulso Ediciones; 1992:67-75.
Millán A, Grases F, Sohnel O, Krivánková 1. Semi-batch precipitation of calcium oxalate monohydrate. Crystal Res Technol 1992;27:31-9.
14.
15.
16.
Grases F, Millán A, Sohnel O. Role of agglomeration in calcium oxalate monohydrate urolith development. Nephron 1992;61: 145-50.
Grases F, Masárová L, Sohnel O, Costa-Bauzá
A. Agglomeration
of calcium oxalate monohydrate
in synthetic urine. Brit J Urol
1992;70:240-6.
17.
Conte A, Roca P, Genestar C, Grases F. The relation between ortophosphate
Urol Res 1989; 17: 173-5.
18.
Grases F, García-Ferragut
19.
formation. Nephron 1996;73:561-8.
Crawford JE, Crematy EP, Alexander AE. The effect of natural and synthetic polyelectrolites
J Chem 1968;21:1067-72.
20.
Robertson WG, Peacock M, Nordin BEC. Inhibitors of the growth and aggregation
of calcium oxalate crystals in vitro. Clin Chim Acta
21.
1973;43:31-7.
Fellstrom B, Danielson
of glycosaminoglycan
22.
crystal growth. Fortschr Urol Nephrol 1985;23:24-6.
Norrnan RW, Scurr OS, Robertson WG, Peacock M. Inhibition of ealcium oxalate cristallisation
23.
jects and stone formers. Brit J Urol 1984;56:594-8.
Fellstrom B, Danielson BG, Ljunghall S. Wikstrom B. The inhibition of ealcium oxalate crystal growth by chondroitin
L, Costa-Bauzá
and pyrophosphate
in normal and in patients with urolithiasis.
A, March JG. Study of the effects of different substances
BG, Lindsjo M, Ljunghall S, Wikstrom
B. The mechanism
on the early stages of papillary stone
on the erystallisation
of ealcium oxalate. Aust
inhibition of calcium oxalate
by pentosan polysulphate
in control sub-
sulphates, heparin,
pentosan polysulphate and Tamm-Horsfall glyeoprotein. En: Schwille PO, Smith LH, Robertson WG, Vahlensieck W, eds. Urolithiasis and
related clinical research. New York: Plenum Press; 1985:887-90.
24.
Martin X, Werness PG, Bergert JH, Smith LH. Pentosan polysulphate
132:786-8.
as an inhibitor of ealcium oxalate crystal growth. J Urol 1984;
25.
Tiselius HG. The effect of sodium sulphopentosan on the crystallization of calcium oxalate. En: Schwille PO, Smith LH, Robertson WG,
Vahlensieck W, eds. Urolithiasis and related clinicar research. New York: Plenum Press; 1985:895-8.
26.
Grases F, Genestar C, Conte A, March P, Costa-Bauzá A. Inhibitory effeet of pyrophosphate,
in calcium oxalate urolithiasis. Brit J Urol 1989;64:235-7.
27.
Grases F, Gil ]J, Con te A. Glycosaminoglycans:
Colloids Surfaces 1989;36:29-38.
28.
29.
Grases F, Millán A, Sohnel O. Role of agg10meration in calcium oxalate monohydrate urolith development. Nephron 1992;61: 145-50.
Grases F, Masárová L, Sohnel O, Costa-Bauzá A. Agglomeration
of ca1cium oxalate monohydrate
in synthetic urine. Brit J Urol
1992;70:240-6.
inhibition of calcium oxalate crystalline
eitrate, magnesium
growth and promotion
and chondroitin
sulphate
of crystal aggregation.
Volumen 2
Diciembre 1997
Inhibidores
technique simulating oxalocalcic
y urolitiasis
475
30.
Sohnel O, Grases F, March JG. Experimental
31.
Grases F, Costa-Bauzá
renal stone generation. Urol Res 1993;21:95-9.
32.
33.
Grases F, Kroupa M, Costa-Bauzá A. Studies on calcium oxalate monohydrate crystallization. Influence of inhibitors. Urol Res 1994;22:39-43.
Finlayson B. Physicochemical aspects of urolithiasis. Kidney Int 1978; 13:344-60.
34.
35.
Grases F, Sohnel O. Mechanism of oxalocalcic renal calculi generation. Int Urol Nephrol 1993;25:209-14.
Osswald H, Weinheimer G, SchUtt ID, Ernst W. Effective prevention of calcium oxalate crystal formation in vitro and in vivo by pentosan
36.
polysulphate. Urol Res 1988; 16:230-5.
Grases F, Costa-Bauzá A. Potentiometric
Comms 1991;3:319-28.
A. Study of factors affecting calcium oxalate crystalline aggregation.
study of the nucleation
Brit J Urol 1990;66:240-4.
of calcium oxalate in presence of several additives.
Clin Chem Enzym
37.
38.
Grases F, Costa-Bauzá A, March JG, Masárová L. Glycosaminoglycans, uric acid and calcium oxalate urolithiasis. Urol Res 1991; 19:375-80.
Mandel NS, Mandel GS. Epitaxis between stone-forming crystals at the atomic leve!. En: Smith LH, Robertson WG, Finlayson B, eds. Urolithiasis: clinical and basic research. New York: Plenum Press; 1981:469-71.
39.
Gebhardt M. Uber biokristallisation
40.
Hienzsch E, Hesse A, Bothor C, Berg W, Roth J. A contribution
41.
mental investigations of the intravenal crystallization of calcium oxalate in rabbil. Urol Res 1979;7:223-6.
Gill WB, Jones KW, Ruggiero KJ, Fromes Me. Calcium oxalate crystallization in urothelial-lined systems. En: Smith LH, Robertson WG,
42.
43.
und epitaxie. J Crystal Growth 1973;20:6-12.
to the formation mechanism of calcium oxalate urinary calculi. IV. Experi-
Finlayson B, eds. Urolithiasis: clinical and basic research. New York: Plenum Press; 1981 :497-508.
Gill WB, Jones KW, Ruggiero KJ. Protective effects of heparin and other sulfated glycosaminoglycans
thelium. J Urol 1982; 127: 152-4.
See WA, Williams RD. Urothelial injury and clotting cascade activation: common denominators
ceso J. UroI1992;147:541-8.
on crystal adhesion to injured uro-
in particulate adherence to urothelial surfa-
44.
Grases F, Costa-Bauzá
45.
Ryall RL, Marshall VR. The value of the 24-hour urine analysis in the assessment of stone-formers
clinic. Brit J Urol 1983;55: 1-5.
46.
47.
Sallis JD, Lumley ME On the possible role of glycosaminoglycans as natural inhibitors of calcium oxa1ate stones. 1nvest Urol 1979; 16:296-9.
Caudarella R, Stefani F, Rizzoli E, Malavolta N, Dántuono G. Preliminary results of glycosaminoglycans
excretion in normal and stone forming subjects: relationship with uric acid excretion. J Urol 1983; 129:665-7.
Akinci M, Esen T, Kocak T, Ozsoy C, Tellaloglu S. Role 01' inhibitor deficiency in urolithiasis. Eur Urol 1991 ;19:240-3.
Robertson WG, Peacock M, Heyburn PJ, Marshall DH, Clark PB. Risk factors in calcium stone disease 01' the urinary tracl. Brit J Urol
1978;50:449-54.
48.
49.
50.
A, March JG, Sohnel O. Artificial simulation of renal stone formation. Nephron 1993;65:77-81.
Sidhu H, Hennal AK, Thind SK, Nath R, Vaidyanathan
S. Comparative
attending a general hospital outpatient
study of 24-hour urinary excretion
01'
glycosaminoglycans
by renal
stone formers and healthy adults. Eur UroI1989;16:45-7.
51.
52.
53.
54.
Grases F, Llompart 1, Conte A, Coll R, March JG. Glycosaminoglycans
and oxalocalcic urolithiasis. Nephron 1994;68:449-53.
Trinchieri A, Mandressi A, Luongo P, Longo G, Pisani E. The influence of diet on urinary risk factors for stones in healthy subjects and
idiopathic renal calcium stone formers. Brit J Urol 1991 ;67:230-6.
Martelli A, Marchesini B, Muli P, Lambertini F, Rusconi R. Urinary excretion pattern of main glycosaminoglycans
in stone formers and
controls. En: Schwille PO, Smith LH, Robertson WG, Vahlensieck W, eds. Urolithiasis and related c1inical research. New York: Plenum
Press; 1985:355-8.
Caudarella
R, Rizzoli E, Malavotta
En: Martelli A, Buli P, Mardiesiui
1988; 187-92.
M. Clinical and metabolic aspects of urinary glycosaminoglycans
B, eds. Inhibitors
W. Significance
of crystallization
of glycosaminoglycans
excretion
in calcium stone formers.
in renal lithiasis and their clinical application.
for the formation
calcium oxalate stones. Am J Kidney Dis
55.
Hesse A, Wuzel H, Vahlensieck
1991;17:414-9.
56.
Danes BS, Bearn AG. The effect of retinal (vitamin A-alcohol)
1967; 1: 1029-31.
57.
Hesse A, Wuzel H, Vahlensieck W. The excretion of glycosaminoglycans
Urol Int 1986;41:81-7.
58.
Holmang S, Grenabo L, Hedelin H, Hugosson J, Petterson S. Crystal adherence to rat bladder epithelium
Scand J Urol Nephrol 1993;27:71-4.
59.
Pennica D, Kohr WJ, Kuang W-J, Glaister D, Aggarwal BB, Chen EY, Goeddel DV. Identification
01'
on urinary excretion of mucopolysaccharides
in the urine
01'
Acta Med Roma
calcium-oxalate-stone
in Hurler syndrome.
patients and healthy persons.
after long-term E. coli infection.
of human uromodulin
60.
Horsfall urinary glycoprotein. Science 1987;236:83-8.
Ronco P, Dosquet P, Verroust P. La protéine de Tamm-Horsfall.
61.
Kumar S, Muchmore A. Tamm-Horsfall
62.
Nakagawa Y, Renz CL, Ahmed M, Coe FL. Isolation of nephrocalcin from kidney tissue 01' nine vertebrate species.
1991 ;260(2, pl. 2):F243-F248.
Nakagawa W, Ahmed M, Hall SL, Deganello S, Coe FL. Isolation from human calcium oxalate renal stones of nephrocalcin,
63.
64.
65.
protein-uromodulin
Lancet
as the Tamm-
Presse Med 1988;17:1641-6.
(1950-1990).
Kidney Int 1990;37: 1395-40 l.
Am J Physiol
a glycoprotein
inhibitor of calcium oxalate crystal growth. Evidence that nephrocalcin from patients with calcium oxalate nephrolitiais is deficient in gamma-carboxyglutamic acid. J Clin Invest 1987;79:1782-7.
Gillies DRB, Marshall RD. Renal osmodulin:
the likely physiological
role of Tamm-Horsfall
glycoprotein.
Biochem Soc Trans
1988;16:547-9.
Edyvane KA, Hibberd CM, Harnett RM, Marshall VR, Ryall RL. Macromolecules
human urine. Clin Chim Acta 1987;167:329-38.
inhibit calcium oxalate growth and aggregation
in whole
476
F. Grases Freixedas et al
Urol. Integr. Invest.
66.
Worcester EM, Nakagawa
1987;13:267-72.
Y, Coe FL. Glycoprotein
67.
Lanzalaco AC, Singh RP, Smesko SA, Nancollas GH, Sufrin G, Binette M, Binette JP. The int1uence of urinary macromolecules
oxalate monohydrate crystal growth. J Urol 1988; 139: 190-5.
68.
Drach GW, Thorson S, Randolph A. Effects of urinary organie macromolecules
cleation. J Urol 1980; 123:519-23.
69.
Reinhart HH, Obedeanu N, Robinson R, Korzeniowski
J Urol 1991; 146:806-8.
70.
71.
Devlin TM. Bioquímica. Barcelona: Reverté; 1986.
Bichler KH, Kirchner C, Strohmaier W, Weiser H, Schmitz-Moormann
oí uromucoid and other urine constituents
calcium
oxalate
crystal
growth
inhibitor
on crystallization
in urine. Mineral
Electrolyte
Metab
on calcium
of calcium oxalate: enhancement
O, Kaye D, Sobel JD. Urinary excretion of Tamm-Hosrfall
of nu-
protein in elderl women.
P, Korn S, Nelde HJ. Effect of vitamin A deficiency on the excretion
in rats. Fortschr Urol Nephrol 1982;20:205-9.
72.
Bichler KH, Kirchner C, Weiser H, Korn S, Strohmaier W, Schmitz-Moormann
73.
74.
the excretion of uromucoid and other suhstances in the urine of rats. Clin Nephrol 1983;20:32-9.
Kancha RK, Anasuya A. Effect of vitamin A deíiciency on urinary calculus formation in rats. J Clin Biochem Nutr 1990;8:51-60.
Milicic M. Influence of vitamin A deficiency and overdosage on kidney, small intestine, and liver, with special reference to alcaline phosphatase. Acta Anat 1962;50:312-25.
P, Hanck A, Nelde HJ. Int1uence of vitamin A deficiency of
75.
Dutt B, Sawhney pc. Yitamin A deficiency and urinary calculi in sheep. Indian Yet J 1969;64:785-8.
76.
Gershoff SN, McGandy RB. The etfects of vitamin A-deficient
J Clin Nutr 1981 ;34:483-9.
77.
78.
Mouriquand G, Rollet J, Edel Y, Pape M, Tete H. Urinary lithiasis connected with avitaminosis A. Presse Med 1940;48:529-30.
Yano H, Kawashima R, Uesaka S. Urolithiasis in fattening cattle. 5. Relation between vitamin A deficiency and urolithiasis
Mem Coll Agr, Kyoto Univ, Anim Sci Ser 1972;1:35-43.
79.
80.
Bertini 1, Luchinat C, Maret W, Zeppezauer M. Zinc enzymes. Basel: Birkhauser ed; 1986.
Coleman JE. Zinc proteins: enzymes, storage proteins, transcription factors and replications proteins. Annu Rev Biochem 1992;61 :897-946.
81.
diets containing lactose in producing bladder calculi and tumors in rats. Am
in wethers.
82.
Trinchieri A, Mandresi A, Luongo P, Rovera F, Longo G. Urinary excretion of citrate, GAGs, Mg and Zn in relation to age and sexe in normal subjects and in patients who form calcium stones. Scand J Urol Nephrol 1992;26:379-86.
Bettger W, O'Dell B. Physiological roles of zinc in the plasma membrane of mammalian cells. J Nutr Biochem 1993;4: 194-207.
83.
84.
Grases F, Ruiz J, Costa-Bauzá A, ColI R, Conte A. Zinc, copper and oxalocalcic urolithiasis. Urol Int 1993;50:205-8.
Hodgkinson A. Citric acid excretion in normal adults and in patients with renal calculus. Clin Sci 1962;23:203-12.
85.
86.
Menon M, Mahle CJ. Urinary citrate excretion in patients with renal calculi. J UroI1983;129:1158-60.
Nicar MJ, Skurla C, Sakhaee K, Pak CYC. Low urinary citrate excretion in nephrolithiasis. Urology 1983;21:8-14.
87.
Rudmar D, Kutner MH, Redd SC, Waters WC, Gerron GG, Blerer J. Hypocitraturia
1982;55: 1052-67.
88.
89.
Scwille PO, Scholz D, Paulus M, Engelhardt W, Sigel A. Citrate in daily and fasting urine. Invest Urol 1979;16:457-62.
Elliot JS, Ribeiro ME. The urinary excretion of citric, hippuric and lactic acid in normal adults and in patients with calcium oxalate urinary
calculus disease. Invest Urol 1972; 1O: I 02-6.
90.
Hosking DH, Wilson JWL, Liedke RR, Smith LH, Wilson DM. Urinary citrate excretion in normals and patients with idiopathie ealcium
urolithiasis. En: Schwille PO, Smith LH, Robertson WH, Yahlensieck W, eds. Urolithiasis and related clinical research. New York: Plenum
Press; 1985:367-70.
91.
Conte A, Roca P, Gianotti M, Grases F. On the relation between citrate and calcium in normal and stone former subjects. Int Urol Nephrol
1989;21 :369-73.
92.
Grases F, Costa-Bauzá A. Potentiometric
Comms 1991 ;3:319-28.
93.
Grases F, March
1989;96:993-5.
94.
Grases F, García-Ferragut L, Costa-Bauzá
pig urinary bladder. Urol Res 1996:24.
95.
Tomoko F, Masako Y, Kabashima J, Natsuko H. Acute toxicity of phytic acid and sodium phytate in mice. Kenkyu Nenpo-Tokyo-toristu
sei Kenkyusho 1987;38:368-70.
96.
Hisatsugu 1, Shinshi O, Takahashi O, Kobayashi H, Katsuhiro Y, Hosokawa N, Hashimoto T. Acute oral toxicities of phytic acid and sodium
phytate in rats. Kenkyu Nenpo- Tokyo-toristu Eisei Kenkyusho 1987;38:371-6.
97.
Gersonde K, Murray W. The int1uence of infusion rate on the acute intravenous toxicity of phytic acid, a calcium binding agen!. Toxicology
1982;22:279-86.
98.
Tadashi O, Shoichi E, Kitagawa M, Shigeyoshi M, Yoshihissa M, Shu Y. Rice brand treatment for patiens with hypercalciuric
rimental and clinical studies. J Urol (Baltimore) 1984;132:1140-5.
99.
Grases F, García-Ferragut L, Costa-Bauzá A. A new procedure to evaluate the inhibitory capacity of calcium oxalate crystallization
le urine. Int Urol Nephrol 1995;27:653-61.
in calcium nephrolithiasis.
J Clin Endocrinol
Metab
study of the nucleation of calcium oxalate in presence of several additives. Clin Chem Enzym
P. A study about some phosphate
derivatives
as inhibitors
of calcium
oxalate
A. Study of the early stages of renal stone formation.
100.
Milicic M. Int1uence of vitamin a deficiency and overdosage
phatase. Acta Anat 1962;50:312-7.
101.
March JG, Yillacampa Al, Grases F. Enzymatic-spectrophotometric
Anal Chim Acta 1995;300:269-72.
crystal
Experimental
growth.
J Crystal
Growth
model using urothelium
of
Ei-
stones: expein who-
on kidney, small intestine, and liver, with special reference lo alkaline phosdetermination
oí phytic acid with phytase from Aspergillus ficuum.
Descargar